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NUMERICAL EVALUATION OF A

SYMMETRIC POTENTIAL FUNCTION

LORI A. CARMACK

Abstract. We discuss the numerical evaluation of a symmetric potential func-
tion which arises naturally in applications. We present a method designed to
accurately and efficiently compute this integral, and compare the performance
of this method with two other popular techniques. This method requires con-
siderably fewer function evaluations than all other techniques we tested, and is
applicable to any integral which can be expressed in terms of complete elliptic
integrals.

1. Introduction

The problem of computing potential functions occurs in a wide variety of ap-
plications including, but not limited to, fluid mechanics, acoustics, diffusion, and
electromagnetics. Potential functions can prove troublesome numerically because
of the possibility of singular integrands. Traditional methods such as Simpson’s
Rule or quadrature are therefore often computationally inefficient due to the large
number of points required to achieve a reasonable amount of accuracy.

In this paper we consider the numerical evaluation of one particular potential
function,

ψ(r, z) =
1

2π

π∫
0

ρ cos θdθ

[r2 + ρ2 − 2rρ cos θ + (z − ζ)2]
1
2

,(1)

which arises naturally, for example, in the formulation of the axisymmetric in-
compressible Euler equations with swirl. We used a variety of different numerical
evaluation techniques on this integral. We present here a method which computes
this integral both accurately and efficiently, even when near a singularity in the in-
tegrand. Namely, we first express the integral in terms of complete elliptic integrals
of the first and second kinds, and then use an algorithm found in Abramowitz and
Stegan [1] to compute these elliptic integrals. We compare this technique to two
other popular methods: Simpson’s Rule, and a quadrature rule subroutine found
in the book QUADPACK [5] designed specifically to handle integrals such as (1).
Our method proved significantly superior to these other two. We proceed by first
discussing the integral under consideration in further detail, and then present the
numerical evaluation method. Last, with the aid of a table, we briefly present a
comparison of the three techniques stated above.
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2. Derivation of the symmetric potential function

The symmetric potential function (1) is derived by analytically solving Poisson’s
equation in three dimensions,

−∆u = f,

using cylindrical coordinates, where u(r, θ, z) is of the form eiθψ(r, z), and

f(r, θ, z) = eiθω(r, z).

This problem arises in finding an analytic formula for the stream function of the axi-
symmetric incompressible Euler equations with swirl, for example, where ψ(r, z) is
the stream function, and ω(r, z) is the vorticity of the fluid. Solving for u via convo-
lution with the fundamental solution of the Laplacian along with a transformation
to cylindrical coordinates yields

u(r, θ, z) =
eiθ

4π

∞∫
−∞

∞∫
0

ω(ρ, ζ)


2π∫
0

eiλdλ

[h(r, z, ρ, ζ)]
1
2

 ρdρdζ

where we have defined

h(r, z, ρ, ζ) = r2 + ρ2 − 2rρ cosλ+ (z − ζ)2.

Substituting eiθψ(r, z) for u(r, θ, z) and canceling eiθ from both sides gives an an-
alytic formula for ψ:

ψ(r, z) =
1

2π

∞∫
−∞

∞∫
0

π∫
0

ρω(ρ, ζ) cosλdλ

[r2 + ρ2 − 2rρ cosλ+ (z − ζ)2]
1
2

dρdζ.(2)

Finally, numerically integrating twice with respect to ρ and ζ leaves us with the
definite one-dimensional integral

W (r, z, ρ, ζ) =
1

2π

π∫
0

ρ cosλdλ

[r2 + ρ2 − 2rρ cosλ+ (z − ζ)2]
1
2

.(3)

The above derivation is analogous to a common application in potential theory,
whereN charged particles are given, located at points xi in two or three dimensions,
with strengths κi. The goal is to compute the potential induced by these charges
at some point x. This scenario leads to the potential function being the solution of
the equation

∆u =
N∑
i−1

δ(x− xi)κi.(4)

For this reason, we will refer to a point (r, z) as a “receiver,” and to a point (ρ, ζ)
as a “source.”

3. An efficient numerical evaluation technique

There are two considerations when numerically evaluating the integral (3). First,
we would like to achieve a sufficiently high order of accuracy. When the integrand
contains oscillatory functions as in this case, the occurrence of round-off error is
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likely. Therefore special care must be taken when choosing a numerical evaluation
technique. And second, we want the computation to be as efficient as possible by
minimizing the number of function evaluations of the integrand. We present in this
section a method for computing (3) which addresses both these issues.

The best approach we found for handling this integral is to first express it in
terms of complete elliptic integrals of the first and second kind. Then using an algo-
rithm found in Abramowitz and Stegun [1], we can compute these elliptic integrals
efficiently to essentially any desired degree of accuracy.

The complete elliptic integrals are defined as:

K(m) =

π/2∫
0

1√
1−m2 sin2 θ

dθ,

E(m) =

π/2∫
0

√
1−m2 sin2 θdθ,

where K(m) is the complete elliptic integral of the first kind, E(m) the complete
elliptic integral of the second kind, and 0 ≤ m < 1.

We now express W in terms of them. To do so, we first rewrite the denominator
of the integrand:

r2 + ρ2 − 2rρ cosλ+ (z − ζ)2

= r2 + ρ2 + 2rρ+ (z − ζ)2 − 2rρ(1 + cosλ)

= (r + ρ)2 + (z − ζ)2 − 2rρ(2(1− sin2 λ
2 ))

= (r + ρ)2 + (z − ζ)2 − 4rρ cos2 λ
2 .

So we have that

W (r, z, ρ, ζ) =
1

2π

π∫
0

ρ cosλdλ

[r2 + ρ2 − 2rρ cosλ+ (z − ζ)2]
1
2

=
1

2π

π∫
0

ρ cosλdλ

[(r + ρ)2 + (z − ζ)2 − 4rρ cos2 λ
2 ]

1
2

=
1

π

π/2∫
0

ρ cos 2θdθ

[(r + ρ)2 + (z − ζ)2 − 4rρ cos2 θ]
1
2

=
1

π

1√
(r + ρ)2 + (z − ζ)2

π/2∫
0

ρ cos 2θdθ√
1−m2 cos2 θ

using the change of variable θ = λ/2 in the third equality above, and where

m2 =
4rρ

(r + ρ)2 + (z − ζ)2
.
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Making the substitution θ = −τ + π
2 yields

W (r, z, ρ, ζ) =
1

π

ρ√
(r + ρ)2 + (z − ζ)2

π/2∫
0

(−1 + 2 sin2 τ)dτ√
1−m2 sin2 τ

=
1

π

ρ

m2
√

(r + ρ)2 + (z − ζ)2

π/2∫
0

(−m2 + 2m2 sin2 τ)dτ√
1−m2 sin2 τ

=
ρ

πm2
√

(r + ρ)2 + (z − ζ)2

×
π/2∫
0

(2 −m2 − (2 − 2m2 sin2 τ))dτ√
1−m2 sin2 τ

=
2ρ

πm2
√

(r + ρ)2 + (z − ζ)2

×


π/2∫
0

(1− m2

2 )dτ√
1−m2 sin2 τ

−
π/2∫
0

√
1−m2 sin2 τdτ

 .

Then since

2ρ

πm2
√

(r + ρ)2 + (z − ζ)2
=

√
ρ

π
√
rm

we finally have that

W (r, z, ρ, ζ) =

√
ρ

π
√
rm

{
(1− m2

2
)K(m)− E(m)

}
.(5)

To numerically compute the elliptic integrals K(m) and E(m), we use the stan-
dard process of the arithmetic-geometric mean (AGM) found for example in [1].
Starting with a given triple, (a0, b0, c0), successive triples (an, bn, cn) are deter-
mined according to the iterative formulas:

an =
1

2
(an−1 + bn−1),

bn = (an−1bn−1)
1
2 ,

cn =
1

2
(an−1 − bn−1).

The procedure stops at the nth step when an = bn, or in other words when cn < ε
to the required tolerance.

To determine the values of the elliptic integrals K(m) and E(m) we start with
the triple

a0 = 1, b0 = cosm, c0 = sinm
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and then compute the successive iterates (an, bn, cn) to the desired degree of accu-
racy. We then use the formulas

K(m) =
π

2an

and

K(m)− E(m)

K(m)
=

1

2
(c20 + 2c21 + 22c22 + · · ·+ 2nc2n).

We remark that this procedure converges due to the fact that m is strictly less than
one since the inequality

4rρ < (r + ρ)2 + (z − ζ)2

implies

m2 =
4rρ

(r + ρ)2 + (z − ζ)2
< 1.

This technique for computing W has the two advantages that the computation
is relatively inexpensive since in practice n is small (less than 10), and also we can
be assured of achieving the required accuracy.

At this point it is important to mention that there are many other available tech-
niques besides the AGM for computing elliptic integrals. The work of B. C. Carlson
is especially noteworthy. He has performed extensive research in the design of al-
gorithms for computing elliptic integrals, the most recent being [2]. Also many
standard program libraries such as the commercially available NAG [4] and IMSL
[3] libraries contain routines for elliptic integrals. It is the goal of future work to
compare the numerical performance of these existing methods.

4. Comparison with other methods

We used a variety of different numerical integration/evaluation techniques on
the integral (3). Here we compare the results of the AGM method with two others:
Simpson’s Rule and a quadrature rule. We will refer to these methods as SR, and
QAWO, respectively. For the quadrature rule we used a numerical subroutine found
in the book QUADPACK [5] which is designed specifically for integrands which are
in the form of a function multiplied by an oscillatory function. We present the
results of the comparison in the table below. We fixed a source point located at
(ρ, ζ) = (.5, 0), and varied receiver locations while achieving a fixed accuracy of
1 × 10−12. In Column 2 we list the number n required in the AGM algorithm
to achieve this tolerance. In Columns 3 and 4 we record the number of function
evaluations necessary to achieve the same tolerance for the SR and QAWO methods.
The last column contains the computed value of the potential function ψ.

It is worth mentioning that as the receiver location nears the source location,
the integrand becomes more singular. To compensate for this, the SR and QAWO
methods require a significantly large number of function evaluations in order to
maintain accuracy. It is especially in these instances that the AGM method proves
considerably more efficient.



646 LORI A. CARMACK

Receiver AGM SR QAWO ψ(r, z)

(.2,0) 5 40 345 .106680168537
(.3,0) 5 60 375 .176487133092
(.4,0) 6 120 405 .286062243649

(.45,0) 6 240 495 .392176201305
(.49,0) 7 1120 1455 .640156319987
(.51,0) 7 1140 1665 .630628420410
(.6,0) 6 150 435 .261741659375
(.7,0) 6 90 375 .164670877661
(.8,0) 6 70 375 .116903098115
(.5,.3) 5 60 345 .117740821608
(.5,.2) 6 80 375 .171073076875
(.5,.1) 6 130 405 .272789050148

(.5,.05) 6 250 435 .380318726778
(.5,.01) 7 1130 765 .635328849965

5. Concluding remarks

The technique of numerical integration/evaluation is in itself a difficult and in-
tensive area of research. Specific techniques for numerically computing integrals
often need to be designed on a case by case basis. We have presented here a nu-
merical evaluation method which accurately and efficiently computes a symmetric
potential function in hopes that this technique may prove useful, and that the ideas
may be applied to other integrals which must be computed numerically.
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