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A SPACE-TIME FINITE ELEMENT METHOD FOR

THE NONLINEAR SCHRÖDINGER EQUATION:

THE DISCONTINUOUS GALERKIN METHOD

OHANNES KARAKASHIAN AND CHARALAMBOS MAKRIDAKIS

Abstract. The convergence of the discontinuous Galerkin method for the
nonlinear (cubic) Schrödinger equation is analyzed in this paper. We show
the existence of the resulting approximations and prove optimal order error
estimates in L∞(L2). These estimates are valid under weak restrictions on the
space-time mesh.

1. Introduction

We consider the nonlinear Schrödinger equation (NLS)

ut = i∆u + iλ|u|2u, in Ω× [0, T ],

u = 0, on ∂Ω× [0, T ],

u(·, 0) = u0 in Ω,

(1.1)

where Ω is a bounded domain in R2, u is a complex-valued function defined on
Ω × [0, T ] and λ is a real parameter. We study the convergence of a space-time
finite element method for (1.1), namely the discontinuous Galerkin method. The
NLS equation arises, posed often as an initial value problem, in various areas of
Mathematical Physics. For example, in one space dimension, it arises as an enve-
lope equation in water wave theory [N], [W]. In two space dimensions, it occurs
in nonlinear optics where it describes the propagation of electromagnetic beams in
media whose index of refraction depends on the amplitude of the field in a sim-
ple nonlinear way [CGT], [T]. Since many interesting solutions are exponentially
decaying at infinity, it is a standard practice to couch numerical schemes in the
setting of the boundary value formulation (1.1).

Recently, increasing attention has been given to finite element methods in both
space and time variables for evolution problems. One reason for considering such
methods is the need for flexible schemes suitable for computations on unstructured
meshes. These schemes are of particular interest for effective numerical computa-
tions for (1.1), since this equation admits solutions that form singularities in finite
time, cf., e.g., [RR], [S]. Therefore the choice of appropriate adaptive methods
seems to be a natural one in this case. As a first step, in this work we prove a
priori error estimates that guarantee the convergence of a class of discontinuous
Galerkin methods to the solution of (1.1) under weak restrictions on the variation
of the (space-time) mesh. We use a rather general approach which can be applied
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to analyze the convergence behaviour of the discontinuous Galerkin method for
hyperbolic type problems.

The discontinuous Galerkin method has been studied extensively in recent years
for parabolic problems in Eriksson, Johnson and Thomée [EJT], Eriksson and John-
son [EJ1], [EJ2], [EJ3]. The method in the particular form that we consider in this
paper was previously considered for parabolic problems in [EJ1], [EJ2] and belongs
to the class of methods introduced in [J] for a parabolic problem in a variable
domain; the discontinuous Galerkin method for time-dependent problems was pro-
posed in [LR].

One of the reasons for considering the discontinuous Galerkin method in this pa-
per is our intention to investigate the application of this method to a model problem
which requires computations on unstructured meshes but on the other hand, does
not have “strong” stability properties and hence the theory of Eriksson and John-
son is not applicable. In this light our results are compared with the corresponding
results of [EJ1], [EJ2], see below. Note also that a priori error estimates for linear
hyperbolic problems are derived in Bales and Lasiecka [BL], French and Peterson
[FP], considering the continuous Galerkin method. Our intention is to apply both
methods to (1.1), since we have no reason, a priori, to prefer one over the other, and
also to see how these methods compare in terms of the flexibility of the selection of
the space-time mesh, and the convergence results. In a forthcoming work, we shall
report on the convergence analysis for the continuous Galerkin method and present
numerical experiments comparing the performance of the two methods. In a recent
paper, Dörfler [Dr] has derived a posteriori error estimates and proposed an adap-
tive algorithm based on the continuous Galerkin method for a linear Schrödinger
equation.

We now introduce the discontinuous Galerkin method for the problem (1.1): Let
0 = t0 < t1 < · · · < tN = T be a partition of [0, T ], and

In = (tn, tn+1], kn = tn+1 − tn.

We associate a partition Thn of Ω and a finite element space Snh to each interval
In :

Snh = {χ ∈ H1
0 (Ω) : χ|K ∈ Pr−1(K), K ∈ Thn},

where Pp(S) is the space of polynomials of degree p. We also associate a space S−1
h

with {t0}; for simplicity we take S−1
h = S0

h. In the sequel we shall denote by K the
elements of the partition Thn. Also hK stands for the diameter of the element K,
and hn = maxK∈Thn hK .

Following standard notation, we let H`(S) be the (complex) Sobolev space of
order `, and we denote its norm by ‖ · ‖`,S (‖ · ‖` if S = Ω). Also (·, ·) denotes the
inner product, and ‖ · ‖ the corresponding norm on L2(Ω) ; ‖ · ‖∞ denotes the norm
of L∞(Ω) and ‖ · ‖1,∞ the norm of W 1,∞(Ω).

Now let Vhk = Vhk(q), q positive integer, be the space of piecewise polynomial

functions ϕ : Ω × (0, T ] → C of the form: ϕ|Ω×In =
∑q−1

j=0 t
jχj(x) , χj ∈ Snh .

Hence, the functions of Vhk are, for each t ∈ In, elements of Snh and for each x ∈ Ω
piecewise polynomial functions of degree q − 1 with possible discontinuities at the
nodes tn, n = 0, . . . , N − 1 . Let also V n

hk = {ϕ|Ω×In : ϕ ∈ Vhk} .
We assume that (1.1) admits a unique smooth solution on [0, T ]. We define

the approximations U ∈ Vhk to the solution u of (1.1) as follows: Find U ∈ Vhk
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satisfying

(Un+1, φn+1)−
∫
In

(U, φt) + i

∫
In

(∇U,∇φ)dt− iλ

∫
In

(|U |2U, φ)dt

= (Un, φn+), ∀φ ∈ V n
hk, n = 0, . . . , N − 1,

(1.2)

where Un = U(tn), vn+ := limt→tn+ v(t) and we have set U0 = u0.
In the sequel we shall make frequent use of the following notation: We denote by

||| · |||n and by maxIn ‖ · ‖ the norms of L2(In, L
2(Ω)) and C(Īn, L

2(Ω)) respectively,
i.e.,

|||v|||n :=
(∫

In

‖v(t)‖2dt
)1/2

.

Also for s,m = 0, 1, . . . , and v ∈ Hm(Ω) we let

‖hsnv‖m,h :=
( ∑
K∈Thn

h 2s
K ‖v‖2m,K

)1/2

.

Summary of results. As an intermediate step towards proving the convergence
of (1.2) for (1.1) we introduce the modified scheme:

(Un+1, φn+1)−
∫
In

(U, φt) + i

∫
In

(∇U,∇φ)dt− iλ

∫
In

(f(U), φ)dt

= (Un, φn+), ∀φ ∈ V n
hk, n = 0, . . . , N − 1,

(1.3)

where U0 = u0 and f = f(z), f : C → C, is an appropriate globally Lipschitz
continuous function (cf. Section 4), such that f(z) = |z|2z in a ball with a radius
that depends on the solution u of (1.1). In particular, u is in that ball. We first
derive an estimate of the error of the approximations defined by (1.3) and then,
under some assumptions on the mesh, we show that this satisfies (1.2) as well and
therefore the error estimate remains valid for the solution of (1.2). Sections 2 and
3 are devoted to the analysis of (1.3): In Section 2 we establish the existence of a
solution of (1.3). The existence as well as convergence proofs rest on properties of
the Lagrange interpolating polynomials associated with the Radau interpolation.

In Section 3 we present the basic error analysis in L∞(L2(Ω)). The main result
of this section can be stated roughly as follows, cf. Theorem 3.1: If u is the solution
of (1.1) and U ∈ Vhk is the solution of (1.3), then

max
t∈[0,T ]

‖u(t)− U(t)‖ ≤ Cmax
m

kqm max
Im

(
‖u(q)‖+ ‖u(q+1)‖+ ‖∆u(q)‖

)
+ Cmax

m
max
Im

(‖hrmut‖r,h + ‖hrmu‖r,h)

+ CNC max
m

‖J [ωm]‖

(1.4)

where NC denotes the number of times where Sjh 6= Sj−1
h , j = 1, . . .N − 1, and

J [ωn] = ωn+ − ωn is the jump (Pn
E − Pn−1

E )u(tn) of the elliptic projection ω(t) =
Pn
Eu(t) at tn. Note that the constant in this estimate is of the form C = cecT .

We have also assumed that the error of the elliptic projection in the L2-norm can
be estimated by the local-type bound ‖hrmu‖r,h, cf. (3.4b) and Remark 3.1. The
same estimate, (1.4), is also valid for the corresponding linear problem, f(u) =
g(x, t). The relation (1.4) is an optimal-order error estimate provided we do not
change the spaces Snh too often—compare with the results of Dupont [D]; but
even in this case (1.4) guarantees convergence, since ‖J [ωm]‖ is always bounded by
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‖hrm−1u‖r,h + ‖hrmu‖r,h. (We have some preliminary results showing that ‖J [ωm]‖
can be estimated more accurately in some important special cases). Note, however
that (1.4) is not optimal, compared with standard elliptic finite element estimates,
in terms of the regularity required for the exact solution. The results of Eriksson
and Johnson, [EJ1], [EJ2], show that optimal order-regularity estimates (up to a
logarithmic factor) are valid for the corresponding discontinuous Galerkin method
for linear parabolic problems, provided in each time slab either Snh ⊂ Sn−1

h or
kn ≥ ch2

n. The approach in [EJ1], [EJ2] is based on establishing “strong” stability
estimates for an appropriate discrete dual problem. These estimates depend in an
essential manner on the parabolic character of the problem considered in [EJ1],
[EJ2]. Our approach is different and is based on a combination of finite element
and finite difference techniques, taking full advantage of appropriate energy-type
estimates and of useful properties of Lagrange interpolating polynomials at the
Radau points of each In. Note that in our case the estimate (1.4) is valid without
any restrictive assumptions on the choice of Snh , n = 0, . . . , N − 1, cf. also Remark
3.1. We refer also to [HH], [Jh] where a discontinuous Galerkin method is analyzed
for linear second-order hyperbolic problems.

In Section 4, we prove that if U is the solution of (1.3), then max[0,T ] ‖∇U(t)‖
can be controlled under some assumptions on the choice of the space-time mesh.
In view of an inverse inequality, and provided that for each n, 1 ≤ n ≤ N −1, there
holds

Sn−1
h ⊂ Snh

‖∇Pnv‖ ≤ CP ‖∇v‖ , ∀v ∈ H1
0 (Ω)

or kn ≥ CN (k2q + h2r) ,

we prove that the solution U of (1.3) is a solution of (1.2) as well (Theorem 4.1)
and thus satisfies the error bound (1.4). Here

k = max
0≤n≤N−1

kn, h = max
K∈Thn

0≤n≤N−1

hK , h = min
K∈Thn

0≤n≤N−1

hK , CN = c| ln(h)|,(1.5)

and Pn denotes the L2-projection into Snh , cf. Remark 4.1. Note that our results
hold if Ω ⊂ R and can be extended if Ω ⊂ R3, by assuming (in Section 4) stronger
meshconditions. For convergence of finite element schemes to (1.1) we refer to
[ADK] and the references therein.

Finally, let us note that the following σ-order superconvergence result at the
time nodes holds, [KM1]: Under the assumptions of section 3 and section 4 and
assuming that u has sufficient regularity

‖u(tn+1)− U(tn+1)‖ ≤ Cmax
m≤n

C1(m,u)k
σ
m + C max

m≤n
C2(m,u)h

r
m

+ CNC max
m≤n

‖J [ωm]‖ ,

where σ = 2q−1 if Ω is polyhedral and σ = min{q+2, 2q−1}, otherwise; C1(m,u)
and C2(m,u) are constants that depend on m and u but are independent of h and
k.

We next present some concluding remarks concerning interesting connections
between the discontinuous Galerkin method and the class of Radau IIA implicit
Runge-Kutta (IRK) methods, cf., e.g., [DV], [HW]. The replacement of the time
integrals in (1.2) by a q-point Radau quadrature formula (which turns out to be
exact except for the nonlinear term) transforms (1.2) into a q-stage Radau IIA
method. The application of this as well as other classes of IRK methods to (1.1) can
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be considered as a finite-difference approach to time-stepping and was analyzed in
[KAD] in the case where Snh = Sh, n = 0, . . . , N−1. This close relationship is made
evident here through the use of the Lagrange interpolating polynomials associated
with the Radau abscissas. Indeed, the proof of Lemma 2.1 below contains arguments
similar to those used to prove the BSI stability of the Radau IIA methods, cf. [DV,
pp. 162-164]. On the other hand, while the convergence of IRK methods relies
on the concept of Algebraic Stability as well as a set of consistency conditions
known as the Simplifying Assumptions, the convergence analysis presented herein
is free from such considerations and flows naturally from the basic properties of
the method itself. This is perhaps an indication that the discontinuous Galerkin
method and by extension other space-time Galerkin methods capture the essence
of time-stepping at a deeper level.

Let us note finally that an approach similar to the present paper can be taken to
analyze the convergence of the discontinuous Galerkin method for general semilinear
second-order hyperbolic problems.

2. Existence

For each q ≥ 1, we consider the integration rule,∫ 1

0

g(τ)dτ ∼=
q∑

j=1

wjg(τj), 0 < τ1 < · · · < τq = 1,(2.1)

which is exact for all polynomials of degree ≤ 2q − 2. These quadrature rules are
known as Radau methods, cf. [DR], and play a fundamental role in the analysis
presented herein.

For fixed q ≥ 1, let {`i}qi=1 be the Lagrange polynomials associated with the
abscissae τ1, . . . , τq, i.e.

`i(τ) =

q∏
j=1
i6=j

(τ − τj)

(τi − τj)
.(2.2)

Using the linear transformation t = tn + τkn that maps [0,1] onto In, we adapt
the quadrature rule (2.1) to the interval In by defining its abscissae and weights as
follows:

tn,j = tn + τjkn, j = 1, . . . , q (tn,q = tn+1),

`n,i(t) = `i(τ), t = tn + τkn,

wn,i =

∫ tn+1

tn
`n,i(t)dt = kn

∫ 1

0

`i(τ)dτ = knwi, i = 1, . . . , q.

(2.3)

Then U |In is uniquely determined by the functions Un,j = Un,j(x) ∈ Snh , such that

U(x, t) =

q∑
j=1

`n,j(t)U
n,j(x), (x, t) ∈ Ω× In.(2.4)
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Now, if ψ = ψ(x), ψ ∈ Snh , the function ϕ = `n,iψ is an element of V n
hk and (1.3) is

equivalent to

δqi(U
n,q, ψ)−

q∑
j=1

wn,j`
′
n,i(t

n,j)(Un,j , ψ) + i knwi(∇Un,i,∇ψ)

− iλ

∫
In

`n,i(t)(f(U), ψ)dt = `n,i(t
n)(Un, ψ), i = 1, . . . , q, ψ ∈ Snh .(2.5)

We consider the q × q matrices N ,M defined by

Nij = wn,j`
′
n,i(t

n,j) = wj`
′
i(τj),

M = eqe
T
q −N , eTq = (0, . . . , 1) ∈ Rq.

(2.6)

It is clear that N ,M are independent of kn and if Y = (yn,1, . . . , yn,q) ∈ Rq, then

Y TMY =

q∑
i=1

δqi y
n,qyn,i −

q∑
i,j=1

wn,j`
′
n,i(t

n,j) yn,jyn,i .

A crucial result for the proof of existence, as well as for the rest of the paper, is
that there exists a positive, diagonal matrix D such that D−1/2MD1/2 is positive

definite. Before proving this, we note that since wj =
∫ 1

0
`2j(t) dt, the weights wj

are positive.

Lemma 2.1. Let M̃ be the matrix

M̃ = D−1/2MD1/2, D = diag {τ1, τ2, . . . , τq}.(2.7)

Then with α := 1
2 min{w1

τ1
, . . . ,

wq−1

τq−1
, 1 + wq} > 0, there holds

xTM̃x ≥ α|x|2 = α(

q∑
i=1

x2
i ), ∀x ∈ Rq.(2.8)

Proof. We will first prove that

ND +DN T = diag {−w1, . . . ,−wq−1, 1− wq}.(2.9)

For this let

γij(τ) = τ`′i(τ)`j(τ).

Since the quadrature rule (2.1) is exact on P2q−2,∫ 1

0

γij(τ)dτ =

q∑
m=1

wmτm`
′
i(τm)`j(τm)

= wjτj`
′
i(τj) = (ND)ij .

On the other hand, integrating by parts∫ 1

0

γij(τ)dτ = `i(1)`j(1)−
∫ 1

0

`i(τ)`j(τ)dτ −
∫ 1

0

γji(τ)dτ,

i.e.,

(ND)ij + (ND)ji = `i(1)`j(1)−
∫ 1

0

`i(τ)`j(τ)dτ

= `i(1)`j(1)− δijwj , i, j = 1, . . . , q,
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and (2.9) follows. Now let x ∈ Rq. Relation (2.9) and the fact that τq = 1 imply,

xTM̃x = x2
q − xTD−1/2ND1/2x

= x2
q − 1

2x
T [D−1/2ND1/2 +D1/2N TD−1/2]x

= x2
q −

1

2
xTD−1/2[ND +DN T ]D−1/2x

= x2
q −

1

2
xT diag {−w1

τ1
, . . . ,−wq−1

τq−1
,
1− wq
τq

}x

≥ α|x|2.

We will prove existence by exhibiting {Ũn,j}qj=1, where Ũn,j = τ
−1/2
j Un,j ∈ Snh ,

i.e., in view of (2.4),

U(x, t) =

q∑
j=1

τ
1/2
j `n,j(t)Ũ

n,j(x), (x, t) ∈ Ω× In.(2.10)

To take advantage of the positivity of M̃ we choose ϕ = τ
−1/2
i `n,iψ in (1.3), where

ψ ∈ Snh , and we use the expression (2.10) for U to obtain, cf. (2.5),

δqi(Ũ
n,q, ψ)−

q∑
j=1

wn,j`
′
n,i(t

n,j)τ
1/2
j τ

−1/2
i (Ũn,j , ψ)

+ i knwi(∇Ũn,i,∇ψ)− iλ

∫
In

τ
−1/2
i `n,i(f(U), ψ)dt

− τ
−1/2
i `n,i(t

n)(Un, ψ) = 0, i = 1, . . . , q, ψ ∈ Snh .

(2.11)

We are ready to prove the following

Theorem 2.1. Let Un be given in Sn−1
h , then for kn sufficiently small there exists

{Ũn,j}qj=1 in (Snh )q satisfying (2.11). Therefore equation (1.3) has a solution U ∈
V n
hk. Furthermore U is unique.

Proof. The vector space (Snh )q is a finite dimensional Hilbert space equipped with
the inner product

((X,Ψ)) =

q∑
i=1

(χi, ψi), X = (χ1, . . . , χq)
T , Ψ = (ψ1, . . . , ψq)

T ∈ (Snh )q.

We denote the associated norm (
q∑
i=1

‖χi‖2)
1
2 by ||| · |||. We shall use a variation of

Brouwer’s fixed point theorem, cf. [Br], to show that the map F : (Snh )q → (Snh )q

defined by

(F (V )i, ψ) = δqi(vq , ψ)−
q∑

j=1

wj`
′
i(τj)τ

1/2
j τ

−1/2
i (vj , ψ)

+ i knwi(∇vi,∇ψ)− iλ

∫
In

τ
−1/2
i `n,i

(
f
( q∑
j=1

τ
1/2
j `n,jvj

)
, ψ
)
dt

− τ
−1/2
i `n,i(t

n)(Un, ψ), ∀ψ ∈ Snh , i = 1, . . . , q,

(2.12)
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has a root in (Snh )q, i.e. that (2.11) has a solution. Note that since f : C → C is
continuous, F is continuous and therefore, cf. [Br], it suffices to show the existence
of a constant β > 0 such that

Re ((F (V ), V )) ≥ 0, for all V ∈ (Snh )q such that |||V ||| = β.(2.13)

To this end, set ψ = vi in (2.12) and sum from i = 1 to q, to obtain:

Re ((F (V ), V )) ≥ Re {
q∑
i=1

δqi(vq, vi)−
q∑

i,j=1

wj`
′
i(τj)τ

1/2
j τ

−1/2
i (vj , vi)}

− |λ|
∫
In

q∑
i=1

|τ−1/2
i `n,i(f(

q∑
j=1

τ
1/2
j `n,jvj), vi)|dt

−
q∑
i=1

|τ−1/2
i `n,i(t

n)(Un, vi)|.

(2.14)

Now, it is straightforward to see that Lemma 2.1 implies

Re {
q∑
i=1

δqi(vq, vi)−
q∑

i,j=1

wj`
′
i(τj)τ

1/2
j τ

−1/2
i (vj , vi)}

= Re ((M̃V, V )) ≥ α|||V |||2,

(2.15)

where α > 0 is the constant of (2.8). On the other hand, from (4.2) it follows that

|λ|
∫
In

q∑
i=1

|τ−
1
2

i `n,i(f(

q∑
j=1

τ
1/2
j `n,jvj), vi)|dt ≤ c̃1kn|||V |||2, c̃1 = cc1.(2.16)

Also
q∑
i=1

|τ−1/2
i `n,i(t

n)(Un, vi)| ≤ c2‖Un‖|||V |||.(2.17)

Combining (2.14–17) and assuming that kn ≤ α
2c̃1

we obtain

Re ((F (V ), V )) ≥ |||V |||{(α− c̃1kn)|||V ||| − c2‖Un‖}

≥ |||V |||{α
2
|||V ||| − c2‖Un‖},

and therefore (2.13) holds for all V such that

|||V ||| = β ≥ 2c2
α
‖Un‖.

The proof of existence is now complete. Uniqueness is proved by similar arguments
in view of (4.3).

3. Error analysis in L∞(L2(Ω))

As usual we split the error U − u = (U −W ) + (W − u), where W ∈ Vhk is an
appropriately chosen function, and we estimate E = U −W and ρ = u −W . We
next define W and derive the basic error equation for E:

By Pn
E we denote the elliptic projection operator Pn

E : H1
0 (Ω) → Snh defined by

(∇Pn
Ev,∇χ) = (∇v,∇χ), ∀χ ∈ Snh .(3.1)
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Inq−1 is the usual Lagrange interpolation operator at the Radau points of In =
(tn, tn+1], i.e. Inq−1 : C(In) → Pq−1(In) is such that

(Inq−1y)(t
n,j) = y(tn,j), j = 1, . . . , q,(3.2)

where tn,j , j = 1, . . . , q are defined in (2.3). Note that Iq−1u(x, ·) ∈ Pq−1(In) and
Iq−1u(x, t

n+1) = u(x, tn+1), x ∈ Ω. It is clear that the function W : (0, T ] → H1
0 (Ω)

defined by

W (x, t) = Inq−1P
n
Eu(x, t), (x, t) ∈ Ω× In,(3.3)

is an element of Vhk. We denote its restriction to In, W |In again by W .
We assume that the family of spaces Snh satisfy

‖∇(v − Pn
Ev)‖ ≤ c‖hs−1

n v‖s,h, v ∈ Hs ∩H1
0 , 2 ≤ s ≤ r,(3.4a)

and

‖v − Pn
Ev‖ ≤ c‖hsnv‖s,h, v ∈ Hs ∩H1

0 , 2 ≤ s ≤ r,(3.4b)

where c is independent of n.

Remark 3.1. It is known that (3.4b) is valid in one dimension without any as-
sumptions on the mesh, cf. [BO]. In higher dimensions (3.4b) is valid under ap-
propriate local quasiuniformity conditions, cf. [EJ1], [EJ2] and their references and
also [BS, Chapter 0] for a discussion of the one-dimensional case. Note that (3.4b)
is not an essential assumption for our results to hold, in the sense that our estimates
will remain valid if we replace the ‖hrnv‖r,h-like terms in Theorems 3.1 and 4.1 by
terms that bound the error of the elliptic projection in the L2-norm.

Standard approximation and stability results for the interpolation operator, [BS],
[Ci] give,

|||u −W |||n ≤ ckqn|||u(q)|||n + ck1/2
n max

In
‖hsnu‖s,h, 2 ≤ s ≤ r,(3.5a)

and

max
In

‖u−W‖ ≤ ckqn max
In

‖u(q)‖+ cmax
In

‖hsnu‖s,h, 2 ≤ s ≤ r.(3.5b)

The basic error equation. The function E = E|In satisfies,

(En+1, φn+1)−
∫
In

(E, φt) dt+ i

∫
In

(∇E,∇φ) dt − iλ

∫
In

(f(U)− f(W ), φ) dt

= (En, φn+)− (Wn+1, φn+1) +

∫
In

(W,φt) dt+ (Wn, φn+)

− i

∫
In

(∇W,∇φ) + iλ

∫
In

(f(W ), φ) dt, ∀φ ∈ V n
hk, n = 0, 1, . . . , N − 1,

(3.6)

where we have set

W 0 = P 0
Eu

0, E0 = U0 −W 0 = u0 − P 0
Eu

0 .(3.6′)

We now introduce the functions ω, η

ω(x, t) = Pn
Eu(x, t),

η(x, t) = (u− ω)(x, t), (x, t) ∈ Ω× In, n = 0, . . . , N − 1.
(3.7)

Obviously these functions are continuous with respect to t in each time interval
In, and have jump discontinuities at the points tn, only if Sn−1

h 6= Snh . Recall that



488 OHANNES KARAKASHIAN AND CHARALAMBOS MAKRIDAKIS

W |In is the interpolant in t of ω at the points tn,j , and therefore using the notation
introduced in the beginning of Section 2 we have

W (x, t) =

q∑
j=1

`n,j(t)ω
n,j(x), (x, t) ∈ Ω× In,

ωn,j = ω(·, tn,j) = Pn
Eu

n,j = Pn
Eu(·, tn,j), j = 1, . . . , q.

(3.8a)

Also, cf. (2.4),

E(x, t) =

q∑
j=1

`n,j(t)E
n,j(x), (x, t) ∈ Ω× In,

En,j(x) = Un,j − ωn,j .

(3.8b)

Using the above expressions in the equation (3.6) with test function φ = `n,iψ,
ψ ∈ Snh , we obtain the basic error equation for E, cf. (2.5),

δqi(E
n,q, ψ)−

q∑
j=1

wn,j`
′
n,i(t

n,j)(En,j , ψ) + i knwi(∇En,i,∇ψ)

− iλ

∫
In

`n,i(f(U)− f(W ), ψ)dt

= (En, `n,i(t
n)ψ)− (δqiω

n,q −
q∑

j=1

wn,j`
′
n,i(t

n,j)ωn,j − `n,i(t
n)ωn, ψ)(3.9)

− i knwi(∇un,i,∇ψ) + iλ

∫
In

`n,i(f(W ), ψ)dt

= (En, `n,i(t
n)ψ) + (Θn,i +An,i +Bn,i, ψ)− (J [ηn], `n,i(t

n)ψ)

+ iλ

∫
In

`n,i (f(W )− f(u), ψ) dt, i = 1, . . . , q,

where for ηn,j = η(·, tn,j),

Θn,i := δqiη
n,q −

q∑
j=1

wn,j`
′
n,i(t

n,j)ηn,j − `n,i(t
n)ηn+,

An,i :=

q∑
j=1

wn,j`
′
n,iu

n,j −
∫
In

`′n,iu dt,

Bn,i := i knwi∆u
n,i − i

∫
In

`n,i∆u dt,

J [ηn] := ηn − ηn+ = ωn+ − ωn = (Pn
E − Pn−1

E )u(tn).

(3.10)

Here we used the definition of W and Pn
E , and the fact that for any φ ∈ Vhk there

holds

(un+1, φn+1)−
∫
In

(u, φt)dt− (un, φn+) + i

∫
In

(∇u,∇φ)dt− iλ

∫
In

(f(u), φ)dt = 0.

In the convergence proof we will need a bound for Ẽn,j = τ
−1/2
j En,j , cf. (2.11).

We write therefore the analog of (3.9) for Ẽn,j (recall that E =
∑q

j=1 τ
1/2
j `n,jẼ

n,j
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in In):

δqi(Ẽ
n,q, ψ)−

q∑
j=1

wn,j`
′
n,i(t

n,j) τ
1/2
j τ

−1/2
i (Ẽn,j , ψ) + iknwi(∇Ẽn,i,∇ψ)

− iλτ
−1/2
i

∫
In

`n,i(f(U)− f(W ), ψ)dt

=τ
−1/2
i

{
(En, `n,i(t

n)ψ) + (Θn,i +An,i +Bn,i, ψ)− (J [ηn], `n,i(t
n)ψ)(3.11)

+ iλ

∫
In

`n,i(f(W )− f(u), ψ) dt
}
, i = 1, . . . , q.

Our next task is to bound the terms Θn,i, An,i and Bn,i. In fact, in the proof of
the following lemma, we derive appropriate estimates for these terms, which allow
us to obtain the optimal-order convergence result of our scheme.

Lemma 3.1. For any n, 0 ≤ n ≤ N − 1, and for i = 1, . . . , q there holds

‖Θn,i‖ ≤ ck1/2
n

(∫
In

‖hrnut‖2r,h
) 1

2

,(3.12a)

‖An,i‖ ≤ ckq+1/2
n |||u(q+1)|||n(3.12b)

and

‖Bn,i‖ ≤ ckq+1/2
n |||∆u(q)|||n ,(3.12c)

where Θn,i, An,i and Bn,i are defined in (3.10).

Proof. For the estimate of Θn,i we note first that for i = 1, . . . , q,

δqi −
q∑

j=1

wn,j`
′
n,i(t

n,j)− `n,i(t
n) = δqi −

∫ tn+1

tn
`′n,i(t)dt− `n,i(t

n) = 0.

This implies that there exist constants βij (independent of n), such that

Θn,i =δqiη
n,q −

q∑
j=1

wj`
′
i(τj)η

n,j − `i(0)ηn+

=

q∑
j=1

βij
(
ηn,j − ηn,j−1

)
(ηn,0 := ηn+)

=

q∑
j=1

βij

∫ tn,j

tn,j−1

ηt(s)ds , (tn,0 := tn).

Since ηt = (I − Pn
E)ut, (3.7) and (3.4b) imply

‖Θn,i‖ ≤ c

∫
In

‖hrnut‖r,h ≤ ck1/2
n

( ∫
In

‖hrnut‖2r,h
) 1

2

.(3.13)

Now let Inq be the interpolation operator at the q + 1 points of In, consisting of

the q Radau points and the point tn, i.e., Inq : C(In) → Pq(In) is such that

Inq y(tn,j) = y(tn,j), j = 1, . . . , q,

Inq y(tn) = y(tn+).
(3.14)
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Using this notation and the fact that, for each x ∈ Ω, `′n,iInq u is a polynomial of
degree 2q − 2 in t, we obtain

An,i =

q∑
j=1

wn,j`
′
n,i(t

n,j)Inq u(tn,j)−
∫
In

`′n,iu dt

=

∫
In

`′n,i(Inq u− u)dt.

It follows from the approximating properties of the operator Inq that

‖An,i‖ ≤ c
( ∫

In

|`′n,i(t)|2dt
) 1

2 |||Inq u− u|||n

≤ c
(
k−1
n

∫ 1

0

|`′i(τ)|2dτ
) 1

2

ckq+1
n |||u(q+1)|||n

≤ ckq+1/2
n |||u(q+1)|||n .

(3.15)

Analogously, using the fact that `n,iInq−1u is a polynomial of degree 2q − 2 in t,

Bn,i = i

q∑
j=1

wn,j`n,i(t
n,j)∆un,j − i

∫
In

`n,i∆u dt

= i

∫
In

`n,i(Inq−1 − I)∆u dt.

Therefore,

‖Bn,i‖ ≤ c
(∫

In

|`n,i(t)|2dt
) 1

2 |||Inq−1∆u−∆u|||n

≤ c
(
kn

∫ 1

0

|`i(τ)|2dτ
) 1

2

ckqn|||∆u(q)|||n

≤ ckq+1/2
n |||∆u(q)|||n,

(3.16)

which completes the proof.

We now set ψ = En,i in the i-th equation of (3.9) and sum from i = 1 to q and
take real parts. We then have, since the left hand side of the resulting equation
will be equal to the left hand side of (3.6) for ϕ = E, cf. (3.8b),

1

2
‖En+1‖2+1

2
‖En+‖2 = Re (En, En+)− Im λ

∫
In

(f(U)− f(W ), E)dt

+ Im λ

∫
In

(f(u)− f(W ), E)dt

+ Re

q∑
i=1

(Θn,i +An,i +Bn,i, En,i)− Re (J [ηn], En+).

(3.17)

Using the properties of f, cf. Lemma 4.1, and (3.5a) we obtain∣∣∣ ∫
In

(f(U)− f(W ), E)dt
∣∣∣ ≤ c|||E|||2n,∣∣∣ ∫

In

(f(u)− f(W ), E)dt
∣∣∣ ≤ c

{
kqn|||u(q)|||n + k1/2

n max
In

‖hrnu‖r,h
}
|||E|||n.

(3.18)
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Using the fact that,

|||E|||n =
( q∑
j=1

wn,j‖En,j‖2
) 1

2

= k1/2
n

( q∑
j=1

wj‖En,j‖2
) 1

2

,(3.19)

Lemma 3.1, (3.18) and the observation that J [ηn] = 0 if Snh = Sn−1
h , from (3.17)

we obtain

‖En+1‖2 ≤ (1 + βn)‖En‖2 + c|||E|||2n
+ ck2q

n

(
|||u(q)|||2n + |||u(q+1)|||2n + |||∆u(q)|||2n

)
+ c

∫
In

‖hrnut‖2r,hdt+ ckn max
In

‖hrnu‖2r,h

+Mn‖J [ηn]‖2,

(3.20)

where Mn is a number depending on n which will be specified in the sequel and

βn =

{
0 if Snh = Sn−1

h ,
1

Mn−1 otherwise,
n = 1, . . . , N − 1.(3.21)

An essential step now is the estimation of |||E|||n in terms of ‖En‖ and of consistency
terms. Indeed, we have the following result:

Lemma 3.2. For any n, 0 ≤ n ≤ N − 1, and kn sufficiently small, there holds

|||E|||2n ≤ ckn

{
‖En‖2 + k2q+1

n

(
|||u(q)|||2n + |||u(q+1)|||2n + |||∆u(q)|||2n

)
+ kn

(∫
In

‖hrnut‖2r,hdt+ kn max
In

‖hrnu‖2r,h
)

+ ‖J [ηn]‖2
}
.(3.22)

Proof. The proof is based on the representation of E as E =
∑q

j=1 τ
1/2
j `n,jẼ

n,j in

In, and on the observation of Lemma 2.1. To this end, let ψ = Ẽn,i in (3.11) and
sum from i = 1 to q and take real parts. Since

q∑
i=1

δqi(Ẽ
n,q, Ẽn,i)−

q∑
i,j=1

wn,j`
′
n,i(t

n,j)τ
1/2
j τ

−1/2
i (Ẽn,j , Ẽn,i) = ((M̃Ẽn, Ẽn )),

where M̃ is defined in (2.7) and Ẽn ∈ (Snh )q, Ẽn = (Ẽn,1, . . . , Ẽn,q), (here we use
the notation introduced in the proof of Theorem 2.1) by Lemma 2.1 we obtain

Re ((M̃Ẽn, Ẽn )) ≥ α

q∑
j=1

‖Ẽn,j‖2 .

Using (4.3) and the fact that
∫
In
`2n,i(t)dt = wikn, we obtain∣∣∣∣∣

q∑
i=1

λτ
−1/2
i

∫
In

`n,i(f(U)− f(W ), Ẽn,i)dt

∣∣∣∣∣ ≤ ck1/2
n

{ q∑
i=1

‖Ẽn,i‖2
}1/2

|||E|||n.

Applying a similar treatment to the last term in (3.11), we conclude that

α

q∑
j=1

‖Ẽn,j‖2 ≤ c
{ q∑
j=1

‖Ẽn,j‖2
}1/2{

‖En‖+ ck1/2
n |||E|||n + ck1/2

n |||u −W |||n

+
( q∑
i=1

[
‖Θn,i‖2 + ‖An,i‖2 + ‖Bn,i‖2

] )1/2

+ ‖J [ηn]‖
}
.
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Using the analog of (3.19) for Ẽn,i, and taking kn sufficiently small we obtain

|||E|||2n ≤ ckn‖En‖2 + ck2
n|||u −W |||2n

+ ckn

( q∑
i=1

[
‖Θn,i‖2 + ‖An,i‖2 + ‖Bn,i‖2

] )
+ ckn‖J [ηn]‖2 ,

the desired result now follows in view of (3.5a) and Lemma 3.1.

We are now ready to prove the main convergence result for the modified scheme.

Theorem 3.1. Let u be the solution of (1.1). If U is the solution of (1.3), then it
satisfies

max
In

‖E‖ ≤ Cn‖hr0u0‖r,h + Cn

{ n∑
m=0

(
k2q
m

(
|||u(q)|||2m + |||u(q+1)|||2m + |||∆u(q)|||2m

)
+ c

∫
Im

‖hrmut‖2r,hdt+ ckm max
Im

‖hrmu‖2r,h
)}1/2

(3.23)

+ cCnNC max
1≤m≤n

‖J [ηm]‖ , n = 0, 1, . . . , N − 1,

where Cn = cectn, and therefore

max
t∈[0,T ]

‖u(t)− U(t)‖ ≤ CecT
{

max
m

kqm max
Im

(
‖u(q)‖+ ‖u(q+1)‖+ ‖∆u(q)‖

)
+ max

m
max
Im

(‖hrmut‖r,h + ‖hrmu‖r,h)

+NC max
m

‖J [ηm]‖
}
.

(3.24)

Proof. In view of Lemma 3.2, inequality (3.20) implies

‖En+1‖2 ≤ (1 + βn + ckn)‖En‖2

+ ck2q
n

(
|||u(q)|||2n + |||u(q+1)|||2n + |||∆u(q)|||2n

)
+ c

∫
In

‖hrnut‖2r,hdt+ ckn max
In

‖hrnu‖2r,h

+ (ckn +Mn)‖J [ηn]‖2.

Therefore,

‖En+1‖2 ≤
n∏
j=0

(1 + βj + ckj)‖E0‖2

+ c
n∑

m=0

( n∏
j=m+1

(1 + βj + ckj)
)(
k2q
m

{
|||u(q)|||2m + |||u(q+1)|||2m + |||∆u(q)|||2m

}
(3.25)

+ c

∫
Im

‖hrmut‖2r,hdt+ ckm max
Im

‖hrmu‖2r,h + (ckm +Mm)‖J [ηm]‖2
)
.

Now, fix n and choose Mm = M = NC(n), m = 1, . . . , n, where NC(n) is the

number of times where Sjh 6= Sj−1
h , j = 1, . . . n (in the case where NC(n) = 0 or 1
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we take M = 2). Then, βj = β = 1
M−1 , for Sjh 6= Sj−1

h , cf. (3.21),

n∏
j=0

(1 + βj + ckj) ≤
n∏
j=0
β<ckj

(1 + 2ckj)

n∏
j=0
β≥ckj

(1 + 2β)

≤
n∏
j=0

(1 + 2ckj)(1 + 2β)M ≤ e2ctn+13e2.

Set now Cn :=
(
3e2ctn+2

)1/2
. Then since E0 = u0 − P 0

Eu
0, J [η0] = 0, (km ≤M)

‖En+1‖ ≤ Cn+1‖u0 − P 0
Eu

0‖

+ cCn+1

{ n∑
m=0

(
k2q
m

(
|||u(q)|||2m + |||u(q+1)|||2m + |||∆u(q)|||2m

)
+

∫
Im

‖hrmut‖2r,hdt+ km max
Im

‖hrmu‖2r,h
)}1/2

+ cCn+1

√
M
( n∑
m=1

‖J [ηm]‖2
)1/2

.

(3.26)

where M = NC(n). In view of Lemma 3.2 and of (3.4b), we obtain for any n =
0, . . . , N − 1,

|||E|||n ≤ k1/2
n cCn‖hr0u0‖r,h

+ k1/2
n cCn

{ n∑
m=0

(
k2q
m

(
|||u(q)|||2m + |||u(q+1)|||2m + |||∆u(q)|||2m

)
+

∫
Im

‖hrmut‖2r,hdt+ km max
Im

‖hrmu‖2r,h
)}1/2

+ k1/2
n cCn

√
NC(n− 1)

( n∑
m=1

‖J [ηm]‖2
)1/2

.

(3.27)

Since E|In ∈ V n
hk, the inverse inequality

max
In

|y(t)| ≤ cIk
−1/2
n

(∫
In

|y(t)|2 dt
)1/2

, ∀y ∈ Pq−1(In), cI > 0,(3.28)

implies

max
In

‖E‖ ≤ cCn‖hr0u0‖r,h

+ cCn

{ n∑
m=0

(
k2q
m

(
|||u(q)|||2m + |||u(q+1)|||2m + |||∆u(q)|||2m

)
+

∫
Im

‖hrmut‖2r,hdt+ km max
Im

‖hrmu‖2r,h
)}1/2

+ cCn
√
NC

( n∑
m=1

‖J [ηm]‖2
)1/2

,

(3.29)

and (3.23) follows.
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4. Convergence of the nonlinear scheme

In this section we shall use the results of Section 3 for the modified scheme to
show the convergence of (1.2) to the solution of the nonlinear Schrödinger equation
(1.1). First we make a concrete choice of the function f used in the modified
scheme which satisfies certain properties, some of them already used in the previous
sections:

Lemma 4.1. Let M := sup[0,T ] ‖u‖∞+1. Then, there exists a function f : C → C
such that

f(z) = |z|2z, if |z| ≤M,(4.1)

|f(z)| ≤ c1|z|, c1 > 0, ∀ z ∈ C,(4.2)

|f(z)− f(w)| ≤ c2|z − w|, c2 > 0, ∀ z, w ∈ C,(4.3)

‖∇x(f(v1)− f(v2))‖ ≤ c3‖∇x(v1 − v2)‖, c3 = c3(M
′) > 0,(4.4)

∀v1, v2 ∈ H1
0 with ‖v1‖1,∞ ≤M ′ .

Proof . Let γ : [0,∞) → R be a C2 function with bounded derivatives up to second
order, such that

γ(s) =

{
s, s ≤M2

(2M)2, s ≥ (2M)2
and M2 ≤ γ(s) ≤ (2M)2, for M2 ≤ s ≤ (2M)2.

Define f : C → C, by f(z) = γ(|z|2)z. Then (4.1), (4.2) hold. Also, since

f(z)− f(w) = γ(|z|2)(z − w) +
[
γ(|z|2)− γ(|w|2)

]
w,(4.5)

it is a simple matter to see that (4.3) holds in the cases |z|, |w| > 4M or |z|, |w| <
4M, by using

[
γ(|z|2)− γ(|w|2)

]
= γ′(ξ) (|z| − |w|) (|z|+ |w|) . Similarly, if |z| >

4M, 2M ≤ |w| ≤ 4M. If |w| ≤ 2M, (4.3) follows by (4.5) since |w − z| ≥ 2M and
hence |w − z| ≥ |w|. Relation (4.4) is proved using similar arguments.

By Lemma 4.1 it is clear that if we show that the solution of (1.3) satisfies

max
[0,T ]

‖U‖∞ ≤M,(4.6)

then U will be a solution of (1.2) as well and the estimate of Theorem 3.1 will
remain valid. By an inverse inequality, the proof of (4.6) rests (up to a logarithmic
factor) on the control of max[0,T ] ‖∇U‖. In the rest of this section we shall see that
‖∇U‖ can be controlled under some assumptions on the structure of the mesh. We
begin with

Proposition 4.1. For a given n, 1 ≤ n ≤ N − 1, assume that the following hold:

Sn−1
h ⊂ Snh ,(4.7)

‖∇Pnv‖ ≤ CP ‖∇v‖ , ∀v ∈ H1
0 (Ω),(4.8)



A SPACE-TIME FINITE ELEMENT METHOD 495

where Pn is the L2-projection onto Snh . Then

‖∇En+1‖2 ≤ (1 + ckn)‖∇En‖2

+ ck2(q−1)
n

(
|||∇u(q−1)|||2n + |||∇u(q)|||2n + |||∆u(q−1)|||2n

)
+ c

∫
In

‖hr−1
n ut‖2r,hdt+ ckn max

In
‖hr−1

n u‖2r,h

+ (1 + ckn)‖∇J [ηn]‖2.

Remark 4.1. The bound (4.8) was proved in Crouzeix and Thomée [CrT] in one and
two dimensions, under some restrictions on the variation of the mesh, but without
the assumption of quasiuniformity, cf. [CrT] for details.

Proof. We introduce first the discrete operator An
h : H1

0 (Ω) → Snh , defined by

(An
hv, χ) = (∇v,∇χ), ∀χ ∈ Snh .(4.9)

Next, we set ψ = An
hE

n,i in (3.9), sum over i, from i = 1 to q, and take real parts.
Then, since the left hand side of the resulting equation is equal to the left hand
side of (3.6) for ϕ = An

hE ∈ V n
hk, we obtain by using Sn−1

h ⊂ Snh ,

1

2
‖∇En+1‖2+1

2
‖∇En+‖2 = Re (∇En,∇En+)

− Im λ

∫
In

(∇Pn(f(U)− f(W ))−∇Pn(f(u)− f(W )),∇E)dt(4.10)

+ Re

q∑
i=1

(∇Pn[Θn,i +An,i +Bn,i],∇En,i)− Re (J [ηn], An
hE

n+).

We estimate the terms in the right hand side of (4.10) in the following lemma whose
proof is given below.

Lemma 4.2. For any n, 0 ≤ n ≤ N − 1, there hold∣∣∣∣∫
In

(∇Pn(f(U)− f(W ))−∇Pn(f(u)− f(W )),∇E)dt

∣∣∣∣ ≤ c|||∇E|||2n

+ ck2q
n |||∇u(q)|||2n + ckn max

In
‖hr−1

n u‖2r,h,

and ∣∣∣∣∣
q∑
i=1

(∇Pn[Θn,i +An,i +Bn,i],∇En,i)

∣∣∣∣∣ ≤ c|||∇E|||2n + c

∫
In

‖hr−1
n u‖2r,h

+ ck2(q−1)
n

(
|||∇u(q)|||2n +

∫
In

‖∆u(q−1)‖21dt
)
.

Since Sn−1
h ⊂ Snh , we have (∇J [ηn],∇ψ) = −(∇J [ωn],∇ψ) = 0, for all ψ ∈ Sn−1

h .
Therefore

(J [ηn], An
hE

n+) = (∇J [ηn],∇En+) = (∇J [ηn],∇(En+ − En) ) .(4.11)
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On the other hand, 1
2‖∇En+‖2−Re(∇En,∇En+)= 1

2‖∇(En+−En)‖2− 1
2‖∇En‖2.

Hence, using the last relation, (4.11) and Lemma 4.2 in (4.10) one finally obtains

‖∇En+1‖2 ≤ ‖∇En‖2 + c|||∇E|||2n

+ ck2(q−1)
n

(
|||∇u(q)|||2n +

∫
In

‖∆u(q−1)‖21dt
)

+ c

∫
In

‖hr−1
n ut‖2r,hdt+ ckn max

In
‖hr−1

n u‖2r,h

+ ‖∇J [ηn]‖2.

(4.12)

Next, starting from the error equation (3.11) with ψ = An
hẼ

n,i, and adapting the
proof of Lemma 3.2 to the present case, we obtain

|||∇E|||2n ≤ckn
{
‖∇En‖2 + ck2q−1

n

(
|||∇u(q)|||2n +

∫
In

‖∆u(q−1)‖21dt
)

+ ckn

(∫
In

‖hr−1
n ut‖2r,hdt+ ckn max

In
‖hr−1

n u‖2r,h
)

+ ‖∇J [ηn]‖2
}
.

(4.13)

Relations (4.12) and (4.13) complete the proof.

Proof of Lemma 4.2. Since sup[0,T ] ‖W‖1,∞ is bounded, cf. Remark 4.2, using

(4.4) and (4.8) we obtain∣∣∣∣∫
In

(∇Pn(f(U)− f(W )),∇E)dt

∣∣∣∣ ≤ c|||∇E|||2n .

Also, the definition and the approximation properties of Inq−1 imply∣∣∣∣∫
In

(∇Pn(f(u)− f(W )),∇E)dt

∣∣∣∣ ≤ c
(∫

In

‖∇(u−W )‖2dt
)1/2

|||∇E|||n

≤ c
(∫

In

‖∇u− Inq−1∇u‖2 + ‖Inq−1(∇u −∇ω)‖2dt
)1/2

|||∇E|||n

≤ c
(
kqn|||∇u(q)|||n + ck1/2

n max
In

‖hr−1
n u‖r,h

)
|||∇E|||n .

Similar arguments to those used in the proof of (3.12a), (4.8) and the analog of
(3.19) for ∇E give∣∣∣∣∣

q∑
i=1

(∇PnΘn,i,∇En,i)

∣∣∣∣∣ ≤ c
(∫

In

‖hr−1
n ut‖2r,h

)1/2

|||∇E|||n .

To estimate An,i, we note that `′n,iInq∇Pnu is a polynomial of degree 2q − 2 in t.
Therefore

∇PnAn,i =

q∑
j=1

wn,j`
′
n,i(t

n,j)Inq ∇Pnu(tn,j)−
∫
In

`′n,i∇Pnudt

=

∫
In

`′n,i(Inq ∇Pnu−∇Pnu)dt.

Hence, cf. (3.15),

‖∇PnAn,i‖ ≤ ckq−1/2
n |||∇Pnu(q)|||n ≤ ckq−1/2

n |||∇u(q)|||n.
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Using similar arguments, see also (3.16), one finally obtains,

‖∇PnBn,i‖ ≤ ckq−1/2
n

(∫
In

‖∇Pn∆u(q−1)‖2
) 1

2

≤ ckq−1/2
n

(∫
In

‖∆u(q−1)‖21
) 1

2

,

and the proof of the lemma is complete.

Remark 4.2. It is reasonable to assume that sup[0,T ] ‖W‖1,∞ is bounded by a

constant independent of h, without the assumption of quasiuniformity, cf. [SW].
Before stating the main result of this section we recall that the quantities k, h, h

and CN were defined in the introduction, cf. (1.5).

Theorem 4.1. Assume that for each n, 1 ≤ n ≤ N − 1, there hold

Sn−1
h ⊂ Snh ,

‖∇Pnv‖ ≤ CP ‖∇v‖ , ∀v ∈ H1
0 (Ω),

or kn ≥ CN (k2q + h2r) .

Then for h and k small enough the solution U of (1.3) is a solution of (1.2) as well
which satisfies the error bound of Theorem 3.1.

Proof. To show the desired result, it suffices to prove

max
[0,T ]

‖E‖∞ ≤ β(h, k, h), β(h, k, h) → 0 as h, k → 0.(4.14)

To establish (4.14) we observe first that, [Th, p. 67],

max
In

‖E‖∞ ≤ c| ln(h)|max
In

‖∇E‖ .(4.15)

To estimate maxIn ‖∇E‖ we assume first that for all n up to n0 the hypotheses of
Proposition 4.1 are valid (Sn−1

h ⊂ Snh ), then as in the proof of Theorem 3.1 one can
show that for each n, 0 ≤ n ≤ n0, there holds

max
In

‖∇E‖ ≤ cCn

(
‖hr−1

0 u0‖r,h

+
{ n∑
m=0

(
k2q−2
m

(
|||∇u(q)|||2m +

∫
Im

‖∆u(q−1)‖21
)

+ c

∫
Im

‖hr−1
m ut‖2r,hdt+ ckm max

Im
‖hr−1

m u‖r,h
)}1/2)

+ cCn
√
NC(n− 1) max

1≤m≤n
‖J [ηm]‖.

Hence up to tn0+1, (4.14) holds provided ln(h)(hr−1 + kq−1) → 0 as h, k → 0, cf.
Remark 4.3. At the first time where Sn−1

h * Snh , say at n0 + 1, set ψ = En,i in
(3.9) sum over i and take imaginary parts. Then using the estimates of Lemma 3.1
and Theorem 3.1 we obtain

|||∇E|||n0+1 ≤ c(kq + hr) + cNC(n0)h
r .

And the inverse inequality (3.28) implies

max
In0+1

‖∇E‖ ≤ ck
−1/2
n0+1(k

q + hr) + ck
−1/2
n0+1NC(n0)h

r .
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which in turn implies (4.14) for the interval In0+1 in view of our assumption on the
mesh in this case. Proceeding in time in a similar fashion we obtain the desired
result.

Remark 4.3. For q = 1, ln(h)(hr−1 + kq−1) does not converge to zero. However
we can redo the estimates of this section to obtain a rate of O(kq). Since this will
require higher regularity, we reserve it only for the case q = 1.
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