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FACTORIZING COMPLEX SYMMETRIC MATRICES WITH
POSITIVE DEFINITE REAL AND IMAGINARY PARTS

NICHOLAS J. HIGHAM

Abstract. Complex symmetric matrices whose real and imaginary parts are
positive definite are shown to have a growth factor bounded by 2 for LU
factorization. This result adds to the classes of matrix for which it is known
to be safe not to pivot in LU factorization. Block LDLT factorization with the
pivoting strategy of Bunch and Kaufman is also considered, and it is shown
that for such matrices only 1× 1 pivots are used and the same growth factor
bound of 2 holds, but that interchanges that destroy band structure may be
made. The latter results hold whether the pivoting strategy uses the usual
absolute value or the modification employed in LINPACK and LAPACK.

1. Introduction

There are three main classes of matrix for which it is known to be safe not to
pivot when computing an LU factorization: matrices diagonally dominant by rows
or columns, Hermitian positive definite matrices, and totally nonnegative matrices.
Here, we identify another class of matrices with this highly desirable property: com-
plex symmetric matrices whose real and imaginary parts are both positive definite.
Complex symmetric matrices arise frequently, particularly in algebraic eigenvalue
problems [16], [17], and numerical methods that exploit their structure can be de-
veloped; see, for example, [3], [7], [20]. Complex symmetric matrices with positive
definite real and imaginary parts arise in calculations with Padé approximations to
the exponential [6]; in this application the matrices are banded.

In Section 2 we show that a complex symmetric matrix with positive definite
real and imaginary parts can be factorized by LU factorization without pivoting
and that the growth factor is bounded by 2. In Section 3 we discuss how best to
solve a linear system with such a coefficient matrix. This leads to consideration in
Section 4 of block LDLT factorization using the Bunch–Kaufman pivoting strategy,
which we find uses only 1 × 1 pivots and leads to a growth factor bound of 2, but
may make interchanges that destroy band structure.

2. Complex symmetric positive definite matrices

We call any matrix of the form

A = B + iC, B ∈ Rn×n and C ∈ Rn×n both symmetric positive definite,
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a CSPD matrix (standing for complex symmetric positive definite). Note that if
A is a CSPD matrix then αA is not, in general, for α ∈ C. It is possible that
in some applications CSPD matrices arise in scaled form and their structure goes
unrecognised.

We begin by establishing some basic facts about CSPD matrices.

Lemma 2.1. A CSPD matrix is nonsingular.

Proof. Let B+iC be a CSPD matrix and consider the linear system (B+iC)(x+iy)
= d + ie. It may be rewritten as[

B −C
C B

] [
x
y

]
=

[
d
e

]
.(2.1)

The matrix of this linear system is nonsymmetric positive definite1 and therefore
nonsingular. Hence d+ie = 0 implies x+iy = 0, showing that B+iC is nonsingular.

Lemma 2.2. A CSPD matrix A has a unique LU factorization A = LU .

Proof. We have to show that the leading principal submatrices of A are nonsingular
(see, for example, [12, Theorem 9.1]). But any principal submatrix of a CSPD
matrix is CSPD and so nonsingular.

Lemma 2.2 shows that an LU factorization exists without the need for pivoting,
but it does not address the stability of such a factorization. The standard backward
error analysis of Wilkinson shows that if an LU factorization without pivoting
produces a computed solution x̂ to Ax = b, where A ∈ Cn×n, then

(A + ∆A)x̂ = b, ‖∆A‖∞ ≤ cn3ρnu‖A‖∞ + O(u2),

where c is a modest constant and u is the unit roundoff (see, for example, [12,
Theorem 9.5, Problem 9.8]). The quantity ρn is the growth factor, defined by

ρn =
maxi,j,k |a(k)

ij |
maxi,j |aij | ,

where the a
(k)
ij are the elements of the Schur complements arising during the factor-

ization. Hence backward stability is guaranteed if ρn is small. It is a nontrivial task
to bound ρn for CSPD matrices because the multipliers can be arbitrarily large,
just as for real symmetric positive definite matrices. As a simple example, for the
CSPD matrix

A = (1 + i)
[
ε2 ε
ε 2

]
, ε > 0,

the first multiplier in Gaussian elimination is ε−1. In the rest of this section we
show that a very satisfactory growth factor bound can be obtained.

First, we show that Schur complements inherit the CSPD structure.

Lemma 2.3. If

p n−p

A = p

n−p

[
A11 AT

21

A21 A22

]
1A matrix E ∈ Rn×n is (nonsymmetric) positive definite if xT Ex > 0 for all 0 6= x ∈ Rn or,

equivalently, if the symmetric part (E + ET )/2 is positive definite.
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is a CSPD matrix, then so is S = A22−A21A
−1
11 AT

21, the Schur complement of A11

in A.

Proof. Clearly S is symmetric; we have to show that its real and imaginary parts
are positive definite. Write A = B + iC with B and C partitioned conformally with
A. Then

S = B22 + iC22 − (B21 + iC21)(X + iY )

where

(B11 + iC11)(X + iY ) = BT
21 + iCT

21.

Hence [
B11 C11

C11 −B11

] [
X
−Y

]
=

[
BT

21

CT
21

]
.

Thus

Re(S) = B22 −
[
B21 C21

] [
X
−Y

]
= B22 −

[
B21 C21

] [
B11 C11

C11 −B11

]−1 [
BT

21

CT
21

]
,

which is the Schur complement of
[

B11 C11
C11 −B11

]
in

G1 :=

B11 C11 BT
21

C11 −B11 CT
21

B21 C21 B22

 = Π

B11 BT
21 C11

B21 B22 C21

C11 CT
21 −B11

ΠT =: ΠG2Π
T ,

for a permutation matrix Π . Recall that the inertia of a symmetric matrix is
an ordered triple (i+, i−, i0), where i+, i−, and i0 are, respectively, the number
of positive, negative, and zero eigenvalues. We now use the fact that for a real,
symmetric matrix H , if a leading principal submatrix H11 is nonsingular, then
inertia(H) = inertia(H11) + inertia(H/H11), where H/H11 denotes the Schur com-
plement of H11 in H (see, for example, [10]). We obtain

inertia(G2) = inertia(B) + inertia
(
−B11 −

[
C11 CT

21

]
B−1

[
C11

C21

])
= (n, p, 0),

inertia(G1) = inertia
([

B11 C11

C11 −B11

])
+ inertia(Re(S))

= (p, p, 0) + inertia(Re(S)).

But G1 and G2 have the same inertia, so inertia(Re(S)) = (n−p, 0, 0), as required.
The positive definiteness of Im(S) is proved similarly.

The next result implies that the largest element of a CSPD matrix lies on the
diagonal.

Lemma 2.4. If A is a CSPD matrix, then

|aij | <
√
|aii||ajj |.(2.2)
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Proof. Write A = B + iC. Using the well-known fact that (2.2) is true for a real
symmetric positive definite matrix we have

|aij | =
√

b2
ij + c2

ij

<
√

biibjj + ciicjj

<

√√
b2
ii + c2

ii

√
b2
jj + c2

jj (Cauchy–Schwarz inequality)

=
√
|aii||ajj |.

Theorem 2.5. The growth factor for a CSPD matrix A ∈ Cn×n satisfies ρn < 2
and this bound is the best possible.

Proof. In the notation of Lemma 2.3, we have to show that every element of the
Schur complement matrix S satisfies |sij | < 2 maxi,j |aij |. Since S is CSPD by
Lemma 2.3, we have

Re((A21A
−1
11 AT

21)jj) < Re((A22)jj), Im((A21A
−1
11 AT

21)jj) < Im((A22)jj).

Squaring, adding and then taking the square root gives

|(A21A
−1
11 AT

21)jj | < |(A22)jj |.

Thus |sjj | < 2 |(A22)jj | < 2 maxi,j |aij |. Hence, by Lemma 2.4,

|sij | <
√
|sii| |sjj | < 2 max

i,j
|aij |.

Finally, consider the LU factorization

A =
[
1 + i 1− i
1− i 1 + i

]
=

[
1 0
−i 1

] [
1 + i 1− i

0 2(1 + i)

]
,

for which ρ2 = 2. The matrix A is not CSPD, because its real and imaginary parts
are symmetric positive semidefinite and singular. But A + ε(1 + i)I is CSPD for
ε > 0 and as ε → 0, ρ2 → 2. Hence ρn < 2 is the best possible bound.

We conclude from Theorem 2.5 that LU factorization without pivoting is norm-
wise backward stable when applied to CSPD systems.

3. Solving CPSD systems

How should we solve a CSPD system Ax = b? The natural choice is LU factor-
ization without pivoting, which we have proved to be normwise backward stable.
Symmetry can be exploited in the implementation, making the cost n3/3 complex
operations. Since no pivoting is used, any band structure in A is preserved in the
factorization.
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An alternative to working in complex arithmetic is to solve an equivalent real
system. In preference to the real system (2.1), we consider the symmetric modifi-
cation [

B C
C −B

] [
x
−y

]
=

[
d
e

]
.(3.1)

The coefficient matrix is a special case of a symmetric quasidefinite matrix [19]. For
such a matrix an LDLT factorization exists. Although LDLT without pivoting is
not always stable for symmetric quasidefinite matrices, conditions under which sta-
bility is guaranteed are derived in [8], via corresponding analysis for nonsymmetric
positive definite real systems [9], [15]. For the system (3.1) we find that stability is
assured if ‖CB−1C‖2/‖A‖2 is not too large.

Solving (3.1) requires 8n3/3 real operations as opposed to n3/3 complex opera-
tions to solve the original complex system directly, and it requires the same amount
of storage. A complex operation requires between 2 and 8 real operations, so solv-
ing the complex system should, in principal, be the more efficient option, but the
actual relative costs of real and complex arithmetic will depend on the computing
environment.

LINPACK [4] and LAPACK [1] do not contain routines for LU factorization
without pivoting applied to complex symmetric matrices. The user who does not
wish to write special-purpose code but wishes to take advantage of symmetry would
therefore have to treat the system as a general complex symmetric system and solve
it using block LDLT factorization-based routines: LINPACK’s2 CSIFA, CSISL, or
LAPACK’s CSYTRF, CSYTRS. These routines use the pivoting strategy of Bunch and
Kaufman [2]. Two important questions arise. When the Bunch–Kaufman pivoting
strategy is applied to a CSPD system

1. Is the growth factor bound ρn < 2 still valid?
2. Is bandwidth preserved for a banded matrix? (Implementations of block

LDLT factorization with the Bunch–Kaufman pivoting strategy for banded
real symmetric matrices are given by Jones and Patrick [13], [14].)

These questions are answered in the next section.

4. Block LDLT factorization

We briefly summarize block LDLT factorization for a complex symmetric matrix.
Let A ∈ Cn×n be complex symmetric. If A is nonzero then there is a permutation

Π and an integer s = 1 or 2 so that

s n−s

ΠAΠT = s

n−s

[
E CT
C B

]
,

with E nonsingular. Then we have the factorization

ΠAΠT =
[

Is 0
CE−1 In−s

] [
E 0
0 B − CE−1CT

] [
Is E−1CT

0 In−s

]
.(4.1)

2LINPACK and LAPACK support block LDLT factorization for three different types of matrix:
real symmetric, complex symmetric, and complex Hermitian.
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Repetition of this process on the Schur complement S = B − CE−1CT leads to a
block LDLT factorization

PAPT = LDLT ,(4.2)

where L is unit lower triangular and D is block diagonal with each diagonal block
having dimension 1 or 2. To describe the pivoting strategy of Bunch and Kauf-
man [2] it suffices to describe the choice of Π and s on the first stage of the
factorization.

Algorithm 4.1 (Bunch–Kaufman pivoting strategy). This algorithm determines
the pivot for the first stage of block LDLT factorization with the Bunch–Kaufman
pivoting strategy applied to a complex symmetric matrix A ∈ Cn×n.

α: = (1 +
√

17)/8 (≈ 0.64)
λ := ‖A(2: n, 1)‖∞
If λ = 0 there is nothing to do on this stage of the elimination.
r := min{i ≥ 2: |ai1| = λ}
if |a11| ≥ αλ

(1) use a11 as a 1× 1 pivot (s = 1, Π = I).
else

σ: =
∥∥∥∥[

A(1: r − 1, r)
A(r + 1: n, r)

]∥∥∥∥
∞

if |a11|σ ≥ αλ2

(2) use a11 as a 1× 1 pivot (s = 1, Π = I).
else if |arr| ≥ ασ

(3) use arr as a 1× 1 pivot (s = 1, Π swaps rows and columns
1 and r).

else

(4) use
[
a11 ar1

ar1 arr

]
as a 2× 2 pivot (s = 2, Π swaps rows and

columns 2 and r).
end

end
LINPACK and LAPACK eschew the usual complex absolute value |x + iy| =√
x2 + y2. Instead they use

|x + iy| := |x|+ |y|,(4.3)

which is less expensive to evaluate and less prone to overflow and underflow in
floating point arithmetic. The usual absolute value is used in the routine diagpiv
in the Matlab Test Matrix Toolbox [11]. We will consider both choices of absolute
value in Algorithm 4.1. (We assume that the ∞-norm utilizes whichever absolute
value has been chosen). We write

abs(x + iy) :=
√

x2 + y2,

abs1(x + iy) := |x|+ |y|,
and we write |z| only when z is real or when we wish to make statements holding
for both choices of absolute value.

We wish to determine whether Algorithm 4.1 simplifies for a CSPD matrix.
Serbin [18] considered this question and claimed, incorrectly, that for the absolute
value abs1 no pivoting is required, that is, that Algorithm 4.1 leads to P = I in
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(4.2). His argument was based on the erroneous assumption that the largest element
in any column of a real, symmetric positive definite matrix lies on the diagonal.
The following lemma summarizes the possible behavior of Algorithm 4.1 for both
choices of absolute value.

Lemma 4.2. Consider the pivoting strategy of Algorithm 4.1 for either choice of
absolute value. For a CSPD matrix no 2 × 2 pivots are chosen. However, each of
the cases (1), (2) and (3) that chooses a 1× 1 pivot may be selected.

Proof. The conditions that must hold for a 2× 2 pivot

E =
[
a11 ar1

ar1 arr

]
=: F + iG, |ar1| = λ,

to be selected on the first stage of the factorization are as follows:

|a11| < αλ,(4.4a)
|a11|σ < αλ2,(4.4b)
|arr| < ασ,(4.4c)

|a11||arr| < α2λ2,(4.4d)

where the fourth inequality is a consequence of the previous two (note that (4.4c)
implies σ 6= 0). Since A is CSPD, E is CSPD and so F and G are symmetric
positive definite.

Consider, first, the absolute value abs. From det(F ) = f11f22 − f2
21 > 0 and

det(G) > 0 we have the inequalities

f2
11f

2
22 > f4

21, g2
11g

2
22 > g4

21,
f2
11g

2
22 + g2

11f
2
22

2
≥ f11g22g11f22 > f2

21g
2
21,

which together imply

(f2
11 + g2

11)(f
2
22 + g2

22) > (f2
21 + g2

21)
2.

Since

abs(E) =
[√

f2
11 + g2

11

√
f2
21 + g2

21√
f2
21 + g2

21

√
f2
22 + g2

22

]
=

[
abs(a11) λ

λ abs(arr)

]
it follows that

abs(a11) abs(arr) > λ2 ≥ α2λ2,(4.5)

which shows that (4.4d) cannot hold.
Turning to the absolute value abs1, we have

abs1(a11) abs1(arr)− abs1(ar1)2 = (f11 + g11)(f22 + g22)− (|f21|+ |g21|)2
= det

(|F |+ |G|)
> 0,

where we have used the facts that if E ∈ R2×2 is symmetric positive definite then
so is |E| and that the sum of two symmetric positive definite matrices is symmetric
positive definite. Hence

abs1(a11) abs1(arr) > λ2 ≥ α2λ2,(4.6)

which shows, once again, that (4.4d) cannot hold.
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We have shown that for both choices of absolute value a 2×2 pivot is not selected
on the first stage of the factorization. In view of Lemma 2.3, the same argument
applies to each stage of the factorization.

It remains to show that cases (1), (2) and (3) in Algorithm 4.1 can all be selected.
We give examples for real, symmetric positive definite matrices A, from which
corresponding CSPD examples can be constructed for either absolute value by
taking A + iεI for suitably small ε > 0. Case (1) is selected for A = I. Case (2) is
selected for

A =

3α
4 1 0
1 4 2
0 2 4

 .

Case (3) is selected for

A =
[
1 θ
θ 2θ2

]
, θ > α−1.

We can now draw some conclusions, all of which hold for either choice of absolute
value. Lemma 4.2 shows that only 1 × 1 pivots are used by the Bunch–Kaufman
pivoting strategy when applied to a CSPD matrix, so that D is diagonal, but that
interchanges may nevertheless be performed. We see that block LDLT factorization
therefore essentially produces the LU factorization of a permuted matrix PAPT ,
with DLT equal to the U factor, because of the uniqueness of the LU factorization
shown in Lemma 2.2. Since PAPT is a CSPD matrix if A is, it follows that
the growth factor bound ρn < 2 holds; this bound is much stronger than the
bound3 ρn ≤ (2.57)n−1 available for the Bunch–Kaufman pivoting strategy applied
to general complex symmetric matrices [2].

We can also conclude that when the Bunch–Kaufman pivoting strategy is used
with a banded CSPD matrix, the bandwidth may not be preserved, and it is easy
to generate illustrative examples empirically.

Finally, we mention that Sorensen and Van Loan [5, Section 5.3.2] suggest mod-
ifying Algorithm 4.1 by redefining σ := ‖A(:, r)‖∞. Their reasoning is that this
modification does not affect any of the main properties of the algorithm (the growth
factor bound and error analysis remain unchanged, for example), but for (real) sym-
metric positive definite matrices the modified strategy results in no interchanges
being made. It is easy to show that, with this modification, no interchanges are
made for CSPD matrices either.

References

[1] E. Anderson, Z. Bai, C. H. Bischof, J. W. Demmel, J. J. Dongarra, J. J. Du Croz, A. Green-
baum, S. J. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen, LAPACK users’
guide, Release 2.0, second ed., Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1995.

[2] James R. Bunch and Linda Kaufman, Some stable methods for calculating inertia and solving
symmetric linear systems, Math. Comp. 31 (1977), no. 137, 163–179. MR 55:1714

3In fact, the proofs of the bound ρn ≤ (2.57)n−1 in [2], [12, Section 10.4] are valid for the
absolute value abs only. For abs1, as used in LINPACK and LAPACK, it is not clear what is the
best bound for the growth factor.



FACTORIZING COMPLEX SYMMETRIC MATRICES 1599

[3] Jane K. Cullum and Ralph A. Willoughby, A QL procedure for computing the eigenvalues
of complex symmetric tridiagonal matrices, SIAM J. Matrix Anal. Appl. 17 (1996), no. 1,
83–109. MR 96k:65028

[4] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK users’ guide, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1979.

[5] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der Vorst, Solving
linear systems on vector and shared memory computers, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1991. MR 92a:65001

[6] Graeme Fairweather, A note on the efficient implementation of certain Padé methods for
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