
MATHEMATICS OF COMPUTATION
Volume 67, Number 223, July 1998, Pages 1285–1308
S 0025-5718(98)00965-X

COMPUTATIONS OF CLASS NUMBERS
OF REAL QUADRATIC FIELDS

ANITHA SRINIVASAN

Abstract. In this paper an unconditional probabilistic algorithm to compute
the class number of a real quadratic field Q(

√
d) is presented, which computes

the class number in expected time O(d1/5+ε). The algorithm is a random
version of Shanks’ algorithm.

One of the main steps in algorithms to compute the class number is the
approximation of L(1, χ). Previous algorithms with the above running time

O(d1/5+ε), obtain an approximation for L(1, χ) by assuming an appropriate
extension of the Riemann Hypothesis. Our algorithm finds an appoximation
for L(1, χ) without assuming the Riemann Hypothesis, by using a new tech-
nique that we call the ‘Random Summation Technique’. As a result, we are
able to compute the regulator deterministically in expected time O(d1/5+ε).

However, our estimate of O(d1/5+ε) on the running time of our algorithm to
compute the class number is not effective.

1. Introduction

The result proved in this paper is the following:

Theorem. Fix ε > 0 and let d > 0 be a fundamental discriminant. Then the
class number h of the real quadratic field Q(

√
d) can be found, via a probabilistic

algorithm, in expected time O(d1/5+ε).

In 1970, Daniel Shanks ([14]) gave a deterministic algorithm for computing the
class number of an imaginary quadratic field of negative discriminant d. His algo-
rithm used a simple yet powerful technique that he called baby-steps-giant-steps.
Under the assumption of an appropriate extension of the Riemann Hypothesis
(ERH), Shanks’ algorithm can be shown to have running time O(|d|1/5+ε).

Later H. W. Lenstra, Jr. [8], Schoof [12] and R. A. Mollin and H. Williams [10],
just to name a few, modified Shanks’ algorithm to run in real quadratic fields. They
gave algorithms with probabilistic running time O(d1/4+ε) without asssuming the
ERH, and with deterministic running time O(d1/5+ε) assuming the ERH.

In this paper a probabilistic algorithm is presented which is a version of Shanks’
algorithm that does not assume the ERH and has an expected running time of
O(d1/5+ε).

There are two different routines in Shanks’ original algorithm where one needs
to assume the ERH in the analysis of the running time. We first give a simplified

Received by the editor July 2, 1996 and, in revised form, January 31, 1997.
1991 Mathematics Subject Classification. Primary 11A51.
Key words and phrases. Class number, binary quadratic forms, real quadratic field, regulator.

c©1998 American Mathematical Society

1285

1286 ANITHA SRINIVASAN

overview of Shanks’ algorithm: The first step in Shanks’ algorithm is to get a good
approximation to

L(1, χ) =
∏

p prime

(
1−

(
d

p

)
1
p

)−1

,

where (d
p) is the Legendre Symbol. This is done by simply taking the product over

the primes p = O(d1/5+ε); that this is a ‘good enough’ approximation is assured by
assuming ERH. A good approximation for L(1, χ) ensures a good approximation for
hR, where R is the regulator, because of Dirichlet’s formula which is the following:

h =

{√
|d|
π L(1, χ) for d < −4,√
d

R L(1, χ) for d > 0.
(1.1)

The next step is to find a good approximation for R, from which we deduce an
approximation for h; in fact h is shown to lie in an explicitly computed interval
(L, L + l̃). The final step then is to find a subgroup H of the class group of order
≥ l̃, in which case h equals |H |

([
L
|H|

]
+ 1

)
. This is because the order of H divides

at most one integer in (L, L + l̃) (since the length of the interval is less than the
order of H), which must exist and must be h (since the order of H must divide h,
which lies in this interval). We determine such a subgroup H by finding generators
for H . We find such generators one at a time, looking for forms that lie outside the
subgroup generated by the forms already found. ERH guarantees that there is a
set of generators of the form (a, b, c) for the whole class group, with all the values
of a = O(log2 d), and thus can be found rapidly.

In the modified algorithm presented here, the assumption of ERH is removed
using the following “random” techniques:

The first new idea is that of a Random Summation (see section 2), a method
that can be used to give a good and rapid approximation to certain sums involving
many summands. ‘Random summation’ is used to approximate a sum that can be
used to evaluate L(1, χ):

L(1, χ) =
∑
n≥1

(
d

n

)
1
n

.

We neglect the tail end of this sum for n > d2, as it is smaller than the admissible
error and then add up “randomly selected” terms in the remaining sum up to d2.
Hence we obtain an interval which contains hR with very high probability.

Note that the random summation technique provides a correct interval only with
high probability and so it is possible that the interval obtained does not contain
hR. However this is detected by the algorithm for computing the regulator, which
is deterministic. Hence either the regulator is computed correctly or the algorithm
terminates without an answer, in which case we conclude that the interval provided
by random summation is incorrect. In this case we simply repeat the random
summation. In section 2 we prove that the probability of obtaining an incorrect
interval via random summation is less than 1

dε . Thus after at most dε tries of
random summation, we obtain a correct interval.

In section 4 we show that given an interval containing hR, R is computed deter-
ministically in time O(d1/5+ε).

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1287

The second new idea involves that part of the algorithm where one needs to find
a set of forms that generate the whole class group. Although it has been previously
proposed that one could select forms ‘randomly’ from the class group to do this, we
do not know of a reference where a suitable ‘random procedure’ has been described
and appropriately analyzed. We do this here.

Although we are able to determine a suitable unconditional upper bound on the
running time of this part of the algorithm, we do so by invoking Siegel’s theorem
6.8, which involves a constant which cannot be explicitly determined. Thus we
are unable to explicitly determine the actual constant that the ‘O’ abbreviates in
the stated running time of O(d1/5+ε), although one would, in practice, know the
algorithm had ended and the correct answer given.

We also give a description of an algorithm for computing the regulator of a real
quadratic field. This is in most respects the same as previous algorithms, like [8],
[10] and [12], other than the major changes as described above. We have tried to
give an exposition that would benefit both the calculator and the running time
analyser.

An overview of the contents presented is as follows.
In section 2 the details of the random summation technique and an approxi-

mation for L(1, χ) and hence for hR are presented. In section 3 the algorithms
necessary for the computation of the regulator are presented. In section 4 we prove
that the regulator can be computed deterministically in expected time O(d1/5+ε).
In section 5, we prove that given a set of generators, the running time for the com-
putation of the order of the subgroup generated is O(d1/5+ε), which is the second
part of Shanks’ algorithm. Section 6 deals with the problem of selecting a random
form. An algorithm together with the probability analysis is presented. Also the
proof of the main theorem is given here. In the last section 7, we discuss the prac-
tical aspects of the algorithms and in particular that of the random summation
technique.

2. The random summation technique

The key new idea used is the ‘Random Summation Technique’. We use this to

approximate the sum S =
∑

n≤d2

odd n

(d
n)
n where

(
d
n

)
is the Jacobi symbol. This is

related to h(d), via the formula above, since

∑
n odd

(d
n)
n

=
∏

p odd prime

(
1−

(
d

p

)
1
p

)−1

.

We consider M independent random variables Yi. Each such random variable
can take on any odd integer value n in the range 1 ≤ n ≤ d2, each with probability
λ
n , i.e. for 1 ≤ i ≤ M we have

Probability{Yi = n} =
λ

n
for 1 ≤ n ≤ d2 and n odd,

where λ is defined by
∑

n≤d2

n odd

λ
n = 1 (since the total probability must be 1).

Let Xi be the random variable
(

d
Yi

)
for 1 ≤ i ≤ M .

1288 ANITHA SRINIVASAN

We then look at the random variable X1 + X2 + · · · + XM . Its expected value
is M times that of any one of the Xi’s, as they are all independent and have the
same distribution.

So we have

E(X1 + X2 + · · ·+ XM) = ME(X1) = ME

((
d

Y1

))
= M

∑
n≤d2

odd n

(
d

n

)
· λ

n
= λM

∑
n≤d2

odd n

(
d
n

)
n

= λMS.

Therefore S = 1
λM E(X1 + · · ·+XM); that is we can approximate S by summing

up the M Jacobi symbols Xi that result from randomly choosing values for each
random variable Yi (with the probability distribution as described above).

An Approximation for L(1, χ). We have

L(1, χ) =
∏

prime p

(
1−

(
d

p

)
1
p

)−1

=
(

1−
(

d

2

)
1
2

)−1 ∏
odd prime p

(
1−

(
d

p

)
1
p

)−1

=
(

1−
(

d

2

)
1
2

)−1 ∑
odd n

(
d
n

)
n

.

Here (d
n) is the Jacobi symbol defined for odd integers n. (We remove the “2

factor” from the product, since this can be computed separately. This simplifies
the problem in that we do not have to deal with even n, which would require
defining the Kronecker symbol, an extension of the Jacobi symbol.) To compute
(d
2), we have

(
d

2

)
=

0 if d ≡ 0 mod 2;
1 if d ≡ ±1 mod 8;
−1 if d ≡ ±5 mod 8.

Thus to approximate L(1, χ), we approximate the sum
∑

odd n

(d
n)
n .

Proposition 2.1. For any integer d which is not a square,∣∣∣∣∣∣∣
∑

n>d2

odd n

(
d
n

)
n

∣∣∣∣∣∣∣ ≤
8
|d| .

Proof. The proposition can be proved using elementary properties of the Legendre
symbol and partial summation.

We have

S =
∑

n≤d2

odd n

(
d
n

)
n

.

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1289

Proposition 2.1 shows that the sum S is within 8
|d| of the complete sum,

∑
odd n

(d
n)
n .

Hence an approximation to S will provide an only slightly weaker approximation

to
∑

odd n

(d
n)
n .

We do this using the Random Summation Technique described above by taking
M = d|d|1/5e random variables Yi. The approximation we use for S is then A =

1
λ·M

M∑
i=1

Xi. The following claim shows how good this approximation is.

Proposition 2.2. Fix ε > 0. Let A = 1
λ·M

∑M
i=1 Xi (where the independent ran-

dom variables Xi are as described above) and S =
∑

n≤d2

odd n

(d
n)
n . Then

Probability
{
|A− S| ≥ 1

λ|d|1/10−ε

}
<

1
|d|2ε

.

Proof. We use Chebyshev’s Inequality ([11]), which states that if X is a random
variable with mean µ and variance σ2, then

Probability{|X − µ| ≥ δ} ≤ σ2

δ2
(2.1)

for any δ > 0.

We apply this to the random variable X = 1
M

M∑
i=1

Xi, which has mean µ = λ · S
and variance

σ2 =
1
M

λ ·
∑

n≤d2

n odd
(n,d)=1

1
n
− µ2

 .

Taking δ = |d|ε√
M

we get from (2.1)

Probability

{∣∣∣∣∣ 1
M

M∑
i=1

Xi − λS

∣∣∣∣∣ ≥ |d|ε√
M

}
≤ σ2 · M

|d|2ε
<

1
|d|2ε

,(2.2)

since

σ2 <
1
M

λ
∑

n≤d2

n odd

1
n

 =
1
M

.

The result follows as |d|ε√
M
≤ 1

|d|1/10−ε .

Lemma 2.3 ([5]). Let Rn =
∑n

i=1
1
i − log

(
n + 1

2

)
. Then

|Rn − γ| < 1
24n2

where γ = lim
n→∞Rn is Euler’s constant.

1290 ANITHA SRINIVASAN

Lemma 2.4.
1
λ

=
∑

1≤n≤d2

n odd

1
n
≤ 1 + log |d|.

Proof. Let u be the biggest odd integer less than or equal to d2. Then

1
λ

= 1 +
1
3

+
1
5

+ . . . +
1
u

< 1 +
1
2

u∫
1

1
x

dx < 1 +
1
2

log u ≤ 1 + log |d|.

Proposition 2.5 . Let M = d|d|1/5e. Fix ε > 0. Then for |d| sufficiently large,

Probability

{∣∣∣∣∣ ∑
odd n

(
d
n

)
n

− 1
λM

M∑
i=1

Xi

∣∣∣∣∣ <
1

|d|1/10−ε

}
> 1− 1

|d|ε .

Proof. Using Proposition 2.2 (with ε replaced by ε
2), Proposition 2.1 and Lemma

2.4, we have, with probability ≥ 1− 1
|d|ε ,

∣∣∣∣∣ 1
λM

M∑
i=1

Xi −
∑

odd n

(
d
n

)
n

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

1
λM

M∑
i=1

Xi −
∑

n≤d2

n odd

(
d
n

)
n

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∑

n>d2

n odd

(
d
n

)
n

∣∣∣∣∣∣∣
≤ 1 + log |d|
|d|1/10−ε/2

+
8
|d| ≤

1
|d|1/10−ε

for |d| sufficiently large.

We now look at an approximation for 1
λ .

Proposition 2.6 . Let M = d|d|1/5e. Define λ by

1
λ

= log
(

d2 +
1
2

)
− 1

2
log

([
d2

2

]
+

1
2

)
+

1
2

∑
i≤M

1
i
− 1

2
log

(
M +

1
2

)
.

Then ∣∣∣∣ 1
λ
− 1

λ

∣∣∣∣ <
1

16M2
.

Proof. We have
1
λ

=
∑

n≤d2

n odd

1
n

=
∑
i≤d2

1
i
−

∑
2i≤d2

1
2i

=
∑
i≤d2

1
i
− 1

2

∑
i≤

[
d2
2

]
1
i
.

Therefore, with Rn as in Lemma 2.3
1
λ
− 1

λ
= Rd2 − 1

2
R[d2/2] −

1
2
RM

so that by the triangle inequality∣∣∣∣ 1λ − 1
λ

∣∣∣∣ ≤ |Rd2 − γ|+ 1
2

∣∣R[d2/2] − γ
∣∣ +

1
2
|RM − γ|

<
1

24d4
+

1

48 ·
(
[d2

2]
)2 +

1
48M2

<
3

48M2
=

1
16M2

,

for |d| > 4, by Lemma 2.3.

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1291

Thus we now have an approximation for
∑

odd n
(d

n)
n , namely

A =
1

λM

M∑
i=1

Xi

and as a result we have an approximation for L(1, χ) that we denote by L(1, χ).
We now give an algorithm to compute L(1, χ).

Algorithm 2.7 (Approximation for L(1, χ)).
1. Compute M = d|d|1/5e.
2. Compute λ, where

1
λ

= log
(

d2 +
1
2

)
− 1

2
log

([
d2

2

]
+

1
2

)
+

1
2

∑
i≤M

1
i
− 1

2
log

(
M +

1
2

)
.

3. Choose M random odd integers Yi, with 1 ≤ Yi ≤ d2 and

Probability{Yi = n} =
λ

n
for 1 ≤ n ≤ d2 and n odd,

and where λ is defined by
∑

n≤d2

n odd

λ
n = 1. (See section 7 for details on this step.)

4. Compute the Jacobi symbols Xi =
(

d
Yi

)
for 1 ≤ i ≤ M .

5. Compute

A =
1

λM

M∑
i=1

Xi.

6. L(1, χ) =
(
1−

(
d
2

)
1
2

)−1
A.

Using the above approximation for L(1, χ) in Dirichlet’s formula (1.1), we get
an approximation for h in the case when d < 0 and an approximation for hR in the
case of d > 0. In the rest of this section we discuss only the real case (d > 0) as the
case when d < 0 is analogous (see section 7). We have from (1.1) hR =

√
dL(1, χ).

The approximation we use then for hR is

hR =
√

d

(
1−

(
d

2

)
1
2

)−1

· 1
λ
· 1
M

M∑
i=1

Xi,(2.3)

where M = dd1/5e and each Xi is a random variable which satisfies

Probability
{

Xi =
(

d

n

)}
=

λ

n
for 1 ≤ n ≤ d2, n odd.

Theorem 2.8. Fix ε > 0. Then, for d sufficiently large, we have

Probability{|hR− hR| < d2/5+ε} > 1− 1
dε

where hR is described above in (2.3).

1292 ANITHA SRINIVASAN

Proof. We have

|hR− hR| =
√

d

(
1−

(
d

2

)
1
2

)−1
∣∣∣∣∣ ∑
n odd

(
d
n

)
n

− 1
λ
· 1
M

M∑
i=1

Xi

∣∣∣∣∣
≤
√

d

(
1−

(
d

2

)
1
2

)−1

∣∣∣∣∣∣
∑

n odd

(
d
n

)
n

− 1
λM

M∑
j=1

Xi

∣∣∣∣∣∣ +

∣∣∣∣∣
∑M

i=1 Xi

M

∣∣∣∣∣
∣∣∣∣ 1λ − 1

λ

∣∣∣∣

≤
√

d · 2
{

1
d1/10−ε

+
1

16M2

}
with a probability bigger than 1 − 1

dε , using Proposition 2.5 and Proposition 2.6

and the fact that
∣∣∣∣ M∑
i=1

Xi

∣∣∣∣ ≤ M . Now, since 1
16M2 ≤ 1

2d1/10 , we have

|hR− hR| < 3
√

d

d1/10−ε
< d2/5+ε.

We now look at the running time for computing hR.

Theorem 2.9. The running time for computing hR using (2.3) is O(d1/5+ε).

The two major computations are the computations of 1
λ

and the evaluation of

the [d1/5] Jacobi symbols, Xi =
(

d
Yi

)
. Now 1

λ
is comprised of a few logs and [d1/5]

reciprocals. There are efficient algorithms (see [1]) to compute logs and reciprocals
in time O(log2 d), so the running time to determine 1

λ
is O(d1/5+ε).

The Jacobi symbol
(

a
b

)
can be computed in time O(log2 d) ([13]). As we compute

[d1/5] of these with a, b ≤ d2 the running time here would be O(d1/5+ε).
So the running time for computing hR is O(d1/5+ε).

3. Computations in real quadratic fields

In the following two sections, d will denote a positive integer that is a funda-
mental discriminant and all forms are binary quadratic forms of discriminant d. R
is the regulator of the real quadratic field Q(

√
d).

We assume that the reader is familiar with the theory of binary quadratic forms
([2] and [3]). We write f ◦ g for the composition of two forms f and g and fg for
the product, which is the form obtained by composition of f and g followed by
reduction. We write (fn)◦ for the composition of f with itself n times and fn for
(fn)◦ followed by reduction.

We fix a form in the principal cycle and denote this form by 1.
We bring the attention of the reader to the fact that all constants here are effec-

tive unless stated otherwise, i.e. a � b (or a = O(b)) means there is a computable
absolute constant k, such that |a| < kb. Thus all algorithms are deterministic.

Also ε > 0 is any arbitrarily small real number.
We use the infrastructure of real quadratic fields, discovered by Shanks ([15]).

The notations used are explained below. For further details the reader is referred
to [8] and [12].

The notation δ(f, g) stands for the distance defined modulo R between two forms.
δ0(f, g) is the unique number which satisfies 0 ≤ δ0(f, g) < R and δ0(f, g) ≡ δ(f, g)
mod R.

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1293

ρ(f) denotes the form that is right adjacent to the form f on the cycle containing
f . Similarly ρ−1(f) stands for the form left adjacent to f .

Lastly we point out that in all our computations, d is assumed to be sufficiently
large so that all fixed powers of log d are absorbed into dε.

Lemma 3.1. Let F and G be forms on a cycle. Let x be a real number such that
δ(F, G) ≡ x mod R and |x| < R. Then either δ0(F, G) = |x| or δ0(G, F) = |x|.
Proof. The proof follows using the definition of distance.

Lemma 3.2. Let F and G be forms on a cycle of length ` such that ρn(F) = G,
where 0 < n < `. Then n < 4δ0(F,G)

log 2 + 1.

Proof. We have that δ0(F, G) =
∑n−1

i=0 δ0(ρi(F), ρi+1(F)). As the sum of any two
consecutive summands here is greater than log 2

2 ([8]), we have

δ0(F, G) >

{
n log 2

4 if n is even ,
(n−1) log 2

4 if n is odd ,

which gives δ0(F, G) > (n−1) log 2
4 and hence n < 4δ0(F,G)

log 2 + 1.

Lemma 3.3. Given distinct forms F and G on a cycle, δ0(F, G) can be computed
in time O(δ0(F, G) log2 d).

Proof. Let ` be the length of the cycle. Then there is an integer n with 0 < n < `,
such that ρn(F) = G. We compute the forms ρ(F), ρ2(F), ρ3(F), . . . , ρn(F) = G,
keeping track of the distances. Then

δ0(F, G) =
n−1∑
i=0

δ0(ρi(F), ρi+1(F)).

Now the n reductions can be computed in time O(n log2 d). Computing the dis-
tances takes time O(n log2 d) using efficient algorithms as in [1]. By Lemma 3.2,
we have n < 4δ0(F,G)

log 2 + 1. Hence the total time taken is O(δ0(F, G) log2 d).

Lemma 3.4. Given a real number x with R > x > 0 and a form F on a given cycle,
we can compute forms f and f ′, with δ0(F, f) = x + E1 and δ0(f ′, F) = x + E2,
where |E1|, |E2| < log d

2 , in time O(x log2 d).

Proof. Starting with F on the given cycle we compute the forms

F, ρ(F), ρ2(F), . . .

keeping track of the distances, till we reach a form, say ρn+1(F), whose distance
from F is at least x. Let f = ρn(F). It can be shown that f satisfies the conditions
in the theorem.

By Lemma 3.2, n < 4δ0(F,f)
log 2 +1 = O(x). As each reduction takes time O(log2 d),

the total time taken is O(x log2 d).
The proof for f ′ is similar, only we use ρ−1 instead of ρ.

Lemma 3.5. Let x be a real number with 0 < x = O(d). Suppose R � log2 d.
Then we can find a form G on the principal cycle with

δ(1, G) ≡ x + y mod R

where y = O(log d) in time O(log5 d).

1294 ANITHA SRINIVASAN

Proof. Let n be the largest power of 2 that is smaller than x, i.e., 2n ≤ x < 2n+1.
Thus 1 ≤ x/2n ≤ 2. Let f0 = ρ(1) so that δ0(1, f0) = x

2n + E0, where |E0| < log d
2 .

It can be shown that given a form f such that δ(1, f) ≡ x
2k + E mod R with

|E| = O(log2 d), we can determine a form f ′, such that δ(1, f ′) ≡ x
2k−1 +E′ mod R

with |E′| < log d
2 , in time O(log4 d), where f ′ is computed by basically squaring the

form f . But then Lemma 3.5 follows by an induction hypothesis, for given f0 as
above, we just successively compute f1, f2, . . . , fn with δ(1, fj) ≡ x

2n−j +Ej mod R

where each |Ej | < log d
2 . Evidently the time taken will then be O(n log4 d) and the

result follows since n = O(log d).

Lemma 3.6. Let G be a form on the principal cycle, such that 2d1/5 < δ0(1, G) <
R
3 . Then we can find an approximation δ0(1, G) for δ0(1, G) with

δ0(1, G) = δ0(1, G) + O(log d)

in time O
(
d1/5 log2 d + δ0(1,G) log4 d

d1/5

)
.

Proof. Let m and n be integers such that

[δ0(1, G)] = m[d1/5] + n with 0 ≤ n < [d1/5].(3.1)

We first find a form f with δ0(1, f) = [d1/5]+O(log d), using Lemma 3.4. Let k > 1
be the least integer such that

∑k−1
i=0 δ0(f i, f i+1) > δ0(1, G). Let fk−1 = ρ−n(G).

Then from Lemma 3.2 and (3.1) above we have n = O(d1/5). To find k, we compute
the baby steps,

G, ρ−1(G), ρ−2(G), . . . , ρ−n(G),

and the giant steps,

f, f2, f3, . . . , f2m+2,

compare the lists and find a match. Using Lemma 3.3, δ0(fk−1, G) can be found
in time O(d1/5 log2 d).

Using Lemma 3.5, we can find a form G′ in time O(log5 d), with

δ(1, G′) ≡ (k − 1)[d1/5] + x mod R(3.2)

where x = O(log d).
We can also find δ0(G′, fk−1) in time O(k log4 d) = O(δ0(1,G) log4 d

d1/5), by Lemma
3.3.

We then have

δ0(1, G) = δ0(1, G′) + δ0(G′, fk−1) + δ0(fk−1, G) = δ0(1, G) + O(log d),

where δ0(1, G) = (k − 1)[d1/5] + δ0(G′, fk−1) + δ0(fk−1, G).

Lemma 3.7. Let R � log d. Given an integer x with 0 < x = O(d), it takes time
O(log5 d) to check if x ≡ nR + e for some integer n and e = O(log d).

Proof. By Lemma 3.5 we can find a form F in time O(log5 d), with

δ(1, F) ≡ x + y mod R,

where y = O(log d). If x ≡ nR + e mod R, then δ(1, F) ≡ nR + e + y mod R. By
Lemma 3.1 either δ0(1, F) = O(log d) or δ0(F, 1) = O(log d).

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1295

Consider the case when δ0(1, F) = O(log d). Let F = ρm(1) for some integer m
with 0 ≤ m < `, where ` is the length of the cycle. Then to find δ0(1, F) we must
perform m reductions starting from 1. From Lemma 3.2 we have m < 4δ0(1,F)

log 2 +1 =
O(log d). Hence the total time taken is O(log5 d).

The case when δ0(F, 1) = O(log d) is dealt with similarly.
If neither δ0(1, F) nor δ0(F, 1) is O(log d), then x 6= nR+O(log d) for any integer

n.

4. Computation of R

Proposition 4.1. Let d be a fundamental discriminant. If R is the regulator of a
real quadratic field Q(

√
d) and h is the class number, then hR <

√
d log d.

Proof. Hua ([7]) showed that L(1, χ) < 1
2 log d + 1 < log d. By Dirichlet’s formula

(1.1) for d > 0, we have hR =
√

dL(1, χ) <
√

d log d.

Theorem 4.2. A suitable approximation to the regulator R can be computed deter-
ministically in expected time O(d1/5+ε) (in fact the approximation will differ from
R by at most O(d−1/2)).

Proof. This is a three step procedure. First let us assume that R = O(d1/5 log2 d).

Step 1. R = O(d1/5 log2 d).
Starting from the form 1, we cycle through the principal cycle keeping track of

the distances till we reach the form 1 again. If we find a form F on the principal
cycle such that δ0(1, F) > d1/5 log2 d, then R > d1/5 log2 d and we go to step 2.

Step 2. R � d1/5 log2 d.
We have Dirichlet’s formula for d > 0:

hR =
√

d
∏

p prime

(
1−

(
d

p

)
1
p

)−1

.

We find an approximation for the product above by using random summation
on the corresponding sum as discussed in Section 2. This gives an approximation
for hR with an error of O(d2/5+ε) in time O(d1/5+ε). Thus we have

hR = λ + E(4.1)

where E = O(d2/5+ε).
By Lemma 3.5 we can find a form F in time O(log5 d) with

δ(1, F) ≡ λ + x ≡ −E + x mod R

where x = O(log d), by (4.1). Assume E < 0 (the case when E > 0 is similar); then
using Lemma 3.6 we find an approximation δ0(1, F) for δ0(1, F) such that

δ0(1, F) = δ0(1, F) + O(log d).(4.2)

As δ(1, F) ≡ δ0(1, F) mod R and as E = hR− λ from (4.1), we have

h̃R = A + O(log d)(4.3)

for some integer h̃, where A = λ− δ0(1, F).

1296 ANITHA SRINIVASAN

Now if h̃ is divisible by integer q, then A
q = nR + O(log d) for some integer n by

(4.3). Conversely if q ≤ d1/5, and A
q = nR + O(log d), then h̃ = qn.

Whether or not A
q = nR + O(log d) for some integer n (and thus whether q

divides h̃), may be checked in time O(log5 d) using Lemma 3.7. Thus we may test
h̃ for divisibility by all primes ≤ d1/5 in time O(d1/5+ε). Dividing out all such
primes (and their powers) from h̃, we will have determined R at this step (via
(4.3)) provided all prime divisors of h̃ are less than d1/5.

Let h1 be the product of all the primes (with multiplicity) greater than d1/5,
that divide h̃; we may assume h1 6= 1, so h1 > d1/5. Let A′ = Ah1

h̃
, so that

h1R = A′ + O(log d).

By Proposition 4.1, hR <
√

d log d, thus from (4.1) we have λ = O(
√

d log d).
As δ0(1, F) < R, we obtain δ0(1, F) = O(R) = O(

√
d log d) from (4.2). Thus

A = λ− δ0(1, F) = O(
√

d log d) and so A′ = O(
√

d log d). Thus h1R = O(
√

d log d)
which gives R = O(

√
d log d
h1

) = O(d3/10 log d), as h1 > d1/5.
Now we move on to the third stage of the algorithm. As d3/10 log d = O(d2/5),

we assume that R = O(d2/5).

Step 3. d1/5 log2 d ≤ R = O(d2/5).

Let

[R] = m[d1/5] + n where 0 ≤ n < d1/5 and m = O(d1/5).(4.4)

We first compute, using Lemma 3.4, a form f on the principal cycle with

δ0(1, f) = [d1/5] + O(log d).

We take f0 to be 1. Then for any j ≥ 1, we have
j−1∑
i=0

δ0(f i, f i+1) >
j[d1/5]

2
.

Hence if j ≥ 2(m + 1), then
j−1∑
i=0

δ0(f i, f i+1) > (m + 1)[d1/5] > R

from (4.4).
Let k ≤ 2(m + 1) be the smallest integer such that

k−1∑
i=0

δ0(f i, f i+1) > R.(4.5)

Let fk = ρs(1) so that, by Lemma 3.2, we have s < 4δ0(1,fk)
log 2 + 1 = S. To find k we

compute the baby steps,

1, ρ(1), ρ2(1), . . . , ρS(1),

and the giant steps,

f, f2, f3, . . . , f2(m+1),

and find for a common element in the two lists.

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1297

We have now

R = δ0(1, fk−1) + δ0(fk−1, 1) = k[d1/5] + O(d1/5 log2 d).(4.6)

By Lemma 3.5 a form G can be found in time O(log5 d), with

δ(1, G) ≡ k[d1/5] + y mod R

where y = O(log d). Using (4.6), we have δ(1, G) ≡ R + Ẽ mod R, where Ẽ =
O(d1/5 log2 d). As |Ẽ| < R, by Lemma 3.1 we have either δ0(1, G) = |Ẽ| or
δ0(G, 1) = |Ẽ|. Using Lemma 3.3, Ẽ can be found in time O(Ẽ log2 d) = O(d1/5+ε)
and we have R = δ(1, G)− Ẽ.

The running time in Theorem 4.2 is the expected running time. This is because
we get an approximation for hR using random summation. The algorithm to com-
pute R is deterministic and if indeed the approximation for hR is correct, then the
answer we get for R is correct. In the case when the interval provided by random
summation is not correct, the algorithm does not give an answer. We then repeat
random summation to get another interval. As the probability of getting a wrong
interval using random summation is < 1

dε , the expected number of steps for getting
a correct interval is O(dε) and thus R is computed in expected time O(d1/5+ε).

5. Computation of h

When R � d2/5, we determined the value of h as one of the steps in calculating
R during the algorithm presented in Theorem 4.2:

Theorem 5.1. If R � d2/5, then h can be found in deterministic time O(d1/5+ε)
with probability greater than 1− 1

dε .

Proof. We follow the procedure in Step 2 of Theorem 4.2. In this case we obtain
that h̃ = h. Now h̃ <

√
d log d/R ≤ d1/10 by Proposition 4.1. But h = h̃ is

completely determined by the algorithm in Step 2 of Theorem 4.2 when it is this
small.

When R � d2/5+ε, we compute h by our version of Shanks’ algorithm. To begin
with, we approximate the value of L(1, χ) (where χ is the real, primitive, non-
principal character mod d) using the Random Summation method, as discussed in
Section 2. By Dirichlet’s formula (1.1) for d > 0, this leads to an approximation
for hR:

hR = λ + O(d2/5+ε).

As R has already been computed we get an approximation for h :

h =
λ

R
+ O(

d2/5+ε

R
).

So we have now found an interval (L, L + l̃) containing h, where L = λ
R and

l̃ = O(d2/5+ε

R). So far our algorithm has taken time O(d1/5+ε) (by Theorem 2.9 and
Theorem 4.2).

The second part of the algorithm is to determine a subgroup of the class group
of order ≥ l̃. We do this by ‘randomly’ choosing forms, which we hope lie outside
the subgroup that we have already obtained, so building an even bigger subgroup.
There are two practical difficulties that we need to discuss in detail: First, given a
subgroup H and a form g, how do we determine the size of the subgroup generated

1298 ANITHA SRINIVASAN

by H together with g? This is what we will do in the rest of this section. Second,
we need to be precise about what we mean by ‘randomly’ choosing forms, and we
also need to analyse the probability that our ‘randomly chosen’ form will lie outside
the subgroup that we have already generated. We discuss this in section 6, where
we also show that this part of the algorithm runs in expected time O(d1/5+ε) (see
the Main Theorem in section 6).

In the remainder of this section we will prove the following result.

Theorem 5.2. The running time for computing the order of a given subgroup of
the class group of a real quadratic field, given a set of O(dε) generators of the
subgroup, using baby-steps-giant-steps, is O(d1/5+2ε).

Lemma 5.3. Let d1/5 � R = O(d2/5+ε). Let F be a reduced form. Then in time
O(R log2 d

d1/5) it can be checked if F is a principal form.

Proof. Let

[R] = m[d1/5] + n with 0 ≤ n < d1/5.(5.1)

We first compute using Lemma 3.4, a form f on the principal cycle with

δ0(1, f) = [d1/5] + O(log d)

in time O(d1/5 log2 d). In exactly the same manner as in Theorem 4.2, Step 3 we
define the integer k ≤ 2(m + 1) as the smallest integer such that

k−1∑
i=0

δ0(f i, f i+1) > R.(5.2)

If F ∼ 1, then F and 1 lie on the same cycle. So let r be the smallest integer such
that

r∑
i=0

δ0(f i, f i+1) > δ0(1, F).(5.3)

Clearly r ≤ k − 1 from (5.2). Now

δ0(F, f r+1) ≤ δ0(F, f r+1) + δ0(f r, F) = δ0(f r, f r+1).

We can also show that

δ0(F, f r+1) ≤ [d1/5] + O(log2 d).(5.4)

Let t be the least non-negative integer such that

f r+1 = ρt(F).(5.5)

From Lemma 3.2 and (5.4), we have

t <
4([d1/5] + O(log2 d))

log 2
+ 1 = T.(5.6)

We now compute the baby steps:

F, ρ(F), ρ2(F), ρ3(F), . . . , ρT (F)

and the giant steps:

f, f2, f3, . . . , fk.

If F ∼ 1, then from (5.5) it is clear that a match will be found in the two lists
above.

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1299

From (5.6), we see that the number of baby steps is O(d1/5) and hence the baby
list is computed in time O(d1/5 log2 d).

Now k ≤ 2(m + 1) and from (5.1), we have m < [R]

[d1/5]
, thus the number of giant

steps is O(R
d1/5) = O(d1/5+ε), as R = O(d2/5+ε). Thus the giant list takes time

O(d1/5+ε) to compute, as a product can be computed in time O(log3 d).
Thus if F ∼ 1, then a match is found between the baby forms and giant forms

in time O(d1/5+ε). If a match is not found in time O(d1/5+ε), then F and 1 are not
in the same cycle and hence F is not principal.

Finding the Order of an Element f . We first find a number n, in the interval
(L, L + l̃) such that fn = 1:

Suppose L < n < L + l̃ and fn = 1. Write n = L + s, with 0 < s < l̃. Thus we
wish to find s such that

fL+s = 1, 0 < s < l̃.

We now present an algorithm to do this in time O(d1/5+ε); there are two cases,
depending on the size of R.

Case 1. R � d1/5+ε.

Let u =
[
l̃/d1/5

]
. We can write s = a+ bu, with 0 ≤ a < u, and 0 ≤ b ≤ [d1/5].

Then

fn = fL+s = fLfa+bu = 1

or

fLfa = (f−u)b.

Let g = f−u. To find a and b, we compute the elements

fL, fLf, fLf2 . . . fLfu−1(5.7)

and

1, g, g2, . . . , g[d1/5].(5.8)

This requires computing O(d1/5+ε) products as l̃ = O(d2/5+ε). Hence the time
taken is O(d1/5+ε) since a product can be computed in time O(log3 d).

For each form f in the list (5.7) we compute all the reduced forms equivalent to
f (i.e., all the elements in its cycle) and compare this new list with the list (5.8)
for a common element. Now if l is the length of a cycle, then l < 4R

log 2 ([8]); hence
each cycle is computed in time O(R log2 d). Thus the time taken for computing all
of the cycles is O(uR log2 d) = O(l̃R log2 d

d1/5), where u =
[

l̃
d1/5

]
as in the imaginary

case. As l̃ = O(d2/5+ε

R), the total time taken is O(d1/5+2ε).

Case 2. d1/5+ε � R � d2/5+ε.

We wish to find an integer s such that

fL+s = 1, 0 < s < l̃.

We compute the elements

fL+1, fL+2, . . . , fL+l̃−1.

1300 ANITHA SRINIVASAN

For each of these elements we check if it is in the principal cycle using Lemma 5.3.
This is done in time O(l̃R log2 d

d1/5) = O(d1/5+2ε), as l̃ = O(d2/5+ε

R).
Thus we have found an integer n in (L, L + l̃) with fn = 1. To find the order

of f , we first factor n as n = pe1
1 . . . per

r . To find the order of f , for each prime p
dividing n, we find the exact power of p that divides o(f), as follows: We compute
the powers, f

n
p , f

n
p2 , and so on and check each time if the form is in the principal

cycle. If f
n

pr is in the principal cycle and f
n

pr is not, then pe−r is the highest power
of p dividing o(f), where pe is the highest power of p in n.

Computing a power of f takes time O(log4 d) by using repeated squaring method.
By Lemma 5.3, it takes time O(R log2 d

d1/5) to check if an element is in the principal
cycle. As e, r = O(log n), we perform O(log2 d) such checks and thus the time taken
to find the order of f is O(R log4 d

d1/5) = O(d1/5+2ε), as R = O(d2/5+ε).

Finding the Order of a Subgroup. Suppose we wish to find the order of the
subgroup 〈f, g〉. Let of (g) denote the smallest power of g that is also a power of f
(note that this means the reduced form in the class of that power of g). Then the
order of 〈f, g〉 is o(f) · of (g). So now we wish to find of (g). We know of (g) divides
o(g), so we first compute o(g) and then factor it and find the highest power of each
prime p which divides of (g), as follows:

We compute go(g)/p, go(g)/p2
, Each time we check whether we get a power of

f , that is if the power of g lies in the subgroup generated by f (see next paragraph).
If go(g)/pr

is a power of f , but go(g)/pr+1
is not, and pe is the highest power of p

dividing o(g), then pe−r is the highest power of p dividing of (g).
The powers of g can be computed using repeated squaring method, in time

O(log4 d).
Suppose we have picked k forms. Let Gk = 〈f1, . . . , fk〉 be the subgroup gener-

ated by f1, . . . , fk and let Nk denote its order. Then the current subgroup is Gk.
Let oG(f) denote the order of f in G, i.e. the smallest power of f that is in G. Let
θs = oGs−1(fs) for each s = 1, 2, . . . , k. Then Nk = θ1θ2 . . . θk.

We assume here that k is at least 2. If Nk is less than l̃, then we have still not
determined the class number. So we pick another form, say g and find the order of
〈f1, . . . , fk, g〉, which equals Nk ·oGk

(g). Therefore we wish to find oGk
(g). From the

discussion at the beginning of this section, this requires computing certain powers
of g and checking if they do or do not lie in Gk.

Determining if a Given Form Belongs to a Given Subgroup.

Lemma 5.4. Let k ≥ 2 and Nk = θ1θ2 . . . θk. Let t be such that θ1θ2 . . . θt ≤ d1/5

and θ1 . . . θt+1 ≥ d1/5. If m =
[

d1/5

θ1...θt

]
, then

θ1 . . . θt ·m ≤ d1/5 and
([

θt+1

m

]
+ 1

)
θt+2 . . . θk ≤ 3

Nk

d1/5
.

Proof. Note first that

θ1 . . . θt ·m = θ1 . . . θt

[
d1/5

θ1 . . . θt

]
≤ d1/5.

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1301

Since [x] > x
2 for any x ≥ 1, we get m > d1/5

2θ1...θt
. Therefore

θt+2 . . . θk

([
θt+1

m

]
+ 1

)
< θt+2 . . . θk

(
θt+1

m
+ 1

)
=

θt+1 . . . θk

m
+ θt+2 . . . θk

<
2θ1 . . . θt

d1/5
· θt+1 . . . θk + θt+2 . . . θk =

2Nk

d1/5
+ θt+2 . . . θk ≤ 3

Nk

d1/5

since θt+2 . . . θk ≤ Nk

d1/5 .

Suppose we wish to check if gc is in Gk, i.e. if there exist integers ci, with
0 ≤ ci < θi, such that

gc = f c1
1 . . . f ck

k , for some 0 ≤ ci < θi.(5.9)

Case 1. R � d1/5+ε. We write f c1
1 . . . f ck

k as

f c1
1 . . . f ct

t · fa+bm
t+1 f

ct+2
t+2 . . . f ck

k

where 0 ≤ a < m, 0 ≤ b ≤
[

θt+1
m

]
.

Then we have from (5.9)

gc · f−c1
1 . . . f−ct

t · f−a
t+1 =

(
fm

t+1

)b · f ct+2
t+2 . . . f ck

k .(5.10)

To find ci, for 1 ≤ i ≤ k, we make the two lists:

gc · f−a1
1 . . . f−at

t · f−a′
t+1 , 0 ≤ ai < θi for 1 ≤ i ≤ t and 0 ≤ a′ < m(5.11)

and (
fm

t+1

)b′ · fat+2
t+2 . . . fak

k , 0 ≤ ai < θi for t + 1 ≤ i ≤ k and 0 ≤ b′ ≤
[
θt+1

m

]
(5.12)

For each element in the list (5.12) we compute all the elements in its cycle and
compare this list with (5.11). By Lemma 5.19 each cycle has length O(R), so time
taken to compute a cycle is O(R log2 d) by Theorem 2.8. By Lemma 5.4 there are
less than 3 Nk

d1/5 elements in the list (5.12), thus as Nk < l̃ the computation of all

the cycles takes time O(Rl̃ log2 d
d1/5).

Case 2. d1/5+ε � R � d2/5+ε.
In this case to check if (5.9) holds, we compute the elements

g−cf c1
1 . . . f ck

k , 0 ≤ ci < θi,

and check for each entry, if it is in the principal cycle. By Lemma 5.3 each check
takes time O(R log2 d

d1/5), so the total time taken is O(l̃R log2 d
d1/5), as there are Nk ele-

ments in the list and Nk < l̃.
Going back to computing oGk

(g), as e, r = O(log n), we need to check for
O(log2 d) forms, if they lie in GK . Thus the time taken is O(Rl̃ log4 d

d1/5) = O(d1/5+2ε)

as l̃ = O(d2/5+ε

R).

Tying together the results above, we have proved Theorem 5.2.

1302 ANITHA SRINIVASAN

6. Probability analysis

Choosing a Random Form. We now present an algorithm to choose a ‘random’
form from the class group and give a lower bound for the probability that this
form lies outside a given subgroup. This algorithm chooses a form (A, B, C) of
discriminant d with 1 ≤ B ≤ d2.

Algorithm 6.1. We will choose a binary quadratic form (A, B, C) of discriminant
d with

1 ≤ B ≤ d2 and 1 ≤ A ≤ q, where q =

√
d4 − d

4
.

Step 1. Choose B from 1 to d2 with uniform distribution, i.e. select any given
integer B in the range 1 ≤ B ≤ d2, with probability 1

d2 .

Step 2. Factor |B2−d
4 | (using the methods in [9]). Let |B2−d

4 | = pc1
1 . . . pck

k be the
prime factorization.

Step 3. Select a random factor A ≤ q as follows.
Choose k random numbers r1, r2, . . . , rk, where 0 ≤ ri ≤ ci.
Take A1 = pr1

1 . . . prk

k .
If A1 ≤ q, then let A = A1. Otherwise, repeat step 3.

Step 4. C = B2−d
4A .

Let ε > 0 be fixed. Let τ be the divisor function. Then given any one particular
form f , the probability of choosing a form (A, B, C) equivalent to f using the above
Algorithm 6.1 is :

1
d2

d2∑
B=1

1
τ(B2−d

4)

∑
A|B2−d

4
1≤A≤q

{
1 (A, B) ∼ f,

0 else

≥ 1
|d|εd2

∑
1≤B≤d2

A|B2−d
4

1≤A≤q

{
1 (A, B) ∼ f,

0 else

=
1

|d|εd2
#{(A, B) ∼ f : 1 ≤ B ≤ d2, 1 ≤ A ≤ q},

since B2−d
4 < d4 so that τ

(
B2−d

4

)
≤ |d|ε for |d| sufficiently large [see Theorem 315

in [6]].
Let A = {(A, B) ∼ f : 1 ≤ B ≤ d2, 1 ≤ A ≤ q}. We proved above that

Prob{(A, B, C) ∼ f} ≥ 1
|d|ε+2

|A|.(6.1)

We define now an equivalence relation ‘∇’ on the set A as follows: (A1, B1, C1)∇
(A2, B2, C2) if and only if A1 = A2 = A and B1 ≡ B2 mod 2A. Hence each equiv-
alence class is represented by a unique form (A, B, C) with 1 ≤ B ≤ 2A. The
equivalence class represented by (A, B, C), 1 ≤ B ≤ 2A, is

{(A, B + 2Ax) : x ∈ Z, 1 ≤ B + 2Ax ≤ d2};

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1303

the number of elements in this set is
[

d2−B
2A

]
+ 1, since 1−B

2A ≤ x ≤ d2−B
2A and

0 ≥ 1−B
2A > −1 as 1 ≤ B ≤ 2A and so 0 ≤ x ≤ d2−B

2A .
Thus summing over all such equivalence classes we have the following proposition.

Proposition 6.2. For each form f of discriminant d, we have

#
{
(A, B) ∼ f : 1 ≤ B ≤ d2, 1 ≤ A ≤ q

}
=

∑
(A,B)∼f
1≤B≤2A
1≤A≤q

([
d2 −B

2A

]
+ 1

)
.

Lemma 6.3. Let (a, b1, c1) and (a, b2, c2) be two reduced forms of discriminant
d > 0 with a > 0 and b1 ≡ b2 mod 2a. Then b1 = b2.

Proof. As b1 ≡ b2 mod 2a there is an integer x such that

b2 = b1 + 2ax.

As (a, b1, c1) and (a, b2, c2) are reduced, they satisfy

0 <b1 <
√

d,
√

d− b1 <2a <
√

d + b1.
(6.2)

Likewise

0 < b1 + 2ax <
√

d,
√

d− (b1 + 2ax) < 2a <
√

d + b1 + 2ax.
(6.3)

As
√

d− b1 > 0 from (6.2), we have from the second part of (6.3) that −2ax < 2a

and so x ≥ 0. Also from the first part of (6.3) we have x <
√

d−b1
2a and as

√
d−b1
2a < 1

from (6.2), we have that x ≤ 0 and hence x = 0 and so b1 = b2.

Lemma 6.4. Let f be a form of discriminant d. Then

∑
(a,b,c) is reduced

(a,b,c)∼f
a>0

1
a
≥

√

3
|d| for d < 0,

R√
d log d

for d > 0.

Proof. If d < 0, then there is a unique reduced form F with F ∼ f . If F = (a, b, c),

then by an easy consequence of the definition of a reduced form, we have a ≤
√

|d|
3 .

Thus 1
a ≥

√
3
|d| .

If d > 0, then there is a cycle of reduced forms equivalent to f . Let l be the
length of the cycle. Then the number of forms (a, b, c) in a cycle with a > 0 is l

2
as the a values of the forms in a cycle alternate in sign. Now if (a, b, c) is reduced
we have as a consequence of the definition of a reduced form, |a| <

√
d ⇒ 1

|a| > 1√
d

and thus ∑
(a,b,c) is reduced

(a,b,c)∼f
a>0

1
a

>
l

2
√

d
>

R√
d log d

as l > 2R
log d ([8]).

1304 ANITHA SRINIVASAN

Lemma 6.5. Let f be a form of discriminant d, and q =
√

(d4 − d)/4. The map
φ : {(a, b, c) ∼ f : (a, b, c) is reduced and a > 0} −→ T := {(A, B) ∼ f : 1 ≤ A ≤
q
2 and 1 ≤ B ≤ 2A}, defined by φ(a, b, c) = (a, B) where B is the least positive
residue of b mod 2a, is an injection.

Proof. If d < 0, then φ(a, b, c) = (a, b, c) ∈ T , and the result follows immediately.
Now let d > 2 and suppose that (a, b, c) ∼ f is reduced with a > 0. It is

easily verified that (a, B) ∼ (a, b, c) and hence to f . As (a, b, c) is reduced, we have
a <

√
d. As

√
d < q

2 so a < q
2 and hence (a, B) ∈ T as required.

Next we show that φ is indeed an injection: Suppose that f1 = (a1, b1, c1) and
f2 = (a2, b2, c2) are reduced forms, both equivalent to f , with a1, a2 > 0 and
φ(f1) = φ(f2). Then (a1, B1) = φ(f1) = φ(f2) = (a2, B2) and so a1 = a2 = a, say.
But then b1 ≡ B1 = B2 ≡ b2 mod 2a, and so b1 = b2 by Lemma 6.3. However
since a1 = a2 and b1 = b2 we evidently have c1 = c2, and so f1 = f2, and thus φ is
indeed an injection, and the lemma follows.

Corollary 6.6. Fix ε > 0. With the hypothesis of Lemma 6.5, we have for |d|
sufficiently large

q
2∑

A=1

1
A

∑
(A,B)∼f
1≤B<2A

1 ≥

√

3
|d| for d < 0,

R√
d log d

for d > 0.

Proof. By Lemma 6.5 we have
q
2∑

A=1

1
A

∑
(A,B)∼f
1≤B<2A

1 ≥
∑

(a,b) is reduced
(a,b)∼f

a>0

1
a

and the result follows from Lemma 6.4.

Theorem 6.7. Fix ε > 0. Let f be a form of discriminant d. The probability of
choosing a form equivalent to f , using Algorithm 6.1, is greater than{

1
|d|1/2+ε for d < 0,

R
|d|1/2+ε for d > 0,

if |d| is sufficiently large.

Proof. From (6.1) and Proposition 6.2, we know that the probability of choosing a
form equivalent to f using Algorithm 6.1 is

≥ 1
|d|2+ε/2

∑
(A,B)∼f
1≤B≤2A
1≤A≤q

([
d2 −B

2A

]
+ 1

)
≥ 1
|d|2+ε/2

q∑
A=1

∑
(A,B)∼f
1≤B≤2A

d2 −B

2A

≥ 1
|d|2+ε/2

q/2∑
A=1

∑
(A,B)∼f
1≤B≤2A

d2

8A
=

1
8|d|ε/2

q/2∑
A=1

1
A

∑
(A,B)∼f
1≤B≤2A

1

since B ≤ 2A ≤ q and the result follows from Corollary 6.6.

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1305

The Probability of Choosing a Form Outside a Given Subgroup. In the
algorithm for computing the class number, we need to choose a form F outside a
given proper subgroup H . We now compute the probability that F lies outside H ,
where F is chosen using Algorithm 6.1.

Theorem 6.8 (Siegel [4]). For every ε > 0 there exists an ineffective constant cε >
0 such that

L(1, χ) > cεq
−ε

where χ is a real primitive non-principal character mod q.

Theorem 6.9. Fix ε > 0 and let |d| be sufficiently large. Let F be a form of
discriminant d chosen using Algorithm 6.1. If H is any given proper subgroup of
the class group G, then there is an ineffective positive constant cε such that

Prob {F /∈ H} >
cε

|d|ε .

Proof. We first observe that |H | ≤ h
2 since it is a proper subgroup. Therefore there

are at least h
2 classes in G that are not in H . Now

Prob {F /∈ H} =
∑
f /∈H

Prob{F ∼ f}

where the sum is over a set of representative forms f from the equivalence classes
of G\H . By Theorem 6.7 and the comments just above, we have∑

f /∈H

Prob{F ∼ f} >
h

2

{
1

|d|1/2+ε

R
d1/2+ε

=

{
h

2|d|1/2+2ε for d < 0,
hR

2d1/2+2ε for d > 0

� L(1, χ)
|d|ε >

c′ε
|d|2ε

,

where the last two inequalities follow from Dirichlet’s Theorem (1.1), and Siegel’s
Theorem 6.8.

The Main Theorem. Fix ε > 0 and let d > 0 be a fundamental discriminant.
Then the class number h of the quadratic field Q(

√
d) can be found, via our proba-

bilistic algorithm, in expected time O(d1/5+ε).

Proof. The algorithm consists of two steps. In the first step, an approximation h̃ for
h is determined using Dirichlet’s class number formula and the Random Summation
technique. This is done by first approximating hR and then R. Thus by Theorem
2.9 and Theorem 4.2 the expected time taken is O(d1/5+ε).

Hence we obtain an interval (L, L + l̃) which contains the class number, with
l̃ = O(d2/5+ε

R).
In the second step, the precise value of h is found using Shanks’ baby-steps-

giant-steps technique. Here we pick forms using Algorithm 6.1 and compute the
order of the subgroup generated by them until we find a subgroup with more than
l̃ elements. By Theorem 5.2, the time taken to compute the order of a subgroup
using baby steps giant steps is O(d1/5+ε).

Say we have a subgroup H whose order is less than l̃. If we pick a form F using
Algorithm 6.1, then by Theorem 6.9, the probability that it does not belong to H
is > cε

dε . Thus we will get at least one form outside H , with probability ∼ 1, after
we pick O(dε) forms using Algorithm 6.1.

1306 ANITHA SRINIVASAN

Moreover, as h has at most log2 h < log2(L + l̃) prime factors, we need pick at
most O(log(L + l̃)dε) = O(d2ε) forms to get h.

Hence the total expected running time for finding h is O(d1/5+ε) after replacing
ε by ε/2 in the proof above.

7. Discussion

In this concluding section we discuss the details of the algorithms presented and
look at the running times of various computations involved.

Random Summation. One of the key tools used in our algorithm is that of

‘Random Summation’. This is used to evaluate the sum S =
∑

n≤d2

odd n

(d
n)
n where(

d
n

)
is the Jacobi symbol.

We could enhance the accuracy of the approximation for S by computing the
exact sum up to d1/5, and then only approximating the remaining terms of the sum
S. Thus we wish now to approximate the sum

S1 =
d2∑

n=[d1/5]
n odd

(
d
n

)
n

.

We do this using Random Summation, wherein we consider the M = [d1/5] random
variables Yi, 1 ≤ i ≤ M , where

Prob {Yi = n} =
λ

n
with 1 ≤ i ≤ M, n odd and [d1/5] ≤ n ≤ d2,

and λ is defined by

d2∑
n=[d1/5]
n odd

λ

n
= 1.

We then let Xi =
(

d
Yi

)
. The reason that this can be used to approximate S1 is

that the ‘expected value’ of each Xi is precisely λS1.
We run into a practical difficulty: How do you choose an integer n in the given

range, with probability exactly λ
n ? As we do not know how to do this, we propose

an algorithm that is practical and chooses n with probability close to, but not
exactly, λ

n .
This practical algorithm will choose a random odd integer n in the range [d1/5] ≤

n ≤ d2. Let Y ′ denote this random selection. The algorithm chooses an integer n
with probability close to, but not exactly equal to, the desired probability (i.e . λ

n).
We then let X ′ =

(
d

Y ′
)
. It can be shown that this new method of approximation

works just about as well as the theoretical approximation obtained earlier.

Algorithm 7.1. Let K = [d1/10], and select δ to get (1 + δ)K = d2/[d1/5]. For
1 ≤ k ≤ K, we let Ik denote the interval

(
[d1/5](1 + δ)k−1, [d1/5](1 + δ)k

]
, and let

Ek be the number of odd integers in Ik.

Step 1. Choose an integer k uniformly from [1, K], i.e. each integer is chosen with
probability 1

K .

COMPUTATIONS OF CLASS NUMBERS OF REAL QUADRATIC FIELDS 1307

Step 2. Choose an odd integer n uniformly from Ik, i.e. each integer is chosen with
probability 1

Ek
.

Step 3. Let Y ′ = n and let X ′ =
(

d
Y ′

)
.

We now wish to determine the ‘expected value’ of the random variable X ′. Now,
if n ∈ Ik, then Prob {Y ′ = n} = 1

KEk
; and so, the ‘expected value’ of X ′,

E(X ′) =
d2∑

n=[d1/5]
n odd

(
d

n

)
Prob {Y ′ = n} =

K∑
k=1

1
K

∑
n∈Ik

n odd

1
Ek

(
d

n

)
.(7.1)

Note that δ = 9 log d
5d1/10 + O

(
log2 d
d1/5

)
= 9 log d

5d1/10 (1 + O(δ)) and K = d1/10 + O(1) =

d1/10(1+O(δ)). Also Ek = δ
2 [d1/5](1+δ)k−1+O(1); and, since δ

2 [d1/5] � d1/10 log d,
thus Ek = δ

2 [d1/5](1 + δ)k−1(1 + O(δ)). Now, if n ∈ Ik, then n = [d1/5](1 + δ)k−1 ·
(1 + O(δ)), so that 1

Ek
= 1

n

(
2
δ + O(1)

)
. Therefore, from (7.1),

E(X ′) =
1
K

(
2
δ

+ O(1)
) K∑

k=1

∑
n∈Ik

n odd

1
n

(
d

n

)

=
2

Kδ
S1(1 + O(δ)) =

10
9 log d

S1(1 + O(δ)).

Finally, since |S1| = O(log d), thus S1 = 9 log d
10 E(X ′)+O

(
log2 d
d1/10

)
. In Proposition 2.5

we saw that we are prepared to allow the error O(1/d1/10−ε) when approximating
S, and thus S1; so we see that replacing the random variables Xi by X ′

i will not
significantly alter the power of algorithm, whilst rendering it practical.

Probability Analysis. The class number is computed exactly. However the al-
gorithm is completed in an expected running time since the random summation
technique is used and forms are chosen randomly.

We also remind the reader that our lower bound for the probability that a form,
chosen using Algorithm 6.1, lies outside a given subgroup (Theorem 6.9) depends
on Siegel’s theorem (Theorem 6.8). Thus although the algorithm is practical, our
estimate on its running time is ineffective as Siegel’s constant is ineffective. However
Tatuzawa ([16]) has provided an actual value for Siegel’s constant which holds for
all but at most one value of d.

The Imaginary Case. As there is no regulator in the case when d < 0, the
algorithm is simpler. We use random summation to approximate L(1, χ) and then
Dirichlet’s formula to compute an approximation for h. Next we carry out the
second part of Shanks’ algorithm to find h exactly.

However, unlike the real case, here we do not have the means to verify if an
interval provided by random summation is indeed correct. Hence although the
algorithm may provide the wrong answer, it does so only with very low probability.

Acknowledements

This work is a result of the Ph.D. thesis completed under the guidance of Andrew
Granville. I would like to thank Andrew for the numerous ideas and encouragement
that he has given me, that have been instrumental in the writing of this paper. I

1308 ANITHA SRINIVASAN

would also like to thank Carl Pomerance for the many enlightening discussions on
this subject.

References

1. R. P. Brent, Fast Multiple-Precision Evaluation of Elementary Functions, J. Assoc. Comp.
Mach. 23 (1976), 242- 251. MR 52:16111

2. D. Buell, Binary Quadratic Forms, Springer-Verlag, New York/Berlin/Heidelberg, 1989. MR
92b:11021

3. H. Cohn, Advanced Number Theory, Dover, Inc. New York, 1980. MR 82b:12001
4. H. Davenport, Multiplicative Number Theory (4th, ed.), Springer-Verlag, New York, 1980,

111-222. MR 82m:10001
5. D. W. DeTemple, A quicker Convergence to Euler’s Constant, Amer. Math. Monthly 100

(1993), 468-470. MR 94e:11146
6. G. H. Hardy and E.M. Wright, An introduction to the theory of numbers, 5th ed, Oxford

Science Publication. MR 81i:10002
7. L. K. Hua, Introduction to Number Theory, Springer-Verlag, New York, 1982. MR 83f:10001
8. H. W. Lenstra, Jr., On the calculation of regulators and class numbers of quadratic fields,

Lond. Math. Soc. Lect. Note Ser, 56 (1982), 123-150. MR 86g:11080
9. H. W. Lenstra, Jr. and C. Pomerance, A rigorous time bound for factoring integers, Journal

of the Americain Mathematical Society 5, (1992). MR 92m:11145
10. R. A. Mollin and H. Williams, Computation of the class number of real quadratic fields,

Utilitas Math., 41 (1992), 259-308. MR 93d:11134
11. L. Sachs, Applied Statistics, A handbook of techniques, 2nd ed., pp 64, Springer-Verlag, New

York/Berlin/Heidelberg/Tokyo, 1984. MR 85k:62001
12. R. J. Schoof, Quadratic fields and factorization, Computational methods in number theory,

(H. W. Lenstra, Jr., and R.Tijdeman, eds.), Math.Centrum, Number 155, part II, Amsterdam

1 (1983), 235-286. MR 85g:11118b
13. J.Shallit, On the worst case of three algorithms for computing the Jacobi symbol, J. Symbolic

Computation 10 (1990), 593-610. MR 91m:11112
14. D.Shanks, Class number, a theory of factorization, and genera, Proc. Symp. Pure Math.,

Amer. Math. Soc. 20 (1971), 415-440. MR 47:4932
15. D.Shanks, The infrastructure of real quadratic fields and its application, Proc.1972 Number

Theory Conf.,Boulder, Colorado (1973), 217-224. MR 52:10672
16. T. Tatuzawa, On a theorem of Siegel, Japan J. Math. 21 (1951), 163-178. MR 14:452c

Department of Mathematics, University of Georgia, Athens, Georgia 30602

E-mail address: as@turing.upr.clu.edu

Current address: Department of Mathematics, University of Puerto Rico, CUH Station, 100
Carretera 908, Humacao, Puerto Rico 00791-4300

