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NON-REFLECTING BOUNDARY CONDITIONS
FOR WAVEGUIDES

A. BENDALI AND PH. GUILLAUME

Abstract. New non-reflecting boundary conditions are introduced for the
solution of the Helmholtz equation in a waveguide. These boundary condi-
tions are perfectly transparent for all propagating modes. They do not require
the determination of these propagating modes but only their propagation con-
stants. A quasi-local form of these boundary conditions is well suited as termi-
nating boundary condition beyond finite element meshes. Related convergence
properties to the exact solution and optimal error estimates are established.

1. Introduction

We consider time-harmonic scalar waves propagating in a domain extending to
infinity. The unbounded regions of this domain consist of semi-bounded waveguides.
For this type of domain, any standard solution procedure is based more or less
explicitly on the characterization of the guided part of the wave from some special
solutions called modes of the waveguide. Each mode is expressed in terms of an
eigenfunction of a related boundary-value problem set on a fixed waveguide cross-
section S. When the governing equation for the propagation is the Helmholtz
equation, the eigenfunction problem is relative to the transverse Laplacian in the
interior of S endowed with the boundary condition involved in the complete domain.
Truncating the infinite part of the waveguide beyond S leads straightforwardly to
a boundary condition on S involving these modes. This expression is nothing
else but an explicit writing of the Dirichlet-to-Neumann operator, which is made
possible by a separation of variables. This is the so-called Steklov-Poincaré or
Calderòn operator. It is well known that it is not generally easy to handle such
an operator from a numerical standpoint. When dealing with Steklov-Poincaré
operators, the difficulty stems from their so-called non-local character. Here, this
non-local character comes from the fact that any function with a compact support in
S is mapped in a function whose support is S. Another difficulty in the numerical
approximation of the present boundary condition stems from the fact that “the
propagation in a waveguide can be multimodal and dispersive” [29]. Hence, great
care has to be paid to obtain effective numerical schemes to approximate the non-
local boundary condition (cf. [29]). Several methods have already been proposed.
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The most direct and natural approach consists in using a truncated expansion
of the trace of the solution on section S in terms of previous eigenfunctions, the
unknowns therein being the level of each mode, as in the mode-matching methods
(cf. e.g. [31], [26]). Goldstein [14] and later Lenoir and Tounsi [23] have improved
this approach. Once the continuous problem is discretized by a finite element
method, the improvement gained by their method lies in the fact that only nodal
values remain as degrees of freedom. However, both methods have two flaws. They
require the determination of the eigenfunctions, and the non-local character of the
boundary condition remains present in the numerical scheme: all degrees of freedom
relative to S are coupled together.

In the context of free wave propagation in unbounded domains, Engquist and
Majda [12] introduced a local boundary condition to accurately terminate the do-
main of computation. This condition approximates the theoretical non-local one
for waves propagating in directions close to the normal to the boundary. A few
years later, Higdon [20] generalized their approach by introducing a higher order
boundary operator which can absorb waves propagating in a half space at almost
all angles of incidence. Higdon’s method was adapted later to numerical modeling
of microstrips in [8]. The approximate boundary condition involves a differential
operator of order N , the number of modes propagating within the waveguide. The
idea of considering higher order boundary operators has already been suggested in
[14] following the pioneered work of Bayliss and Turkel [2] dealing with the con-
struction of absorbing boundary conditions for the two-dimensional wave equation
in an exterior domain. Unfortunately, numerical approximation of these boundary
conditions by a finite difference or finite element scheme is rather unpractical when
N is greater than two. Recently an absorbing layer which perfectly matches any
outgoing wave has been introduced by Berenger [5]. Particularly efficient in exte-
rior domains, this method has been tested successfully for waveguides (cf. [27]).
However, it seems that this approach fails when the waveguide is fed through pre-
scribed incident modes, since the layer is designed only to absorb outgoing waves.
Furthermore, it is not clear that such an approach can be adequately used in the
frequency domain in conjunction with a finite element approximation, since it does
not lead to a natural variational formulation. Finally, it was reported recently in
[32] that the PML method is ineffective in absorbing evanescent waves.

The boundary condition which we propose uses a rational approximation of the
Steklov-Poincaré operator, involving only the eigenvalues of the transverse Lapla-
cian. Thus, eigenmodes are needed only if they are used to feed the waveguide or
if reflection coefficients have to be calculated. This is an important feature of the
present approach, since modes propagating with the same phase velocity need not
be distinguished.

Although Padé approximations of the Steklov-Poincaré operator symbol have
been considered for a long time [12], they have apparently not been used for wave-
guides yet. Previous derivations of absorbing boundary conditions use an approxi-
mation of this symbol either locally or globally, depending on the desired properties
of the resulting scheme [12], [13], [20], [19]. In the present case, the approximation
process is based rather on an interpolation of this symbol. In another context, a
similar approach has been adopted by Bayliss and Turkel [2] to write out a hierarchy
of boundary conditions which annihilates successive terms in the Wilcox expansion
of any solution to the two-dimensional wave equation in an exterior domain.
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The boundary condition that we propose is an extension of a Fourier-Robin
condition valid for one propagating mode, which has been used for a long time
in electrical engineering calculations [21]. Though non-local, we call it a quasi-
local boundary condition because the resulting boundary-value system involves only
local (that is, differential) operators when some adequate auxiliary unknowns join
the formulation. This idea of considering auxiliary unknowns to deal only with
differential operators seems to go back to Lindman (cf. [24]).

The quasi-local boundary condition is expressed in terms of partial derivatives
of order no more than two. Accordingly, its effective numerical approximation can
be performed through standard low order finite element schemes. It is perfectly
transparent for the propagating modes, that is, it has the same effect on the propa-
gating modes as the exact boundary condition. This property is stronger than low
reflecting, because incident waves propagate through the boundary without pertur-
bation. Although some auxiliary functions are introduced, a lumping process makes
it possible to keep only the nodal values of the solution as unknowns in the dis-
crete problem. The matrix of the resulting linear system remains sparse everywhere
and can be obtained through a standard assembly process. Numerical experiments
confirm that the method is capable of effectively solving various problems in wave-
guides. They show a very low-level reflection of the incident wave, comparable to
the one found by using Berenger’s perfectly matched layer in the solution of the
problem by a finite-difference time-domain method [27].

A quasi-local boundary condition generating no reflection of the first N propa-
gating modes can be written by adjusting N coefficients. Introducing an additional
coefficient permits us to control the stability of the related boundary-value problem.
As a result, we will be able to prove that the discrete problem is uniquely solvable
and to give optimal error estimates as well. However, numerical experiments in-
dicate that the quasi-local condition with only N coefficients, which results in a
reduction of one auxiliary unknown function, is almost as accurate as the condition
with N + 1 coefficients, a feature which will be studied elsewhere. Similarly, we
found that the method still gives accurate results when the quasi-local boundary
condition is designed for N propagating or evanescent modes. Numerical experi-
ments show that taking non-propagating modes into account results in substantially
reducing the amount of calculation, since only a small part of the waveguide is suf-
ficient to get great accuracy. Hence, even in the most usual case where there is
only one propagating mode, the quasi-local boundary condition can be advanta-
geously used to improve the accuracy without a significant growth in the amount
of calculation.

The outline of this paper is as follows. The mathematical background is in-
troduced in section 2. A general boundary condition generating no reflection for
propagating modes is studied in section 3, and exponential convergence to the ex-
act solution is proved. Stability and regularity results are given in section 4. The
construction of the quasi-local boundary condition is detailed in section 5. Next
the convergence of the finite-element method is established. In a final section, we
give an account of some numerical experiments.

2. General framework

In this section, a model boundary-value problem involving the Helmholtz equa-
tion in a perturbed semi-infinite waveguide Ω′ ⊂ Rd is stated. The boundary



126 A. BENDALI AND PH. GUILLAUME

S
−ν

Ω

y

x

G

Figure 1. A semi-infinite waveguide

condition which we consider is either the Dirichlet or the Neumann boundary con-
dition, since these cases provide the most representative situations for this class
of problems. Junctions of several waveguides could be treated in the same way.
More general (scalar) operators and boundary conditions could be treated by sim-
ply adapting the notation, provided that they rely upon a self-adjoint operator in
L2(Ω′) .

First, some notation is introduced. Then some known results on the exact non-
reflecting condition are recalled.

2.1. Notation. The geometry of a semi-infinite perturbed waveguide (see figure
1) is described through the following data:

- a number ν > 0,
- an open bounded domain S of Rd−1, d = 2, 3, whose boundary ∂S is of class

C∞,
- the cylinder G = ]− ν, +∞[ ×S,
- an open bounded set Ω of Rd such that

Ω ∩ {(x, y) ∈ R× Rd−1; −ν ≤ x} = [−ν, 0[ ×S.

The perturbed semi-finite waveguide then can be described through Ω′ := Ω∪G.
Its closure Ω

′
is assumed to be a C∞-manifold imbedded in Rd whose boundary is

denoted by Γ. n is the unit normal to Γ outwardly directed to Ω′, and ∂n is the
related normal derivative to Γ.

A generic point in Ω′ is designated by (x, y) with x ∈ R and y ∈ Rd−1.
Standard notation and function spaces from the theory of partial differential

equations are used without further comment (cf. e.g., [25], [30], [9]).
We denote by λ2

n, n ≥ 1, the eigenvalues of the transverse Laplacian relative to
either the Dirichlet or the Neumann boundary condition on ∂S. The eigenvalues
are counted with their order of multiplicity and increasingly ordered, 0 ≤ λ1 ≤ λ2 ≤
. . . ≤ λn ≤ . . . , in such a way that each of them corresponds to an eigenfunction
en: {

−∆S en = λ2
n en in S,

en = 0 or ∂nen = 0 on ∂S,
(1)
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and {en}n≥1 defines an orthonormal Hilbert basis of L2(S). We denote by ∆S =∑d−1
i=1 ∂2

yi
the transverse Laplacian relative to a function defined on S.

Let k > 0 be the wavenumber involved in the problem. The constant of propa-
gation kn related to the nth mode is given by

kn =
√

k2 − λ2
n,

the determination of the square root being fixed by
√
−1 = i. We assume that k

does not correspond to a cut-off frequency, that is,

kn 6= 0, for n ≥ 1.

The guided modes of the waveguide G then can be made explicit by

ε±n (x, y) = en(y) e±iknx.

Waves ε−n represent incident or incoming waves whereas waves ε+
n are outgoing

waves.
The number N of modes which propagate without attenuation is defined through

the following relations:

kn =
√

k2 − λ2
n > 0, 1 ≤ n ≤ N,

ikn = −
√

λ2
n − k2 < 0, n > N.

We assume that the perturbed semi-bounded waveguide is loaded by a localized
distribution of sources modeled by a given function f in L2(Ω) as well as by an
incident wave

ui =
N∑

n=1

ui
n ε−n .

The incident wave is completely defined by the respective levels ui
n of the incident

modes ε−n . Here, we have considered an incident wave to show how to deal with
the problem in the case of a junction of waveguides.

2.2. Function spaces. For s ∈ R, the norm of the Sobolev space Hs(Ω) is
denoted by | . |s,Ω. For any open region O of Ω′, we denote by V (O) either
{u ∈ H1(O); u|Γ = 0} or H1(O), according to whether the Dirichlet or Neumann
boundary condition is considered. The associate Fréchet space Vloc is

Vloc(O) = {u ∈ L2(Ω′); ϕu ∈ V (O), ∀ϕ ∈ D(Rd)}.
The Fourier coefficients un of a function u ∈ L2(S) are defined by

un =
∫

S

u(y) en(y) dy.

For any real number s ≥ 0, the following Hilbert space Xs and its spectral norm

Xs = {u ∈ L2(S);
∑
n≥1

|λs
n un|2 < ∞},

|u|2Xs =
∑
n≥1

|λs
n un|2,

play a fundamental role. It follows from interpolation theory [25], [7] that for 0 ≤
s < 1/2 the space Xs coincides with the Sobolev space Hs(S). For 1/2 ≤ s ≤ 1 the
identification of these spaces depends on the boundary condition being considered
on Γ. For the Dirichlet boundary condition, Xs = Hs

0(S), that is, the closure
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of D(S) in Hs(S) when 1/2 < s < 1, and X1/2 = H
1/2
00 (S), a strict subspace of

H1/2(S) whose elements vanish at the boundary of S in some special sense. The
case of a Neumann boundary condition simply leads to Xs = Hs(S) (cf. [25] and
[16]).

The dual space of Xs, denoted by X−s, can be identified with the one consisting
of all sequences {un}n≥1 with complex coefficients such that

|u|2X−s :=
∑
n≥1

|λ−s
n un|2 < ∞.

Using the characterization of the spectral spaces above, we can easily show that
the usual trace operator u(x, ·) is in addition a continuous map from V (Ω) into
X1/2 for −ν ≤ x ≤ 0 and u in H1(Ω). Moreover, as we will see below in a more
general setting, this mapping is surjective and has a continuous right inverse.

2.3. Exact bounded domain formulation. Every solution u ∈ Vloc(G) of the
equation

−∆u− k2u = 0

satisfying the boundary condition considered on Γ has a unique decomposition

u(x, y) = u+(x, y) + u−(x, y),

u+(x, y) =
∑
n≥1

u+
n ε+

n (x, y),

u−(x, y) =
∑
n≥1

u−n ε−n (x, y),

with

un =
∫

S

u(0, y)en(y) dy = u+
n + u−n .

General results on regularity up to the boundary of elliptic boundary-value problems
(cf. e.g., [1], [25], etc.) show that this solution is C∞ in ]−ν,∞[× S. The outgoing
part u+ satisfies the boundary condition on S

∂nu+ (0, ·) = i
∑
n≥1

kn u+
n en.

This suggests that we should consider the pseudodifferential operator of order one

K : X1/2 −→ X−1/2,∑
n≥1

unen 7−→ i
∑
n≥1

knunen.

Furthermore, since kn 6= 0 for n ≥ 1, and kn ' iλn, K is indeed an isomorphism
from Xs onto Xs−1 for all real numbers s.

Then the problem to be solved can be stated as follows: −∆u− k2u = f in Ω,
u = 0 or ∂nu = 0 on Γ,
∂nu−Ku = ∂nui −Kui on S0,

(2)

where f and ui are respectively the given localized sources and incident wave.
It has been proved in [14] that this problem is well-posed except for an at most

countable set Λ of values of k2 with no finite accumulation point. This set Λ, which
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may be empty, is the point spectrum of the operator acting in L2(Ω′) given by
−∆ associated with the considered boundary condition on Γ [22]. We will always
assume in this paper that k2 /∈ Λ without further comment. Hence problem (2) is
well-posed. Below, we will more precisely state the stability relative to the data.

3. The approximate boundary conditions

The boundary condition in problem (2) needs the computation of the eigenfunc-
tions en to be made explicit. We introduce a new class of boundary conditions
which need only the knowledge of some of the eigenvalues λn. These boundary
conditions constitute an approximation of the exact one in that they leave each
propagating mode unchanged. We give precise details about this approximation by
estimating the error which affects the solution to the initial problem. Finally, we
see that the approximate boundary conditions can take into account incident waves
just as the exact one does.

Let R be a function defined for t ≥ 0 satisfying{
tn := R(λ2

n) > 0 ∀n ≥ 1,

lim
t→+∞

R(t)
t = a > 0.(3)

The function R plays the role of a symbol. Exactly as for the above operator K,
we can associate to the latter a pseudodifferential operator T = R(−∆S) of order
2 through

T : X1 −→ X−1,∑
n≥1

unen 7−→ i
∑
n≥1

tnunen.

Again as for the operator K, T is indeed an isomorphism from Xs onto Xs−2 for
all s, since tn 6= 0 for n ≥ 1 and tn ' aλ2

n.
For −ν ≤ L, we denote by SL the cross-section of the waveguide {(L, y); y ∈ S},

and for 0 ≤ L, we denote by ΩL the open set ΩL = Ω ∪ ([0, L[ ×S). When it is
sufficiently clear from the context, we do not distinguish between S0 and S.

The problem with the approximate boundary condition can now be stated as
follows: find u in H2(ΩL) such that −∆u− k2u = f in ΩL,

u = 0 or ∂nu = 0 on Γ,
∂nu− Tu = ∂nui − Tui on SL.

(4)

Whenever there is no risk of confusion, we do not distinguish between a function
or a distribution defined in SL and its identification, when this is possible, to an
element of Xs.

Remark. If the symbol R is chosen such that R(λ2
n) = kn for 1 ≤ n ≤ N , then the

boundary condition of (4) is transparent for all propagating modes, since ∂nu−Tu =
∂nu−Ku for any solution u in the form u =

∑N
n=1 u+

n ε+
n + ui.

Let VL be the space of v ∈ V (ΩL) such that v|SL
∈ X1 equipped with the norm

|v|VL =
(
|v|2H1(ΩL) + |v|2X1

)1/2

.

Problem (4) has the following variational formulation: find u ∈ VL such that

aL(u, v) = lL(v), ∀v ∈ VL,
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with

aL(u, v) =
∫

ΩL

(
∇u.∇v − k2u v

)
dx dy − 〈Tu, v〉−1,1 ,

lL(v) =
∫

ΩL

f v dx dy +
∫

SL

(∂nui − Tui) v dy,

where the brackets 〈·, ·〉−s,s denote the duality product between X−s and Xs.
The following theorem gives the general framework which permits us to analyze

the stability of the problem relative to the boundary conditions which are intro-
duced, and to show that the error resulting from these approximate conditions
decays exponentially as L → +∞.

Theorem 3.1. Problem (4) has one and only one solution. Let uL be the solution
to problem (4) and uE be that of problem (2). Assume that R(λ2

n) = kn for 1 ≤
n ≤ N ; then there exist two positive constants c and ρ, independent of the data f
and ui and of L, such that

|uE − uL|1,Ω ≤ ce−ρL
(
|f |0,Ω +

∣∣ui
∣∣
X1/2

)
.

Proof. Since tn > 0 for n ≥ 1, and tn ' aλ2
n, we readily get the existence of a

positive constant c such that

−i 〈Tu, u〉−1,1 =
∑
n≥1

tn|un|2 ≥ c
∑
n≥1

λ2
n|un|2 = c|u|2X1

and, as a consequence,∣∣∣∣aL(u, u ) + (1 + k2)
∫

ΩL

|u|2 dx dy

∣∣∣∣ ≥ c|u|2VL

for each u in VL. Well-posedness of problem (4) is thus a consequence of the
Fredholm alternative. Let u be such a solution with f = 0 and ui = 0. Since the
imaginary part Im(aL(u, u)) = − 〈Tu, u〉−1,1 = 0, the traces u|SL

and ∂nu are zero
on SL. Extending u by 0 beyond SL, we readily obtain that the extension is still
a solution to the Helmholtz equation in Ω′. Since the function obtained is analytic
therein, it must vanish.

To establish the error estimate, we expand the solution in G as

uL − ui =
∑
n≥1

(u+
Lneiknx +

(
u−Ln − ui

n

)
e−iknx)en(y)(5)

with ui
n = 0 for n > N . Our aim is to compare the restriction (uL)|Ω with the

solution u to problem (2). The details being similar to those given in [18], we limit
ourselves here only to the main steps in the proof.

Taking the derivative relatively to x in (5) and using the boundary condition of
problem (4), we get the following expressions for the normal derivative on SL:

∂n(uL − ui) =
∑
n≥1

ikn(u+
LneiknL −

(
u−Ln − ui

n

)
e−iknL)en(y),

=
∑
n≥1

itn(u+
LneiknL +

(
u−Ln − ui

n

)
e−iknL)en(y).

Hence,

(kn − tn)u+
LneiknL = (kn + tn)

(
u−Ln − ui

n

)
e−iknL, ∀n ≥ 1.
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Defining

dn =
kn − tn
kn + tn

and rn = kn
1− dne2iknL

1 + dne2iknL
,

we obtain the following relation on the cross-section S0 (i.e. for L = 0):

∂x(uL − ui) =
∑
n≥1

irn(u+
Ln + (u−Ln − ui

n))en(y).

Hence, the restriction (uL)|Ω of uL to the open set Ω, also denoted by uL for
simplicity, satisfies −∆uL − k2uL = f in Ω,

uL = 0 or ∂nuL = 0 on Γ,
∂nuL − TLuL = ∂nui − TLui on S0,

where TL is the continuous operator

TL : X1/2 −→ X−1/2,∑
n≥1

unen 7−→ i
∑
n≥1

rnunen.

The key point in the proof is the following. Since R(λ2
n) = kn for 1 ≤ n ≤ N , we

have |dn| = 0 for 1 ≤ n ≤ N and |dn| = 1 for n > N . Hence, rn = kn for 1 ≤ n ≤ N
and

(K − TL)u = i
∑
n>N

kn

(
2dne2iknL

1 + dne2iknL
unen

)
,

which yields

|K − TL|L(X1/2, X−1/2) ≤ c
2e2ikN+1L

1− e2ikN+1L
,

c being a constant independent of N and L.
As usual in partial differential equation theory, c will stand for any constant.
Since problem (2) is well posed and invertible elements of a Banach algebra

constitute an open set, the desired estimate holds with ρ = −2ikN+1 > 0.

4. Stability and regularity estimates

In this section, we state the stability and regularity results which will be used in
the next one.

It will be convenient to suppose here that the solution to problem (4) is suffi-
ciently close to the solution to problem (2) for L = 0. This holds for a sufficiently
large ν. Numerical computations show that a distance of one wavelength is enough.

4.1. Stability. We will use the following technical lemma in several instances.
Its proof is straightforward from standard techniques of interpolation theory and
square integrable functions valued in Hilbert spaces (cf. [25] and [16]), and hence
is omitted.

Lemma 4.1. For m = 1 or m = 2, the usual trace operator given for sufficiently
smooth functions v by v|S is bounded from Hm(Ω) ∩ V (Ω) into Xm−1/2 and has a
continuous right inverse explicitly given for v =

∑
n≥1 vnen ∈ Xm−1/2 by

v = ϕ
∑
n≥1

vnε−n ,
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where ϕ is a fixed element of C∞(Ω) such that ϕ = 1 near S and supp ϕ ⊂ ]−ν, 0]×S.
Moreover, this explicit mapping is also continuous from Xm−1/2 into Hm(Ω) for
all positive integers m. Finally, the trace given for sufficiently smooth functions v
by (∂nv)|S = (∂xv)|S defines a bounded mapping from H2(Ω) ∩ V (Ω) into X1/2.

Remark. For m > 2, the trace v|S of v ∈ Hm(Ω) ∩ V (Ω) is not necessarily in
Xm−1/2. Some additional boundary conditions must be fulfilled by v, e.g. ∆Sv = 0
on ∂S.

To establish the stability of the finite element scheme, we need the following
regularity result for the solution to the problem with the exact boundary condition,
but with data f whose support extends up to S and data g in X1/2.

Lemma 4.2. Let f ∈ L2(Ω) and g ∈ X1/2 be given. The problem
−∆u− k2u = f in Ω,
u = 0 or ∂nu = 0 on Γ,
∂nu−Ku = g on S,

(6)

has one and only one solution belonging to H2(Ω). Moreover, there exists a constant
c independent of f and g such that

|u|2,Ω ≤ c (|f |0,Ω + |g|X1/2).

Proof. Using notation similar to that of lemma 4.1, we set

v = −ϕ
∑
n≥1

gn

2ikn
ε−n .

Since kn ' iλn, this lemma yields v ∈ H2(Ω) with

|v|2,Ω ≤ c |g|X1/2 .(7)

Observing that ∂nv − Kv = g and replacing u by u − v, we prove the lemma for
g = 0.

The Fredholm alternative insures that problem (6) is uniquely solvable in V (Ω).
Extending f by zero and u by

∑
n≥1

(∫
S

u(0, y) en(y) dy
)
ε+

n beyond S, we find
that the extension satisfies a homogeneous elliptic boundary-value problem in Ω′.
The end of the proof follows from standard estimates up to the boundary for regular
elliptic boundary-value problems (cf. e.g., [1], [25], etc.).

Finally, we establish a similar regularity result for the solution to the problem
related to the approximate boundary condition.

Proposition 4.3. As in lemma 4.2, let f ∈ L2(Ω) and g ∈ X1/2 be given. The
solution u ∈ V0 of the problem −∆u− k2u = f in Ω,

u = 0 or ∂nu = 0 on Γ,
∂nu− Tu = g on S,

(8)

is in H2(Ω) with u|S ∈ X5/2 and satisfies the estimate

|u|2,Ω + |u|X5/2 ≤ c (|f |0,Ω + |g|X1/2)

with a constant c independent of f and g.
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Proof. Existence and uniqueness of a solution in V0 have already been established
in theorem 3.1. Let u1 be the solution to (6). From lemma 4.2, u1 belongs to H2(Ω)
and thus its trace on S is in X3/2.

The function v = u1 − u in turn is a solution to problem (8) with f = 0 and
g = (K − T )u1, denoted by h for clarity. Note that h is now in X−1/2 and satisfies
|h|X−1/2 ≤ c|u1|X3/2 ≤ c|u1|2,Ω. Since T is an isomorphism from Xs onto Xs−2 for
each s ∈ R and Tv = ∂nv − h, it follows that

|v|X3/2 ≤ c(|∂nv|X−1/2 + |h|X−1/2).

From ∆v + k2v = 0 and the definition of traces by transposition methods, we get
the bound |∂nv|X−1/2 ≤ c|v|1,Ω. Since problem (8) is well-posed, we get

|v|1,Ω ≤ c|h|X−1 ≤ c|h|X−1/2 ≤ c|u1|2,Ω.(9)

Gathering these inequalities and using lemma 4.1, we arrive at

|v|X3/2 ≤ c|u1|2,Ω.(10)

The function v ∈ V (Ω) is a solution to
∆v + k2v = 0 in Ω,
v = 0 or ∂nv = 0 on Γ,

v|S ∈ X3/2.

Using lemma 4.1, we can reduce the problem as above to the one with a homo-
geneous Dirichlet condition on S and a right-hand side of the partial differential
equation in L2(Ω). The geometry of the cross-section of the waveguide permits
us to extend the solution to an odd function relative to the variable x. Standard
elliptic estimates up to the boundary then give the bound

|u|2,Ω ≤ c (|f |0,Ω + |g|X1/2).

Furthermore, since T is a pseudodifferential operator of order 2, there is an extra
regularity for the trace u|S which results from the inequality

|∂nu− g|2X1/2 = |Tu|2X1/2 =
∑
n≥1

λnt2n |un|2 ≥ γ
∑
n≥1

λ5
n |un|2

with a constant γ > 0 independent of f and g. The end of the proof is then a direct
consequence of this last estimate.

4.2. Regularity of the solution. We will see now that the curvilinear edge re-
sulting from the truncation of the waveguide does not generate any flaw in the
regularity properties of the solution to the problem related to the approximate
boundary condition as long as the support of the localized sources f does not ex-
tend up to the cross-section S. It is clear that this assumption is not restrictive for
the class of problems which are considered.

Proposition 4.4. Assume that R(λ2
n) = kn for 1 ≤ n ≤ N . Let u ∈ V0 be

a solution to problem (8). For any integer m ≥ 0, if f ∈ Hm(Ω) is such that
supp f ⊂

{
(x, y) ∈ Rd; x ≤ −ν

}
and g ∈ Xm−1/2, then u ∈ Hm+2(Ω) and the

estimate

|u|m+2,Ω ≤ c (|f |m,Ω + |g|Xm−1/2)(11)
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holds with a constant c independent of f and of g. Moreover, regardless of the
regularity of f , u|S is in Xm+3/2 as soon as g is in Xm−1/2, and we have the bound

|u|Xm+3/2 ≤ c (|f |0,Ω + |g|Xm−1/2),

again with a constant c independent of f and g.

Proof. Let ϕ ∈ C∞(Ω) be such that ϕ(x, y) = 1 on ]−ν/2, 0[ × S and supp ϕ ⊂
[−ν, 0]× S. Set

v = −ϕ
∑
n≥1

gn

i(kn + tn)
ε−n

as in lemma 4.1. The function v satisfies the boundary condition ∂nv − Tv = g.
Since kn + tn ' a λ2

n, we immediately get

|v|Xm+3/2 ≤ c |g|Xm−1/2(12)

with a constant c independent of g.
It follows from lemma 4.1 that v ∈ Hm+2(Ω) with the bound

|v|m+2,Ω ≤ c |g|Xm−1/2 ,(13)

again with a constant c independent of g.
Now, consider the function w := u− v. It is the solution to −∆w − k2w = f1 in Ω,

w = 0 or ∂nw = 0 on Γ,
∂nw − Tw = 0 on S,

(14)

where f1 = f + ∆v + k2v ∈ Hm(Ω). Moreover, according to the definition of ϕ
and v, we have supp f1 ⊂

{
(x, y) ∈ Rd; x ≤ −ν/2

}
. Hence we can decompose w

for −ν/2 < x < 0 as

w = w+ + w− =
∑
n≥1

w+
n ε+

n + w−n ε−n .(15)

Thus the boundary condition satisfied by w on S can be rewritten as

∂nw −Kw = ∂nw− −Kw−.

Goldstein [14] has established that the bound

|w|m+2,Ω ≤ c (|f1|m,Ω + |w−|Xm+3/2)(16)

holds with a constant c independent of f1 and w−|S . It remains to give an estimate
of |w−|Xm+3/2 .

Taking the normal derivative in (15) and using the boundary condition in (14),
we obtain the relation

∂nw =
∑
n≥1

ikn(w+
n − w−n )en =

∑
n≥1

itn(w+
n + w−n )en,

which in turn yields

w−n = dnw+
n for n ≥ 1,(17)

with dn := (kn − tn)/(kn + tn). Note that dn = 0 for 1 ≤ n ≤ N , since then
tn = R(λ2

n) = kn, and that |dn| = 1 for n > N because then both tn and ikn are
real.
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The function w is of class C∞ on ]−ν/2, 0[ ×S, and for each fixed x in ]−ν/2, 0[
we can write

w(x, y) =
∑
n≥1

wn(x)en(y).

Using (15) and (17), we obtain for n > N

wn(x) = w+
n eiknx + w−n e−iknx(18)

= d−1
n eiknx(1 + dn e−2iknx)w−n .(19)

Hence, we can get the following bound:

|eiknxw−n | ≤
1

1− e−2ikN+1x
|wn(x)| for n ≥ 1.

The sequence iknx is positive and increasing for n > N with kn ' iλn. For each
s > 0, we have limn→∞ λ2s

n e−2iknx = 0. Thus, using (19) and the fact that trace
operator is bounded from H1(Ω) into L2(Sx), we can write

|w−|S0 |2Xs =
∑
n≥1

λ2s
n

e2iknx
| eiknxw−n |2

≤ c(x, s, N)
∑
n≥1

|wn(x)|2 = c(x, s, N)|w|Sx
|2X0

≤ c(x, s, N)|w|21,Ω.

Applying theorem 3.1 to problem (14), we get the estimate |w|1,Ω + |w|S |X1 ≤
c |f1|0,Ω, which combined with (12) and in view of the expression of f1 yields

|w−|S |2Xs ≤ c |f1|0,Ω ≤ c (|f |0,Ω + |v|2,Ω) ≤ c (|f |0,Ω + |g|X−1/2).(20)

Substituting (20) in (16) and taking s = m + 3/2 , we obtain

|u|m+2,Ω ≤ c (|f |m,Ω + |g|Xm−1/2).

The second part of the proposition has already been obtained through the previous
steps (12), (15), (17) and (20).

Remark. It is well-known (cf. e.g., [15]) that the data relative to boundary condi-
tions of different type must fulfill certain compatibility conditions for the related
solution to an elliptic boundary-value problem in order to be of optimal regularity.
Actually, these compatibility conditions are here implicit from the fact that the
data g is taken in Xm−1/2.

5. The quasi-local boundary condition

Now, we come to the main goal of this paper. We show how appropriate choices
of the function R permit us to overcome the difficulty of solving problem (2) with
a non-local boundary condition on S. Actually, the resulting boundary condition
remains non-local, but the addition of some unknown functions on S leads to a prob-
lem whose formulation involves only local (that is, differential) operators. When
only one unknown function is involved, we will see that a lumping technique permits
us to eliminate the additional unknown at the assembly process.

It is worth noting that the system to be solved depends on the wave number
k through a multiplicative term k2 and through the coefficients of a small system
described below. As a result, the computation of higher order derivatives of the
solution relative to k as described in [18] can be easily implemented.
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5.1. The effective finite-element method. For convenience, we now change the
numbering of the eigenvalues λn, counting each element of the set {λn; n ≥ 1} only
once, i.e., 0 ≤ λ1 < λ2 < · · · < λn < · · · . As a result, the construction of the
approximate boundary condition has the advantage of not requiring separation of
modes which propagate with the same phase velocity, nor even determining them.

The rational function R

R(t) = at + b +
N−1∑
j=1

cj

j + t

depends on N + 1 real parameters. It follows from classical Hermite interpolation
theory that the conditions{

R(λ2
n) = kn for 1 ≤ n ≤ N,

R′(λ2
N ) = 0(21)

uniquely determine R. The choice of the poles is arbitrary. The above analysis has
shown that the first N equations are necessary for the consistency of the resulting
boundary-value problem with the problem to be solved. The equation R′(λ2

N ) = 0
is added to carry out the requirement that R(t) be positive for t > λ2

N . For N = 2
and N = 3 some simple manipulations show that a > 0 and R(t) > 0 for all t > λ2

N .
We have not been able to prove that these last properties are still true for the next
values of N . However, we have numerically determined the function R for N = 4, 5
in many cases, the values of λn being randomly chosen. We have never observed
that either a > 0 or R(t) > 0 for t > λ2

N fails to be true. So we conjecture that these
inequalities are valid for each N and take them as assumptions in what follows.

For v ∈ X1, we can write Tv implicitly with only local operators as

Tv = i
∑
n≥1

R(λ2
n)vnen = iR(−∆S)v = i(−a∆Sv + bv +

N−1∑
j=1

cjgj),

−∆Sgj + jgj = v in S

gj = 0 or ∂ngj = 0 on ∂S,

through N − 1 auxiliary functions gj , 1 ≤ j ≤ N − 1. Hence for solving problem
(2), we are led to solve the problem

−∆u− k2u = 0 in Ω,
u = 0 or ∂nu = 0 on Γ,

∂nu− i(−a∆Su + bu +
∑N−1

j=1 cjgj)
= ∂nui − i(−a∆Sui + bui)

on S,

−∆Sgj + jgj − u = −ui in S,
gj = 0 or ∂ngj = 0 on ∂S.

(22)

The following result is a straightforward consequence of proposition 4.4.

Proposition 5.1. Problem (22) is uniquely solvable, and u is the solution to prob-
lem (2) if and only if (u, g1, · · · , gN−1) is a solution to problem (22). Moreover, if
f ∈ L2(Ω) with supp f ⊂

{
(x, y) ∈ Rd; x ≤ −ν

}
, then the functions gj are of class

C∞ on S.

For solving the discrete problem, we use the following variational formulation.
Let V = V0 ×

{
X1

}N−1 and denote by y := (u, g) a generic element of V with
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g = (g1, . . . , gN−1). The space V is equipped with the norm

|y|V =

|u|2V0
+

N−1∑
j=1

|gj |2X1

1/2

.

Then, y ∈ V is a solution to problem (22) if and only if

a(y, z) = l(z), ∀z = (v, s) ∈ V ,

where

a(y, z) =
∫

Ω

(
∇u.∇v − k2u v

)
dxdy − i

∫
S

a∇Su.∇Sv + buv +
N−1∑
j=1

cjgjv dy

+
∫

S

N−1∑
j=1

∇Sgj.∇Ssj + jgjsj − usj dy,

l(z) =
∫

Ω

f v dxdy +
∫

S

∂nui v − i(a∇Sui.∇Sv + bui v)−
N−1∑
j=1

uisj dy.

Let Th be a mesh of Ω in the general meaning of usual approximations by a finite
element method [10]. The trace of this mesh on S gives a mesh of the (d−1)-domain.
Similarly, when designing a conforming nodal finite-element method of order m to
approximate H1(Ω), we define a similar method giving an approximation of the
space H1(S). Taking into account the Dirichlet condition when it is involved, we
can define Vh ⊂ V , a finite-element space of order m, and consider the following
approximation of problem (22): find yh = (uh, gh) ∈ Vh such that

a(yh, zh) = l(zh) ∀zh = (vh, sh) ∈ Vh.(23)

As usual for simplicity, we do not take into account the consistency error coming
from the approximation of the geometry. However, this aspect does not lead to any
specific difficulty and could be treated by the usual techniques (see e.g., [4] for a
similar situation) and Bernardi’s general results [6].

The other result of this paper establishes that the discrete problem (23) is
uniquely solvable if h is taken sufficiently small, and gives an error estimate for
the solution which is effectively calculated.

Theorem 5.2. Let y be the solution to problem (22). There exists h∗ > 0 such
that for 0 < h ≤ h∗, problem (23) has a unique solution yh ∈ Vh satisfying

|y − yh|V ≤ c hm (|f |m−1,Ω + |ui|Xm+3/2)

with a constant c independent of f and ui.

Proof. General results on the numerical analysis of conforming approximations of
variational problems by a finite-element method (cf., e.g., [10], [28], and for instance
[4] for the case of the approximation of a Fredholm alternative), and the above
propositions 4.3 and 4.4 reduce the proof to checking that any solution y = (u, g) ∈
V to the coercive problem

−∆u + u = f in Ω,
u = 0 or ∂nu = 0 on Γ,
∂nu + ia∆Su = f0 on S,
−∆gj = fj on S,
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satisfies the estimates

|u|2,Ω + |u|X2 ≤ c (|f |0,Ω + |f0|X1/2),
N−1∑
j=1

|gj |X2 ≤ c
N−1∑
j=1

|fj |X0 ,

with a constant c independent of the data (f, {fj}N−1
j=0 ). Proposition 4.3 gives the

first estimate by taking Tu := −ia∆Su and substituting −1 for k2. Observe that
T in proposition 4.3 was independent of k. Estimates up to the boundary for the
solution to regular elliptic boundary-value problems complete the proof.

Abandoning now the assumption L = 0, which is simply a convenient notation,
we can summarize the results of this paper as follows.

Theorem 5.3. Let uE be the solution to problem (2), uL the solution to problem
(4), and uh,L the finite-element solution for an approximation of order m ≥ 1.
There exist four positive constants h∗, c, ρ and cL, independent of f in Hm−1(Ω),
of ui and of 0 < h < h∗, such that

|uE − uh|1,Ω ≤ (c e−ρL + cLhm)(|f |m−1,Ω + |ui|Xm+3/2)

Remark. The way that the constant cL depends on L seems to be a difficult ques-
tion. However, in view of the usual properties of coercive problems and of the fact
that the usual approximations of the Helmholtz equation give sufficient accuracy
with a fixed number of degrees of freedom by wavelength, it is reasonable to assume
that cL grows at most like L. The previous error estimate suggests taking the mesh
length h of order exp(−ρL/m). Numerical results presented in table 1 (see Section
5.3) confirm this observation.

5.2. Implementation of the finite-element method. For simplicity, we sup-
pose in this section that only two modes are propagating, i.e., in the previous
notation N = 2. We show that the additional unknown can be eliminated through
a lumping technique which preserves the sparsity of the matrix and can be imple-
mented at the element level. The same reduction can be applied when considering
more propagating modes, but then with a less obvious advantage.

Without any change in the solution, we slightly modify the variational formu-
lation of the discrete problem in such a way that the matrix of the final linear
system to be solved will be symmetric although not Hermitian. The finite element
unknown yh = (uh, gh) ∈ Vh then reads

a(yh, zh) = l(zh), ∀zh = (vh, sh) ∈ Vh,(24)

with the following notation:

a(y, z) = b(u, v) + d(v, g) + d(u, s) + c(g, s),

b(u, v) =
∫

Ω

(
∇u.∇v − k2u v

)
dx dy − i

∫
S

(a∇Su.∇Sv + buv) dy,

d(v, g) = −ic

∫
S

g v dy,

c(g, s) = ic

∫
S

(∇Sg.∇Ss + gs) dy,

l(z) =
∫

Ω

f v dx dy +
∫

S

(
∂nui v − i(a∇Sui.∇Sv + bui v)− ic ui s

)
dy.
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Let {ei}i∈I be the nodal basis of the finite element-space Vh
0 [10]. Using the

obvious notation, we decompose the set of indices I as I = IΩ ∪ IS . For i ∈ IS ,
we denote by si = (ei)|S the trace of ei on S. Standard properties of a nodal finite
element method show that {si}i∈IS

is a nodal finite element approximation X1
h of

X1 with the same order of accuracy as Vh
0 is of V0. As a result, the functions

Ei = (ei, 0), i ∈ I,

Si = (0, si), i ∈ IS ,

constitute a basis of Vh = Vh
0 ×X1

h.
Any element of Vh can be written

(uh, gh) =
∑
j∈I

ujEj +
∑
j∈IS

gjSj .

Since we are only interested in the nodal values uj , we consider another basis of Vh

which avoids the computation of the coefficients gj .
By the standard lumping process, we express the bilinear form d in an approx-

imate way by a diagonal matrix as follows: d(ej , si) = δijdi, where δij is the
Kronecker symbol. Let I ′S = {i ∈ IS ; di 6= 0}, I ′Ω = I \ I ′S , and cij = c(sj , si).
Define S′i = Si for i ∈ IS , E′

i = Ei for i ∈ I ′Ω and

E′
i =

∑
k∈I′S

cik

dk
Ek − Si, for i ∈ I ′S .(25)

Observe that cik/dk = 0 whenever nodes of respective index i and k do not belong
to the same element.

Rewriting (uh, gh) in this basis as

(uh, gh) =
∑
j∈I

u′jE
′
j +

∑
j∈IS

g′jS
′
j ,

and using the relations

a(S′j , E
′
i) = 0, for (i, j) ∈ I × IS ,

which are a consequence of the lumping technique, we get the reduced linear system∑
j∈I

a(E′
j , E

′
i)u′j = a((uh, gh), E′

i) = l(E′
i), for i ∈ I,(26)

where the unknowns g′j have been eliminated.
The coefficients of the matrix of system (26) are given by

aij = a((ej , 0), (ei, 0)) for (i, j) ∈ I ′Ω × I ′Ω,

aij = a((ej , 0), (
∑
k∈I′S

cik/dk ek,−si)) for (i, j) ∈ I ′Ω × I ′S ,

aij = a((
∑
k∈I′S

cjk/dk ek,−sj), (
∑
k∈I′S

cik/dk ek,−si)) for (i, j) ∈ I ′S × I ′S .

As already mentioned above, only a few terms in
∑

k∈I′S
ckj/dk ek are nonzero.

The remaining terms are easy to identify and to form from the connectivity of the
mesh through the assembly process at the element level. Hence, the matrix not
only remains sparse but can also be assembled in the usual way. This explains why
we have called our boundary condition quasi-local.
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Once the unknowns u′j have been computed, the coefficients uj are recovered by
uj = u′j, for j ∈ I ′Ω, and uj =

∑
k∈I′S

(ckj/dj)u′k, for j ∈ I ′S .

Remark. Usually, the lumping process is given by an approximate quadrature for-
mula on each element. This process can be seen as a nonconforming way to deal
with the exact discrete equations [11] and, at least for the coercive case, can be
tackled through a consistency estimate of the resulting approximation. In [11], it
is also established that in the coercive case the order of convergence is unaltered as
long as the quadrature formula exactly integrates polynomials of degree ≤ 2m− 2
for locally polynomial shape functions of degree ≤ m. This restricts m to be ≤ 2.
Finally, as is shown in [3] in a more difficult situation, the estimates related to
the consistency error for the coercive case remain valid for a Fredholm alternative
obtained through compact perturbation for any sufficiently small meshsize h.

5.3. Numerical results.

5.3.1. A first example. The first example deals with a two-dimensional semi-infinite
waveguide

Ω′ = R+× ]0, π[

with a homogeneous Neumann boundary condition along the boundary.
The eigenvalues are given explicitly here by

λn = (n− 1)2 for n ≥ 1.

Since the case where only one mode is propagating is well known (cf. e.g., [21]),
we consider here a wavenumber k = 1.3. In this situation, there are two modes
which propagate. The waveguide is loaded by a point source located at (0, 3π/4)
modeling a coaxial loading (Fig. 2).

The computational domain is denoted by ΩL := ]0, L[ × ]0, π[. The reference
solution uE is the restriction to Ω := Ωπ of the solution computed on Ω4π. The
solution computed on ΩL for L ≥ π is denoted by uL. The contour curves of |uπ|,
|u3π/2| and |u2π| are shown on Fig. 2. The left column corresponds to h = π/32
and the right one to h = π/48.

The relative error in decibels, 20 log10(|uL − uE |∞,Ω/|uE|∞,Ω), is given in ta-
ble 1 for different values of L and of the mesh length h. The results confirm the
exponential decay of the error with respect to L as it is theoretically predicted
in theorem 3.1. Moreover, the value of the reflected energy due to the terminat-
ing boundary condition is of the same order as the one resulting from using the
Berenger’s perfectly matched layer method [32].

Table 1. Exponential decay of the error |uL−uE|/|uE | (dB) with
respect to L

L h = π/16 h = π/32 h = π/48

0 -21.7 -23.1 -23.6
π/4 -42.7 -43.9 -44.4
π/2 -48.7 -63.1 -66.3
3π/4 -53.8 -75.8 -85.7
π -62.2 -67.3 -72.6
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Figure 2. Isovalues curves of |u| for L = 0, L = π/2 and L = π

5.3.2. A second example. The second example consists of a two-dimensional infinite
waveguide Ω′ = R× ]0, π[, again with a homogeneous Neumann boundary condi-
tion. The eigenvalues are the same as in the previous example. Now we consider
four propagating modes corresponding to k = 3.3. Two cross-sections are fixed to
limit the waveguide:

S0 = {0}× ]0, π[ and Sπ = {π}× ]0, π[.

The waveguide is fed on the interface S0 by the first four modes ε+
n , n = 1, 2, 3, 4,

one by one. The energy of each mode reflected by the opposite section is given in
tables 2 and 3 corresponding to the successive mesh lengths h = π/10, π/20, π/40
and π/80. These tables demonstrate the stability of the quasi-local formulation.
The low-level energy of the reflected modes gives an indication of the great accuracy
reached by this method.

Table 2. Reflected energy, h = π/10 and h = π/20

Incident wave ε+
1 ε+

2 ε+
3 ε+

4

|u−1 |2 (dB) -32 -∞ -53 -∞
|u−2 |2 (dB) -280 -42 -∞ -38
|u−3 |2 (dB) -49 -∞ -23 -∞
|u−4 |2 (dB) -280 -43 -∞ -11

Incident wave ε+
1 ε+

2 ε+
3 ε+

4

|u−1 |2 (dB) -41 -280 -72 -∞
|u−2 |2 (dB) -268 -49 -∞ -57
|u−3 |2 (dB) -69 -274 -35 -280
|u−4 |2 (dB) -258 -62 -268 -22
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Table 3. Reflected energy, h = π/40 and h = π/80

Incident wave ε+
1 ε+

2 ε+
3 ε+

4

|u−1 |2 (dB) -53 -270 -91 -280
|u−2 |2 (dB) -258 -59 -274 -76
|u−3 |2 (dB) -88 -264 -48 -266
|u−4 |2 (dB) -253 -81 -256 -33

Incident wave ε+
1 ε+

2 ε+
3 ε+

4

|u−1 |2 (dB) -65 -256 -110 -268
|u−2 |2 (dB) -242 -71 -261 -94
|u−3 |2 (dB) -106 -253 -60 -257
|u−4 |2 (dB) -238 -99 -250 -46

5.3.3. A third example. The two examples above are based on the boundary condi-
tion analyzed in this paper. The rational function R interpolates the N real values
kn at the N points λ2

n, 1 ≤ n ≤ N . The function R is real and satisfies the as-
sumption R(λn)2 > 0 for n ≥ 1. However, it seems that the later assumption is
unnecessary, and only the interpolation of the constants of propagation kn is im-
portant in the approximation process, even if some of these constants are complex.
The following example gives an illustration of this fact.

We use here the semi-infinite waveguide described in the first example in the
case of one propagating mode: k = 0.5. We have tested the four different boundary
conditions

∂nu− Tju = 0, 1 ≤ j ≤ 4,

corresponding to the four functions Rj(t), 1 ≤ j ≤ 4, respectively defined by

R1(t) = b1,

R2(t) = a2t + b2,

R3(t) = a3t + b3 +
c3

1 + t
,

R4(t) = a4t + b4 +
c4

1 + t
+

d4

2 + t
,

where the coefficients aj , bj , cj , dj are chosen so that Rj(λ2
n) = kn, 1 ≤ n ≤ j ≤ 4.

The first function leads to the well-known boundary condition ∂nu− ik1 u = 0, ex-
tensively used in electromagnetic calculations [21]. Except for this one, since Rj(t)
is not a real-valued function for j ≥ 2, the theoretical results of this paper cannot
be applied to ensure convergence of the finite-element scheme. However, taking
into account evanescent modes in the formulation leads to accurate results even
when only a small part of the waveguide is included in the domain of computation.
Tables 4 and 5 show the results that are obtained, with the same notation as in
table 1. Column j corresponds to the boundary condition ∂nu− Tju = 0.

Table 4. Error |uL − uE |/|uE| in dB, comparison of the four
boundary conditions

L T1 T2 T3 T4

0 -28.4 -37.3 -56.0 -55.1
π/4 -53.4 -63.2 -64.9 -64.9
π/2 -64.1 -64.2 -64.2 -64.2
3π/4 -66.3 -66.3 -66.3 -66.3
π -72.1 -72.1 -72.1 -72.1

L T1 T2 T3 T4

0 -33.4 -41.7 -67.0 -71.8
π/4 -59.1 -67.8 -74.4 -74.4
π/2 -73.9 -74.1 -74.0 -74.0
3π/4 -76.9 -76.9 -76.9 -76.9
π -85.1 -85.1 -85.1 -85.1

(h = π/8) (h = π/16)
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Table 5. Error |uL − uE |/|uE| in dB, comparison of the four
boundary conditions

L T1 T2 T3 T4

0 -35.6 -43.9 -72.1 -84.6
π/4 -61.8 -70.3 -86.1 -86.0
π/2 -85.5 -85.9 -85.9 -85.8
3π/4 -89.4 -89.4 -89.4 -89.4
π -101.3 -101.3 -101.3 -101.3

L T1 T2 T3 T4

0 -36.4 -44.7 -73.6 -88.3
π/4 -62.7 -71.1 -93.1 -93.1
π/2 -88.9 -93.0 -92.9 -92.9
3π/4 -96.8 -96.8 -96.8 -96.8
π -111.4 -111.4 -111.4 -111.4

(h = π/32) (h = π/48)

Of particular interest is the second condition ∂nu − T2u = 0. This condition is
completely local, hence very easy to implement on an existing code based on the first
usual condition. The improvement is then of about 10 dB when the cross-section
SL is near to the source.

It is worth noting that when the cross-section SL is far from the source (last
lines of the tables), the four boundary conditions give the same results.

6. Final comments

The same technique can be applied to the three-dimensional Maxwell equations
and will be presented in a forthcoming paper. It would be interesting to apply
the quasi-local boundary condition to the time-domain formulations of waveguide
problems.
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