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POLYNOMIALS WITH SMALL MAHLER MEASURE

MICHAEL J. MOSSINGHOFF

Abstract. We describe several searches for polynomials with integer coef-
ficients and small Mahler measure. We describe the algorithm used to test
Mahler measures. We determine all polynomials with degree at most 24 and
Mahler measure less than 1.3, test all reciprocal and antireciprocal polynomi-
als with height 1 and degree at most 40, and check certain sparse polynomials
with height 1 and degree as large as 181. We find a new limit point of Mahler
measures near 1.309, four new Salem numbers less than 1.3, and many new
polynomials with small Mahler measure. None has measure smaller than that
of Lehmer’s degree 10 polynomial.

1. Introduction

The Mahler measure of a polynomial

f(x) =
d∑

k=0

akxk = ad

d∏
k=1

(x− αk)

is

M(f) = |ad|
d∏

k=1

max{1, |αk|} = exp
(∫ 1

0

log |f(e(t))| dt

)
,

where e(t) = e2πit. The Mahler measure is clearly multiplicative, and satisfies

M(f(x)) = M(f(−x)) = M(f(xk)) = M(f∗(x))

for every k ≥ 1, where f∗(x) = xdf(1/x). We restrict our attention to polynomials
with integer coefficients. Thus M(f) ≥ 1, and a classical theorem of Kronecker
implies that M(f) = 1 if and only if f(x) is a product of cyclotomic polynomials and
the monomial x. In [9], D. H. Lehmer asks if there exist polynomials with Mahler
measure between 1 and 1 + ε for arbitrary ε > 0, and notes that the polynomial

`(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1

has M(`) = 1.1762808 . . . . Several extensive searches [4, 6, 11, 12] have failed to
find a polynomial with smaller measure.

The best general lower bound on M(f) (up to the constant c) is due to Do-
browolski [7]: if f is a noncyclotomic, irreducible polynomial of degree d > 2, then

M(f) > 1 + c

(
log log d

log d

)3

.
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A polynomial f is reciprocal if f = f∗ and antireciprocal if f = −f∗. Smyth
[13] proves that if f is a nonreciprocal, irreducible polynomial and f(x) 6= x − 1
or x, then M(f) ≥ 1.324717 . . . , the real root of x3 − x − 1 and the smallest
Pisot-Vijayaraghavan number.

The height and length of f are defined respectively by

H(f) = max
0≤k≤d

|ak| , L(f) =
d∑

k=0

|ak| .

Let Φn(x) denote the nth cyclotomic polynomial. We say a polynomial f is primi-
tive if f(x) cannot be written as g(xk) with k > 1 for some polynomial g.

This article describes some recent extensive searches for polynomials with small
Mahler measure: an exhaustive search through degree 24, a search of reciprocal
and antireciprocal polynomials with height 1 through degree 40, and a search of
certain sparse polynomials up to degree 181. Section 2 describes the algorithm
used to detect polynomials with small measure. Section 3 describes each search and
summarizes the polynomials found by each. Section 4 notes a new limit point of
Mahler measures near 1.309 and lists four new Salem numbers less than 1.3. Three
tables in the Supplement summarize the polynomials found by these searches.

2. The polynomial processor

We describe an algorithm for testing whether a given polynomial has Mahler
measure less than a prescribed bound. This algorithm is based on that used in [4]
and uses the root-squaring procedure of Graeffe to detect polynomials with large
Mahler measure quickly. We review the Graeffe algorithm. Given a polynomial f ,
let g and h be polynomials so that

f(x) = g(x2) + xh(x2)

and define

f1(x) = g(x)2 − xh(x)2.

Then the roots of f1 are precisely the squares of the roots of f , and M(f1) = M(f)2.
Let fm denote the polynomial obtained from f by iterating the Graeffe procedure
m times.

We note the following properties of the Graeffe algorithm.

Lemma 2.1. If f(x) = g(x2) + xh(x2) and L(g)2 + L(h)2 ≤ Y , then f1 can be
computed exactly using integers no larger than Y in absolute value.

Proof. Immediate from the fact that L(f1) ≤ L(g)2 + L(h)2.

Lemma 2.2. If f(x) is a polynomial, then f1(1) = f(1)f(−1). If f(x) is a recip-
rocal polynomial of even degree, then f1(−1) is a perfect square.

Proof. Let f(x) = g(x2) + xh(x2), then

f1(1) = (g(1) + h(1))(g(1)− h(1)) = f(1)f(−1).
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For the second statement, suppose deg f = 2N and N is odd. Then

g(−1) =
bN/2c∑
k=0

a2k(−1)k +
N∑

k=dN/2e
a2k(−1)k

=
bN/2c∑
k=0

a2k(−1)k +
bN/2c∑
k=0

a2N−2k(−1)N−k

= 0

since a2N−2k = a2k. Thus f1(−1) = h(−1)2. Similarly, if N is even, we find that
f1(−1) = g(−1)2.

Lemma 2.3. If f(x) is a product of cyclotomic polynomials and m > log2 deg(f),
then fm(x) = fm+1(x).

Proof. Suppose f(x) = Φn(x) and n = 2rq with q odd. Then

fm(x) =

{(
Φ2r−mq(x)

)2m

if m < r,

(Φq(x))2
r−1

if m ≥ r.

Thus fm(x) = fm+1(x) if m ≥ r. Since log2 deg(f) ≥ r − 1, the statement follows.

We describe the algorithm. Since reciprocal polynomials of odd degree are di-
visible by x + 1, we assume the given polynomial has even degree.

Algorithm 2.4. Test Mahler Measure.

Input: f , a monic, reciprocal polynomial of even degree d having integer coeffi-
cients, and M , a real number satisfying 1 < M ≤ 1.4.

Output: If 1 < M(f) < M , return M(f) and the noncyclotomic part of f .

Step 1. Root-squaring. Let an,m denote the coefficient of xn in fm(x). If M(f) ≤
M , we see from [4] that

|an,m| ≤
(

d

n

)
+

(
d− 2
n− 1

) (
M2m

+ M−2m − 2
)

(2.1)

for all m, and if in addition a1,m ≥ d− 4 and m ≥ 1, then

(2.2) |an,m| ≤
(

d

n

)
+

(
d− 4
n− 2

) (
M2m

+ M−2m − 2
)

+ 2
(
M2m−1

+ M−2m−1 − 2
)((

d− 4
n− 3

)
+

(
d− 4
n− 1

))
.

In [4], this latter inequality requires that fm have no negative real roots, but the
proof requires only that any negative real roots have multiplicity greater than 1.
This is assured by the condition m ≥ 1.

We perform the root-squaring procedure at most m0 times, rejecting the poly-
nomial if at any stage the appropriate inequality (2.1) or (2.2) is not satisfied. The
parameter m0 is selected to minimize the total computation time. If m0 is too small,
Step 1 passes too many polynomials with M(f) > M , invoking Steps 2 and 3 much
more often. On the other hand, the an,m are computed using exact arithmetic,
and in general an,m+1 has about twice as many digits as an,m. Thus, selecting m0

too large greatly increases the time required in Step 1. We set m0 = 10 in the
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exhaustive search and the height 1 search, and m0 = 12 in the sparse polynomial
search.

For small values of m, we store the an,m as double-precision, floating-point num-
bers. This allows us to use the fast arithmetic of the hardware to compute several
of the fm. Once the an,m require more than 53 bits of precision, we switch to a big
integer representation implemented in software. Because the algorithm typically re-
jects many polynomials after only a few iterations of the root-squaring procedure,
this strategy saves a considerable amount of time. We determine when to switch to
the big integer representation using the criterion of Lemma 2.1 with Y = 253 − 1.

Let m1 denote the number of root-squaring operations performed on f using
the hardware’s arithmetic. For m ≤ m1, if fm(−1) = 0, we remove all factors of
x + 1 from fm(x). Assume then that fm(−1) 6= 0 for m ≤ m1. Set s0 = f(1) and
t0 = f(−1), and for 1 ≤ m ≤ m1, let sm = sm−1tm−1 and tm = (fm(−1))1/2. By
Lemma 2.2, a prime p divides fm(1) if and only if p divides sm. The integer sm1 is
used in Step 2.

Finally, we reject f if we detect that fm = fm−1 for some m. We assume that
m0 > 1+ log2 d, so by Lemma 2.3 we reject all products of cyclotomic polynomials.

Step 2. Remove cyclotomic factors. The smallest Mahler measure among polyno-
mials of degree at most 6 is M6 = M(x6− x4 + x3− x2 + 1) ≈ 1.401268. Because f
has a noncyclotomic factor and M < M6, we need only test f for cyclotomic factors
of degree at most d−8. The following two observations speed this test. Both make
use of fm1(x), the last polynomial computed using the hardware’s arithmetic in
Step 1.

First, a cyclotomic factor Φn(x) of f(x), where n = 2rq with q odd, stabilizes
as a factor Φq(x) with multiplicity 2r−1 of fm(x) when m ≥ r. Thus, for each odd
integer q with ϕ(q) ≤ d− 8, we test whether Φq(x) divides fm1(x). If it does not,
we conclude that Φ2rq(x) with r ≤ m1 does not divide f(x).

Second, we avoid this trial division whenever Φq(1) does not divide fm1(1). Since

Φn(1) =


0 if n = 1,

p if n = pr, p a prime,
1 otherwise,

it suffices to check if Φq(1) divides sm1 .
After the cyclotomic factors of f are removed, we check if f is among the known

polynomials with M(f) ≤ M . These polynomials are stored in a binary tree to
facilitate this check. If f is new, we continue with Step 3.

Step 3. Compute Mahler measure. We first compute an approximation to M(f)
using Bairstow’s method [14] for finding roots of polynomials. We implement this
procedure using hardware arithmetic and exploit the fact that f is reciprocal, so
this test is quite fast. If the estimated value of M(f) is less than M + δ, with δ a
specified positive tolerance, we pass f to a more accurate procedure for computing
M(f). The software packages PARI and Maple are used to compute M(f) in this
second stage.

We omit the preliminary estimate of M(f) when testing polynomials of large
degree in the sparse polynomial search.



POLYNOMIALS WITH SMALL MAHLER MEASURE 1701

3. Searches

Three sets of polynomials were tested with Algorithm 2.4: a set containing all
polynomials of a given degree with measure less than M , reciprocal and antirecip-
rocal polynomials with height 1, and polynomials with height 1 and a fixed number
of nonzero coefficients. A fourth set of polynomials checked using Algorithm 2.4 is
described in [11].

3.1. Exhaustive Search. In [4, p. 1369], Boyd describes a method for finding all
reciprocal polynomials of a given even degree d with Mahler measure less than a
given bound. In [4] and [6], Boyd uses this procedure to find all polynomials of
degree d ≤ 20 having Mahler measure less than 1.3. We use this same method to
extend the exhaustive search through degree 24. We find 48 primitive, irreducible,
noncyclotomic polynomials with Mahler measure less than 1.3 of degree 22 and 46
such polynomials of degree 24. These are precisely the polynomials of degrees 22
and 24 in [6] that were found in Boyd’s height 1 search.

Extending this search to degree 24 involved testing about 9.8 billion polynomials
and required approximately 15 days of computer time on an Intel Pentium 120.

3.2. Height 1 Search. Suppose f is an irreducible polynomial of degree d. Corol-
lary 2 of [1] shows that for any positive integer L there exists a polynomial g such
that deg g ≤ L and

L logH(fg) ≤ (d + L− 1) logM(f) +
d

2
log

(
d + L

4

)
+

3d

4
.

Suppose M(f) ≤ M < 2, and choose L so large that

(d + L− 1) log M(f) +
d

2
log

(
d + L

4

)
+

3d

4
< L log 2.(3.1)

Then there exists a polynomial g with deg g ≤ L and H(fg) = 1. We call such a g
a mollifier of f .

Note that (3.1) implies a mollifier of f exists with degree O(d log d/ log(2/M)),
and we may compute an explicit bound on the degree in specific cases. For example,
if there exists a polynomial of degree 26 with Mahler measure less than 1.1762808,
then it is a factor of a polynomial with height 1 and degree at most 161.

In [4], Boyd remarks that if f is a polynomial with small Mahler measure, a
mollifier g of f seems to exist with M(g) = 1 and degree fairly small relative to the
degree of f . He therefore proposes searching polynomials with height 1, and in [6]
reports the results of testing reciprocal polynomials of even degree with height 1
through degree 32. We extend this search by testing all reciprocal and antireciprocal
polynomials with height 1 (the odd as well as the even degrees) through degree 40.

Note that if f(x) is a reciprocal polynomial of odd degree, then f(x)/(x+1) is a
reciprocal polynomial of even degree, so we invoke Algorithm 2.4 on f(x)/(x + 1).
Likewise, if f(x) is an antireciprocal polynomial of odd degree, we pass f(x)/(x−1)
to Algorithm 2.4, and if f(x) is an antireciprocal polynomial of even degree, we test
f(x)/(x2 − 1).

This search finds many new polynomials with Mahler measure less than 1.3,
including a number of polynomials with degree at most 32 and height greater than 1.
These polynomials are listed in Table 1. None have degree less than 30.

The search tested approximately 5 billion polynomials and required about 5.5
weeks of computation on a Pentium 120.
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Table 1. Polynomials with height > 1 and d ≤ 32 not in [6] (ν is
the number of roots outside the unit disk)

d Measure ν Half of coefficients
30 1.285530553671 4 1 0 1 1 1 1 1 2 0 1 1 0 0 0 0−1
30 1.288113357594 2 1 1 2 1 1−1−1−2−1−1 0 0 1 0 0−1
30 1.292745216074 4 1 0 1 0 1 1 0 2 0 2 0 1 1 0 2−1
30 1.295830812559 3 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3
30 1.296432383243 6 1 0 1 1 1 2 1 3 2 3 3 3 4 3 4 3
30 1.296533365392 3 1 1 1 0 0−1−1−1 0 0 1 0 0−1−1−2
30 1.296872723796 3 1 0−1 0−1 1 1 0 0−2 0 1 1 1−1−1
30 1.297599482921 3 1 1 0−1−2−2−1 0 1 2 2 1 0−1−1−1
30 1.299672830907 3 1 0−1 1 0−1 1 0−2 1 1−1 0 0 0 1

32 1.236083368052 4 1 1 1 1 0−1−1−2−1 0 0 1 1 0 0 0−1
32 1.249688298465 4 1 2 2 1 0−1−1−1 0 1 2 2 2 1 0−1−1
32 1.268321917905 2 1 1 1 1 0 0 0 0 1 1 1 1 0−1−2−3−3
32 1.268867282818 4 1 1 1 1 0−1−2−2−2−2−1−1 0 1 2 3 3
32 1.270932746058 4 1 1 1 0 0−1−1−1 0 1 2 2 2 1 0−1−1
32 1.279387162064 2 1 2 2 2 1−1−2−3−3−2−1 0 1 1 1 1 1
32 1.286650909902 6 1 0−1 1 0−2 1 1−2 1 2−2 0 2−2−1 3
32 1.287530573906 3 1 1 0−1−1−1−1 0 1 1 0−1−1−1 0 1 2
32 1.289386554481 4 1 1 1 0−1−2−1 1 2 2 0−2−3−2 0 2 3
32 1.291024122419 4 1 1 1 0−1−1−1−1−1 0 1 2 1 0−1−1−1
32 1.294553682172 4 1 1 0−1−1−1 0 1 2 2 0−2−3−2 0 2 3
32 1.294774730521 4 1 1−1−2 0 2 1−1−1 0 0 0 1 1 0−1−1
32 1.298256684864 2 1 2 3 4 4 3 2 1 0−1−2−3−3−3−3−3−3
32 1.298335890166 6 1 1 1 1 0−1−1−1−1−1−1−1−1 0 1 2 3
32 1.299312144051 4 1 1 0 0 1 1 1 1 1 1 2 2 1 1 2 2 1

3.3. Sparse Polynomial Search. The Mahler measure of a polynomial f(x, y)
in two variables is defined by

M(f(x, y)) = exp
(∫ 1

0

∫ 1

0

log |f(e(s), e(t))| ds dt

)
.(3.2)

Boyd [5] proves that the Mahler measure of a polynomial in two variables is the
limit of the Mahler measures of certain associated polynomials in one variable:

M(f(x, y)) = lim
n→∞M(f(x, xn)).

The smallest known limit points of Mahler measures arise from two-variable poly-
nomials with height 1 having at most six terms:

M(x2(y2 − 1) + x(y3 − 1) + y(y2 − 1)) = 1.255433 . . . ,

M(x2 + x(y2 + y + 1) + y2) = 1.285734 . . . ,

M(x2(y3 − 1) + x(y5 − 1) + y2(y3 − 1)) = 1.315692 . . . ,

M(x(y3 − y − 1)− (y3 + y2 + 1)) = 1.324717 . . . .

This suggests testing the Mahler measure of sparse polynomials with height 1.
We use Algorithm 2.4 to test all reciprocal and antireciprocal polynomials with a
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fixed number n of ±1 coefficients up to some maximal degree. The following table
shows the maximum degree d tested for each n ≥ 5 (reciprocal and antireciprocal
polynomials with n ≤ 4 have Mahler measure 1 or (1 +

√
5)/2).

n d
5, 6, 7 181
8, 9 131
10, 11 101
12, 13 75
14, 15 55
16, 17 47
18, 19 43

About 800 million polynomials were tested, requiring about three months of
computation on Pentium and DEC Alpha computers.

This search found every previously known polynomial with Mahler measure
less than 1.3, including all the polynomials found in the two previously described
searches, as well as those found in [11]. It also found several polynomials with
measure less than 1.3 that are not obviously associated with any of the known limit
points of measures (including the new limit point described in the next section).
The largest degree among these sporadic polynomials is 106; the smallest measure
is about 1.239861, the 64th smallest Mahler measure greater than 1 known. (This
polynomial appears in the list of smallest known Mahler measures in the Supple-
ment.)

All but three of the polynomials with Mahler measure less than 1.3 were found
in searches with n ≤ 12. Using lattice reduction to search for sparse reciprocal or
antireciprocal multiples of these three exceptional polynomials, we find that one is
a factor of the polynomial

x78 − x76 + x72 − x55 − x50 − x43 + x35 + x28 + x23 − x6 + x2 − 1

with n = 12. All the auxiliary factors of this polynomial are cyclotomic. The best
cyclotomic multiples that were found of the other two have n = 14 and n = 13:

x45 − x42 + x36 − x34 − x32 + x31 − x24 + x21 − x14 + x13 + x11 − x9 + x3 − 1,

x48 + x46 + x44 − x41 − x32 − x31 + x24 − x17 − x16 − x7 + x4 + x2 + 1.

We find that the noncyclotomic part of the latter polynomial divides

x56 + x51 − x50 + x47 − x39 − x28 − x17 + x9 − x6 + x5 + 1

with n = 11, but one of the auxiliary factors is not cyclotomic (it is `(−x)). We
note that the method of [8] could be used to determine if other sparse multiples of
these polynomials exist.

4. Results

4.1. A New Limit Point. Many of the polynomials produced by these searches
have the form

(x3n−1 + 1)(xn+1 + 1) + x2n−1(x2 − x + 1).

Replacing xn with y and multiplying by x yields

f(x, y) = x2y(y + 1) + x(y4 − y2 + 1) + y2(y + 1).
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Let x = α(t) and x = β(t) be the two roots of f(x, e(t)) for any t, taking

α(t) =
1− 2 cos(4πt) +

√
(1− 2 cos(4πt))2 − 16 cos2(πt)
4 cos(πt)

e(t/2).

Since |α(t)| = 1/ |β(t)| and |α(t)| = |α(1 − t)|, we have by (3.2) and Jensen’s
formula

log M(f) = 2
∫ 1/2

0

∣∣ log |α(t)| ∣∣ dt.

Now |α(t)| = 1 on [0, t1] and [1/3, t2], where t1 = .23454 . . . and t2 = .45028 . . .
satisfy (1− 2 cos(4πt))2 = 16 cos2(πt). Computing the integral over the remaining
intervals yields M(f) = 1.309098380652328 . . . .

4.2. Small Salem Numbers. Table 2 lists four new Salem numbers less than 1.3.
Each is listed with its minimal polynomial and its rank among the 47 known Salem
numbers less than 1.3. The other 43 known small Salem numbers can be found in
[2] and [3].

Table 2. New small Salem numbers

Rank Salem number Minimal polynomial

39 1.292418657582 x40 + x37 + x35 + x33 + x31 + x29 + x26 + x24 + x22 +
x20 + x18 + x16 + x14 + x11 + x9 + x7 + x5 + x3 + 1

40 1.292900721780 x46 − x42 + x41 − x40 + x39 − x25 + x24 − x23 + x22 −
x21 + x7 − x6 + x5 − x4 + 1

43 1.296210659593 x34 + x33 + x31 − x29 − x27 − 2x26 − x23 + x22 + x21 −
x20 + x19 + x18 − x17 + x16 + x15 − x14 + x13 + x12 −
x11 − 2x8 − x7 − x5 + x3 + x + 1

46 1.298429835475 x36 +x35−x33− 2x32− 2x31−x30 +x28 +x27−x25−
x24 + x22 + x21 − x19 − x18 − x17 + x15 + x14 − x12 −
x11 + x9 + x8 − x6 − 2x5 − 2x4 − x3 + x + 1

4.3. Records and Summaries. Three tables in the Supplement at the end of
this issue summarize the results of the searches. The first lists the 64 smallest
known Mahler measures greater than 1, together with half of their coefficients and
the number of roots ν of each that lie outside the unit disk. These are all the
known Mahler measures greater than 1 and less than 1.24. The second shows the
primitive, irreducible, noncyclotomic polynomial with the smallest known Mahler
measure of a given even degree d, for 8 ≤ d ≤ 100. The third summarizes the
primitive, irreducible polynomials with measure less than 1.3 found in the searches,
classifying them by degree and the number of roots outside the unit disk.

More extensive summaries and lists of all the polynomials found with measure
less than 1.3 can be found at the author’s World Wide Web site, accessible from
the number theory web.
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