
MATHEMATICS OF COMPUTATION
Volume 67, Number 224, October 1998, Pages 1637–1663
S 0025-5718(98)00968-5

A SPACE EFFICIENT ALGORITHM
FOR GROUP STRUCTURE COMPUTATION

EDLYN TESKE

Abstract. We present a new algorithm for computing the structure of a finite
abelian group, which has to store only a fixed, small number of group elements,
independent of the group order. We estimate the computational complexity
by counting the group operations such as multiplications and equality checks.
Under some plausible assumptions, we prove that the expected run time is
O(
√

n) (with n denoting the group order), and we explicitly determine the O-
constants. We implemented our algorithm for ideal class groups of imaginary
quadratic orders and present experimental results.

1. Introduction

Let G be a finite abelian group, written multiplicatively, for which we assume
the following:

• For a, b ∈ G we can compute c = a ∗ b and we can test whether a = b.
• We know the neutral element 1 ∈ G.
• There is a computable function f : G → {1, . . . , 20} such that

20∑
i=1

∣∣∣∣#{a ∈ G : f(a) = i} − |G|
20

∣∣∣∣ = O(
√
|G|),

where |G| denotes group order.
Throughout the paper, we refer to the function f of the third assumption as

the equidistributing function. Let us already note that this function will serve to
produce random walks in G. The number 20 entered the definition empirically.

For any subset S of G, denote by 〈S〉 the subgroup of G generated by S. If
〈S〉 = G then S is called a generating set of G. If S = {g} then we write 〈g〉
instead of 〈S〉.

Given a generating set of G, we want to compute the structure of G. By com-
puting the structure of G we mean computing positive integers m1, . . . , mq with
m1 > 1, mi|mi+1, 1 ≤ i < q and an isomorphism φ : G → Z/m1Z× · · · × Z/mqZ.
This isomorphism is given in terms of the images of the generators. The integers
mi are the uniquely determined invariants of G.

Note that once we have an algorithm to compute the group structure, we imme-
diately can solve two other computational problems, which are the following:

Received by the editor February 7, 1997 and, in revised form, April 23, 1997.
1991 Mathematics Subject Classification. Primary 11Y16.
Key words and phrases. Generic algorithms; group structure computation; Pollard’s ρ-method;

class groups.

c©1998 American Mathematical Society

1637



1638 EDLYN TESKE

• Given g ∈ G, compute |〈g〉|, the order of g in G, which is the least positive
integer x such that gx = 1.

• Given g, d ∈ G, decide whether d belongs to the cyclic subgroup 〈g〉 of G
generated by g. If d ∈ 〈g〉, find logg d, the discrete logarithm of d to the base
g, i.e., the least non-negative integer x such that gx = d.

In this paper, we present a generic algorithm to compute the structure of a finite
abelian group. By “generic” we mean that the algorithm does not exploit any
special properties of the group operations or the encodings of the group elements.
The algorithm we present works for every finite abelian group satisfying the three
assumptions stated above. To determine the computational complexity of such a
generic algorithm we count the number of group operations such as multiplications
and equality checks.

Here is our main result.

Theorem 1.1. There is an algorithm for computing the structure of a finite abelian
group G from a generating set S that has to store

|S|+ 30

group elements and vectors in {1, . . . , 5|G|5/2}|S|. Under some plausible assump-
tions, it executes an expected number of at most

(1.41|S|+ 5)
√
|G|+ 5|G|1/4(dlog log10 |G| e − 1)

+20|S| (2 log |G|+ 1) (|S|+ 1 + 2dlog log10 |G| e) + O(|S|)
group multiplications, for |G| ≥ 4. It executes an expected number of at most

8(1.41|S|+ 5)
√
|G|+ 28|G|1/4(dlog log10 |G| e − 1) + O(|S|)

equality checks.

(Note that throughout this paper, log b stands for log2 b.)
Let us stress that this algorithm always terminates and that its output is always

correct, regardless of whether our assumptions (stated in Conjectures 6.1 and 6.2)
do hold or not. It is only the expected run time that depends on their validity.

Shoup [Sho96] has proved an Ω(p1/2) lower bound for the computational com-
plexity of every generic algorithm computing discrete logarithms in a finite abelian
group, where p denotes the largest prime divisor of the group order. The same
holds for the group structure computation. Thus, in case of groups with prime
group order, no algorithm can asymptotically do better than our algorithm.

There is another generic algorithm for group structure computation [BJT97],
which is based on Shanks’ Baby-Step Giant-Step method [Sha71]. It has run-
time complexity O(

√|G|), but it has the disadvantage that it has high storage
requirements. We have shown [BJT97] that it uses tables of group elements of size
Ω(

√|G|). Therefore, for example on a SPARCstation ULTRA170 with 170 MB
RAM and with our implementation for ideal class groups of imaginary quadratic
orders, we did not succeed in computing groups with group order larger than 1011

because of the memory constraints of the machine.
On the other hand, we know space efficient algorithms for computing the element

order and the discrete logarithm, which use Pollard’s rho method [Pol78] [SS85]
[McC90]. These algorithms store only a small, constant number of group elements,
but their run-time complexities can no longer be rigorously proved. Their expected
run time is O(

√|G|), under the assumptions that a random walk in the group can



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1639

be simulated and that an upper bound for the group order (for the order algorithm)
or the group order itself (for the discrete logarithm algorithm) is known.

In this paper we show, both theoretically and experimentally, that Pollard’s rho
method can also be used to compute the group structure. As already mentioned,
the algorithm we present has constant storage requirements and expected run time
O(

√|G|). We do not need any prior knowledge about the group order.
Our paper is organized as follows. First, we present the results from the theory

of finite abelian groups on which our group structure algorithm is based, and we
give an outline of the algorithm. In Section 3 we show how to realize random walks
in finite abelian groups. There the role of the equidistributing function will also
become clear. In Sections 4 and 5 we explain in detail how to compute the relations
needed for our group structure computation and how to minimize them. In Section
6 we explicitly state the two assumptions on which our run-time analysis is based,
and we prove our complexity results. Finally, in Section 7 we present a selection
of experimental results that we obtained with our implementation for ideal class
groups of imaginary quadratic orders.

2. Description of the algorithm

Given a generating set of a finite abelian group G that is given as described in the
introduction, we want to find the structure of G. By this we mean finding positive
integers m1, . . . , mq with m1 > 1, mj |mj+1, 1 ≤ j < q, and an isomorphism

φ : G −→ Z/m1Z× · · · × Z/mqZ.(2.1)

This isomorphism will be given in terms of the images of the elements of the gen-
erating set S. The integers mi are the invariants of G.

Since our algorithm may behave differently if the generators are input in different
orders, we speak in the following of S as a generating sequence, i.e., as a finite
sequence S = (g1, . . . , gl) of group elements such that {g1, . . . , gl} is a generating
set of G. For ~z = (z1, . . . , zl) ∈ Zl we write

S ~z =
l∏

i=1

gi
zi .

A relation on S is a vector ~z ∈ Zl such that S ~z = 1. Consider the surjective
homomorphism

Θ : Zl −→ G, ~z 7→ S ~z .

Then for the set L(S) of all relations on S we have

kernel(Θ) =
{
~z ∈ Zl : S~z = 1

}
= L(S).

Hence,

G ∼= Zl/L(S),

which implies that L(S) is a lattice in Zl of dimension l and |G| = | det(L(S))|.
Our algorithm computes a basis B = (~b1, . . . ,~bl) of L(S). This basis is identified

with a matrix of column vectors ~bj = (b1j , . . . , blj)T , where T denotes transposition
of vectors. The matrix is in Hermite normal form. Then the order of G is |detB|.
The structure of G we find by computing the Smith normal form SNF(B) of B,
because if SNF(B) is the diagonal matrix diag(1, . . . , 1, m1, . . . , mq) where m1 > 1,
then m1, . . . , mq are the invariants of G. The isomorphism (2.1) is derived from the



1640 EDLYN TESKE

Smith normal form and the corresponding transformation matrices. See [BJT97]
for details.

In order to explain how to compute the relations, we need the following facts
and definitions. If W is a set, we indicate by w ∈R W that w is a randomly chosen
element of W . Let F : G → G be a mapping chosen at random in the sense of Knuth
[Knu75, p.8], i.e., each of the |G||G| possible functions on G is equally probable.
Now consider the sequence (hk) in G formed by the rule

h0 ∈R G, hk+1 = F (hk), k ∈ N0.

This sequence is ultimately periodic. Let λ denote the period and µ the length of
the non-periodic segment of the sequence, i.e., h0, . . . , hµ+λ−1 are pairwise distinct
and hµ = hµ+λ. Figuratively, the sequence (hk) is ρ-shaped, with tail of length µ
and cycle of circumference λ. The expected values of λ and µ are both close to√

π|G|/8 [Knu75, Ex. 3.1.12] [FO90].
If hµ = hµ+λ for some µ ∈ N0, λ ∈ N, we also have hk = hk+λ for every k ≥ µ.

Our strategy is that for a given set S of generators we define a sequence (hk)k∈N0

such that every match hk = hi with i < k yields a non-trivial relation on S. For
this, the sequence will be defined such that for each term hk we also know an
exponent vector ~yk with S~yk = hk. Then, if hk = hi, a relation is given by ~yk − ~yi.

Hence, the function F we use to define the sequence (hk) has to satisfy the
following requirements. First, it must enable us to easily keep track of the exponent
vectors corresponding to the terms of the sequence. Second, it should produce
sequences with similar values for λ and µ like a random mapping does. It is this
second requirement that motivated the use of the equidistributing function f : G →
{1, . . . , 20} and, in particular, the choice of the size of the image of f . It has been
shown under certain assumptions [SS85] that the image of f should consist of at
least 8 elements. The size 20 has been chosen empirically. See Section 3 for a
further discussion.

We now describe how we compute the j-th relation (j ∈ {1, . . . , l}). For this
computation we only use the generators g1, . . . , gj . Set

Sj = (g1, . . . , gj), 1 ≤ j ≤ l.

We will define a sequence (hk) ⊂ 〈Sj〉. For this, we use an exponent bound E. We
set E = 10 at the beginning of the computation of the first relation, and increase
this bound dynamically following a strategy we explain below. To initialize the
sequence (hk), let e ∈R {1, 2, . . . , E}. We set

~y0 = (0, . . . , 0, e),

where the last position is the j-th position, and

h0 = gj
e(= Sj

~y0).

Then we create a list of exponent vectors containing 20 vectors

~es = (e1s, . . . , ejs), eis ∈R {1, 2, . . . , E}, 1 ≤ i ≤ j, 1 ≤ s ≤ 20,

which are used to compute a list of multipliers containing 20 group elements
M1, . . . , M20 formed by the rule

Ms = Sj
~es , 1 ≤ s ≤ 20.



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1641

The successive terms of the sequences (hk) and (~yk) are then computed as follows.
We take the equidistributing function f : G → {1, . . . , 20} and define

F : G → G, F (h) = h ∗Mf(h), h ∈ G.(2.2)

Then we set

hk+1 = F (hk) and ~yk+1 = ~yk + ~ef(hk), k ∈ N0.(2.3)

We recursively compute h1, h2, h3, . . . and ~y1, ~y2, ~y3, . . . until we have found a match
hk = hi with i < k. For the search of such a match we use the procedure Compare-

and-Adjust, which we describe in Section 4. If this procedure has found a match
hk = hi with i < k, we have found a non-trivial relation on S, which is

~bj = ((~yk − ~yi) ◦ (0, . . . , 0)︸ ︷︷ ︸
l−j

)T ,

where ◦ denotes the concatenation of vectors. In particular, we have bjj > 0. If
bjj 6= 1, we call the procedure Minimize to find a j-th minimal relation on S. By
this we mean a relation ~x = (x1, . . . , xj , 0, . . . , 0) on S whose j-th component, xj ,
is the smallest positive integer such that gj

xj belongs to the subgroup 〈Sj−1〉 of G
generated by {g1, . . . , gj−1}. We store this minimal relation as the j-th vector of
the basis B.

It remains to describe the dynamic handling of the exponent bound E. First
observe that if E ≥ |G| and ~e ∈R {1, . . . , E}j, then Sj

~e is an (at least almost)
randomly chosen element of 〈Sj〉. Second, we prove in Section 6 that in our imple-
mentation, the number of iterations until the procedure Compare-and-Adjust

finds a match is bounded by 1.25 max(λ/2, µ) + λ (Remark 6.2). Therefore, if
E ≥ |G|, then according to Conjecture 6.2 we may assume that in (almost) all
cases a match is found within 5

√|G| iterations (Remark 6.4). This leads to the
following strategy. As already said, in the beginning we set E = 10 and start to
compute the first relation. After each successless call of the procedure Compare-

and-Adjust we check whether the number of iterations is larger than 5
√

E. If this
is the case, we conclude that the actual exponent bound has been chosen too small.
We interrupt the computation of the relation, square the exponent bound, compute
new lists of multipliers and exponent vectors and compute a new sequence (hk) un-
til a match is found or the number of iterations exceeds 5

√
E. The final exponent

bound with which our algorithm has computed the j-th relation is then used as
initial exponent bound for the computation of the (j + 1)-th relation. Note that
it is not essential that the final exponent bound E is a tight bound on the group
order, or on the order of the current subgroup 〈Sj〉 in which the computation of the
j-th relation takes place. This bound determines the size of the exponents of the
multipliers and, consequently, the sizes of the exponent vectors corresponding to
the terms hk. Both precomputing the multipliers and administering the exponent
vectors have computational complexity O(log E).

To speed-up our algorithm in practice, for the computation of the j-th relation
we use only those generators gi in {g1, . . . , gj} that really enlarge the subgroup
〈Si−1〉, i.e. for which bii > 1. For the bookkeeping of the generators gi with bii = 1
we use the set T where we store the respective indices.

Algorithm 2.1 determines the Hermite normal form basis B for the relation lattice
L(S).



1642 EDLYN TESKE

Algorithm 2.1.

This algorithm computes the Hermite normal form basis for the lattice of
relations on a generating sequence for a finite abelian group.

Input: A generating sequence S = (g1, . . . , gl) of G, an equidistributing function
f : G → {1, . . . , 20}.

Output: A basis B = (~b1, . . . ,~bl) of the lattice of relations on S in upper triangular
form.

B = (), T = ∅, E = 10
for (j = 1, . . . , l) do

while (match not found) do
for (s = 1, . . . , 20) do /∗ compute list of

Ms = 1 multipliers and
for (i = 1, . . . , j; i /∈ T ) do exponent vectors ∗/

choose random number e, 1 ≤ e ≤ E
Ms = Ms ∗ ge

i

eis = e
od

od
choose random number e, 1 ≤ e ≤ E
h = gj

e /∗ Initialize the
~y = (0, . . . , 0, e) sequences ∗/
k = 0 /∗ k = current index ∗/
Initialize Compare-and-Adjust with h, ~y

while ((match not found) and (k < 5
√

E)) do /∗ Compute the
segment = f(h) successive terms
h = h ∗Msegment of the sequences ∗/
~y = ~y + ~esegment

k = k + 1
Compare-and-Adjust

Input: h, ~y, k

Output: ~y∗ 6= ~y such that S~y−~y∗ = 1,
if match has been found

od

if ((k ≥ 5
√

E) and (match not found)) then /∗ take larger
E = E2 exponent bound ∗/

fi
od
~bj = ((~y − ~y∗) ◦ (0, . . . , 0))T

if (bjj 6= 1) then
Minimize

Input: relation ~bj , relation matrix

B = (~b1, . . . ,~bj−1)

Output: minimized relation ~bj

fi

B = (B,~bj)
if (bjj == 1) then /∗ i.e., gj does not

T = T ∪ {j} enlarge the group ∗/
fi

od

return (B)



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1643

Remark 2.1. Note that the number 5 in the conditions “k < 5
√

E ” and “k ≥
5
√

E ” is actually a parameter, which depends on the parameters chosen within the
procedure Compare-and-Adjust. See Section 6, Remark 6.5 for the general case.

Remark 2.2. Algorithm 2.1 can easily be adapted to run on a distributed system.
With only a little loss of efficiency the minimization of the relations can be shifted
to that moment in the algorithm when all relations have been computed. Thus, all
relations can be computed completely independent from one another.

3. Random walks in finite abelian groups

For a finite set G, Knuth [Knu75] has analyzed the average behavior of sequences
(hk) in G defined by

h0 ∈R G, hi+1 = F (hi), i = 0, 1, 2, . . . ,

under the condition that F is a random mapping. Then the expected values for
the length of the period, λ, and the length of the non-periodic segment, µ, are
close to

√
π|G|/8. We want to make use of this fact in our algorithm, so we have to

make sure that the function F we are using for our recursion generates a sufficiently
randomized sequence, in the sense that the expected values for λ and µ do not differ
too much from the random case.

In this section we explain why we choose the function F defined in (2.2) for our
algorithm and why we are convinced that this choice fulfills our needs. In particular,
we explain the role of the equidistributing function f in this context. We define
two equidistributing functions we use in our implementation for class groups of
imaginary quadratic orders. We propose a prototype of an equidistributing function
for the general use, thereby motivating why the assumption of the existence of an
equidistributing function should not pose a problem for concrete implementations.

Our choice of F is based on the following observation. Given a mapping F :
G → G, we can write it as

F : G → G, F (a) = a ∗M(a), a ∈ G,(3.1)

namely, using M : G → G, M(a) = a−1 ∗ F (a). This correspondence M ↔ F
induces a bijection on the set of all mappings from G to G to itself. So F is chosen
at random if and only if M is chosen at random. Hence, we may define F by means
of a mapping M : G → G and according to (3.1). Our aim is to define this mapping
M so that it is as space and run-time efficient as possible. We follow a method that
has already been successfully applied by Schnorr and Lenstra [LS84] in the case of
cyclic groups. The idea is to restrict the image of M to a small set of elements of
G, say M1, . . . , Mr. Then we set

F (a) = a ∗Mf(a), a ∈ G,

with some function f : G → {1, . . . , r}. Observe that for i, k ∈ N we have

hk = hi ⇐⇒ hk−1 = hi−1Mf(hi−1)M
−1

f(hk−1)
.

Thus, the more distinct multipliers Ms we use, and the better the values f(a)
(a ∈ G) are distributed over the set {1, . . . , r}, the sooner matches hk = hi (i < k)
occur ! This is where our concept of the equidistributing function comes into action.

If we use such a function F in our recursion, how many terms M1, . . . , Mr

are necessary to generate a sufficiently randomized sequence (hk)? Sattler and
Schnorr [SS85] conducted a theoretical investigation of this question in case of a



1644 EDLYN TESKE

cyclic group G. They concluded that if M1, . . . , Mr ∈ G are randomly chosen
and f : G → {1, . . . , r} is a pseudo-random function, then every r ≥ 8 will do.
However, in practice we cannot apply their result, since the constants hidden in
their asymptotic bounds are too large in comparison with the group orders with
which we deal.

So we let experience decide and state that r = 20 works very well, using ran-
domly chosen multipliers M1, . . . , M20, and an equidistributing function f : G →
{1, . . . , 20} to determine which multiplier is used for which group element.

We are convinced that this method of computing the sequence (hk) generates
a sufficiently randomized sequence. However, we cannot prove this, so for our
complexity analysis in Section 6 we have to state this conviction as conjecture (see
Conjecture 6.1).

How should one define the equidistributing function for a concrete implementa-
tion? We suggest using the scheme of multiplicative hashing. Let us first explain
this in the case of class groups of imaginary quadratic orders. Let O∆ denote the
imaginary quadratic order of discriminant ∆. Let Cl∆ denote the class group of
O∆. Every ideal class in Cl∆ is represented by a uniquely determined pair of inte-
gers (a, b), and we have |b| ≤ √|∆|/3 (cf. [Coh93, p. 227]). Let p be the smallest
prime number larger than 2|∆|1/4. We define

H : Cl∆ → [0, 1), (a, b) 7→ H((a, b)) = b/p mod 1,

where c mod 1 denotes the (non-negative) fractional part of c, namely c−bcc. Then
we define

f : Cl∆ → {1, . . . , 20}, (a, b) 7→ bH((a, b)) · 20c+ 1.(3.2)

In other words,

f((a, b)) = d ⇐⇒ b mod p

p
∈

[
d− 1
20

,
d

20

)
, d = 1, . . . , 20.

The choice of the size of the prime p in this definition is based on tests with samples
of different primes and different discriminants, combined with the knowledge of the
upper bound on |b| as given above. Extensive tests support our assumption that
this definition leads to an equidistributing function. For all tests we made, 20 as
O-constant would work.

Let us also consider the function

H∗ : Cl∆ → [0, 1), (a, b) 7→ H∗((a, b)) = (A · b) mod 1,(3.3)

with A being approximately (
√

5 − 1)/2 (i.e., the golden ratio). Note that it is
sufficient to compute A with a precision of dlog10

√|∆|/3 e + 3 digits, since |b| ≤√|∆|/3. From the theory of multiplicative hash functions we know [Knu73] that
among all numbers between 0 and 1, choosing A as a rational approximation of
(
√

5−1)/2 with a sufficiently large denominator (i.e., in comparison with the input
size) leads to the most uniformly distributed hash values, even for non-random
inputs.

We use both H and H∗ in our implementation. Both functions yield very good
performances, which differ only slightly (see Table 2 in Section 7).



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1645

The function H∗ is of particular interest for us since it provides a pattern for
implementations of other groups. We suggest proceeding as follows. Given a group
G whose elements are encoded as bit strings, we have to decide how to use this en-
coding to define the value corresponding to b of Definition (3.3), and what precision
is required when computing A as approximation of (

√
5− 1)/2. We then can define

a suitable function H : G → [0, 1), which we use to define f analogously to Def-
inition (3.2). As a result we obtain a promising candidate for an equidistributing
function.

Note that the requirements on the equidistributing function can be weakened.
For instance, if the encodings of the group elements are not unique, we may define
f on the set of all encodings instead of defining it on the group itself. This just
implies that the expected length of the non-periodic segment and the period are not
determined by the group order itself, but rather by the number of different encod-
ings of all group elements. This observation could enable us to use our algorithm
to compute, for instance, class groups of real quadratic orders.

4. Generating relations

As soon as our algorithm has found a match hk = hi with i < k, it can compute a
relation by taking the difference of the two exponent vectors ~yk and ~yi corresponding
to hk and hi. Matches occur as soon as the sequence (hk) has completed its first
cycle. Then we have hk = hi whenever k − i is a multiple of the period.

In this section we show how our algorithm finds matches. We have improved
a method used by Schnorr and Lenstra [LS84], which goes back to a family of
cycle-finding algorithms developed by Brent [Bre80].

As before, let λ denote the period of the sequence (hk) and µ the length of the
non-periodic segment. Then for each k ≥ µ we have that hk+λ = hk. Let v > 1 be
such that λ + µ ≤ vµ. Then, for each k ≥ µ we have k + λ ≤ vk. If we store some
hk with k ≥ µ and compare all successive terms in the sequence with this term hk,
we are guaranteed to find a match hk = hl with k < l ≤ vk. We make use of this
fact in our search algorithm.

Our method now is to store a fixed number t ≥ 2 of terms hσ1 , . . . , hσt . Their
indices σ1, . . . , σt have the property that σi+1 ≈ Rσi for some constant R, for
i = 1, . . . , t − 1 and σi large enough. In fact, since we are also interested in the
corresponding exponent vectors, we store the terms and their exponent vectors as
pairs (h, ~y). We explain how we choose the indices σ1, . . . , σt. First we choose a
number v > 1. We set σi = 0 for all i = 1, . . . , t and store (h0, ~y0). Then we
compute hσt+1, hσt+2, . . . . For each newly computed term, we check whether it
matches with one of the stored terms. If this is the case, we return the exponent
vector corresponding to the stored matching term. Otherwise, we check whether
k ≥ vσ1. If this is the case, we set σi := σi+1 for i = 1, . . . , t−1 and σt = k, i.e. we
store (hk, ~yk) instead of (hσ1 , ~yσ1). It follows from the results in Section 6 (Lemma
6.1) that by this method we have σi+1 ≈ Rσi for some appropriate R and for all σi

large enough.
In Section 6 we discuss the influence of the parameter v in more detail. For the

moment, we just mention the following facts. The larger v is, the larger R is. A
large value of R leads to a larger number of iterations until a match is found. Hence,
from this point of view, the smaller v is, the better. On the other hand, the larger v
is, the higher is the proportion of pairs (λ, µ) for which our algorithm finds the first



1646 EDLYN TESKE

match hσi = hσi+λ that arises. It finds such a match if µ ≤ σ1 and σ1 + λ ≤ v · σ1,
and the last inequality holds whenever λ ≤ (v − 1)µ. This means that the larger v
is, the better. So there is some trade-off point determining the optimal choice for
v. To compute this optimal theoretical value requires a thorough analysis involving
the probability densities of λ and µ, which would exceed the scope of this paper.

Once again, we let experience decide. We made experiments with different ra-
tional parameters v between 1 and 5. We obtained the best performance when v
was between 3 and 4, and we decided to use v = 3 in our implementation.

The number t of stored terms may be and should be kept rather small. It follows
from Theorem 6.3 in Section 6 that the worst-case number of terms to be computed
until a match is found decreases at most with 1 + O(1/t). (It follows from Lemma
6.1 that the same holds for the best-case number of terms.) On the other hand, the
work needed to compare the current term with the stored terms increases linearly
with t. The optimal number of stored terms depends on the ratio of the time needed
for one equality check and the time needed for the computation of one term of the
sequence.

In our experiments with class groups of imaginary quadratic fields we worked
with t ranging from 2 to 10. The run-time differences were very small. On average,
we got the best results with t = 8, so we chose this value for the experiments in
Section 7.

Algorithm 4.1 is the algorithm to find a match.

Algorithm 4.1. Compare-and-Adjust

This algorithm searches for a match hk = hi with the help of a set of t
stored terms, and it administers this set. The parameters t and v have
to be chosen in advance.

Input: The current terms h and ~y, the current index k.

Output: A vector ~y∗ 6= ~y such that S~y−~y∗ = 1, if comparison was successful

if (k = 0) then /∗ Initialize ∗/
(H1, ~Y1) = (h, ~y), . . . , (Ht, ~Yt) = (h, ~y)
σ1 = 0, . . . , σt = 0

else
if (there is Hs such that h = Hs) then /∗ Compare ∗/

~y∗ = ~Ys

return (~y∗)
fi
if (k ≥ vσ1) then /∗ Adjust ∗/

(H1, ~Y1) = (H2, ~Y2), . . . , (Ht−1, ~Yt−1) = (Ht, ~Yt)

(Ht, ~Yt) = (h, ~y)
σ1 = σ2, . . . , σt−1 = σt

σt = k
fi

fi



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1647

5. Computing minimal relations

Given a relation ~bj = (b1j , . . . , bjj , 0, . . . , 0) on S = (g1, . . . , gl), we want to
find a j-th minimal relation. By this, we mean that we compute a relation ~x =
(x1, . . . , xj , 0, . . . , 0) with the property that xj is the smallest positive integer such
that gj

xj belongs to the subgroup 〈Sj−1〉 of G generated by {g1, . . . , gj−1}.
The big advantage of computing minimal relations instead of working with the

non-minimized relations is the following. Having generated an l× l upper triangular
matrix of minimal relations, we can be sure that these relations really form a basis
of the relation lattice L(S). So l minimal relations are definitely enough to compute
the structure of the group generated by S, which in general is not true for non-
minimized relations. Our experiments show that minimizing a relation can be done
very fast in comparison with the effort necessary to compute one relation.

In this section we describe how to minimize a relation.
We say that a relation ~x = (x1, . . . , xj , 0 . . . , 0) on S is smaller than a rela-

tion ~y = (y1, . . . , yj , 0 . . . , 0) on S if 0 < xj < yj . If ~x is a j-th minimal re-
lation, then xj | yj , since xj is the order of gj〈g1, . . . , gj−1〉 in the factor group
〈g1, . . . , gj〉/〈g1, . . . , gj−1〉. So when minimizing ~bj we can restrict ourselves to
those relations ~x that are smaller than ~bj and for which xj | bjj . In fact, we will re-
strict ourselves to those relations that are smaller than ~bj and for which bjj/xj = p

for some prime divisor p of bjj . We then say that ~x is p-smaller than ~bj . If for some
p | bjj there is no p-smaller relation of ~bj , we say that p is an impossible divisor of
~bj.

Our strategy is that we iteratively replace ~bj by p-smaller relations. Such an
iteration is ultimately finite, and it stops exactly when ~bj is minimal.

We first consider the case j = 1. Then ~b1 = (b11, 0, . . . , 0), i.e. g1
b11 = 1. For

each prime divisor p of b11 we check whether g1
b11/p = 1. If this is the case for

some prime divisor p, then we replace b11 by b11/p and repeat the procedure. If
g1

b11/p 6= 1 for all prime divisors p of b11, then ~b1 is minimal.
Let us now minimize ~bj, under the condition that ~b1, . . . ,~bj−1 are already min-

imal. First, for i = 1, . . . , j − 1 we reduce bij modulo bii by elementary column
operations. Then we choose a prime p with p | bjj and we put xj = bjj/p. We show
how to determine x1, . . . , xj−1. This is done recursively, starting with xj−1. From
the conditions S~x = 1 and S

~bj = 1 we get

S
~bj−p~x = 1.(5.1)

The j-th component of~bj−p~x is zero, as well as the (j + 1)-th, . . . , l-th components.
We conclude that the (j − 1)-th component satisfies

bj−1,j − pxj−1 ≡ 0 mod bj−1,j−1,(5.2)

since ~bj−1 is a minimal relation. We have either no or gcd(p, bj−1,j−1) different
solutions of (5.2). Let xj−1 be such a solution. Let

mj−1 =
bj−1,j − pxj−1

bj−1,j−1
.

From the equations Smj−1~bj−1 = 1 and (5.1) we get

S
~bj−p~x−mj−1~bj−1 = 1.



1648 EDLYN TESKE

In the vector ~bj − p~x − mj−1
~bj−1, all components from the (j − 1)-th component

on are zero. Therefore, xj−2 is one of the gcd(p, bj−2,j−2) different solutions of

bj−2,j − pxj−2 −mj−1bj−2,j−1 ≡ 0 mod bj−2,j−2.

By induction we get for k = j − 1, . . . , 1 that xk must satisfy the equation

bkj − pxk −
j−1∑

i=k+1

mibki ≡ 0 mod bkk,(5.3)

where

mi =
bij − pxi −

∑j−1
n=i+1 mnbkn

bii
.(5.4)

Such a solution exists if and only if

bkj −
j−1∑

i=k+1

mibki ≡ 0 mod gcd(p, bkk).(5.5)

In this case, all solutions of (5.3) are given by the formula

xk = xk,rk
≡ bkj −

∑j−1
i=k+1 mibki

gcd(p, bkk)
· ck(p) +

bkk

gcd(p, bkk)
· rk mod bkk,(5.6)

where ck(p) ∈ Z is such that

gcd(p, bkk) = p · ck(p) + bkkak(5.7)

for some integer ak, and

rk = 0, . . . , gcd(p, bkk)− 1.

So to compute ~x, for k = j−1, . . . , 1 we recursively have to solve equation (5.3). For
this, we use the following strategy. Having computed a j − k-tuple xj−1, . . . , xk

and the corresponding numbers mj−1, . . . , mk, we check whether (5.5) holds for
k − 1. If this is the case, we use (5.6) and (5.4) to compute a solution xk−1 and
the corresponding mk−1 and check whether (5.5) holds for k − 2. Otherwise, we
choose another solution xk according to (5.6), compute the corresponding mk, and
check again whether (5.5) holds for k − 1 using the new solution tuple. If there
is no other solution xk, or if all those solutions have already unsuccessfully been
tried for further computation, we have to replace xk+1 by another solution, and so
forth. In the language of graph theory, we deal with a rooted tree of height ≤ j− 1
and with root associated with xj = bjj/p. For k = j − 1, . . . , 2, the solutions xk,rk

of (5.3), given by (5.6), are associated with the children of xk+1. So each node
associated with a component xk+1 is either a leaf or has degree gcd(p, bkk). Hence,
the computation described above means to find a path from the root to a leaf of
depth j − 1, and the traversing method of the tree is depth-first search. Whenever
we have found a leaf of depth j − 1, the corresponding path from the root to this
leaf, (xj , . . . , x1), yields exactly such a vector (x1, . . . , xj , 0, . . . , 0) as we have been
looking for. If we do not find any leaf of depth j − 1, we conclude that there is no
p-smaller relation of ~bj .

Suppose we have succeeded in computing a complete vector ~x. Then we have to
check whether ~x is indeed a relation, since the modular equations represent only
necessary but not sufficient conditions on ~x to be a relation. If S~x = 1, then we
replace ~bj by ~x and start the whole thing again with this new relation. Otherwise,



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1649

Algorithm 5.1. Minimize

This algorithm computes a minimal relation on a set of generators.

Input: A set of generators S = (g1, . . . , gl), a relation ~bj = (b1j , . . . , bjj , 0, . . . , 0)T

on S, an upper triangular matrix B = (~b1, . . . ,~bj−1) of minimal relations on
S.

Output: A j-th minimal relation ~bj on S.

P = {q; q prime, q | bjj}
ID = ∅ /∗ ID = set of
for (k = 1, . . . , j − 1) do impossible divisors ∗/

reduce bkj mod bkk by element. column
oper.

od
while (bjj is not minimal) do

if (there is p in P \ ID ) then
xj = bjj/p

else

return (~bj) /∗ bjj is minimal ∗/
fi
for (k = 1, . . . , j − 1) do

compute a solution ck(p) of (5.7)
od
repeat

use depth-first search to find the next
j − 1-tuple xj−1, . . . , x1 satisfying the
equations (5.3)
if (such a j − 1-tuple xj−1, . . . , x1 has

been found) then
~x = (x1, . . . , xj−1, xj , 0, . . . , 0)

if (S~x == 1) then /∗ ~x is a p-smaller
~bj = ~xT relation ∗/
if (bjj == 1) then /∗ bjj is minimal ∗/

return (~bj)
fi

fi
fi

until (no next j − 1-tuple has been found, or
a p-smaller relation has been found)

if (no p-smaller relation has been found)
then
ID = ID ∪ {p}

fi
od

we try to compute a new complete vector, i.e., we continue the depth-first search
of our tree to find another path (xj , . . . , x1). If we do not find such a path, we
conclude that there is no p-smaller relation of ~bj .

Algorithm 5.1 is the algorithm to minimize a relation.

Remark 5.1. In all our experiments the greatest common divisors we encountered,
i.e., the numbers of different solutions at each stage, were very small. In most
cases, they were just 1, and in almost all cases, they were 1 or 2. Also, the number



1650 EDLYN TESKE

of checks whether S~x = 1 was always small in comparison with the number of
iterations needed to find a match hk = hi. See the tables in Section 7.

Remark 5.2. The disadvantage of the method presented above is that its worst-case
complexity is worse than O(|G|) due to the non-zero probability that one of the
greatest common divisors that arises equals the group order. However, an average-
case complexity analysis seems to be infeasible.

An alternative approach to get minimal relations is the following. First compute
all l relations without minimizing any of them. Let B denote the resulting triangular
matrix. Compute the Smith normal form W := SNF(B) of B and transformation
matrices U and V such that W = UBV . Compute a new generating sequence
S̃ of G such that the columns of W are relations on S̃. For this, let X = (xij)
denote the inverse matrix U−1 of U . Then the new generating sequence is given by
S̃ = (g̃1, . . . , g̃l), where

g̃j =
l∏

i=1

g
xij

i , j = 1, . . . , l.

Note that with W = (wij), we have g̃j = 1 for 1 ≤ j < min{i : wii > 1}.
Now factor the diagonal entries of the Smith normal form and compute p-smaller

relations such that the diagonal entries of the resulting matrix W̃ are just the
orders of the new generators. Only then apply the procedure Minimize to each
nontrivial column of W̃ , using the new generating sequence S̃. As a result you get
the minimized relations on S̃. The group structure is obtained by a second SNF
computation.

This method has the advantage that its complexity analysis is simpler, since
the procedure Minimize is called at a later stage in the group structure algorithm.
However, in practice the performance is much worse. This is due to the fact that the
matrix entries become extremely large during the first SNF computation. Hence,
the SNF computation usually takes more time than the whole minimizing procedure
in the original minimizing algorithm. Even worse, minimizing the new relations on
the new generating sequence is much more time-consuming than before. Therefore,
we gave preference to the use of Algorithm 5.1, in spite of its bad theoretical
properties.

6. Complexity

In this section we consider the computational complexity of Algorithm 2.1. We
are not interested in the overall bit complexity, because it depends on the partic-
ular group with which we are working. Instead, we count the number of group
operations such as multiplications and equality checks, the number of evaluations
of the equidistributing function f , and the number of random numbers needed.
Moreover, we determine the storage requirements in terms of group elements and
l-dimensional vectors of integers. We ignore the time and space for doing index
calculations.

We estimate the work necessary to compute l linearly independent relations on
the generating sequence (Theorem 6.1). We do not consider the complexity of the
procedure Minimize, or the computational complexity of the SNF-computation.

Recall that if (hk) is a sequence given by

h0 ∈ G, hi+1 = F (hi), i = 0, 1, 2, . . . ,



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1651

with some mapping F : G → G, then λ denotes the period of this sequence and
µ denotes the length of the non-periodic segment. Our complexity bounds also
depend on the two parameters of Algorithm 4.1, which are the number v that
appears in the condition k ≥ vσ1 of Algorithm 4.1, and t, the number of elements
stored by Algorithm 4.1. In the following, we always use λ, µ, v and t in this sense.
Note that to simplify our analysis, we restrict ourselves to integer values of v, i.e.,
v ∈ N≥2.

We base our complexity analysis on the following two conjectures.

Conjecture 6.1. Let the sequence (hk) be given by equations (2.2) and (2.3) in
Section 2, with the initial term h0 and the multipliers M1, . . . , M20 randomly cho-
sen. Then the expected values of λ and µ are close to√

π|G∗|
8

,

where G∗ is the group generated by those generators taking part in the computation
of (hk) (via the multipliers).

Conjecture 6.2. For almost all sequences (hk) defined by equations (2.2) and
(2.3) (with the initial term h0 and the multipliers M1, . . . , M20 randomly chosen)
we have

2 ≤ 3
√
|G| and λ + µ ≤ 4

√
|G|.

In other words, given the set of all possible sequences (hk), the number of sequences
for which 2 > 3

√|G| or 2 + µ > 4
√|G| is negligible.

Conjectures 6.1 and 6.2 hold if the sequences (hk) behave like the random se-
quences analyzed by Knuth [Knu75]. They completely agree with our experiments.

The main result of this section is the following theorem:

Theorem 6.1. Let G be a finite abelian group with |G| ≥ 4. Let S be a generating
sequence of G. Let l = |S|. Let

V = max
(

3
(

1 +
1
t

+
1

v − 1

)
, 4

(
1 +

v − 1
t

))
.

Conjectures 6.1 and 6.2 imply that Algorithm 2.1 computes a regular l × l upper
triangular matrix whose columns are relations on S, performing an expected number
of at most (

l

(
2 +

v − 1
t

) √
π

8
+ V

) √
|G|+ V |G|1/4(dlog log10 |G| e − 1)

+20l (2 log |G|+ 1) (l + 1 + 2dlog log10 |G| e)
group multiplications,

t ·
[(

l

(
2 +

v − 1
t

) √
π

8
+ V

) √
|G|+ V |G|1/4(dlog log10 |G| e − 1)

]
equality checks, and(

l

(
2 +

v − 1
t

) √
π

8
+ V

) √
|G|+ V |G|1/4(dlog log10 |G| e − 1).

evaluations of the equidistributing function f . It uses at most

10l2 + 11l + (20l + 1)dlog log10 |G| e



1652 EDLYN TESKE

random integers taken from the set {1, . . . , |G|2}. Regardless of the validity of
Conjecture 6.1, Algorithm 2.1 has to store

l + t + 22

group elements and the same number of vectors in {1, . . . , V |G|5/2}l.

Corollary 6.1. Assume that the number of checks whether S~z = 1 in the procedure
Minimize does not depend on the group order. Then Theorem 1.1 holds.

Proof. Put v = 3 and t = 8 in Theorem 6.1.

Remark 6.1. Note that the storage requirements of the procedure Minimize are
very small. There is just one group element and one l-dimensional vector to be
stored, and a fixed number of integers. Only the size of the list of impossible
divisors depends on the group order – it is O(log |G|).

To estimate the work required to compute the relations we combine
• the computation of one term in the sequence (hk) and
• the check whether this term matches with one of the previously computed

terms hσ1 , . . . , hσt

in one operation. This operation is called one iteration. So we have to estimate both
the work for one iteration and the number of iterations until the algorithm finds a
match. Moreover, we must take into account the work for the precomputation, i.e.,
the work for computing the lists of multipliers and exponent vectors.

Theorem 6.2. To perform one iteration, Algorithm 2.1 executes one group multi-
plication, one evaluation of the equidistributing function, one vector addition in Zl

and t equality checks.

Proof. This follows immediately from the description of Algorithm 2.1 in Section
2.

Our next aim (Theorem 6.3) is to give an upper bound on the number of iter-
ations until Algorithm 2.1 finds a match using Algorithm 4.1, under the condition
that λ and µ are already given. For this, we need the following statement on the
distribution of the numbers σ1, . . . , σt that do the bookkeeping of the indices of the
stored terms in Algorithm 4.1.

Lemma 6.1. Let v, t ≥ 2 and such that (v − 1) | t. Then in each situation of
Algorithm 4.1 with σ1 ≥ t/(v − 1) we have that

1 +
v − 1

t + (t− 1)(v − 1)
≤ σi+1

σi
≤ 1 +

v − 1
t

, i = 1, . . . , t− 1.

Proof. After the first call of Algorithm 4.1 by Algorithm 2.1, we have σi = 0 for
i = 1, . . . , t. Hence, the next t numbers to be stored are 1, . . . , t. Then, as long as
σ1 ≤ t/(v − 1), we have

σi = u + i, i = 1, . . . , t,

for some appropriate integer u ≥ 0. This can be proved by induction over u. If
σ1 = t/(v − 1), hence σi = σ1 + i − 1 for i = 1, . . . , t, then the next t numbers to
be stored are

v · σ1, . . . , v · σt,



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1653

i.e.,

v · t

v − 1
, v

(
t

v − 1
+ 1

)
, . . . , v

(
t

v − 1
+ t− 1

)
.

It follows by induction that the next t-tuples of stored numbers are given by

vs · t

v − 1
, vs

(
t

v − 1
+ 1

)
, . . . , vs

(
t

v − 1
+ t− 1

)
, s = 2, 3, . . . .

So it remains to consider the quotients

σi+1

σi
=

vs
(

t
v−1 + i

)
vs

(
t

v−1 + i− 1
) = 1 +

v − 1
t + (i− 1)(v − 1)

, i = 1, . . . , t− 1; s ∈ N0,

and
σi+1

σi
=

vs+1 · t
v−1

vs
(

t
v−1 + t− 1

) = 1 +
v − 1

t + (t− 1)(v − 1)
, s ∈ N0.

Taking the minimum and the maximum of this collection of quotients yields the
desired result.

Theorem 6.3. Let v and t be as in Lemma 6.1. Given a periodic sequence (hk)
with λ and µ as above, the number of iterations until Algorithm 4.1 finds a match
hk = hi with i < k is bounded above by(

1 +
v − 1

t

)
max

(
λ

v − 1
, µ

)
+ λ.

Proof. We first consider the case that λ ≤ (v− 1)µ. There exists a number σi such
that σi−1 < µ ≤ σi. We denote this number by σ. Since

σ

µ
<

σi

σi−1
≤ 1 +

v − 1
t

,

we have

σ ≤
(

1 +
v − 1

t

)
µ.

At some point in the algorithm, σ1 = σ. Therefore, since σ+λ ≤ σ+(v−1)µ ≤ v ·σ,
Algorithm 4.1 detects the match hσ+λ = hσ, after at most(

1 +
v − 1

t

)
µ + λ

iterations.
If λ > (v − 1)µ, let σ denote the smallest number σi such that λ

v−1 < σi. Then

σ ≤
(

1 +
v − 1

t

)
λ

v − 1
.

Since σ > µ, we have a match hσ+λ = hσ. Since σ + λ < v · σ, Algorithm 4.1 finds
this match, after at most (

1 +
v − 1

t

)
λ

v − 1
+ λ

iterations.
Taking the maximum of these two bounds yields the desired result.



1654 EDLYN TESKE

Corollary 6.2. Let v and t be as in Lemma 6.1. Conjecture 6.2 implies that the
number of sequences (hk) for which Algorithm 2.1 does not compute a relation
within √

|G|max
(

3
(

1 +
1
t

+
1

v − 1

)
, 4

(
1 +

v − 1
t

))
iterations, is negligible.

Remark 6.2. For our implementation, where we used v = 3 and t = 8, Theorem
6.3 means that Algorithm 4.1 finds a relation after at most 1.25 max(λ/2, µ) + λ
iterations.

Remark 6.3. For our implementation we chose the parameters v and t for the pro-
cedure Compare-and-Adjust according to our experiments with a collection of
different pairs (v, t). In Theorem 6.3 we gave a worst-case formula for the number
of iterations until this procedure finds a match when using certain values for these
parameters. As already mentioned in Section 4, one should do a probability anal-
ysis to find the theoretically optimal parameters v and t. This would exceed the
scope of this paper.

Remark 6.4. For our implementation, Corollary 6.2 means that the number of se-
quences (hk) for which Algorithm 2.1 does not compute a relation within 5

√|G|
iterations is negligible.

This observation is crucial for the dynamic handling of the exponent bound.
It justifies our strategy, and it enables us to completely analyze the complexity
of the precomputation and the computation of the l relations. It coincides with
our experiments, where it never took more than 5

√|G| iterations to compute one
relation.

Remark 6.5. From Corollary 6.2 we immediately get the number that in general
must replace the number 5 in the conditions “k < 5

√
E ” and “k ≥ 5

√
E ” of

Algorithm 2.1. It is given by

V := max
(

3
(

1 +
1
t

+
1

v − 1

)
, 4

(
1 +

v − 1
t

))
.

Theorem 6.4. Let Conjecture 6.2 hold. Let |G| ≥ 4. To perform the precomputa-
tion, Algorithm 2.1 executes at most

20l (2 log |G|+ 1) (l + 1 + 2dlog log10 |G| e)
multiplications in G. It uses at most

10l(l + 1 + 2dlog log10 |G| e)
random integers taken from the set {1, . . . , |G|2}.
Proof. Let us first estimate the work assuming that the exponent bound does not
change in the course of the computation of the relations. Then, for each of the
l relations, Algorithm 2.1 computes 20 multipliers. For the j-th relation, these
multipliers are products of random powers of at most j distinct generators. Each
powering requires at most 2blog Ec + 1 multiplications. Hence, to compute one
multiplier for the j-th relation, Algorithm 2.1 executes at most j(2blogEc + 2)
multiplications. Therefore, to compute 20 multipliers each for j = 1, . . . , l requires
at most

20l(l + 1)(blog Ec+ 1)



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1655

multiplications in G. The number of required random integers is bounded by
l∑

j=1

20 · j = 10l(l + 1).

Now let us consider the reality of Algorithm 2.1. Initially, we have E = 10. The
exponent bound is successively squared during the computation of the relations until
l relations are found. Conjecture 6.2 implies that for the final exponent bound E
we have

Efin ≤ |G|2,(6.1)

since if E has been squared at least once, for the penultimate exponent bound
F =

√
Efin the condition k ≥ V

√
F must have held, where k denotes the final

number of iterations for the current relation, and V is as in Remark 6.5. Since
k ≤ V

√|G| (Corollary 6.2) we get F ≤ |G|, which implies (6.1). From (6.1) we
conclude that at most

dlog log10 |G| e
squarings may happen during the whole computation. This is also the upper bound
for the number of lists of multipliers that are computed in vain. Hence, due to the
dynamic handling of the exponent bound, the precomputation requires at most

20ldlog log10 |G| e · (2blog Efinc+ 2)

additional multiplications and at most

20ldlog log10 |G| e
additional random numbers. Summing up and using the estimate (6.1), we get the
desired result.

We are now able to prove Theorem 6.1.

Proof of Theorem 6.1. From Theorem 6.3 we get that the expected number of it-
erations until one relation is computed is bounded above by(

2 +
v − 1

t

)
·
√

π|G|
8

,

provided that the exponent bound does not change during the computation. So
we have to take into account the iterations which are done in vain because the
computation of a sequence is interrupted due to an insufficiently large exponent
bound. We already saw in the proof of Theorem 6.4 that such an interruption
happens at most dlog log10 |G| e times. We call the interrupted sequences the vain
sequences. According to Corollary 6.2 we assume that each relation is computed
within V

√|G| iterations. Thus, in the worst case the exponent bound of the last
vain sequence equals |G| − 1. This implies that the last vain sequence is computed
at most until the V

√|G| − 1-th term, with V as defined in Remark 6.5. Then
the penultimate and all preceding vain sequences are computed at most until the
V (|G| − 1)1/4-th term. Hence, the expected number of iterations until l relations
are computed is bounded above by(

l

(
2 +

v − 1
t

) √
π

8
+ V

) √
|G|+ V |G|1/4(dlog log10 |G| e − 1).



1656 EDLYN TESKE

Together with Theorems 6.2 and 6.4 we get the asserted expected bounds on the
number of group multiplications, equality checks and evaluations of f . As for the
number of random integers, note that outside the precomputation random numbers
are only used to initialize the computation of the sequences (hk). This happens at
most l+dlog log10 |G| e times. Thus, together with Theorem 6.4 we get the asserted
bound.

It remains to consider the storage requirements. As for the group elements to be
stored by Algorithm 2.1, there are the l generators, the 20 multipliers, the current
term of the current sequence, and the return element of the procedure Compare-

and-Adjust. This procedure itself has to store t group elements. Overall, there
are l + 20 + 2 + t group elements to be stored. Together with each group element
(except the generators), Algorithm 2.1 and the procedure Compare-and-Adjust

store the corresponding exponent vector. In addition, the l computed relations
must be stored. Hence, there are l + 20 + 2 + t l-dimensional vectors to be stored.
Their entries are bounded by the product of the final exponent bound and the
maximal number of iterations with constant exponent bound. So they are bounded
by V |G|5/2. This completes the proof of Theorem 6.1.

From the proof of Theorem 6.1 and Conjecture 6.2 we immediately get upper
bounds on the number of group multiplications etc., not just expectations. We only
have to replace the term (2 + (v − 1)/t)

√
π/8 in Theorem 6.1 by V :

Corollary 6.3. Conjecture 6.2 implies that Algorithm 2.1 computes a regular l× l
upper triangular matrix of relations performing in almost all cases at most

(l + 1)V
√
|G|+ V |G|1/4(dlog log10 |G| e − 1)

+20l (2 log |G|+ 1) (l + 1 + 2dlog log10 |G| e)
multiplications in G.

Note that even if Conjecture 6.2 does not hold, Algorithm 2.1 always terminates,
since every sequence (hk) we use becomes periodic within |G| + 1 iterations, and
we have λ, µ, λ + µ ≤ |G|. Hence, as soon as

√
E ≥ |G|, our algorithm detects a

match hk = hi with i < k ≤ 2.25|G|.
7. Experimental results

Using the LiDIA system [LiD96], we implemented our algorithm for ideal class
groups of imaginary quadratic orders. Recall that this algorithm computes the
structure of the group generated by a set S that is assumed to be given. So, given a
discriminant ∆, we took the ten prime ideals of smallest norm in the corresponding
imaginary quadratic order and let S be set of the ten corresponding (not necessarily
pairwise distinct) equivalence classes. Then we used our algorithm to compute the
subgroup generated by these equivalence classes. Note that due to the heuristics of
Cohen and Lenstra [CL83] it is very likely that S generates the whole ideal class
group Cl∆ of O∆, and not just a subgroup of Cl∆. (And this indeed is the case
in all our examples.) Except where otherwise stated, we used as equidistributing
function the function f : Cl∆ → {1, . . . , 20}, f((a, b)) = b(b/p mod 1) · 20c+ 1, as
described in Section 3. As parameters in the procedure Compare-and-Adjust we
used v = 3 and t = 8, where, as explained in Section 4, t indicates the number of
elements being stored, and v measures the range covered by the indices σ1, . . . , σt.
During the computation, we counted the number of iterations until ten relations



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1657

Table 1. Group structure computation – one example

Discriminant: ∆ = −4(1030 + 1)
Generators: {(2, 2) (3, 2) (5, 4) (11, 6) (17, 10)

(19, 14) (41, 22) (43, 2) (53, 8) (59, 6)}

Exponents of generators in the minimal relations Exp.
j

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
Iterations

bound

1 2 0 0 0 0 0 0 0 0 0 1 10
2 0 4591263001512 0 0 0 0 0 0 0 0 7546962 1016

3 0 4203702660072 2 0 0 0 0 0 0 0 2594586 1016

4 0 1297599936828 1 4 0 0 0 0 0 0 11931582 1016

5 0 2052377770760 1 0 2 0 0 0 0 0 21088172 1016

6 1 71469877288 0 3 0 1 0 0 0 0 11605265 1016

7 0 67059950988 1 0 0 0 2 0 0 0 16714761 1016

8 0 1312014944900 1 2 0 0 0 2 0 0 40309091 1016

9 0 2642574281313 0 1 0 0 1 0 1 0 50777998 1016

10 0 1343052169238 1 0 0 0 0 0 0 2 80639226 1016

sum 243207644

Group structure (given by the invariants): G = [2, 2, 2, 2, 2, 8, 4591263001512]
Group order (= class number): |G| = 1175363328387072 (15 digits)

sum(Iterations)√
|G| ≈ 7.1

Total run time: 15days 9hrs 30min 6.81sec (on a SPARCstation 4)
of which: time to minimize: 58.75 sec

were found. We also counted the number of checks whether S~z = 1 in the procedure
Minimize. We measured the total run time of the algorithm and the time it took
to minimize all relations. We worked with two series of discriminants, given by
∆ = −(10n + 3) and ∆ = −4(10n + 1), n ∈ {2, 3, . . . , 30}. For discriminants with
up to 17 digits, we executed Algorithm 2.1 100 times; for discriminants with more
than 17 digits, we did it 10 times.

First we show in Table 1 the result of the group structure computation of the ideal
class group with discriminant ∆ = −4(1030 +1). This computation would not have
been possible using Shanks’ Baby-Step Giant-Step method, because of the storage
requirements of Shanks’ algorithm and the memory constraints of the machines
with which we work. The generators are represented by uniquely determined pairs
of integers (a, b). The rows under the title “Exponents of generators in the minimal
relations” represent the 10 relations after the procedure Minimize. In the column
“Iterations” the j-th entry is the number of iterations necessary to compute the
j-th relation. In the column “Exp. bound” the j-th entry is the exponent bound
after having finished the computation of the j-th relation. The last row contains
the sum of all iterations. The run times were taken on a SPARCstation 4.

Tables 2 and 3 show the minimal, average and maximal number of iterations to
compute 10 relations in their first three columns. The next three columns show the
number of checks whether S~z = 1 in the procedure Minimize. The next column
shows the final exponent bound after the computation of the tenth relation. The
penultimate column of Table 2 and the last column of Table 3 show the quotient
of the average number of iterations and the square root of the group order. For
the series ∆ = −(10n + 3), we repeated the computation using the equidistributing



1658 EDLYN TESKE

Table 2. Iterations, checks to minimize, for ∆ = −(10n + 3).

Iterations Checks (minmz) exp.
n G

min ave max min ave max bnd.
aveIt√
|G|

aveIt√
|G|

2 [5] 20 33 42 11 22 30 10 14.8 15.2
3 [4] 19 29 40 11 21 30 10 14.5 14.5
4 [12] 28 44 64 13 29 53 102 12.7 13.0
5 [39] 52 86 125 21 35 57 102 13.8 13.4
6 [105] 76 137 191 33 49 65 104 13.4 13.3
7 [706] 265 391 539 23 46 347 104 14.7 14.5
8 [1702] 376 595 922 23 48 97 104 14.4 14.3
9 [2,1840] 426 833 1256 27 54 83 104 13.7 13.3

10 [10538] 701 1329 1995 32 58 422 108 12.9 12.9
11 [31057] 1552 2527 3597 32 57 1026 108 14.3 14.5
12 [2,62284] 2859 4567 6902 39 79 640 108 12.9 12.7
13 [2,2,124264] 5209 9611 14093 41 64 86 108 13.6 13.8
14 [2,2,356368] 7515 13257 18492 40 59 88 108 11.1 10.9
15 [3929262] 16985 27867 39945 31 51 72 108 14.1 14.3
16 [12284352] 28597 45624 68632 32 52 76 108 13.0 13.5
17 [38545929] 51413 88168 122559 34 47 71 108 14.2 14.6

18 [102764373] 91491 137517 256903 38 50 65 1016 13.6 14.1
19 [2,2,2,78425040] 202538 287486 348269 78 98 130 1016 11.5 10.9
20 [2,721166712] 328910 522644 724270 50 76 144 1016 13.8 13.6
21 [3510898632] 602216 826743 1071913 53 65 77 1016 13.9 14.7
22 [2,2,2,1159221932] 761318 1073395 1429794 72 105 146 1016 11.1 11.0
23 [2,16817347642] 1560717 2594912 3452080 54 66 81 1016 14.1 15.5
24 [2,2,37434472258] 3932389 4355120 4640687 67 79 87 1016 11.2 13.0
25 [2,245926103566] 6424991 8562256 11061946 52 61 75 1016 12.2
26 [2,656175474498] 12682353 14301324 17852763 54 62 75 1016 12.5
27 [3881642290710] 19499900 25751685 31130041 50 63 79 1016 13.1
28 [2,2,2,1607591023742] 31471362 41832563 49104574 81 101 117 1016 11.7
29 [2,17634301773068] 60308823 71532179 84711420 61 81 119 1016 12.0

function f((a, b)) = b((A · b) mod 1) · 20c + 1, with A ≈ (
√

5 − 1)/2 as described
in Section 3. Since the experimental results differ only slightly, we just list the
corresponding quotients of the average numbers of iterations and the square roots
of the group orders. They are shown in the last column of Table 2.

We see that our experimental results completely agree with the theoretical results
summarized in Theorem 1.1. Here, it is most honest to look at the class groups
corresponding to the discriminants −(10 + 3)7, −(10 + 3)11, and −(10 + 3)17, since
for these groups, the first generator already generates the whole class group, so that
the computation of each relation takes place in the whole class group (and not just
in a smaller subgroup).

Tables 4 and 5 show the minimal, average and maximal run times for the whole
group structure computation in their first three columns. The next three columns
show the minimal, average and maximal run times for the whole minimizing pro-
cedure. All run times were taken on a SPARCstation ULTRA170.



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1659

Table 3. Iterations, checks to minimize, for ∆ = −4(10n + 1).

Iterations Checks (minmz) exp.
n G

min ave max min ave max bound
aveIt√
|G|

2 [14] 33 47 63 16 30 46 102 12.6
3 [2,2,10] 43 73 99 28 56 83 102 11.5
4 [4,40] 93 154 248 33 56 81 104 12.2
5 [2,230] 148 255 392 25 53 79 104 11.9
6 [2,516] 250 426 626 31 55 94 104 13.3
7 [2,1446] 419 706 1074 34 58 282 104 13.2
8 [4,4104] 733 1359 2079 39 63 113 108 10.6
9 [2,2,2,2,2560] 1406 2265 3164 68 125 182 108 11.2

10 [2,2,48396] 2699 4988 7066 44 84 194 108 11.3
11 [2,2,2,56772] 4684 7509 11955 55 101 170 108 11.1
12 [2,4,117360] 5408 11137 18185 46 71 110 108 11.5
13 [2,2,742228] 11656 21389 30510 31 67 110 108 12.4
14 [2,2,4,1159048] 26099 42194 64341 52 83 119 108 9.8
15 [2,2,2,2,2,4,257448] 22533 43956 63994 163 310 634 108 7.7
16 [2,2,2,2,11809616] 90283 118944 167257 96 135 180 1016 8.7
17 [2,2,2,46854696] 185550 237291 311824 73 105 148 1016 12.2

18 [2,2,264135076] 248943 405015 561785 59 69 90 1016 12.5
19 [2,1649441906] 559116 800177 1170851 48 66 83 1016 13.9
20 [2,2,2,1856197104] 674526 1037680 1460502 71 89 101 1016 8.5
21 [2,2,2,2,2,2,678293202] 1546123 1810912 2013223 221 242 265 1016 8.7
22 [2,2,2,19870122100] 3379721 3650074 4007603 93 113 132 1016 9.1
23 [2,2,2,2,23510740696] 4891053 6210273 7408870 115 134 152 1016 10.1
24 [2,4,144373395240] 12318015 12736451 13802496 63 79 93 1016 11.9
25 [2,2,2,2,186902691564] 16884070 19749328 25105267 108 127 153 1016 11.4
26 [2,4,2062939290744] 35914919 45882067 53558193 73 81 87 1016 11.3
27 [2,2,2,2,2,2,596438010456] 32147266 46568150 53200468 185 242 283 1016 7.5

We see that the method to minimize the relations in order to get a complete
relation lattice is efficient, especially for large discriminants.

In order to test the efficiency of our dynamic handling of the exponent bound, we
did the same experiments as above but using Algorithm 2.1 with a fixed exponent
bound, which we initially already chose as an upper bound of the group order.
That is, we chose E ≈ (

√|∆| ln |∆|)/π, in accordance with the fact [Coh93, p.
290] that |Cl∆| < 1/π ·√|∆| · ln |∆| for ∆ < −4. The corresponding results, with
∆ = −(10n + 3), are shown in Tables 6 and 7.

We see that it does not make much difference whether we know an upper bound
on the group order or not, at least for this sample of discriminants, and we expect
that this holds in general.



1660 EDLYN TESKE

Table 4. Sample run times for ∆ = −(10n + 3).

time (total) time (to minimize)
n G

min ave max min ave max

2 [5] 0.32s 0.52s 0.66s 0.04s 0.26s 0.45s
3 [4] 0.39s 0.51s 0.65s 0.12s 0.25s 0.39s
4 [12] 0.77s 1.11s 1.73s 0.11s 0.34s 0.51s
5 [39] 0.71s 1.42s 1.59s 0.26s 0.44s 0.59s
6 [105] 2.99s 3.74s 3.93s 0.46s 0.67s 0.82s
7 [706] 2.58s 2.95s 4.0s 0.35s 0.69s 1.72s
8 [1702] 4.21s 4.58s 4.99s 0.53s 0.82s 1.27s
9 [2,1840] 3.80s 4.25s 4.70s 0.49s 0.97s 1.34s

10 [10538] 5.97s 9.64s 16.03s 0.79s 2.15s 8.68s
11 [31057] 10.32s 11.46s 29.55s 1.56s 2.41s 20.51s
12 [2,62284] 18.05s 20.07s 35.55s 1.89s 3.18s 19.06s
13 [2,2,124264] 19.20s 22.52s 26.34s 2.07s 2.94s 3.88s
14 [2,2,356368] 26.86s 31.43s 36.08s 2.34s 3.27s 4.42s
15 [3929262] 32.92s 43.31s 54.53s 2.44s 3.63s 4.84s
16 [12284352] 41.33s 57.25s 1m19.44s 2.43s 3.58s 4.94s
17 [38545929] 1m7.32s 1m45.71s 2m22.06s 2.79s 4.16s 5.55s

18 [2,2,264135076] 5m43.20s 8m6.20s 10m23.01s 6.66s 8.89s 11.47s
19 [2,2,2,78425040] 4m22.28s 5m57.59s 7m5.45s 7.38s 10.17s 12.56s
20 [2,721166712] 7m7.72s 10m43.21s 14m26.02s 7.75s 10.15s 17.43s
21 [3510898632] 12m38.45s 17m2.41s 21m57.59s 7.91s 9.41s 11.0s
22 [2,2,2,1159221932] 16m40.45s 23m7.50s 30m25.08s 10.65s 15.24s 20.11s
23 [2,16817347642] 34m20.94s 56m30.12s 1h14m45.13s 9.05s 10.94s 12.74s
24 [2,2,37434472258] 1h30m31.16s 1h40m50.31s 1h47m33.80s 12.31s 13.96s 15.63s
25 [2,245926103566] 2h27m49.11s 3h17m15.25s 4h13m55.91s 9.31s 11.27s 13.26s
26 [2,656175474498] 5h2m28.51s 5h43m34.55s 7h8m54.02s 11.68s 12.65s 14.09s
27 [3881642290710] 9h34m11.65s 11h28m26.99s 12h44m30.40s 13.50s 14.80s 16.21s
28 [2,2,2,1607591023742] 13h24m22.42s 18h32m43.84s 22h3m3.59s 17.69s 21.83s 25.37s
29 [2,17634301773068] 1d2h47m35.75s 1d8h18m26.45s 1d14h59m50.84s 12.47s 18.94s 28.31s



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1661

Table 5. Sample run times for ∆ = −4(10n + 1).

time (total) time (to minimize)
n G

min ave max min ave max

2 [14] 0.42s 0.71s 1.08s 0.09s 0.30s 0.45s
3 [2,2,10] 1.07s 1.42s 1.55s 0.28s 0.45s 0.57s
4 [4,40] 1.75s 3.55s 3.80s 0.43s 0.64s 0.81s
5 [2,230] 2.40s 3.46s 3.81s 0.38s 0.65s 0.93s
6 [2,516] 3.01s 3.41s 4.04s 0.46s 0.82s 1.31s
7 [2,1446] 3.31s 3.77s 5.04s 0.58s 0.89s 2.14s
8 [4,4104] 13.33s 14.39s 15.80s 1.47s 2.10s 3.11s
9 [2,2,2,2,2560] 9.28s 10.87s 12.48s 1.39s 2.51s 3.76s

10 [2,2,48396] 15.36s 17.29s 21.13s 2.05s 3.35s 6.56s
11 [2,2,2,56772] 20.61s 23.56s 28.56s 2.28s 4.05s 6.13s
12 [2,4,117360] 23.38s 28.56s 34.69s 2.43s 3.60s 5.11s
13 [2,2,742228] 23.69s 33.43s 40.57s 2.17s 3.68s 5.85s
14 [2,2,4,1159048] 49.75s 1m6.16s 1m29.69s 2.78s 4.63s 6.76s
15 [2,2,2,2,2,4,257448] 48.99s 1m9.26s 1m40.08s 6.33s 13.68s 30.86s
16 [2,2,2,2,11809616] 2m7.68s 2m51.75s 3m33.90s 9.24s 12.71s 17.38s
17 [2,2,2,46854696] 3m59.50s 4m54.08s 6m11.14s 7.36s 10.42s 13.95s

18 [102764373] lm58.94s 2m49.14s 5m3.14s 3.34s 4.75s 6.21s
19 [2,1649441906] 11m39.95s 16m21.83s 23m29.17s 6.45s 8.67s 10.37s
20 [2,2,2,1856197104] 14m45.22s 22m5.77s 30m50.56s 10.35s 12.16s 14.0s
21 [2,2,2,2,2,2,678293202] 34m17.85s 39m53.37s 44m8.20s 28.12s 29.26s 30.81s
22 [2,2,2,19870122100] 1h15m30.58s 1h21m20.47s 1h29m11.20s 14.50s 17.56s 20.99s
23 [2,2,2,2,23510740696] 1h54m10.96s 2h23m30.62s 2h51m45.95s 17.12s 18.59s 19.48s
24 [2,4,144373395240] 5h10m28.88s 5h24m25.41s 5h53m8.26s 11.82s 14.0s 15.96s
25 [2,2,2,2,186902691564] 6h49m11.30s 7h54m34.31s 9h57m15.03s 18.77s 21.63s 26.27s
26 [2,4,2062939290744] 15h3m50.03s 19h16m54.82s 22h23m43.79s 15.32s 16.48s 18.06s
27 [2,2,2,2,2,2,596438010456] 14h18m26.15s 20h36m24.53s 23h37m24.21s 30.97s 41.07s 50.04s



1662 EDLYN TESKE

Table 6. Iterations, checks to minimize for ∆ = −(10n + 3);
exponent bound E ≈ (

√|∆| ln |∆|)/π.

Iterations Checks (minmz) exp.
n G

min ave max min ave max bound
aveIt√
|G|

2 [5] 21 33 44 19 30 47 102 14.8
3 [4] 17 30 39 18 30 47 102 15
4 [12] 24 44 62 26 40 61 103 12.7
5 [39] 57 84 111 21 43 62 104 13.5
6 [105] 80 138 191 31 47 68 104 13.5
7 [706] 253 390 502 20 42 118 105 14.7
8 [1702] 296 570 813 29 52 110 105 13.8
9 [2,1840] 502 821 1210 32 59 91 106 13.5

10 [10538] 719 1385 2083 31 58 521 106 13.5
11 [31057] 1702 2538 3801 28 44 68 107 14.4
12 [2,62284] 3208 4498 6232 30 52 87 107 12.7
13 [2,2,124264] 5312 9630 13412 40 68 307 108 13.7
14 [2,2,356368] 8640 13146 18299 38 57 79 108 11.0
15 [3929262] 15409 27173 39547 34 50 74 108 13.7
16 [12284352] 29107 44936 64740 36 56 72 109 12.8
17 [38545929] 54900 90017 137832 30 49 64 109 14.5

18 [102764373] 99294 144596 175773 39 52 67 1010 14.3
19 [2,2,2,78425040] 252322 325712 388455 81 113 167 1010 13.0
20 [2,721166712] 304446 503664 612263 62 78 113 1011 13.3
21 [3510898632] 638289 853722 1190061 44 57 75 1011 14.4

22 [2,2,2,1159221932] 855706 1155522 1396567 80 100 119 1012 12.0
23 [2,16817347642] 1889992 2427885 2968866 51 61 76 1012 13.2
24 [2,2,37434472258] 3839274 5128883 6466268 61 77 97 1013 13.3

Table 7. Sample run times for ∆ = −(10n + 3); exponent bound
E ≈ (

√|∆| ln |∆|)/π.

time (total) time (to minimize)
n G

min ave max min ave max

2 [5] 0.63s 0.79s 0.88s 0.19s 0.35s 0.46s
3 [4] 0.57s 0.74s 0.84s 0.16s 0.35s 0.46s
4 [12] 1.83s 1.97s 2.05s 0.33s 0.46s 0.54s
5 [39] 1.60s 1.83s 1.99s 0.34s 0.52s 0.64s
6 [105] 3.11s 3.26s 3.43s 0.45s 0.62s 0.77s
7 [706] 2.55s 2.95s 3.78s 0.40s 0.68s 0.82s
8 [1702] 5.41s 5.71s 6.31s 0.68s 0.98s 1.50s
9 [2,1840] 4.30s 4.83s 5.69s 0.65s 1.14s 1.55s

10 [10538] 6.32s 7.05s 13.38s 0.96s 1.55s 7.76s
11 [31057] 7.41s 8.11s 10.02s 1.07s 1.54s 2.10s
12 [2,62284] 14.82s 16.02s 17.28s 1.47s 2.28s 2.91s
13 [2,2,124264] 15.78s 19.41s 23.51s 1.62s 2.60s 5.32s
14 [2,2,356368] 25.69s 29.44s 33.62s 2.21s 3.07s 3.79s
15 [3929262] 29.85s 40.15s 51.14s 2.54s 3.30s 4.34s
16 [12284352] 39.28s 55.44s 1m16.23s 2.68s 3.75s 4.92s
17 [38545929] 1m10.12s 1m40.15s 2m37.12s 3.25s 4.31s 5.30s

18 [102764373] 2m7.08s 53.25s 3m25.91s 3.74s 4.68s 5.40
19 [2,2,2,78425040] 5m4.70s 6m20.79s 7m28.33s 5.74s 8.31s 12.41s
20 [2,721166712] 6m22.69s 10m5.38s 12m13.67s 6.18s 7.80s 10.40s
21 [3510898632] 13m52.55s 18m30.90s 25m27.44s 5.59s 7.02s 9.50s
22 [2,2,2,1159221932] 19m22.23s 25m45.83s 30m52.47s 10.78s 12.86s 14.86s
23 [2,16817347642] 39m59.22s 50m53.60s 1h2m7.28s 7.30s 8.40s 10.35s
24 [2,2,37434472258] 1h22m50.77s 1h50m40.66s 2h18m29.73s 9.06s 11.31s 14.34s



A SPACE EFFICIENT GROUP STRUCTURE ALGORITHM 1663

Acknowledgments

The author wishes to thank Johannes Buchmann and Michael J. Jacobson, Jr.
for the fruitful discussions on the subject presented in this paper.

References

[BJT97] J. Buchmann, M.J. Jacobson Jr., and E. Teske. On some computational problems in
finite abelian groups. Mathematics of Computation, 66:1663–1687, 1997. MR 98a:11185

[Bre80] R.P. Brent. An improved Monte Carlo factorization algorithm. BIT, 20:176–184, 1980.
MR 82a:10007

[CL83] H. Cohen and H.W. Lenstra, Jr. Heuristics on class groups of number fields. In Number
Theory, Lecture notes in Math., volume 1068, pages 33–62. Springer-Verlag, New York,
1984. MR 85g:10007

[Coh93] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag,
Berlin, 1993. MR 94i:11105

[FO90] P. Flajolet and A.M. Odlyzko. Random mapping statistics. In Advances in Cryptol-
ogy - EUROCRYPT ’89, Lecture Notes in Computer Sci., volume 434, pages 329–354,
Springer-Verlag, New York, 1990. MR 91h:94003

[Knu73] D.E. Knuth. The art of computer programming. Volume 3: Sorting and searching.
Addison-Wesley, Reading, Massachusetts, 1973. MR 56:4281

[Knu75] D.E. Knuth. The art of computer programming. Volume 1: Fundamental algorithms.
Addison-Wesley, Reading, Massachusetts, 1975. MR 51:14624

[LiD96] LiDIA Group, Universität des Saarlandes, Saarbrücken, Germany. LiDIA - A library for
computational number theory, Version 1.2, 1996.

[LS84] H.W. Lenstra, Jr. and C.P. Schnorr. A Monte Carlo factoring algorithm with linear
storage. Mathematics of Computation, 43(167):289–311, 1984. MR 85d:11106

[LT82] H.W. Lenstra, Jr. and R. Tijdeman, editors. Computational methods in number theory,
volume 154/155 of Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam,
1982. MR 84d:10004

[McC90] K. McCurley. The discrete logarithm problem. In Cryptology and Computational Number
Theory, Proc. Symp. Appl. Math., vol. 42, pages 49–74. American Mathematic Society,
1990. MR 92d:11133

[Pol78] J.M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of
Computation, 32(143):918–924, 1978. MR 58:10684

[Sch82] R.J. Schoof. Quadratic fields and factorization. In Lenstra, Jr. and Tijdeman [LT82],
pages 235–286. MR 85g:11118

[Sha71] D. Shanks. Class number, a theory of factorization and genera. In Proc. Symp. Pure
Math. 20, pages 415–440. AMS, Providence, R.I., 1971. MR 47:4932

[Sho96] V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology–Eurocrypt ’97, Lectures Notes in Computer Sci., Volume 1233, pp. 256–266,
Springer-Verlag, New York, 1997.

[SS85] J. Sattler and C.P. Schnorr. Generating random walks in groups. Ann.-Univ.-Sci.-
Budapest.-Sect.-Comput., 6:65–79, 1985. MR 89a:68108

Technische Universität Darmstadt, Institut für Theoretische Informatik, Alexan-

derstraße 10, 64283 Darmstadt, Germany

Current address: Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

E-mail address: teske@cdc.informatik.tu-darmstadt.de


