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APPLYING SIEVING TO THE COMPUTATION
OF QUADRATIC CLASS GROUPS

MICHAEL J. JACOBSON, JR.

Abstract. We present a new algorithm for computing the ideal class group
of an imaginary quadratic order which is based on the multiple polynomial
version of the quadratic sieve factoring algorithm. Although no formal analysis
is given, we conjecture that our algorithm has sub-exponential complexity, and
computational experience shows that it is significantly faster in practice than
existing algorithms.

1. Introduction

Let O∆, ∆ < 0, be the imaginary quadratic order of discriminant ∆. By Cl we
denote the class group of O∆, the factor group of all invertible O∆-ideals divided by
the subgroup of principal fractional O∆-ideals, and by h = |Cl| we denote the class
number. Equivalently, we can consider Cl as the group of equivalence classes of
positive definite binary quadratic forms of discriminant ∆ with respect to GL(2, Z).
We will freely interchange between the two models by means of the map

φ : f → a,

aX2 + bXY + cY 2 → aZ +
b +

√
∆

2
Z,

which converts a binary quadratic form of discriminant ∆ to an ideal of O∆ and
preserves the isomorphism between both definitions of the class group, i.e., f ∼ g
if and only if φ(f) ∼ φ(g).

A well-known problem in computational number theory is the computation of the
structure of the class group. More precisely, one wishes to compute the elementary
divisors of Cl, i.e., the positive integers m1, . . . , ms such that mi |mi+1 for 1 ≤ i < s
and

Cl ∼=
s⊕

i=1

Z/miZ.

Currently, the best available algorithm is due to Hafner and McCurley [11], and
has expected running time L∆(

√
2) under the assumption of the Extended Riemann

Hypothesis (ERH), where

L∆(β) = exp
(√

log |∆| log log |∆|
)β+o(1)

.
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Their algorithm is based on a factoring algorithm due to Seysen [14], in which
relations are generated by factoring random forms using trial division.

Since Hafner and McCurley’s algorithm appeared, factoring algorithms have
greatly improved in efficiency. Most of the improvements are due to replacing
trial division by sieving techniques. These new algorithms not only have better
conjectural complexities than previous algorithms, but have also enabled integers
of well over 100 decimal digits to be factored, a huge increase over the size of about
60 digits that was previously manageable.

In contrast, class group computation has lagged behind. Buchmann and Düllman
[7, 6] have proposed and implemented a more practical version of Hafner and Mc-
Curley’s algorithm. The largest discriminant for which the class group has been
computed with this algorithm has 55 decimal digits. Its class group was computed
by Düllman [6] in about 10 days on a distributed system of workstations using trial
division combined with the single large prime variant.

In this paper, we present a new algorithm for computing class groups of imagi-
nary quadratic orders. Like Hafner and McCurley’s algorithm, our algorithm is also
based on a modern factoring algorithm, namely the multiple polynomial version of
the quadratic sieve (MPQS) [15]. In the next two sections, we describe our algo-
rithm and present some computational results we have obtained using it. Finally,
we discuss some possible enhancements to our algorithm.

2. The algorithm

Our algorithm follows the same general strategy as that in [11]. We first compute
a factor base FB consisting of invertible prime ideals such that some subset of FB
generates Cl. If

(
∆
p

) ∈ {0, 1} for some prime p (where
(
x
y

)
denotes the Kronecker

symbol), then the prime ideal corresponding to p is given by

p = p(p) = pZ +
bp +

√
∆

2
Z,(1)

where 0 ≤ bp ≤ p and b2
p ≡ ∆ (mod 4p). The following well-known theorem allows

one to factor any given ideal into a distinct power product of prime ideals.

Theorem 2.1. If for some invertible ideal a = aZ + b+
√

∆
2 Z we have

N(a) =
∏

p prime

pt(p),

where by N(a) (= a) we denote the norm of a, then a is equivalent to∏
p prime

p(p)e(p)t(p),

where e(p) ∈ {−1, 1} is such that b ≡ e(p)bp (mod 2p).

Let k = |FB|. For ~v ∈ Zk, ~v = (v1, . . . , vk)T , we define

FB~v =
k∏

i=1

pvi

i ,(2)

where pi ∈ FB. We call ~v a relation if FB~v ∼ O∆, i.e., the ideal given by FB~v

is principal. Our algorithm produces a generating system A = (~v1, . . . , ~vl) of the
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relation lattice

Λ = {~v ∈ Zk | FB~v ∼ O∆}.(3)

That relation lattice is the kernel of the homomorphism

Zk → Cl,~v → FB~v.(4)

Since the classes of the ideals of FB generate the class group, it follows that the
homomorphism (4) is surjective, and we have

Cl ∼= Zk/Λ.

This implies that Λ is a k-dimensional lattice and its determinant is equal to h.
The diagonal elements which are greater than 1 in S, the Smith normal form of
A, are precisely the elementary divisors of Cl. If S = UAV, with U, V ∈ GL(k, Z),
then at very little extra cost one can compute a system of generators of Cl using
the transformation matrix U (for details see [10]).

The major difference between our approach and that of [11] is in the way the
generating system A of Λ is produced. Hafner and McCurley’s solution was to
attempt to factor randomly produced ideals over the factor base. We replace this
step by a sieve-based strategy similar to that used in the MPQS factoring algorithm.

We need one important observation in order to apply the MPQS to class group
computation. This observation is a well-known property of binary quadratic forms,
and was pointed out by Seysen [14] as a possible improvement of his factoring
algorithm. It is also used by Paulus [13] in his more general algorithm for computing
the ideal class group of a quadratic extension over a Euclidean ring.

Proposition 2.2. If a form f = aX2 + bXY + cY 2 represents an integer n, i.e.,
f(x, y) = n for some x, y ∈ Z, then there exists a form g = nX2 + b′XY + c′Y 2

that is equivalent to f.

Proof. Such a form g can be constructed by solving the linear Diophantine equation

ux + vy = 1(5)

for u and v and then applying the transformation matrix[
x −v
y u

]
∈ GL(2, Z)

to f, yielding the form g = f(x, y)X2+(2(asu+ctv)+b(sv+ tu))XY +f(u, v)Y 2 =
nX2 + b′XY + c′Y 2. Since g is obtained from f via a unimodular transformation of
variables, we have f ∼ g. Note that each solution of (5) results in a different form
g, all of which are equivalent to f and have leading coefficient n.

In the MPQS, one sieves over quadratic polynomials F (X) = aX2 + bX + c
in order to find values of x for which F (x) completely factors over a finite factor
base of prime integers. In our case, we compute an ideal a as a power product
of the prime ideals in our factor base FB and sieve over the corresponding form
f = φ−1(a) in order to find values of x such that f(x, 1) = n completely factors
over the norms of the prime ideals in our factor base. For each such value x, we
compute a form g = nX2 + b′XY + c′Y 2 ∼ f using Proposition 2.2 and the ideal
b = φ(g). Since we know the factorization of N(b) = n, we can easily compute the
factorization of b into prime ideals using Theorem 2.1. Finally, since we also know
that a ∼ b (because f ∼ g), ba−1 is principal, and if a = FB~e and b = FB~v for
~e, ~v ∈ Zk, then the vector ~v − ~e is a relation.
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We now describe our algorithm in detail. We compute a factor base FB consist-
ing of the k invertible prime ideals of smallest norm. Let pmax = pk be the ideal in
FB with the largest norm, and let pmax = N(pmax). A theorem of Bach [2] tells us
that in order to ensure that our factor base contains a generating system of Cl (as-
suming ERH) we need pmax > 6 log2|∆| if ∆ is fundamental and pmax > 12 log2|∆|
otherwise. Since the linear algebra step in our algorithm is rather expensive, we
allow the possibility of using a smaller factor base. In this case, we have to test
whether the prime ideals not in the factor base with norms less than 6 log2|∆|
(12 log2|∆|) are contained in the group generated by the prime ideals in the factor
base. To check this, as pointed out in [8], it is sufficient to find a principal ideal of
the form

p(p)±1FB~v,(6)

~v ∈ Zk, for each prime p such that pmax < p ≤ 6 log2|∆| (12 log2|∆|) and
(
∆
p

) ∈
{0, 1}. For each such p we compute

a = p(p)e0FB~e,(7)

where e0 = ±1 and the exponent vector ~e ∈ {−1, 0, 1}k is selected such that

N(a) ≈
√|∆|
M

,

where M is the radius of our sieving interval, i.e., each application of sieving will
be performed over the interval (−M, M). We set f = φ−1(a) and sieve f(X, 1) over
(−M, M) using the norms of the prime ideals in FB as potential divisors. If we
find some x ∈ (−M, M) such that f(x, 1) factors completely over the norms of the
ideals in FB, we know that some ideal of the form (6) exists and p is generated
by the ideals in FB. Otherwise, we select another ideal a and try again. If after
several attempts we are still unable to show that p(p) is generated by FB, we add
this ideal to FB.

At the moment, we select k from a precomputed list of values which were found
to be optimal for the MPQS factoring algorithm implemented in the LiDIA system
[4], and the sieve radius is computed using the rule of thumb M = 4 × pmax.
Experimental results [12] seem to indicate that the prime ideals of norm less than
12 log|∆| generate the class group in most cases, and that on average 0.7 log|∆| is
a sufficient bound, so if pmax ≈ log|∆| we will probably have a complete generating
system.

During the generation of the factor base, we also compute a value h∗ such that
the class number is guaranteed (again assuming ERH) to lie in the interval (h∗

2 , h∗).
We first compute L (1, χ∆), an estimate of L (1, χ∆) , via an average of truncated
Euler products (see Bach [3]), such that

|L (1, χ∆)− L (1, χ∆)| <
√

2.

Then, from the analytic class number formula,

h∗ =

√
2 |∆|
π

L (1, χ∆)(8)

serves our purpose (see [10] for a proof).
At this point, our algorithm diverges somewhat from the algorithm in [11] and

more closely follows the MPQS. Again, we set M to be the radius of our sieving
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interval. We select some value of k0 < k and compute an ideal a such that

a = FB~e(9)

where the exponent vector ~e ∈ {−1, 0, 1}k is selected such that ei = 0 for k0 < i ≤ k
and

N(a) ≈
√|∆|
M

.

This is similar to the self-initializing variant of the MPQS, where one computes a
polynomial whose leading coefficient is of the same size as N(a) and is also a square-
free product of small primes. In the same way as in Buchmann and Düllman’s
algorithm [7, 6], selecting k0 < k encourages the relation matrix to be sparse for
the rows k0 to k (see [7, 6]). We select k0 = k/50, a somewhat larger value than
that suggested in [7, 6], since our exponents are selected from a smaller set and we
want to ensure that there are sufficiently many possible exponent vectors to choose
from. Now set f = φ−1(a) = aX2 + bXY + cY 2, F (X) = f(X, 1) = aX2 + bX + c,
and sieve F (X) over the interval (−M, M) using the norms of the prime ideals in
FB as potential divisors. If for some x ∈ (−M, M) and integers wi, 1 ≤ i ≤ k, we
have

F (x) =
k∏

i=1

N(pi)wi = n,

then f represents n at (x, 1) and we can apply Proposition 2.2 to compute a form
g = nX2 + b′XY + c′Y 2 ∼ f and an ideal b = φ(g) with N(b) = n. Since we
know the factorization of N(b), we can apply Theorem 2.1 to compute exponents
wi = ±wi such that

b = FB ~w(10)

is the complete factorization of b over FB. Finally, since a ∼ b, we have

ba−1 = FB ~wFB−~e = FB ~w−~e ∼ O∆,

and the vector ~v = ~w − ~e is a relation. We add this relation to the relation matrix
A, our potential generating system of the relation lattice Λ.

We continue to produce relations until we have at least |FB| + c of them for
some small constant c (we found c = 20 was normally sufficient). Since we want
the relation matrix to be non-singular, it is necessary that each prime ideal in FB
be represented in at least one relation. This is by no means a guarantee that the
matrix will be non-singular, but it seems to work well in practice. For each pj ∈ FB

such that vj = 0 for all relations ~v ∈ A, we compute an ideal a as in (9), except
here we force ej = ±1. We also select ei from {−1, 0, 1} for all i ≤ k, i 6= j, since
usually only a small number of relations are generated in this step and the overall
sparseness of the matrix is not greatly affected. We execute the sieving step on a as
before and add to A the first relation ~v that we find which has vj 6= 0. We repeat
this step for each such pj until every ideal in FB is represented in a relation.

The rest of the algorithm follows very closely that of [11]. We compute the
Hermite normal form of the relation matrix A, and if detA = 0 or detA > h∗,
we compute a few more relations (we used 20 here). When 0 < detA < h∗, we
know that A = A is a complete generating system of Λ. We compute S, the Smith
normal form of A, and the diagonal elements of S which are greater than 1 are the
elementary divisors of Cl.
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We summarize our method in the following algorithm.

Algorithm 2.1.
Input: ∆ < 0 (the discriminant of O∆), M, k0, and k as described above.

Output: m1, . . . , ms, the elementary divisors of Cl.

1. Set A = (). Compute h∗ from (8). Compute FB as above such that |FB| = k,

and set pmax = N(pk). If pmax > 12 log2|∆| (6 log2|∆| if ∆ is fundamental),
go to Step 3.

2. For each p such that pmax < N(p) ≤ 12 log2|∆| (6 log2|∆| if ∆ is fundamental):
(a) Compute a as in (7).
(b) Set f = φ−1(a) and sieve f(X, 1) over (−M, M). If there is no x ∈

(−M, M) such that f(x, 1) factors completely over the norms of the ideals
in FB, go to Step 2a. If we have tried 1000 different ideals without
success, add p to FB.

3. Compute ~e ∈ {−1, 0, 1}k and a as in (9).
4. Set f = φ−1(a), F (X) = f(X, 1). Sieve F (X) over (−M, M).
5. For each x ∈ (−M, M) such that F (x) completely factors over the norms of

the prime ideals in FB :
(a) Compute the exponents wi such that F (x) =

∏k
i=1 N(pi)wi .

(b) Solve ux + v = 1.
(c) Compute g by applying the transformation matrix

[
x −v
1 u

]
to f. Compute

b = φ(g).
(d) Compute ~w such that wi = ±wi and b = FB ~w, using Theorem 2.1.
(e) Set A = (A,~v), where ~v = ~w − ~e.

6. If the number of relations we have computed is less than |FB| + 20, go to
Step 3.

7. For each pj ∈ FB such that vj = 0 for all relations ~v ∈ A, execute Step 3 to
Step 5e. Force ej = 1 in Step 3 and exit Step 5 after the first relation ~v with
vj 6= 0 is found.

8. Compute the Hermite normal form of A and set h = detA. If h = 0 or h > h∗,
execute Step 3 to Step 5e until 20 more relations have been found, and repeat
Step 8.

9. Compute S, the Smith normal form of A, and return the diagonal elements
of S that are greater than 1.

As stated above, the parameters M, k0, and k are selected based on knowledge
and experience from other algorithms. It is probable that further experiments will
enable us to find optimal values for our algorithm. In particular, since the linear
algebra step of our algorithm is somewhat more difficult than that of factoring
algorithms, it is likely that a slightly smaller factor base will turn out to be optimal.

If we ensure that the factor base and sieve radius have sub-exponential size,
then it is reasonable to expect that we can generate O(|FB|) relations in about
the same time as the MPQS, since these parts of the algorithms are so similar.
However, since the relations are generated by a process which is not completely
random, it is not clear to us how to analyze the probability that a new relation lies
outside the current relation lattice. Thus, we are unable to compute the expected
number of relations required to generate a relation matrix with full rank, and a
complete analysis of our algorithm eludes us.
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3. Computational results

We have implemented most of our algorithm as part of the LiDIA system, which
is currently being developed at the Technische Hochschule Darmstadt [4]. The
Hermite normal form computations were done by Patrick Theobald using special
techniques which exploit the sparseness of the relation matrices and are not yet
implemented in LiDIA.

We present the results of applying our algorithm to compute the class groups
of four imaginary quadratic orders with various size discriminants. Table 1 gives
the discriminant, factorization of the discriminant (computed from a system of
generators of the class group), class number, and elementary divisors of the class
group for each of these orders. The number in parenthesis after the discriminant
is the number of decimal digits. The class group is presented as [m1 m2 . . . ms],
where the mi are the elementary divisors.

Table 1. Class groups of some imaginary quadratic orders

∆1 −4× F7 = 4× (227
+ 1) (40)

= −1× 22 × 59649589127497217× 5704689200685129054721
h 17787144930223461408
Cl [2 8893572465111730704]
∆2 −(4× 1054 + 4) (55)

= −1× 22 × 101× 109× 9901× 153469× 999999000001× 597795771563/
34533866654838281

h 1056175002108254379317829632
Cl [2 2 2 2 2 33005468815882949353682176]
∆3 −56759029509462061499204078404947821190422701840487390196283 (59)

= −1× 235942923943814840172714410183× 2405625418246410575130433/
26701

h 34708563502858399116135176220
Cl [34708563502858399116135176220]
∆4 −(4× 1064 + 4) (65)

= −1× 22 × 1265011073× 15343168188889137818369× 515217525265213/
267447869906815873

h 178397819605839608466892693850112
Cl [4 4 11149863725364975529180793365632]
∆5 −46952046735522451306774137871578512166228058934334430430/

26971349460603 (70)
h ???
Cl ???

Table 2 contains some of the run-time statistics collected during the generation
of the relation matrices. Here, k, k0, and M are as defined above, “# rels” is
the number of relations computed, “# forms” is the number of forms which were
generated in Step 3 of Algorithm 2.1, t2 is the CPU time in minutes required by
Step 2 (if required), tL is the is the total CPU time in minutes required to generate
the relation matrix, i.e., Steps 1 to 6 in Algorithm 2.1, and “time” is the total CPU
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Table 2. Run-time statistics

∆ k k0 pmax # rels M # forms t2 tL time
∆1 1000 20 17389 1058 69556 480 4.15 5.75 7.95
∆2 4100 82 83459 4254 333836 5503 12.15 108.20 532.24
∆3 5500 110 117577 5685 470308 16255 - 315.75 2338.28
∆4 7300 146 157243 7579 628972 27369 - 855.05 6457.28
∆5 8800 176 194771 9041 779084 143678 - 5007.42 ?

time in minutes required by Algorithm 2.1. The computations were all carried out
on a SPARC-ultra computer.

We knew beforehand that all of our discriminants were fundamental, so we were
able to use the upper bound 6 log2|∆| in Step 2. For discriminants ∆1 and ∆2,
the factor bases used did not contain all the prime ideals with norms less than this
bound, so it was necessary to execute Step 2.

∆2 is the 55-digit discriminant for which the class group of its corresponding
imaginary quadratic order was computed by Buchmann and Düllman [6]. Not only
were we able to compute this class group in a fraction of the time they needed
using a single computer without large prime variation, but we were also able to
compute class groups for two significantly larger discriminants. In addition, we
have computed a relation matrix for ∆5, a 70-digit discriminant, but so far we have
been unable to finish the Hermite normal form computation.

4. Conclusion

One obvious improvement to our algorithm is to incorporate a large prime or
double large prime strategy in a similar fashion to the MPQS. In factoring algo-
rithms, it is sufficient to find a set of partial relations (f(x) factors completely over
the factor base except for one or two slightly larger primes) such that when these
partial relations are combined (multiplied together), the exponents of the large
primes in the combined relation are all even. In our case, a partial relation consists
of a principal ideal which completely factors over our factor base except for one or
two prime ideals of slightly larger norms than the prime ideals in the factor base.
These large prime ideals may have exponents of +1 or −1 (see Theorem 2.1). We
want to find a product of principal ideals represented by partial relations (or their
inverses) such that the exponents of the large prime ideals actually cancel, and we
are left with a principal ideal which completely factors over the factor base. Buch-
mann and Düllman [6] showed how a single large prime strategy can effectively be
used, and it should not be a problem to extend their method to handle two large
primes.

Our algorithm should also be very effective in computing class groups of real
quadratic orders. For each relation ~v one would also have to compute a minimum
α such that FB~v ∼ (α). Then, the methods described in [5], [9], and [1] can be
applied directly. Further experiments are currently underway in these directions.
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France), Lecture Notes in Computer Sci., vol. 1122, Springer-Verlag, Berlin, 1996, pp. 243–257.
MR 98e:11143

14. M. Seysen, A probabilistic factorization algorithm with quadratic forms of negative discrimi-
nant, Math. Comp. 48 (1987), 757–780. MR 88d:11129

15. R.D. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987), 329–339.
MR 88c:11079

Technische Universität Darmstadt, FB Informatik, Institut für theoretische Infor-

matik, Alexanderstr. 10, 64283 Darmstadt, Germany

E-mail address: jacobs@cdc.informatik.tu-darmstadt.de


