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ASYMPTOTIC UPPER BOUNDS FOR THE COEFFICIENTS
IN THE CHEBYSHEV SERIES EXPANSION

FOR A GENERAL ORDER INTEGRAL OF A FUNCTION

NATASHA FLYER

Abstract. The usual way to determine the asymptotic behavior of the Cheby-
shev coefficients for a function is to apply the method of steepest descent to the
integral representation of the coefficients. However, the procedure is usually
laborious. We prove an asymptotic upper bound on the Chebyshev coefficients
for the kth integral of a function. The tightness of this upper bound is then
analyzed for the case k = 1, the first integral of a function. It is shown that for
geometrically converging Chebyshev series the theorem gives the tightest up-
per bound possible as n→∞. For functions that are singular at the endpoints
of the Chebyshev interval, x = ±1, the theorem is weakened. Two examples
are given. In the first example, we apply the method of steepest descent to
directly determine (laboriously!) the asymptotic Chebyshev coefficients for a
function whose asymptotics have not been given previously in the literature:
a Gaussian with a maximum at an endpoint of the expansion interval. We
then easily obtain the asymptotic behavior of its first integral, the error func-
tion, through the application of the theorem. The second example shows the
theorem is weakened for functions that are regular except at x = ±1. We
conjecture that it is only for this class of functions that the theorem gives a
poor upper bound.

1. Introduction

Determining the rate of convergence for the Chebyshev expansion of a function

f(x) =
∞∑

n=0

anTn(x)(1.1)

as n → ∞ requires an asymptotic approximation for the coefficients, an, when an
exact analytical form is not known. These approximations are usually obtained
by applying the method of steepest descent to the integral representation of the
coefficients. This procedure, though, can be lengthy and involved. However, if the
function we are expanding is an integral of a function whose Chebyshev coefficients
are already known, either exactly or asymptotically, then there should be a relation
between the known coefficients and those for the integral. For instance, it is known
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that if a function is expanded in a Fourier series, then the coefficients of the kth

integral of the function are just the original coefficients multiplied by 1
(in)k .

It is the aim of this paper to show that a similar relation exists for the Chebyshev
case. Even though an exact formula for the Chebyshev coefficients of the kth integral
of a function are derived, due to its complicated nature we retreat to an upper
bound on the coefficients in order to get a simple interpretation of the formula.
We begin by proving a theorem that calculates recursively the coefficients for the
kth integral of the Chebyshev polynomial Tn(x). This result is then used to derive
a second theorem for calculating these coefficients directly. From Theorem 2.1, a
corollary is proved that shows the asymptotic behavior for large n of the coefficients
for the kth integral of a Chebyshev polynomial. Then these allow us to define the
main theorem (Theorem 4.1) of this paper which gives an upper bound to the
Chebyshev coefficients of the kth integral of a function. The next order of business
is to determine when does the theorem not give the tightest upper bound possible.
In order to answer this question, for the rest of the paper we consider the case
k = 1, the first integral of a function. We then define a criterion that needs to be
met in order for Theorem 4.1 to give a poor upper bound. The criterion essentially
states that if two Chebyshev coefficients whose indices differ by two (e.g. an−1

and an+1) cancel when subtracted, in the limit as n → ∞, Theorem 4.1 gives a
poor upper bound. It is shown for a function whose Chebyshev series is converging
at a geometric rate, the usual rate of convergence for Chebyshev series, that the
coefficients do not meet the criterion and the theorem gives the tightest upper
bound possible for the coefficients of the first integral of the function.

Two examples illustrate the concepts. The first example illustrates that the
theorem is much easier than the method of steepest descent. The method of steepest
descent is applied, laboriously, to directly determine the asymptotic Chebyshev
coefficients of a Gaussian with a maximum at an endpoint of the Chebyshev interval.
This function was chosen since the asymptotics of its Chebyshev coefficients has
not been given previously in the literature. In contrast, obtaining the coefficients
of the error function, which is the first integral of the the Gaussian, is almost trivial
through Theorem 4.1. The second example illustrates a class of functions where
the theorem gives a poor upper bound: functions that are regular everywhere on
the Chebyshev expansion interval xε[−1, 1] except at the endpoints.

2. An upper bound for the coefficients of the kth
integral of a

Chebyshev polynomial

The recurrence relation for calculating the Chebyshev coefficients for the first
integral of a function is well established and given in texts such as [9]. The following
theorem generalizes on that relation, providing the coefficients for a general order
integral.

Theorem 2.1. The kth integral of the Chebyshev polynomial, Tn(x), is given by∫ (k)

Tn(x)dkx = (
1
2
)k

k∑
i=0

(−1)ia
(n)
k,i Tn+k−2i(x), n > k,(2.1)

where a
(n)
k,i can be calculated recursively by

a
(n)
k,i =

1
n + k − 2i

(a(n)
k−1,i−1 + a

(n)
k−1,i), 0 < i < k,(2.2)
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with

a
(n)
k,0 =

n!
(n + k)!

, a
(n)
k,k =

(n− k − 1)!
(n− 1)!

.

Proof. We prove the result by induction. We first show the theorem holds for k=1.
Using the Chebyshev to Fourier cosine transformation, x = cos(t), and then a
trigonometric identity, we have∫

cos(nt) sin(t)dt =
1
2
(
cos(n + 1)t

n + 1
− cos(n− 1)t

n− 1
).(2.3)

It can be seen that Equation 2.3 is the same as Equation 2.1 for k = 1.
Now, assume Theorem 2.1 is true for arbitrary k. Then,

(
1
2
)k

k∑
i=0

(−1)ia
(n)
k,i

∫
cos((n + k − 2i)t)sin(t)dt

= (
1
2
)k+1

k∑
i=0

(−1)ia
(n)
k,i [

cos((n + k + 1− 2i)t)
n + k + 1− 2i

− cos((n + k − 1− 2i)t)
n + k − 1− 2i

]

(2.4)

= (
1
2
)k+1[a(n)

k,0 [
cos((n + k + 1)t)

n + k + 1
− cos((n + k − 1)t)

n + k − 1
]

(2.5)

− a
(n)
k,1 [

cos((n + k − 1)t)
n + k − 1

− cos((n + k − 3)t)
n + k − 3

]

+ a
(n)
k,2 [

cos((n + k − 3)t)
n + k − 3

− cos((n + k − 5)t)
n + k − 5

]− · · ·

+ a
(n)
k,k[

cos((n− k + 1)t)
n− k + 1

− cos((n− k − 1)t)
n− k − 1

]]

= (
1
2
)k+1[

a
(n)
k,0

n + k + 1
cos((n + k + 1)t)

(2.6)

− 1
n + k − 1

(a(n)
k,0 + a

(n)
k,1)cos((n + k − 1)t)

+
1

n + k − 3
(a(n)

k,1 + a
(n)
k,2)cos((n + k − 3)t)− · · ·

+
a
(n)
k,k

n− k − 1
cos((n− k − 1)t)].

However using (2.2), (2.7) is just

(
1
2
)k+1[a(n)

k+1,0 cos((n + k + 1)t)− a
(n)
k+1,1 cos((n + k − 1)t)(2.7)

+ a
(n)
k+1,2 cos((n + k − 3)t)− · · ·+ a

(n)
k+1,k cos((n− k − 1)t)]

= (
1
2
)k+1

k+1∑
i=0

(−1)ia
(n)
k+1,i cos((n + k + 1− 2i)t).
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The following corollary gives the asymptotic behavior of the coefficients a
(n)
k,i as

n →∞ for fixed k.

Corollary 2.2. A direct result of Theorem 2.1 is that the absolute value of the
coefficients, a

(n)
k,i , i = 0, ..., k, of the kth integral of the Chebyshev polynomial Tn(x),

are bounded from above by

|a(n)
k,i | ≤

(
k
i

)
nk

(1 + εn) as n →∞ for fixed k(2.8)

where εn = O( 1
n ) > 0.

Proof. We will first show that the relation

a
(n)
k,i =

(
k
i

)
nk

+ O(
1

nk+1
)(2.9)

holds by induction and use of Theorem 2.1. For k = 1, (2.2) gives

a
(n)
1,0 =

1
n + 1

and a
(n)
1,1 =

1
n− 1

(2.10)

=
1
n

+ O(
1
n2

) and a
(n)
1,1 =

1
n

+ O(
1
n2

)

Since i ≤ k, (2.9) gives

a
(n)
1,i =

1
n

+ O(
1
n2

),(2.11)

which agrees exactly with (2.10). Now assume (2.9) holds for arbitrary k, then by
the recurrence relation given in (2.2) we have

a
(n)
k+1,i =

1
n + (k + 1)− 2i

(ak,i−1 + ak,i)(2.12)

=
1

n + (k + 1)− 2i


(

k
i− 1

)
nk

+

(
k
i

)
nk

+ O(
1

nk+1
)

(2.13)

=
1

n + (k + 1)− 2i


(

k + 1
i

)
nk

+ O(
1

nk+1
)

 ,(2.14)

a
(n)
k+1,i =

(
k + 1

i

)
nk+1

+ O(
1

nk+2
).(2.15)

The inequality in (2.8) is achieved by applying the triangle inequality to (2.15)

3. The optimal envelope function

Before we can state the main theorem of the paper we need to define an opti-
mal envelope function. The usefulness of such a definition is that for Chebyshev
coefficients which oscillate (e.g. cos(f(n))), only the rate of decay is numerically
important in terms of determining how Chebyshev polynomials are needed to reach
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a given accuracy. Therefore, it is advantageous to introduce a definition, the opti-
mal envelope function, which filters out the oscillation and captures the asymptotic
behavior of the coefficients that is numerically significant.

Definition 3.1 (Envelope function). A function E(n; {bn}) is an envelope function
for the spectral coefficients bn if E(n; {bn}) is a positive monotonically decreasing
function providing an upper bound to {bn} such that

1. E(n; {bn}) ≥ 0{n : nεN},
2. E(n; {bn}) ≥ E(n + 1; {bn}),
3. E(n; {bn}) ≥ |bn| for all n,

where N is the set of natural numbers.

Definition 3.2 (Optimal envelope function). A function Eopt(n; {bn}) is an opti-
mal envelope function for the spectral coefficients bn if (i) Eopt(n; {bn}) is an enve-
lope function and (ii) given any δ > 0, there exists an unbounded set of values for
n such that

Eopt(n)− |bn| < δ.(3.1)

From now on, we will denote Eopt(n) simply by E(n). It is important to note that
an optimal envelope function always exists, for any convergent Chebyshev series,
as is shown by the explicit construction

E(n) ≡ max
j≥n

|bj |.(3.2)

However, the optimal envelope function as given by the definition is not unique.
Steepest decent analysis, as presented later, often provides a smoother optimal
envelope function than (3.2), which descends as a series of step functions like a
flight of stairs. The shape of E(n) does not matter, though, as long as it captures
the general trend of the decrease in the coefficients, showing the asymptotic rate of
convergence for the Chebyshev series.

4. An upper bound for the Chebyshev coefficients

for a general order integral of a function

The following is the main theorem of the paper, giving an upper bound on the
Chebyshev coefficients of the kth integral of a function for large n.

Theorem 4.1. If E(n; {bn}) is the optimal envelope function for the Chebyshev
coefficients of a function f(x), then the Chebyshev coefficients of the kth integral of
f(x), ∫ (1)

· · ·
∫ (k)

f(x)dkx =
∞∑

n=0

cnTn(x),(4.1)

are bounded from above as n →∞ for fixed k by

|cn| ≤ (1 + εn)
(2n)k

(k + 1)
(

k
k
2 or k−1

2

)
E(n− k),(4.2)

where εn = O( 1
n ) > 0 and k

2 holds for k even and k−1
2 holds for k odd in the

combinatorial term.
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Proof. ∫ (1)

· · ·
∫ (k)

f(x)dkx =
∞∑

n=0

cnTn(x) =
∞∑

n=0

bn

∫ (1)

· · ·
∫ (k)

Tn(x)dkx.(4.3)

Using (2.1), (4.3) becomes∫ (k)

f(x)dkx = b0

∫ (k)

T0d
kx + · · ·+ bk

∫ (k)

Tkdkx(4.4)

+
∞∑

n=k+1

bn

{
(
1
2
)k

k∑
i=0

(−1)ia
(n)
k,i Tn+k−2i(x)

}

= b0

∫ (k)

T0dx + · · ·+ bk

∫ (k)

Tkdkx(4.5)

+
2∑

n=1

{
(−1)k

2k

0∑
i=0

(−1)ibn+k−2ia
(n+k−2i)
k,k−i

}
Tn(x)

+
4∑

n=3

{
(−1)k

2k

1∑
i=0

(−1)ibn+k−2ia
(n+k−2i)
k,k−i

}
Tn(x)

+ · · ·+
2k∑

n=2k−1

{
(−1)k

2k

k−1∑
i=0

(−1)ibn+k−2ia
(n+k−2i)
k,k−i

}
Tn(x)

+
∞∑

n=2k+1

{
(−1)k

2k

k∑
i=0

(−1)ibn+k−2ia
(n+k−2i)
k,k−i

}
Tn(x).

For n ≥ 2k + 1, cn is

cn =
(−1)k

2k

k∑
i=0

(−1)ibn+k−2ia
(n+k−2i)
k,k−i(4.6)

|cn| ≤ | 1
2k
|

k∑
i=0

|bn+k−2i||a(n+k−2i)
k,k−i |.(4.7)

Given that |bn+k−2i| ≤ E(n + k − 2i), then

|cn| ≤ | 1
2k
|

k∑
i=0

E(n + k − 2i)|a(n+k−2i)
k,k−i |.(4.8)

We proved earlier in Corollary 2.2 that |a(n)
k,i | ≤

 k
i


nk (1 + εn) as n →∞ for fixed

k. Thus,

|cn| ≤ (1 + εn)
(2n)k

k∑
i=0

(
k

k − i

)
E(n + k − 2i),(4.9)

|cn| ≤ (1 + εn)
(2n)k

(k + 1)
(

k
k
2 or k−1

2

)
E(n− k),(4.10)

where k
2 holds for k even and k−1

2 holds for k odd in the combinatorial term.
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Although Theorem 4.1 gives an upper bound for the Chebyshev coefficients of the
kth integral of a function, we can then ask the question how tight is this upper
bound? If the types of functions can be identified for which Theorem 4.1 gives
the optimal envelope function as n → ∞, then the theorem gives an asymptotic
expression for the tightest upper bound possible. In the remaining part of this
section, it is proved for the case k = 1, the first integral of a function, that if the
Chebyshev coefficients for a function converge geometrically (refer to [6], Chapter 2)
then Theorem 4.1 gives the optimal envelope function for the Chebyshev coefficients
of the first integral of the function as n →∞. However, before this statement can
be proved the following terms need to be defined.

Definition 4.2 (Scaled Chebyshev coefficients and their limit superior). If bn are
the Chebyshev coefficients of a function, then b̃n are the Chebyshev coefficients
scaled by the optimal envelope function for bn. In other words,

b̃n ≡ bn

E(n)
.(4.11)

Thus, the following properties hold:
1. (upper bound) |b̃n| ≤ 1 for all n.
2. (infinite number of terms in sequence that are arbitrarily close to one) For

any δ > 0, there exists a subset of |b̃n|, called gn, with an infinite number of
terms such that gn > 1− δ.

3. lim supn→∞ |b̃n| = 1.

Definition 4.3 (Scaled differences). If bn are the Chebyshev coefficients of a func-
tion, then the Chebyshev coefficients of the first integral of the function are given
by

cn =
1
2n

(bn−1 − bn+1).(4.12)

The scaled differences, γ̃n, are then defined as

γ̃n ≡ bn−1 − bn+1

E(n− 1)
(4.13)

≡
{

b̃n−1 − E(n + 1)
E(n− 1)

b̃n+1

}
.(4.14)

The following definition is used as a criterion for determining the strength of the
upper bound given in Theorem 4.1.

Definition 4.4 (Strongly self-cancelling coefficients). The Chebyshev series coef-
ficients are “strongly self-cancelling” if

lim sup
n→∞

|γ̃n| = 0.(4.15)

Conjecture 4.5. Only if the Chebyshev coefficients are “strongly self-cancelling”,
as defined above, is the inequality of Theorem 4.1 weakened.

The reason for this conjecture will become evident in the second example given
in Section 5. However, it can be seen from (4.12) that if bn is converging slowly,
in other words algebraically (refer to Chapter 2 of [6]), then in a Taylor series
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expansion of the coefficients bn−1 would cancel bn+1 to lowest order, contributing
an extra factor of O( 1

n ). In such a case, the theorem overestimates the coefficients
of the integral by O(n).

To prove that Definition 4.4 does not hold in the case when the Chebyshev coef-
ficients of a function are converging geometrically, we need the following definition
and two lemmas.

Definition 4.6. A Chebyshev series with coefficients bn is said to have a “geomet-
ric” rate of convergence if

lim sup
n→∞

E(n + 1)
E(n− 1)

=
1
ρ2

< 1,(4.16)

where ρ is a constant that is greater than 1 and E(n; {bn}) is an optimal envelope
function {bn}. Note that if, for example, E(n) ≡ 1

ρn nk, then

E(n + 1)
E(n− 1)

=
1
ρ2

{
1 +

2k

n
+ O(

1
n2

)
}

.(4.17)

This definition is consistent with the alternative definition given in [6]. “Super-
geometric” convergence (e.g. E(n) = 1

nn nk) is the limit as ρ →∞.

The next two lemmas were proved in [2].

Lemma 4.7. Given two real-valued sequences {an} and {bn} bounded below, then

lim sup
n→∞

(an − bn) ≥ lim sup
n→∞

an − lim sup
n→∞

bn.(4.18)

Lemma 4.8. If an > 0 and bn > 0 for all n, and if the lim supn→∞ an and
lim supn→∞ bn are finite or both are infinite, then

lim sup
n→∞

(anbn) ≤ (lim sup
n→∞

an)(lim sup
n→∞

bn).(4.19)

Theorem 4.9. If the Chebyshev coefficients of a function are converging geomet-
rically then

(1 − 1
ρ2

) ≤ lim sup
n→∞

|γ̃n| = lim sup
n→∞

|2n
cn

E(n− 1)
| ≤ (1 +

1
ρ2

),(4.20)

where γ̃n and ρ are defined above and cn are the coefficients of the first integral of
the function as given in Definition 4.3.

Proof. The left hand side of (4.20) is proved as follows:

γ̃n =
{

b̃n−1 − E(n + 1)
E(n− 1)

b̃n+1

}
,(4.21)

|γ̃n| ≥
{
|b̃n−1| − |E(n + 1)

E(n− 1)
||b̃n+1|

}
,(4.22)

lim sup
n→∞

|γ̃n| ≥ lim sup
n→∞

{
|b̃n−1| − |E(n + 1)

E(n− 1)
||b̃n+1|

}
(4.23)

≥ lim sup
n→∞

|b̃n−1| − lim sup
n→∞

|E(n + 1)
E(n− 1)

||b̃n+1|(4.24)

≥ lim sup
n→∞

|b̃n−1| − lim sup
n→∞

|E(n + 1)
E(n− 1)

| lim sup
n→∞

|b̃n+1|(4.25)

≥ 1− 1
ρ2

.(4.26)
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The right hand side of (4.20) is proved in exactly the same manner except the
inequality is reversed since |γ̃n| ≤

{
|b̃n−1|+ |E(n+1)

E(n−1) ||b̃n+1|
}
.

5. Examples

In this section, two examples are given. The first serves two purposes: 1) to
show that indeed Theorem 4.1 gives the optimal envelope function as n → ∞ for
the first integral of a function whose Chebyshev series is converging geometrically,
and 2) to demonstrate the usefulness of such a theorem in cases where applying
the method of steepest descent for determining the asymptotic behavior of the
coefficients is laborious. The second example gives a case where the upper bound
given by Theorem 4.1 is weakened. An analysis is done to show what class of
functions causes the weakening of the theorem and why.

5.1. Case : A function with a super-geometrically converging Cheby-
shev series. As an example, the asymptotic behavior of the coefficients of both
a Gaussian centered at an endpoint of the Chebyshev expansion interval and its
first integral, the error function, will be considered for large n. This example was
chosen for two reasons: 1) the application of the method of steepest descent is both
tedious and laborious, and 2) it has not been previously given in the literature. The
method itself can be found in standard advanced texts in applied mathematics [3].
It finds the asymptotic behavior of an integral of the form

I(n) =
∫

C

g(t)eφ(t,n)dt(5.1)

as n →∞, where C is a contour in the complex plane. The first step is to deform
the path of integration such that the main contribution to the integral as n → ∞
comes from the neighborhood of the points where the argument of the exponential,
φ, has a saddle point. These points are called stationary points, ts(n), and are
found by solving

dφ(ts, n)
dt

= 0.(5.2)

Then

I(n) ∼
∑√

2π

−φtt(ts)
eφ(ts,n)g(ts),(5.3)

where the summation is over all stationary points that lie on the path of integration.
The series expansion for a Gaussian centered at the endpoint x = −1 of the

Chebyshev interval [−1, 1] is given by

e−A(x+1)2 =
∞∑

n=0

anTn(x)

an =
1
π

{∫ π

0

e−A(cos(t)+1)2+intdt +
∫ π

0

e−A(cos(t)+1)2−intdt

}
, n > 0,(5.4)

where A is a parameter determining the width of the Gaussian and the trans-
formation x = cos(t) has been used. The method of steepest descent gives the
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approximation

an = Re

{√
8

−πφtt(ts)
e−A(cos(ts)+1)2+ints

}
.(5.5)

We find ts by solving
dφ

dt
= sin(2t) + 2 sin(t) + i

n

A
= 0,(5.6)

which gives

ts = 2 arctan(z),(5.7)

where z is a root of the quartic equation

z4 + z2 + 1− A

n
8iz = 0.(5.8)

In this case, only a single stationary point lies on the deformed path of integration
and contributes to the approximation of the integral. This corresponds to the root
of equation 5.8 for which both the real and imaginary parts are positive. In order to
get an analytical expression for equation 5.5 in terms of n, a perturbation analysis
to the first order is done on equation 5.8 with A

n treated as a small parameter for
n → ∞ and A fixed. It is important to remember that the rate of convergence
associated with the approximation is controlled by the real part of φ(ts(n), n).
Theorem 1 of [4] states that the change in the real part of φ(ts(n), n) with n is
given by the negative of the imaginary part of the stationary point, ts; in other
words,

<
(

dφ(ts(n), n)
dn

)
= −=(ts(n)).(5.9)

In the example of the Gaussian, the real part of the contributing stationary
point approaches zero and the imaginary part approaches ∞ as n → ∞. This
is the distinguishing characteristic of “super-geometric convergence” [6], that the
imaginary part of the stationary point increases with n. Thus, the combined use
of the theorem with trigonometric identities yields the expected super-geometric
convergence for the Chebyshev coefficients of a Gaussian,

an ∼ α cos

(
(n +

A

2
) arctan

(√
2n

A

)
− A

2

√
2n

A

)
(5.10)

exp(−n

2
ln(1 +

2n

A
)− A

4
ln(1 +

2n

A
) +

A

4
+

n

2
) for large

n

A
,

where α denotes a term which varies only algebraically (not exponentially) with n.
This term is the contribution from

√
8

−πφtt(ts) and is given by

α =

√
8
−π

(4 cos2(arctan

(√
2n

A

)
) cosh2(

1
2

ln(1 +
2n

A
))(5.11)

− 4 sin2(arctan

(√
2n

A

)
) sinh2(

1
2

ln(1 +
2n

A
))

+ 4 cos(arctan

(√
2n

A

)
) cosh(

1
2

ln(1 +
2n

A
))− 2)−

1
2 .
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Figure 1. Solid: Exact Chebyshev coefficients for
exp(−A(x + 1)2). Dashed: The full asymptotic approxima-
tion given by (5.10) (a) A=3 (b) A=10 (c) A=20.
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The full asymptotic approximation to the Chebyshev coefficients versus the exact
coefficients for the Gaussian centered at the endpoint of the expansion interval can
be seen in Figure 1 for A = 3, A = 10, and A = 20. The asymptotic relation
captures the general exponential trend of decay of the coefficients. However, as
A increases, the error between the asymptotic and exact coefficients increases by
a multiplicative factor. There are two sources of error in the approximation of
the coefficients: 1) the method of steepest descent is only being carried out to
the lowest order, and 2) the solution to equation 5.8 is being determined only to
the first order. Since the stationary point is approximated by perturbation theory
with A/n treated as a small parameter, the asymptotic relation given by (5.10)
breaks down for large A and fixed n. Thus, as A becomes larger, the relative
error increases. Although not shown here, the error would be orders of magnitude
smaller if equation 5.8 were solved numerically rather than through perturbation
theory. However, this would defeat the purpose of deriving an asymptotic relation
as opposed to numerically calculating the exact coefficients. Furthermore, there are
two counteracting forces at play. As A increases, A/n becomes larger, eventually
rendering the perturbative solution to equation 5.8 useless. On the other hand,
the rate at which the error decreases with n slows as A becomes larger. This is
due to the fact that a narrower Gaussian introduces steepest gradients requiring
more Chebyshev polynomials to evaluate it to a given accuracy. The restriction to
A/n small might be circumvented by deriving a uniform asymptotic expansion in
the spirit of [5], but is not done here. It should also be noted that for a Gaussian
centered in the middle of the expansion interval the Chebyshev coefficients are
proportional to In(A

2 ) [7]. For small values of A, that is for very wide Gaussians,
the asymptotic rate of convergence of the coefficients is essentially the same as for
the Gaussian centered at the endpoint. However, as A increases the coefficients
for the endpoint centered Gaussian converge much faster because the Chebyshev
polynomials oscillate more rapidly near the endpoints leading to a higher effective
resolution (refer to [6], Chapter 2).

If we are interested in finding the asymptotic behavior as n →∞ for the Cheby-
shev coefficients of an error function, the usual way to proceed is to apply the
method of steepest descent to the integral representation of the coefficients. As
seen above, this can be an involved and laborious procedure. Having done the
asymptotic analysis for the Gaussian, we can manipulate Theorem 2.1 to find the
exact Chebyshev coefficients of its first integral, the error function. These coeffi-
cients are given by

1
2n

(an−1 − an+1),(5.12)

where an is defined in (5.10). However, due to the complicated nature of (5.10),
evaluating (5.12) is not easy. A simpler, more immediate interpretation for the
asymptotic behavior of the Chebyshev coefficients for the error function is provided
by Theorem 4.1. The optimal envelope function for the Chebyshev coefficients of

√
π

2
√

A
erf(

√
A(x + 1)),

the first integral of exp(−A(x + 1)2) as n → ∞ for fixed A, is simply the optimal
envelope function for the Chebyshev coefficients of the Gaussian with argument
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Figure 2. Dashed: Exact Chebyshev coefficients for√
π

2
√

A
erf(

√
A(x + 1)) with A = 3. Solid: Optimal envelope

function given by (5.13).

(n− 1) divided by n. In other words,

E(erf)
n ∼ 1

n

{
β exp

(
− (n− 1)

2
ln(1 +

2(n− 1)
A

)

−A

4
ln(1 +

2(n− 1)
A

) +
A

4
+

(n− 1)
2

)}
,

(5.13)

where β is defined in (5.11) with the n being replaced by (n − 1). Figure 2
shows the envelope function given by (5.13) versus the exact coefficients for√

π

2
√

A
erf(

√
A(x + 1)) calculated numerically.

5.2. Case 2: A function with an algebraically converging Chebyshev se-
ries. As an example of where the coefficients are “strongly self-cancelling”, given in
Definition 4.4, we will consider the function whose Chebyshev coefficients decrease
as

bn ∼ 1
nj

,(5.14)

where j is a constant greater than 1. If we define the optimal envelope function for
bn by (5.14) then according to Theorem 4.1, the Chebyshev coefficients cn for the
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Figure 3. Dashed: Exact Chebyshev coefficients given by
1
2n (bn−1− bn+1) where bn ∼ 1

n2 . Solid: The upper bound given by
Theorem 4.1.

first integral of the function are bounded from above to lowest order by

|cn| ≤ 1
n(n− 1)j

=
1

nj+1(1− 1
n )j

=
1

nj+1
+ O(

1
nj+2

).(5.15)

Figure 3 shows the case for j = 2. It can indeed be seen that (5.15) gives a loose
upper bound on the exact coefficients for cn, which worsens as n grows larger.
A little analysis will show why this is the case as well as enforce the conjecture
made in Section 2 as to the weakening of Theorem 4.1 with regard to “strongly
self-cancelling” Chebyshev coefficients.

We know that the exact coefficients for the integral of the function are given by

cn =
1
2n

{
1

(n− 1)j
− 1

(n + 1)j

}
.(5.16)

If the series were converging rapidly, say geometrically, the first term in (5.16) would
dominate and we would essentially have the upper bound given by (5.15). However,
the coefficients of bn are “strongly self-cancelling” in the sense of Definition 4.4. This
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can be seen directly by expanding (5.16) in terms of a Taylor series,

cn =
1
2n

{
1

(n− 1)j
− 1

(n + 1)j

}
(5.17)

=
1

2nj+1

{
1

(1− 1
n )j

− 1
(1 + 1

n )j

}
(5.18)

=
1

2nj+1

{
1 +

j

n
− 1 +

j

n
+ O(

1
n2

)
}

(5.19)

=
1

n(j+1)+1
+ O(

1
n(j+2)+1

).(5.20)

We see to lowest order bn−1 cancels bn+1, leading to an order of convergence that
is greater by a factor of 1

n than that given by (5.15). (5.20) is an analysis of γ̃n.
Since b̃n−1 = b̃n+1 = 1 and E(n+1)

E(n−1) = 1 + O( 1
n ), we have

|γ̃n| = |{1− (1 + O(
1
n

))}|.(5.21)

Thus,

lim sup
n→∞

|γ̃n| = 0.(5.22)

It is for the reasons above that the conjecture in Section 2 was made. Further-
more, we make the conjecture that only functions which are regular everywhere on
xε[−1, 1], except at the endpoints of the Chebyshev interval x = 1 and x = −1, will
have this “strongly self-cancelling” effect of the coefficients resulting in an order of
convergence that is faster by a factor of 1

n than Theorem 4.1 would imply. This
conjecture is backed up by the work of Elliott [8] who shows that functions which
are regular except at x = ±1 (e.g. f(x) = (1 ± x)φg(x), where φ is not an integer
and g(x) is regular everywhere on xε[−1, 1] including the endpoints) have Cheby-
shev coefficients cn ' O( 1

n2φ+1 ). Therefore the difference between the function and
its integral is O( 1

n2 ) as can be seen from the simple example g(x) = 1 and φ = 1
2 .

However, Theorem 4.1 implies that the difference should be O( 1
n ), thus predicting

decay which is too slow by O( 1
n ). This is the behavior the theorem exhibits when

the coefficients are “strongly self-cancelling”. Thus, it is conjectured that Theo-
rem 4.1 gives the tightest upper bound possible as n → ∞ for the absolute value
of the Chebyshev coefficients of the first integral of a function not only for series
whose coefficients are geometrically converging but for all functions except those
that have singularities on xε[−1, 1] exclusively at x = ±1. This conjecture is made
since the increase in convergence by the extra factor of 1

n as seen by the functions
in Elliot’s paper is believed to be solely an endpoint effect.

6. Summary

The importance of this paper is that we were able to derive the asymptotic
relationship between the optimal envelope function that bounds the Chebyshev
coefficients from above and the optimal envelope function for the coefficients of the
integral of the function. First, a theorem was developed that provides an upper
bound to the Chebyshev coefficients of the kth integral of a function. The question
then asked was: How tight is this upper bound? In order to determine a criterion
under which the theorem did not give an optimal upper bound as n → ∞, we
specialized to the case k = 1. It was conjectured then that only if the Chebyshev
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coefficients of a function were “strongly self-cancelling”, as defined above, does the
theorem not provide the tightest upper bound possible, i.e. the optimal envelope
function. This conjecture was based on the fact that coefficients which obeyed the
criterion cancelled each other to the lowest order, resulting in a contribution of
an extra factor of 1

n . Functions that are regular on the interval [−1, 1] except at
the endpoints have these types of coefficients. Furthermore, it was shown that in
geometrically converging Chebyshev series, which is the usual rate of convergence,
the coefficients are not “strongly self-cancelling” and the theorem provided the
optimal envelope function for the coefficients as n →∞. In such cases, the theorem
provides a good alternative to the often laborious method of steepest descent. In
the last section, two examples were given to illustrate these concepts. The first
example considers a function whose Chebyshev series converges super-geometrically,
a Gaussian and its first integral the error function. The second example considers
a function and its first integral whose Chebyshev series converges algebraically, a
function that is regular except at the endpoints x = ±1 of the Chebyshev interval
xε[−1, 1].

However, more work needs to be done. It would be beneficial to prove that if the
Chebyshev coefficients of a function are converging as 1

nj+1 or 1
nj+1 (−1)n, where

j is a constant greater than zero, then the function is singular exclusively at the
endpoints x = ±1 of the Chebyshev interval. Secondly, it is believed that the same
results should hold for higher integrals, that is for k = 2, 3, ... and so forth. The
reason is that the coefficients for the higher integrals of a function are just weighted
combinations of the coefficients of the original function in the form of an alternating
series.
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