REMARKS ON THE SCHOOF-ELKIES-ATKIN ALGORITHM ### L. DEWAGHE ABSTRACT. Schoof's algorithm computes the number m of points on an elliptic curve E defined over a finite field \mathbb{F}_q . Schoof determines m modulo small primes ℓ using the characteristic equation of the Frobenius of E and polynomials of degree $O(\ell^2)$. With the works of Elkies and Atkin, we have just to compute, when ℓ is a "good" prime, an eigenvalue of the Frobenius using polynomials of degree $O(\ell)$. In this article, we compute the complexity of Müller's algorithm, which is the best known method for determining one eigenvalue and we improve the final step in some cases. Finally, when ℓ is "bad", we describe how to have polynomials of small degree and how to perform computations, in Schoof's algorithm, on x-values only. ### 1. Introduction Let E be an elliptic curve defined over the finite field \mathbb{F}_q of large characteristic p. The set of \mathbb{F}_q -points of E, denoted $E(\mathbb{F}_q)$, is a finite abelian group [20]. In 1985, Schoof [17] gave a deterministic polynomial-time algorithm for computing $\#E(\mathbb{F}_q)$. The algorithm determines the characteristic equation of the Frobenius π of E, acting on the ℓ -torsion points $E[\ell]$ of E, for ℓ prime. But, working on $E[\ell]$ uses computations on polynomials modulo the ℓ -th division polynomial f_{ℓ} , and this is not practical, due to the size of f_{ℓ} . In 1991, Elkies [10] showed how to perform computations in the kernel of an isogeny of degree ℓ , by computing a factor of degree $d = (\ell - 1)/2$ of f_{ℓ} . This idea works for nearly half the primes ℓ , called *Elkies primes*. For such an ℓ , the algorithm has just to compute an eigenvalue of π acting on $E[\ell]$. Atkin [1] had given in 1988 the *sort and match* method used now for "bad" primes ℓ . Then he made the algorithm practical for very large finite fields [2] and the method became the SEA (for Schoof-Elkies-Atkin) algorithm. For the last improvements in this scope, see [5], [6] and [12] and for the case p small, see [7] and the implementation in [13]. In this article we compute, for an Elkies prime ℓ , the complexity of the best asymptotic method used for computing an eigenvalue of π over $E[\ell]$ and we show then how to avoid, in some cases, the computation with y-coordinates of points. Finally, for a bad prime ℓ , we explain how to obtain a proper factor of f_{ℓ} and show then how to avoid again, in Schoof's algorithm, computations with y-coordinates of points. Received by the editor May 11, 1996 and, in revised form, October 2, 1996 and February 19, 1997. ¹⁹⁹¹ Mathematics Subject Classification. Primary 14H52, 14K02, 11Y16. Key words and phrases. Elliptic curves, finite fields, Schoof algorithm, division polynomials, computational number theory. These results have enabled Morain [15] to compute $\#E(\mathbb{F}_p)$, for p prime of 500 digits (this is the actual record). ### 2. The SEA algorithm 2.1. Elliptic curve over \mathbb{F}_q . Let E be a non-supersingular elliptic curve given by an affine equation $\mathcal{F}(x,y)=0$ where $$\mathcal{F}(x,y) = y^2 + a_1 xy + a_3 y - (x^3 + a_2 x^2 + a_4 x + a_6)$$ with the a_i 's in \mathbb{F}_q . The set $E(\mathbb{F}_q) = \{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q, \mathcal{F}(x,y) = 0\} \cup \{O_E\}$ is an abelian group and the law, denoted \oplus , has $O_E = [0:1:0]$ as neutral element. We denote by f_n the n-th division polynomial in x. The degree of f_n is $(n^2 - 1)/2$ if n is odd. The group of n-torsion points, $E[n] = \{P \in E(\bar{\mathbb{F}}_q) \mid nP = O_E\}$ can be represented by $\mathbb{F}_q[x,y]/(f_n(x), \mathcal{F}(x,y))$ (see [18]). The morphism $\pi: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q)$, $(x,y) \mapsto (x^q,y^q)$ of E satisfies $\pi^2 - t\pi + q = 0$ over $E(\bar{\mathbb{F}}_q)$, with $t \in \mathbb{Z}$, satisfying $|t| \leq 2\sqrt{q}$. Recall: $\#E(\mathbb{F}_q) = q+1-t$. When ℓ is an odd prime number (see [6] for $\ell = 2$), we consider the restriction π_ℓ of π to $E[\ell]$, which satisfies $\pi_\ell^2 - \tau \pi_\ell + k = 0$ over $E[\ell]$ with $t \equiv \tau \mod \ell$ and $q \equiv k \mod \ell$. Now, if $\ell \neq p$, $E[\ell] \cong \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$, so we can view $E[\ell]$ as a vector space over \mathbb{F}_ℓ and $x^2 - \tau x + k$ as the characteristic equation of π_ℓ . We denote by $G_1, G_2, \ldots, G_{\ell+1}$ the $(\ell+1)$ cyclic subgroups of $E(\bar{\mathbb{F}}_q)$, of order ℓ . 2.2. **The SEA algorithm.** Schoof [17] determines $\#E(\mathbb{F}_q) = q+1-t$ by searching for a match among the ℓ equations $(x^{q^2}, y^{q^2}) \oplus k(x, y) = \tilde{\tau}(x^q, y^q), \ 0 \leq \tilde{\tau} \leq \ell - 1$, over $E[\ell]$. Elkies works in the kernel G_i of one of the $\ell+1$ isogenies $E \stackrel{\varrho_i}{\to} E_i, 1 \leq i \leq \ell+1$, of degree ℓ . When $D = \tau^2 - 4k$ is a square modulo ℓ the eigenvalues of π_ℓ are in \mathbb{F}_ℓ and ℓ is called an Elkies prime. Hence, in this case, the eigenspaces are \mathbb{F}_q -rational and the corresponding isogenies are defined over \mathbb{F}_q and if we let $E[\ell]_{\lambda}$ be an eigenspace with P_{λ} a generator, we have $h_{\ell}(x) = \prod_{i=1}^d (x - x(iP_{\lambda})) \in \mathbb{F}_q[x]$ and $$E[\ell]_{\lambda} = \langle P_{\lambda} \rangle = \mathbb{F}_{q}[x, y] / (h_{\ell}(x), \mathcal{F}(x, y)).$$ Let $\Phi_{\ell}(x,y) = 0$ be the canonical equation of the modular curve $X_0(\ell)$ (see [2], [15] for a simpler equation). We know that ℓ is an Elkies prime if and only if $\Phi_{\ell}(j(E),x) = 0$ has a root in \mathbb{F}_q . For $p \neq 2, 3$ and ℓ an Elkies prime, the formulas of Atkin [2],[15] give, from a root of $\Phi_{\ell}(j(E), x) = 0$ in \mathbb{F}_q , the value of $p_1 = \sum_{i=1}^d x(iP_{\lambda})$ and the coefficients of the corresponding E_i . So [10], one can compute the $p_k = \sum_{i=1}^d x^k (iP_{\lambda})$ for $1 \leq k \leq d$ and hence h_{ℓ} by Newton's formula if $\ell \ll p$. If p = 2 or 3 or $\ell \approx p$ see Couveignes' work [7] and also [13]. Once h_{ℓ} is known, we have to search a match among the $\ell-1$ equations $(x^q, y^q) = \tilde{\lambda}(x, y)$, $1 \leq \tilde{\lambda} \leq \ell - 1$, over $E[\ell]_{\lambda}$. If D is not a square modulo ℓ , then ℓ is called an $Atkin\ prime$ and the G_i 's are \mathbb{F}_{p^e} -rational where e is the smallest integer n for which π^n_ℓ is in \mathbb{F}_ℓ . # 3. Looking for one eigenvalue 3.1. Computing $\lambda \mod \ell$. We compute the complexity of the algorithm of Müller [16] which computes $\lambda \mod \ell$. Müller uses an integer $k_{opt} \approx \lceil \sqrt{d} \rceil$ such that for all λ in \mathbb{F}_{ℓ}^* , there are integers i, j with $1 \leq i, j \leq k_{opt}$ such that $\lambda \equiv \pm i/j \mod \ell$. So, he compares $j(x^q, y^q)$ and i(x, y) using division polynomials, which means comparisons of rational functions. The elementary operation is taken to be the cost of one multiplication of two elements in \mathbb{F}_q . Let M(d) be the number of operations needed to compute the multiplication of two polynomials of degree d (see [11]). **Proposition 1.** Müller's method takes $O(M(d) \log q) + O(\sqrt{d}M(d)) + O(d^2)$ operations and $O(d\sqrt{d})$ space. *Proof.* The computation of $x^q \mod h_\ell(x)$ requires $O(M(d) \log q)$ operations and the computation of the k_{opt} first division polynomials requires $O(\sqrt{d}M(d))$ operations. The $x(j(x^q, y^q))$ are computed using the recursive formulae of division polynomials in x^q (see [8]). This requires $O(\sqrt{dM(d)})$ operations, which is more efficient than modular compositions $x(j(x,y)) \circ x^q$ (see [4], [19]). To compare two rational functions modulo $h_{\ell}(x)$ in $\mathbb{F}_q[x]$, one can test the match using a random linear map [16] and then verify polynomial equality. So, the comparisons of coordinates takes $O(2M(d)) + O(2d^2)$ operations. 3.2. The sign of $\lambda \mod \ell$. Suppose we have integers i, j such that $j\pi_{\ell} = \pm i$ over $E[\ell]_{\lambda}$, where ℓ is an Elkies prime. We have $\lambda \equiv \pm \lambda_0 \mod \ell$ with $\lambda_0 \equiv ij^{-1} \mod \ell$. For $\mu \in \mathbb{F}_{\ell^2}^*$, we call *semi-order* of μ , denoted $s(\mu)$, the order of μ in $\mathbb{F}_{\ell^2}^*/(\pm 1)$. • If $p \neq 2$, E has an equation of the form $y^2 = \mathcal{G}(x) := x^3 + a_2x^2 + a_4x + a_6$. **Theorem 1.** Let h_{ℓ} be the factor of f_{ℓ} corresponding to λ and g_{ℓ} be a factor of degree $s(\lambda_0)$ of h_ℓ and let r be Resultant (g_ℓ, \mathcal{G}) . Then $\lambda = \lambda_0^{s(\lambda_0)}(\frac{r}{a})\lambda_0$. When $\ell \equiv 3 \mod 4$, one can take $g_{\ell} = h_{\ell}$. *Proof.* For $s(\lambda_0)$ odd, we have $\pi_\ell^{s(\lambda_0)} = \pm \lambda_0^{s(\lambda_0)} Id$ over $E[\ell]_\lambda$. If $\pi_\ell^{s(\lambda_0)} = Id$, then $E[\ell]_\lambda \subset E(\mathbb{F}_{q^{s(\lambda_0)}})$; hence, for all P in $E[\ell]_\lambda$, $\mathcal{G}(x(P))$ is a square in $\mathbb{F}_{q^{s(\lambda_0)}}$, and since $\prod_{i=1}^{s(\lambda_0)}(\mathcal{G}(x_i)) = r$, with x_i the roots of g_ℓ , r is a square in \mathbb{F}_q . Whereas, if $\pi_{\ell}^{s(\lambda_0)} = -Id \text{ over } E[\ell]_{\lambda}, \text{ then } (\frac{r}{a}) = -1.$ Note that, if $\ell \equiv 1 \mod 4$, then one can compute λ_0 using h_{ℓ} and then determine λ , if $s(\lambda_0) = s(\pm \lambda_0)$ is odd, using a factor of h_{ℓ} . • If p=2, let $y^2+xy=x^3+B$ (with $B\in\mathbb{F}_{2^m}$) be an equation of E (see [14]). **Proposition 2.** Let h_{ℓ} be a factor of f_{ℓ} corresponding to $\lambda = \pm \lambda_0$. If h_{ℓ} has a factor $g_{\ell} = x^{s(\lambda_0)} - \tilde{s}_1 x^{s(\lambda_0)-1} + \dots + (-1)^{s(\lambda_0)} \tilde{s}_{s(\lambda_0)}$ of odd degree $s(\lambda_0)$, then $$\lambda = \begin{cases} \lambda_0^{s(\lambda_0)} \lambda_0 & \text{if } \operatorname{Tr}(\tilde{s}_1 + B(\tilde{s}_{s(\lambda_0)-1}^2 - 2\tilde{s}_{s(\lambda_0)} \tilde{s}_{s(\lambda_0)-2})/\tilde{s}_{s(\lambda_0)}^2) = 0, \\ -\lambda_0^{s(\lambda_0)} \lambda_0, & \text{otherwise.} \end{cases}$$ When $\ell \equiv 3 \mod 4$, one can take $g_{\ell} = h_{\ell}$. *Proof.* The equation $X^2 + X = \gamma$ has a root in an extension \mathbb{F}_{2^n} if and only if $\operatorname{Tr}(\gamma)=0$ (see [9]). Hence the points of $E[\ell]_{\lambda}=\langle P=(x,y)\rangle$ are in $\mathbb{F}_{q^{s(\lambda_0)}}$ if and only if $Tr(\gamma_i) = 0$, where $x_i = x(iP)$ and $\gamma_i = x_i + B/x_i^2$. Finally, computing $\sum_{i=1}^{s(\lambda_0)} \operatorname{Tr}(\gamma_i)$ gives the desired result. ## 4. Elkies' method for Atkin primes 4.1. Computing a factor of f_{ℓ} . Assume that q = p prime, $\neq 2, 3$ and that ℓ is an Atkin prime with $\ell \ll p$. The $(\ell+1)$ curves E_i are defined over \mathbb{F}_{p^e} , hence f_ℓ has a factor of degree d over \mathbb{F}_{p^e} and so by conjugation we can find a factor of degree ed over \mathbb{F}_p . First, we compute a monic irreducible factor $M_{\ell}(x)$ of degree e of $\Phi_{\ell}(j(E), x)$ in $\mathbb{F}_p[x]$. We denote by x_i , $i = 1, 2, \ldots, e$, the roots of $M_{\ell}(x) = 0$ in \mathbb{F}_{p^e} . Then, in $\mathbb{F}_p[x]/M_{\ell}(x)$, we determine ed polynomials $p_k(x) = \sum_{j=0}^{e-1} a_{j,k} x^j$ of degree e-1, (see [2], [10]) and since, for $1 \leq k \leq ed$, we have $$p_k \stackrel{\text{def}}{=} \sum_{i=1}^e p_k(x_i) = \sum_{i=1}^e (\sum_{j=0}^{e-1} a_{j,k} x_i^j) = \sum_{j=0}^{e-1} a_{j,k} (\sum_{i=1}^e x_i^j) = \sum_{j=0}^{e-1} a_{j,k} \tilde{p}_j$$ with $\tilde{p}_j = \sum_{i=1}^e x_i^j$ computed from the symmetric functions of $M_\ell(x)$, a factor of degree ed of f_ℓ can be computed. **Example.** We consider the elliptic curve $y^2 = x^3 + 2x + 41$ over \mathbb{F}_{59} with j = 31. We determine a factor of the division polynomial f_5 of E. Over \mathbb{F}_{59} , $x^3 + 41x^2 + 45x + 32$ is a factor of $\Phi_5(x, 31)$. We obtain | $p_1(x)$ | $56x^2 + 31x + 41$ | $p_4(x)$ | $16x^2 + 11x + 6$ | |----------|--------------------|----------|--------------------| | $p_2(x)$ | $46x^2 + 22x + 26$ | $p_5(x)$ | $51x^2 + 41x + 17$ | | $p_3(x)$ | $21x^2 + 20x + 39$ | $p_6(x)$ | $34x^2 + 41x$ | And $p_0 = 2$, $p_1 = 38$, $p_2 = 28$, $p_3 = 22$, $p_4 = 7$, $p_5 = 38$, $p_6 = 21$, hence $x^6 + 21x^5 + 13x^3 + 10x^2 + 3x + 55$ is a factor of f_5 over \mathbb{F}_{59} . 4.2. Computing $t \mod \ell$. We show how, when ℓ is an Atkin prime, we can test the equation $\pi_{\ell}^2 + k = \tilde{\tau}\pi_{\ell}$ in $\tilde{\tau}$ by computing only x-coordinates of points. We recall first that if $$(x_1, y_1) \oplus (x_2, y_2) = (x_3, y_3)$$ and $(x_1, y_1) \oplus (x_2, y_2) = (x_4, y_4)$, then we have $$(x_3 + x_4)(x_1 - x_2)^2 = S(x_1, x_2)$$ and $x_3x_4(x_1 - x_2)^2 = P(x_1, x_2)$ with $$S(x_1, x_2) = (x_1 + x_2)(a_1a_3 + 2a_4 + 2x_1x_2) + x_1x_2(a_1^2 + 4a_2) + 4a_6 + a_3^2$$ and $$P(x_1, x_2) = (x_1x_2 - a_4)(x_1x_2 - a_4 - a_1a_3) - (x_1 + x_2 + a_2)(a_3^2 + 4a_6) - a_1^2a_6.$$ So the values x_3 and x_4 are solutions of the quadratic equation $E(X) = NX^2 - SX + P$ with $N(x_1, x_2) = (x_1 - x_2)^2$. Following Müller's idea, we introduce the integers i, j and k_{opt} with the equation $i\pi_{\ell}^2 + ik = j\pi_{\ell}$. We search a value j for which $x(j\pi_{\ell})$ is a root of E(X) = 0 given by $S(x_i^{q^2}, x_{ik})$, $P(x_i^{q^2}, x_{ik})$ and $N(x_i^{q^2}, x_{ik})$. by $S(x_i^{q^2}, x_{ik})$, $P(x_i^{q^2}, x_{ik})$ and $N(x_i^{q^2}, x_{ik})$. Indeed, if $x(i\pi_\ell^2 + ik) = x(j\pi_\ell)$, then, for some τ_0 , $\pi_\ell^2 + k = \pm \tau_0 \pi_\ell$ over $E[\ell]$, so $\tau \equiv \pm \tau_0 \mod \ell$. Whereas, if $x(i\pi_\ell^2 - ik) = x(j\pi_\ell)$, then $\pi_\ell^2 - k = \pm \tau_0 \pi_\ell$ and $\pi_\ell = 2k/(\tau \pm \tau_0)$, which is impossible since ℓ is an Atkin prime. Hence, we avoid the computation of y^{q^2} and y^q and obtain $t \equiv \pm \tau_0 \mod \ell$. 4.3. The sign of $t \mod \ell$. Since π_{ℓ} satisfies the equation $x^2 - \tau x + k = 0$, we have $\pi_{\ell}^n = Q_n \pi_{\ell} + P_n$ with P_n and Q_n some polynomials in τ and k. We have $P_n = -kQ_{n-1}$ and moreover the polynomial Q_n contains only even powers of τ if n is odd and only odd powers otherwise [3]. On the other hand, $\pi_{\ell}^e = P_e$ and the value of e does not depend on the sign of τ . Hence, when e is odd, we have $P_e(\pm \tilde{\tau}, k) = \pm P_e(\tilde{\tau}, k)$, so $\pi_{\ell}^e = \pm P_e(\tau_0, k)$. Let w_0 be $P_e(\tau_0, k)$. **Proposition 3.** Assume $p \neq 2$, e odd; let h_{ℓ} be a factor of degree ed of f_{ℓ} , g_{ℓ} be a factor of degree $es(w_0)$ of h_{ℓ} and r be Resultant (g_{ℓ}, \mathcal{G}) . Then, when $s(w_0)$ is odd, we have $t \equiv (\frac{r}{q})w_0^{s(w_0)}\tau_0 \mod \ell$. When $\ell \equiv 3 \mod 4$, one can take $g_{\ell} = h_{\ell}$. *Proof.* We have $\pi_{\ell}^e = \pm w_0 Id$ over $E[\ell]$; hence, if $s(w_0)$ is odd, then $\pi_{\ell}^{es(w_0)} = \pm w_0^{s(w_0)} Id$ over $E[\ell]$ and, if d is odd, then $\pi_{\ell}^{ed} = \pm w_0^d Id = \pm (\frac{w_0}{\ell}) Id$ over $E[\ell]$. \square From $\pi_{\ell}^2 = \tau_0 \pi_{\ell} + k$, we easily compute $w_0 = P_e(\tau_0, k)$. The decomposition type of h_{ℓ} is determined by computing $s(w_0)$. **Example.** Let us consider the curve $y^2 = x^3 + 4312x + 9167$ over \mathbb{F}_{12853} . If $\ell = 19$, then we have e = 5 and using a factor h_{19} of degree 45 of f_{19} we obtain $t \equiv \pm 7 \mod 19$. We compute $r = \text{Resultant}(x^3 + 4312x + 9167, h_{19}) = 11226$; since $(\frac{r}{n}) = 1$ and $w_0 = P_5(7, 9) = 4$, we have $t \equiv 7 \mod 19$. If $\ell = 13$, then e = 7 and $\tau_0 = 5$. Since $w_0 = P_7(5,9) = 10$, and s(10) = 3, the polynomial h_{13} has an irreducible factor g_{13} of degree 21. We obtain $r = \text{Resultant}(x^3 + 4312x + 9167, g_{13}) = 9515$ and $(\frac{r}{p}) = -1$, so we have $t \equiv 5 \mod 13$. **Proposition 4.** Let h_{ℓ} be a factor of degree ed of f_{ℓ} . If p=2 and e is odd, then, when $s(w_0)$ is odd, we have $$\tau = \begin{cases} w_0^{s(w_0)} \tau_0 & \text{if } \operatorname{Tr}(\tilde{s}_1 + B(\tilde{s}_{es(w_0)-1}^2 - 2\tilde{s}_{es(w_0)}\tilde{s}_{es(w_0)-2})/\tilde{s}_{es(w_0)}^2) = 0, \\ -w_0^{s(w_0)} \tau_0 & \text{otherwise}, \end{cases}$$ with \tilde{s}_i the symmetric functions of a factor g_ℓ of h_ℓ of degree es(w). When $\ell \equiv 3 \mod 4$, one can take $g_\ell = h_\ell$. #### ACKNOWLEDGMENT The author would like to thank François Morain for his help during the realization of this work. ## References - [1] A. O. L. Atkin, The number of points on an elliptic curve modulo a prime (I). Draft, 1988. - [2] A. O. L. Atkin, The number of points on an elliptic curve modulo a prime (II). Draft, 1992. - [3] R. C. Bose, S. Chowla, C. R. Rao, On the integral order (mod p) of quadratics x²+ax+b, with applications to the construction of minimum functions over GF(p²), and to some number theory results, Bull. Calcutta Math. Soc., 36 (1944), pp. 153–174. MR 6:256b - [4] R. P. Brent, H. T. Kung, Fast algorithms for manipulating formal power series, J. Assoc. Comput. Mach., 25, 581–595, 1978. MR 58:25090 - [5] J.-M. Couveignes, F. Morain, Schoof's algorithm and isogeny cycles, In L. Adleman and M.-D. Huang, editors, ANTS-I, volume 877 of Lecture Notes in Comput. Sci., pages 43-58. Springer-Verlag, 1994. MR 95m:11147 - [6] J.-M. Couveignes, L. Dewaghe, F. Morain, Isogeny cycles and Schoof's algorithm, Preprint 1995 - [7] J.-M. Couveignes, Quelques calculs en théorie des nombres, Thèse, Université de Bordeaux I, July 1994. - [8] L. Dewaghe, Nombre de points d'une courbe elliptique sur un corps fini, Thèse, Université de Lille I, 1996. - [9] R. J. McEliece, Finite fields for computer scientists and engineers, Kluwer Boston 1987. MR 88h:11091 - [10] N. D. Elkies, Explicit Isogenies, Draft, 1991. - [11] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Addison-Wesley, 1981. MR 83i:68003 - [12] R. Lercier and F. Morain, Counting the number of points on elliptic curves over finite fields: strategies and performances, In L. C. Guillou and J.-J. Quisquater, editors, Advances in cryptology - EUROCRYPT'95, number 921 of Lecture Notes in Comput. Sci. pp. 79-94, 1995. MR 96h:11060 - [13] R. Lercier, F. Morain, Counting points on elliptic curves over \(\mathbb{F}_{p^n} \) using Couveignes's algorithm. Research Report LIX/RR/95/09, Ecole polytechnique LIX, September 1995. - [14] A. Menezes, S. Vanstone and R. Zuccherato, Counting points on elliptic curves over \mathbb{F}_{2^m} , Math. Comp. 60, 407-420, 1993. MR **93f**:11098 - [15] F. Morain, Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques, J. Théor. Nombres Bordeaux 7 (1995), 255-282. MR 97i:11069 - [16] V. Müller, Looking for the eigenvalue in Schoof's algorithm, In preparation, October 1994. - [17] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp. 44, 483-494, 1985. MR 86e:11122 - [18] R. Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres Bordeaux 7 (1995), 219-254. MR 97i:11070 - [19] V. Shoup, A new polynomial factorization algorithm and its implementation, J Symbolic Comput. (1995) Vol 20, 363-397. MR 97d:12011 - [20] J. H. Silverman, The arithmetic of elliptic curves, vol. 106 of Graduate Texts in Mathematics, Springer, 1986. MR 87g:11070 UNIVERSITÉ DE LILLE I, UFR DE MATHÉMATIQUES, 59655 VILLENEUVE D'ASCQ CEDEX, FRANCE E-mail address: dewaghe@gat.univ-lille1.fr