
MATHEMATICS OF COMPUTATION
Volume 68, Number 226, April 1999, Pages 749–765
S 0025-5718(99)01029-7

IRREGULAR SAMPLING, TOEPLITZ MATRICES,
AND THE APPROXIMATION OF ENTIRE FUNCTIONS

OF EXPONENTIAL TYPE

KARLHEINZ GRÖCHENIG

Abstract. In many applications one seeks to recover an entire function of
exponential type from its non-uniformly spaced samples. Whereas the math-
ematical theory usually addresses the question of when such a function in
L2(R) can be recovered, numerical methods operate with a finite-dimensional
model. The numerical reconstruction or approximation of the original function
amounts to the solution of a large linear system.

We show that the solutions of a particularly efficient discrete model in which
the data are fit by trigonometric polynomials converge to the solution of the
original infinite-dimensional reconstruction problem. This legitimatizes the
numerical computations and explains why the algorithms employed produce
reasonable results. The main mathematical result is a new type of approxima-
tion theorem for entire functions of exponential type from a finite number of
values. From another point of view our approach provides a new method for
proving sampling theorems.

A standard problem in many applications requires one to find a reconstruction of
a function f from a collection of samples f(xn). In most applications the assumption
that f is band-limited, or equivalently that f is an entire function of exponential
type, is well justified, and frequently the sampling points are non-uniformly spaced
or distributed quite randomly. Then the mathematical problem is to find condi-
tions under which f can be reconstructed completely from its samples f(xn). This
problem is almost completely understood thanks to the work of Duffin-Schaeffer,
Beurling, Malliavin, Landau, Pavlov and others [5, 2, 3, 12, 13, 14, 15, 17]. Their
work has provided deep insights into sets of uniqueness, Riesz bases, and sets of sta-
ble sampling. For reviews, more references, and different points of view of various
aspects of the mathematical theory we refer to [1, 6, 20].

In recent years the attention has focussed on practical solutions of the irregular
sampling problem. See [6, 8] and the references cited there. Here the issues are the
design of efficient and fast algorithms, explicit error estimates and stopping criteria.

Naturally, in any application the input for an algorithm must consist only of a
finite number of data, in this case the samples (xj , f(xj)), j = 1, . . . , N , of a band-
limited function. Therefore numerically one deals with a finite-dimensional version
of the infinite-dimensional problem.
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An algorithm for the sampling problem with input {(xj , f(xj)), j = 1, . . . , N}
can be interpreted as a sort of black box that produces some output p(x) which is
then claimed to be the “reconstruction” of f .

The goal of this paper is to clarify and analyze the relation between a natural
finite-dimensional sampling model and the original infinite-dimensional sampling
problem. In our experience the best numerical method consists of fitting the samples
f(xj) in an interval [−M, M ] by a trigonometric polynomial pM of suitable degree
and period [7, 9, 16]. Although in practice this method is very successful, it is
not clear why pM should be a good approximation of f on [−M, M ]. Our main
result demonstrates that under appropriate conditions the alleged reconstruction
pM converges to the original function f , as the length 2M of the interval increases.
In this way we obtain a new theorem for the approximation of entire functions of
exponential type from a finite number of samples.

The proof uses only real variable estimates and resembles the finite element or
Ritz-Galerkin methods in differential equations. The first task is to understand
the finite-dimensional problem of irregular sampling for trigonometric polynomials
(Section 2) and to obtain estimates that are independent of the dimension. The
heart of our approach is the uniform estimates on the condition number of cer-
tain Toeplitz matrices in Section 3. The other important feature is to understand
how well entire functions can be approximated locally by trigonometric polynomials
(Section 4). Section 5 contains the proof of the main theorem and its consequences.
This method is of independent interest and could be useful in other contexts to ob-
tain new sampling and approximation theorems, in particular in higher dimensions.

1. Results

In order to formulate the results rigorously we need to describe the precise con-
cepts and to remind the reader of the conventions adopted in this paper.

The Fourier transform of a function f is normalized as

f̂(ξ) =
∫

R
f(x)e−2πixξ dx,(1)

so that f(x) =
∫

R f̂(ξ)e2πixξ dξ. The L2-norm is denoted by ‖f‖ =
(∫ |f(x)|2 dx

) 1
2 .

Our main object are entire functions of exponential type at most π in L2(R), or
equivalently the space of band-limited functions

B = {f ∈ L2(R) : supp f̂ ⊆ [−1
2
,
1
2
]}.(2)

With this normalization the cardinal series takes the form

f(x) =
∑
n∈Z

f(n)
sinπ(x − n)

π(x− n)
for all f ∈ B,(3)

with convergence in L2(R) and uniformly on R [4], and Bernstein’s inequality is

‖f ′‖ ≤ π‖f‖ for all f ∈ B.(4)

Furthermore, if f ∈ B, then f and all its derivatives vanish at infinity.
Any sampling sequence {xj , j ∈ Z} ⊆ R is ordered by magnitude, xj < xj+1, j ∈

Z, and limj→±∞ xj = ±∞. In contrast to the classical treatments, we do not
require a minimal distance between consecutive points.

Then the mathematical problem is to find f ∈ B from the given sampled values
{f(xj), j ∈ Z}. However, in a realistic problem only samples in an interval [−M, M ],
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say, are given, and one wants to find a reasonable and computable approximation
of f(x) on [−M, M ] from the data set {f(xj), |xj | ≤ M}. The analysis of the
discrete irregular sampling problem [9] suggests an approximation by trigonometric
polynomials that interpolate the data f(xj). Thus for any integer M > 0 we look
at the class of trigonometric polynomials

PM = {p : p(x) =
M∑

k=−M

ak
e2πikx/(2M+1)

√
2M + 1

, ak ∈ C}.(5)

All polynomials in PM have period 2M + 1, and the normalization is taken so that
the collection

φM,k(x) =
1√

2M + 1
e2πikx/(2M+1), k ∈ Z ,(6)

is an orthonormal basis of L2([−M − 1
2 , M + 1

2 ]). In particular, we have

‖p‖2,M :=

(∫ M+ 1
2

−M− 1
2

|p(x)|2 dx

) 1
2

= ‖a‖2 :=

(∑
k∈Z

|ak|2
) 1

2

,(7)

‖p‖∞ ≤ ‖p‖2,M and ‖p′‖2,M ≤ π‖p‖2,M .(8)

In the following we will write IM for the interval [−M − 1
2 , M + 1

2 ], 〈·, ·〉M and
‖ · ‖2,M for the inner product and the norm in L2(IM ). As in (7), finite sequences
are always extended by zeros to sequences in l2(Z) with unambiguous norm ‖ · ‖2.

Considering p ∈ PM as a periodic tempered distribution on R, its Fourier trans-
form is p̂ =

∑M
k=−M akδk/M and supp p̂ ⊆ [− 1

2 , 1
2 ]. In view of the bandwidth of

f ∈ B it is therefore natural to consider the trigonometric polynomials of period
2M + 1 and order M for the purpose of a local approximation of f .

To avoid boundary effects, we take all samples in IM and additionally the two
adjacent samples. More formally, let

K(M) = max{j : xj < −M − 1
2
} and L(M) = min{j : xj > M +

1
2
};(9)

then

JM = [K(M), L(M)] ∩ Z.(10)

Theorem 1. Suppose that the sampling set satisfies

sup
j∈Z

(xj+1 − xj) = δ < 1(11)

and that {f(xj), j ∈ Z} is given for some f ∈ B. If pM denotes the unique trigono-
metric polynomial in PM that solves the least squares problem∑

j∈JM

|pM (xj)− f(xj)|2 xj+1 − xj−1

2
= minimum,(LSP)

where the minimum is taken over all p ∈ PM , then

lim
M→∞

∫ M+ 1
2

−M− 1
2

|f (`)(x)− p
(`)
M (x)|2 dx = 0

for all derivatives ` ≥ 0, and also limM→∞ pM (x) = f(x) uniformly on compact
sets.
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In the next section we will see that the least squares problem (LSP) can be
solved efficiently by the inversion of a Toeplitz matrix. At present the fastest
and most accurate reconstruction algorithms for the irregular sampling problem of
band-limited functions are based on the solution of (LSP) [7].

As a consequence of the proof we obtain the following sampling theorem for
band-limited functions [8].

Corollary 1. If supj∈Z(xj+1 − xj) = δ < 1, then for f ∈ B

(1− δ)2‖f‖2 ≤
∑
j∈Z

|f(xj)|2 xj+1 − xj−1

2
≤ 4‖f‖2.

We refer to the review [6] for a discussion of this sampling theorem. While the
assumption on the sampling set is somewhat restrictive, this is the only sampling
theorem known to us with explicit constants. These constants provide an esti-
mate for the condition number of the sampling problem, and determine the rate of
convergence of iterative algorithms.

In the special case of regular sampling at the Nyquist rate the approximating
polynomials can be written explicitly and computed easily. Then one obtains the
following approximation theorem:

Corollary 2. Suppose that {f(j), j ∈ Z} are the samples of f ∈ B. Define

pM (x) =
1

2M + 1

M∑
j=−M

f(j)
sin π(x − j)

sin π(x−j)
2M+1

.

Then limM→∞
∫
|x|≤M+ 1

2
|f (`)(x)− p

(`)
M (x)|2 dx = 0 for all ` ≥ 0.

Diligent book-keeping of all estimates in the proof of Theorem 1 permits a more
quantitative statement and shows that the approximation quality depends on the
decay of f at infinity.

Corollary 3. With the same assumptions as in Theorem 1 and 0 < L ≤ M we
have∫

|x|≤M+ 1
2

|f(x)− pM (x)|2 dx

≤ C(1− δ)−2

{
L3

M2
‖f‖2 + ‖f‖

(∫
|x|≥L

(|f(x)|2 + |f ′(x)|2) dx

)1/2

+ sup
|x−M− 1

2 |≤1

(
|f(±x)|2 + |f ′(±x)|2

)}
,

where the constant C does not depend on f, δ, L, or M . In particular, if f ∈ B is
rapidly decreasing, then ‖f − pM‖2

2,M = O(M−2+ε) for all ε > 0.

2. Irregular sampling of trigonometric polynomials

To understand Theorem 1 we must first analyze the least squares problem (LSP)
and find a solution method for any integer M > 0. In view of our ultimate goal
{xj , j ∈ Z} is always a bi-infinite sequence, of which we consider only the samples
inJM ⊆ [−M − 1, M + 1].
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We start with two simple observations.
1. If pM =

∑M
k=−M aM (k)φM,k ∈ PM and wj > 0 is a sequence of weights, then∑

j∈JM

|pM (xj)|2wj =
M∑

k=−M

M∑
k=−M

aM (k)aM (l)
∑

j∈JM

wj

2M + 1
e−2πi(l−k)xj/(2M+1) .

Let CM denote the (2M +1)× (2M +1) positive semi-definite Toeplitz matrix with
entries

(CM )kl =
∑

j∈JM

wj

2M + 1
e−2πi(k−l)xj/(2M+1) for |k|, |l| ≤ M.(12)

Then ∑
j∈JM

|pM (xj)|2wj = 〈CMaM , aM 〉.(13)

If the number of samples card JM exceeds 2M + 1, then the evaluation map
pM → {p(xj), j ∈ JM} is one-to-one and the coefficient vector aM ∈ C2M+1 is
uniquely determined. In this case CM is invertible.

2. Given pM ∈ PM with coefficients aM (k), the vector CMaM ∈ C2M+1 contains
only the samples pM (xj), as is seen from the calculation

(CMaM )(k) =
M∑

l=−M

∑
j∈JM

aM (l)
wj

2M + 1
e−2πi(k−l)xj/(2M+1)

=
∑

j∈JM

pM (xj)
wj√

2M + 1
e−2πikxj/(2M+1).

These remarks lead to the following algorithm for the solution of (LSP).

Proposition 1 (An efficient algorithm). Let {(xj , f(xj)), j ∈ JM} be the given in-
put, wj > 0, j ∈ Z, a set of weights, and suppose cardJM ≥ 2M + 1.

Step 1. Compute bM ∈ C2M+1, where

bM (k) =
∑

j∈JM

f(xj)
wj√

2M + 1
e−2πikxj/(2M+1) for |k| ≤ M.(14)

Step 2. Compute aM = C−1
M bM ∈ C2M+1.

Step 3. Compute

pM (x) =
M∑

k=−M

aM (k)
e2πikx/(2M+1)

√
2M + 1

∈ PM .(15)

Then for all p ∈ PM , p 6= pM ,∑
j∈JM

|pM (xj)− f(xj)|2wj <
∑

j∈JM

|p(xj)− f(xj)|2wj .

Proof. We consider the subspace {(p(xj)j∈JM : p ∈ PM} ⊆ CJM with the inner
product 〈a,b〉w =

∑
j∈JM

ajbjwj for a,b ∈ CJM .
The solution of (LSP) is the orthogonal projection of the vector {f(xj),

j ∈ JM} ∈ CJM onto this subspace, and therefore it is sufficient to verify that∑
j∈JM

(pM (xj)− f(xj)) qM (xj)wj = 0
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for every qM ∈ PM with coefficient vector cM ∈ C2M+1. But this is clear, since by
(13) and Step 2 ∑

j∈JM

pM (xj)qM (xj)wj = 〈CMaM , cM 〉 = 〈bM , cM 〉.

On the other hand,∑
j∈JM

f(xj) qM (xj)wj

=
M∑

k=−M

cM (k)
∑

j∈JM

f(xj)
wj√

2M + 1
e−2πikxj/(2M+1) = 〈bM , cM 〉.

Remarks. 1. All steps of this algorithm can be implemented efficiently and com-
puted quickly. Step 3 is just a discrete Fourier transform, and often Step 1 can also
be computed with a fast Fourier transform. The computation of the entries of the
Toeplitz matrix CM and its inversion can also be carried out by using a fast Fourier
transform and preconditioning, and requires about O(2M log 2M) operations. For
a detailed discussion of this algorithm and a more organic derivation, as well as
numerical simulations, we refer to [7]. Some spectacular applications are contained
in Strohmer’s thesis [18].

2. An alternative method to solve (LSP) has been proposed by Reichel, Ammar,
and Gragg [16] and is based on unitary Hessenberg matrices and Szegö polynomials.
Both methods seem to be equally efficient and require about O(2M · card JM )
operations. For the theoretical discussion the transformation into a Toeplitz system
is preferable, as will become clear in the following developments.

3. A uniform estimate of the condition number

The algorithm of Proposition 1 solves the least squares problem (LSP) for any
choice of weights and for an arbitrary distribution of sampling points provided that
[−M− 1

2 , M + 1
2 ] contains at least 2M +1 samples. However, if card JM ≈ 2M +1

and if the sampling set contains large gaps, then the matrix of the problem is
frequently very ill-conditioned [6]. This can be avoided by the appropriate choice
of weights and by imposing the maximal gap condition (11).

Lemma 1. Let {xj , j ∈ Z} ⊆ R be an arbitrary sampling sequence and δ > 0.
Define the weights wj > 0 by

wj = min
(

1
2
(xj + xj+1), xj +

δ

2

)
−max

(
1
2
(xj + xj−1), xj − δ

2

)
.

(16)

If f is continuously differentiable and K ≤ L ∈ Z, then
L∑

j=K

|f(xj)|2wj ≤ 2
∫ xL+ δ

2

xK− δ
2

(
|f(x)|2 +

δ2

π2
|f ′(x)|2

)
dx.(17)

Proof. Let yj = max
(

1
2 (xj + xj−1), xj − δ

2

)
and zj = min

(
1
2 (xj + xj+1), xj + δ

2

)
,

and let χj be the characteristic function of the interval [yj , zj ] containing xj . Then
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zj − yj ≤ δ and

‖
L∑

j=K

f(xj)χj‖2 =
L∑

j=K

|f(xj)|2wj .(18)

We shall prove that

‖
L∑

j=K

(f − f(xj))χj‖2 ≤ δ2

π2
‖

L∑
j=K

f ′ · χj‖2;(19)

then (17) follows with the triangle inequality. Next we write

‖
L∑

j=K

(f − f(xj))χj‖2 =
L∑

j=K

∫ zj

yj

|f(x)− f(xj)|2 dx.

To each term we apply Wirtinger’s inequality [11] in the form∫ b

a

|f(x)− f(c)|2 ≤ 4
π2

max
(
(b− c)2, (c− a)2

) · ∫ b

a

|f ′(x)|2 dx.

Since by definition zj − xj ≤ δ/2 and xj − yj ≤ δ/2, we obtain

L∑
j=K

∫ zj

yj

|f(x)− f(xj)|2 dx ≤
L∑

j=K

δ2

π2

∫ zj

yj

|f ′(x)|2 dx ≤ δ2

π2

∫ zL

yK

|f ′(x)|2 dx,

(20)

from which (19) and thus (17) follow.

Corollary 4 ([9]). Let −M− 1
2 ≤ x1 < · · · < xr < M + 1

2 and set x0 = xr−2M−1
and xr+1 = x1 + 2M + 1. If maxj=1,...,r(xj+1 − xj) = δ < 1, then for all p ∈ PM

(1 − δ)2 ‖p‖2
2,M ≤

r∑
j=1

|p(xj)|2 xj+1 − xj−1

2
≤ (1 + δ)2 ‖p‖2

2,M .(21)

Proof. In this case yj+1 = zj and
∑r

j=1 χj = χ[y1,y1+2M+1]. The periodicity of p,
(18), (20), and Bernstein’s inequality imply∫ y1+2M+1

y1

|p(x)−
r∑

j=1

p(xj)χj(x)|2 dx

1/2

≤ δ

π
‖p′‖2,M ≤ δ‖p‖2,M .

Now (21) follows with the triangle inequality.

Next we apply the corollary to segments of an infinite sampling sequence in order
to derive estimates for the condition number of CM . The following proposition is
the key to understanding Theorem 1.

Proposition 2. Suppose supj∈Z(xj+1 − xj) = δ < 1 and CM has the entries

(CM )kl =
∑

j∈JM

xj+1 − xj−1

2(2M + 1)
e−2πi(k−l)xj/(2M+1) for |k|, |l| ≤ M.

Then for all aM ∈ C2M+1 we have

(1− δ)2 ‖aM‖2 ≤ 〈CMaM , aM 〉 ≤ 6 ‖aM‖2.(22)
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In particular, the estimates

‖CM‖op ≤ 6 and ‖C−1
M ‖op ≤ (1− δ)−2(23)

for the operator norm of CM are independent of the dimension M .

Proof. In view of (13) the assertion is equivalent to the inequalities

(1− δ)2 ‖p‖2
2,M ≤

r∑
j=1

|p(xj)|2 xj+1 − xj−1

2
≤ 6 ‖p‖2

2,M

for all p ∈ PM . Since p is (2M + 1)-periodic, we can consider the points xK(M) +
2M + 1 ∈ [−M − 1

2 , M + 1
2 ] = IM and xL(M) − 2M − 1 ∈ IM instead of xK(M) and

xL(M), which were defined in (9). Rearranging the new set of points by magnitude
and relabeling them, we obtain a new sequence (x̃j) ⊆ IM . This sequence coincides
with the original segment {xj , j ∈ JM} except for two points. The new sequence
satisfies x̃j+1 − x̃j ≤ δ (it is exactly for this reason that the two points outside IM

are included) and x̃j+1 − x̃j−1 ≤ xj+1 − xj−1 ≤ δ, since we have added points to
IM . With the estimates of Corollary 4 we obtain

(1− δ)2 ‖p‖2
2,M ≤

∑
j

|p(x̃j)|2 x̃j+1 − x̃j−1

2

≤
∑

j∈JM

|p(xj)|2 xj+1 − xj−1

2

≤
∑

j

|p(x̃j)|2 x̃j+1 − x̃j−1

2
+ δ2|p(xK(M))|2 + δ2|p(xL(M))|2

≤ (1 + δ)2‖p‖2
2,M + 2δ2‖p‖2

∞ .

Since δ < 1 and ‖p‖∞ ≤ ‖p‖2,M , the proposition is proved.

Lemma 2. Suppose that {xj , j ∈ Z} is a sampling sequence with associated weights
wj > 0, so that for some constant β > 0

‖CM‖op ≤ β uniformly for all M > 0.(24)

Let eM,j ∈ C2M+1 for j ∈ JM be the vector defined by

eM,j(k) =
√

wj

2M + 1
e−2πikxj/(2M+1) for |k| ≤ M.

Then the following inequalities hold for all g ∈ C2M+1 and all (aj)j∈JM ∈ CJM :∑
j∈JM

|〈g, eM,j〉|2 ≤ β‖g‖2
2 and ‖

∑
j∈JM

ajeM,j‖2
2 ≤ β‖a‖2

2.

Proof. Here 〈g, h〉 =
∑M

k=−M g(k)h(k) is the standard inner product in C2M+1.
Therefore ∑

j∈JM

|〈g, eM,j〉|2 =
M∑

k=−M

M∑
l=−M

g(l)g(k)
∑

j∈JM

eM,j(l)eM,j(k)

=
M∑

k=−M

M∑
l=−M

g(l)g(k)
∑

j∈JM

wj

2M + 1
e−2πi(k−l)xj/(2M+1) = 〈CMg, g〉
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and
〈CMg, g〉 ≤ ‖CM‖op‖g‖2

2 ≤ β‖g‖2
2.

The second inequality follows by duality:

‖
∑

j∈JM

ajeM,j‖2
2 = sup

‖g‖2=1

|
∑

j∈JM

aj〈eM,j , g〉|2

≤ (
∑

j∈JM

|aj |2) sup
‖g‖2=1

∑
j∈JM

|〈eM,j, g〉|2 ≤ β‖a‖2
2 · sup

g
‖g‖2

2 = β‖a‖2
2.

4. Estimates for projection operators

Let P be the orthogonal projection from L2(R) onto B, and PM the orthogonal
projection onto the (2M + 1)-dimensional space PM spanned by the exponentials
φM,k(x) = 1√

2M+1
e2πikx/(2M+1) for |k| ≤ M .

Since the least squares problem (LSP) approximates the original function f by a
trigonometric polynomial pM ∈ PM on IM , we need some information on how and
in what sense PM approximates P .

P is given by the integral operator

Pf(x) =
∫

R
f(y)

sinπ(x − y)
π(x − y)

dy.(25)

On the other hand, since φM,k is an orthonormal set in L2(IM ),

PMf(x) =
M∑

k=−M

〈f, φM,k〉MφM,k(x)

=
1

2M + 1

∫
IM

f(y)

(
M∑

k=−M

e2πik(x−y)/(2M+1)

)
dy(26)

=
∫ M+ 1

2

−M− 1
2

f(y)
sin π(x − y)

(2M + 1) sin π(x−y)
2M+1

dy.

Let

KM (x) =
M∑

k=−M

(2M + 1)−1/2φM,k(x) =
sin πx

(2M + 1) sin πx
2M+1

(27)

be the convolution kernel of PM . Then

‖KM‖2
2,M = 1 and |KM (x)| ≤ 1 for all x .(28)

Since KM (x) converges uniformly to sin πx
πx and since P and PM are orthogonal

projections, a standard argument shows that limM→∞ χIM · PMf = Pf in L2(R)
and uniformly on compact sets. However, since the kernels are given explicitly, we
can do a little better and derive a quantitative estimate.

Lemma 3. For every f ∈ B and 0 < L ≤ M we have

‖f − PMf‖2
2,M ≤ c‖f‖

(
L3

M2
‖f‖+ (

∫
|y|≥L

|f(y)|2 dy)
1
2

)
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for a constant c > 0. In particular, limM→∞ ‖f − PMf‖2
2,M = 0. Furthermore,

limM→∞ PMf(x) = f(x) uniformly on compact sets.

Proof. Since f = Pf and since PM is an orthogonal projection on L2(IM ), we can
write

‖f − PMf‖2
2,M = 〈f, Pf〉M − 〈f, PMf〉M = 〈f, (P − PM )f〉M .(29)

Now fix L, 0 < L ≤ M , and χL = χ[−L,L], and insert the identity f = fχL +
f(1− χL) into (29). Then

‖f − PMf‖2
2,M = 〈f(1− χL), (P − PM )f〉M(30)

+〈fχL, (P − PM )(f − fχL)〉M + 〈fχL, (P − PM )(fχL)〉M = I + II + III .

For the first term we obtain

|I| ≤ ‖f(1− χL)‖2,M

(
‖Pf‖2,M + ‖PMf‖2,M

)
≤ 2 ‖f‖

(∫
|y|≥L

|f(y)|2 dy

)1/2

.

Similarly,

|II| ≤ 2 ‖f‖
(∫

|y|≥L

|f(y)|2 dy

)1/2

.

In the third term we estimate the difference of the integral kernels for small values
of x and y: ∣∣∣∣sin πx

πx
−KM (x)

∣∣∣∣ = ∣∣∣∣KM (x)
( sin πx

2M+1
πx

2M+1

− 1
)∣∣∣∣

≤
∣∣∣∣sin πx

2M+1
πx

2M+1

− 1
∣∣∣∣ ≤ 1

3

(
πx

2M + 1

)2

(31)

since ‖KM‖∞ ≤ 1. Therefore

|III| =
∣∣∣∣ ∫|x|≤L

∫
|y|≤L

f(x)f(y)
(

sin π(x− y)
π(x− y)

−KM (x− y)
)

dx dy

∣∣∣∣
≤ π2

3(2M + 1)2

∫
|x|≤L

∫
|y|≤L

|f(x)f(y)|(x − y)2 dx dy

≤ π2

3(2M + 1)2
‖f‖2

(∫
|x|≤L

∫
|y|≤L

(x− y)4 dx dy

) 1
2

≤ π2

3(2M + 1)2
(2L)3‖f‖2.

Combining these estimates yields, for any 0 < L ≤ M ,

‖f − PMf‖2
2,M ≤ c‖f‖

(
L3

M2
‖f‖+ (

∫
|y|≥L

|f(y)|2 dy)
1
2

)
for the constant c = max(2π2/3, 4). Choosing L = Mα, 0 < α < 2/3, yields
limM→∞ ‖f − pM‖2

2,M = 0.
The argument for uniform convergence on compact sets is similar and is left to

the reader.

We need one more property of the projections PM .
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Lemma 4. (a) For any differentiable function f we have

(PMf)′(x) = PMf ′(x) −
(

f(M +
1
2
)− f(−M − 1

2
)
)

KM (x + M +
1
2
).

(b) If 0 < L ≤ M/2 and f ∈ L2(R), then

sup
|x−M− 1

2 |≤1

|PMf(±x)|2 ≤ L

M2
‖f‖2 +

∫
|y|≥L

|f(y)|2dy.

Proof. (a) follows from the computation

(PMf)′(x) =
∫ M+ 1

2

−M− 1
2

f(y)
d

dx
KM (x− y) dy = −

∫ M+ 1
2

−M− 1
2

f(y)
d

dy
KM (x − y) dy

=
∫ M+ 1

2

−M− 1
2

f ′(y)KM (x− y) dy − f(y)KM (x − y)
∣∣∣∣M+ 1

2

y=−M− 1
2

= PMf ′(x)−
(

f(M +
1
2
)KM (x−M − 1

2
)− f(−M − 1

2
)KM (x + M +

1
2
)
)

.

For (b) we write

|PMf(±x)|2 = |
∫ M+ 1

2

−M− 1
2

f(y)KM (±x− y) dy|2

≤
∫
|y|≤L

|f(y)|2 dy ·
∫
|y|≤L

|KM (±x− y)|2 dy

+
∫
|y|≥L

|f(y)|2 dy ·
∫

L≤|y|≤M+ 1
2

|KM (±x− y)|2 dy.

We take into account that for x = M + 1
2 + ξ and |ξ| ≤ 1

|KM (±x− y)|2 = |KM (M +
1
2
± ξ − y)|2 = | cosπ(±ξ − y)

(2M + 1) cos π(±ξ−y)
2M+1

|2 ≤ 2
(2M + 1)2

,

provided that π|±ξ−y|
2M+1 ≤ π(L+1)

2M+1 ≤ π/4. Altogether we obtain

sup
|x−M− 1

2 |≤1

|PMf(±x)|2 ≤ 4L

(2M + 1)2
‖f‖2 +

∫
|y|≥L

|f(y)|2dy.

5. Proof of the main theorem

We are now in a position to prove Theorem 1 and its consequences.
Recall that from the samples f(xj) of f ∈ B we construct a trigonometric polyno-

mial pM =
∑M

k=−M aM (k)φM,k ∈ PM that approximates the samples in [−M, M ]
optimally. The solution of the associated least square problem required the inver-
sion of the system’s Toeplitz matrix CM .

The proof that pM converges to f does not depend on the particular assumptions
on the sampling set. All that is required are the uniform bounds on the condition
numbers of CM established in Proposition 2. We state this as a separate theorem,
since this type of conclusion could be useful in other situations.
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Theorem 2. Suppose that {xj , j ∈ Z} is a sampling sequence with associated
weights chosen as in (16), f ∈ B and that for any M ∈ Z, M > 0, pM ∈ PM is the
solution of the least squares problem (LSP). If there exist constants 0 < α ≤ β, so
that the spectrum of CM satisfies

σ(CM ) ⊆ [α, β] uniformly for all M > 0,(32)

then limM→∞ pM (x) = f(x) converges uniformly on compact sets and

lim
M→∞

∫ M+ 1
2

−M− 1
2

|f (`)(x) − p
(`)
M (x)|2 dx = 0

for all ` ≥ 0. Furthermore,

α‖f‖2 ≤
∑
j∈Z

|f(xj)|2wj ≤ 4‖f‖2.(33)

According to Proposition 2, the hypothesis (11) on the maximal gap implies
σ(CM ) ⊆ [(1− δ)2, 6]. Therefore, Theorem 1 and Corollary 1 are immediate conse-
quences of Theorem 2.

Proof. Step 1. In order to compute∫ M+ 1
2

−M− 1
2

|f(x)− pM (x)|2 dx

we expand fM := f · χIM into a Fourier series

fM =
∑
k∈Z

f̂M (k)φM,k for |x| ≤ M +
1
2
,

where f̂M (k) = 〈f, φM,k〉M . Then f − PMf =
∑
|k|>M f̂M (k)φM,k is orthogonal to

PM in L2(IM ), and we can write

‖f − pM‖2
2,M = ‖f − PMf‖2

2,M + ‖PMf − pM‖2
2,M = RM + AM(34)

The remainder RM tends to zero by Lemma 3.

Step 2. The estimate for AM is harder and makes fundamental use of the lower
bound on CM . By slight abuse of notation we still denote the vector {f̂M(k), |k| ≤
M} by f̂M ∈ C2M+1. Since by construction (Proposition 1) p̂M (k) = aM (k) =
(C−1

M bM )(k) for |k| ≤ M , and p̂M (k) = 0 otherwise, we obtain

AM = ‖PMf − pM‖2
2,M = ‖f̂M − aM‖2

2 = ‖C−1
M (CM f̂M − bM )‖2

2

≤ α−2‖CM f̂M − bM‖2
2.(35)
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Because CM and bM are known explicitly, we can rewrite this expression and ma-
nipulate it so that Lemma 2 is applicable:

‖CM f̂M − bM‖2
2 =

M∑
k=−M

∣∣∣∣ M∑
l=−M

(CM )klf̂M (l)− bM (k)
∣∣∣∣2

=
M∑

k=−M

∣∣∣∣ M∑
l=−M

∑
j∈JM

wj

2M + 1
e−2πi(k−l)xj/(2M+1)f̂M (l)

−
∑

j∈JM

wj√
2M + 1

f(xj)e−2πikxj/(2M+1)

∣∣∣∣2

=
M∑

k=−M

∣∣∣∣ ∑
j∈JM

√
wj

{
f(xj)− 1√

2M + 1

M∑
l=−M

e2πilxj/(2M+1)f̂M (l)

}

·
√

wj

2M + 1
e−2πikxj/(2M+1)

∣∣∣∣2
≤ β

∑
j∈JM

wj

∣∣∣∣f(xj)− 1√
2M + 1

M∑
l=−M

e2πilxj/(2M+1)f̂M (l)
∣∣∣∣2 ,

where the last inequality follows from Lemma 2. Finally, the identification

1√
2M + 1

M∑
l=−M

e2πilxj/(2M+1)f̂M (l) =
M∑

l=−M

〈f, φM,l〉MφM,l(xj) = PMf(xj)

leads to the estimate

AM ≤ β

α2

∑
j∈JM

wj

∣∣∣∣f(xj)− PMf(xj)
∣∣∣∣2.(36)

Step 3. We apply Lemma 1 with δ = 1 to hM = f − PMf and obtain∑
j∈JM

wj |hM (xj)|2 ≤ 2
∫ M+ 3

2

−M− 3
2

(
|hM (x)|2 +

1
π2
|h′M (x)|2

)
dx

=
∫

IM

+
∫

M+ 1
2≤|x|≤M+ 3

2

.

Here
∫

IM
|f − PMf |2 = o(1) by Lemma 3. For

∫
IM
|h′M |2 we use Lemma 4 and

obtain

‖(f − PMf)′‖2
2,M ≤ 2‖f ′ − PMf ′‖2

2,M + 2|f(−M − 1
2
)− f(M +

1
2
)|2‖KM‖2

2,M ,

(37)

which also converges to zero by Lemma 3.

Step 4. The rest is estimated coarsely by taking suprema:∫
M+ 1

2≤|x|≤M+ 3
2

(
|hM (x)|2 +

1
π2
|h′M (x)|2

)
dx

≤ 2 sup
M+ 1

2≤|x|≤M+ 3
2

(|f(x)|2 + |f ′(x)|2 + |PMf(x)|2 + |(PMf)′(x)|2) .
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Since f ∈ B, all terms under the supremum tend to zero, where we have to use
Lemma 4 to handle PMf and (PMf)′.

Combining these estimates, we have proved so far that
∫M+ 1

2
−M− 1

2
|f(x) − pM (x)|2

tends to zero, as M →∞.

Step 5. Pointwise convergence. We return to the beginning of the proof and
write

|f(x)− pM (x)| ≤ |f(x)− PMf(x)|+ |PMf(x)− pM (x)|

= |f(x) − PMf(x)|+
∣∣∣∣ 1√

2M + 1

M∑
k=−M

(f̂M (k)− aM (k))e2πikx/(2M+1)

∣∣∣∣
≤ |f(x)− PMf(x)|+

(
M∑

k=−M

|f̂M (k)− aM (k)|2
)1/2

.

The first term converges to zero uniformly on compact sets by Lemma 3, whereas
the second term does not depend on x and converges to zero by steps 1–4.

Step 6. Convergence of the derivatives. Again we write for ` ≥ 1, as in (34),

‖f (`) − p
(`)
M ‖2

2,M = ‖f (`) − PMf (`)‖2
2,M + ‖PMf (`) − p

(`)
M ‖2

2,M .

Since f (`) ∈ B, the first term converges to zero by Lemma 3. Iterating the formula
in Lemma 4 (a), we obtain

(PMf)(`)(x) = PMf (`)(x) +
`−1∑
k=0

(
f (k)(M +

1
2
)− f (k)(−M − 1

2
)
)

KM (M +
1
2

+ x).

Therefore, using (28) and Bernstein’s inequality

‖PMf (`)−p
(`)
M ‖2

2,M ≤ 2
(
‖(PMf)(`)−p

(`)
M ‖2

2,M+|
`−1∑
k=0

(f (k)(M+
1
2
)−f (k)(−M−1

2
))|2
)

≤ 2
(

π2`‖PMf − pM‖2
2,M +

∣∣∣∣ `−1∑
k=0

(f (k)(M +
1
2
)− f (k)(−M − 1

2
))
∣∣∣∣2).

Using Lemma 3 and f ∈ B again, the convergence of the derivatives is verified.

Step 7. Norm equivalence. The upper bound in (33) is a consequence of the
particular choice of the weights wj and follows easily from Lemma 1 with δ = 1:∑

j∈JM

|f(xj)|2wj ≤ 2
∫ M+ 3

2

−M− 3
2

(
|f(x)|2 +

1
π2
|f ′(x)|2

)
dx

≤ 2(‖f‖2 +
1
π2
‖f ′‖2) ≤ 4‖f‖2 ∀M > 0.

For the lower bound we show first that

lim
M→∞

∑
j∈JM

|f(xj)− pM (xj)|2wj = 0.(38)
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As in Step 3 we estimate∑
j∈JM

|f(xj)− pM (xj)|2wj ≤
∫ M+ 3

2

−M− 3
2

(|f − pM |2 + |f ′ − p′M |2)

≤ ‖f − pM‖2
2,M + ‖f ′ − p′M‖2

2,M

+ sup
|x−M− 1

2 |≤1

(
|f(±x)|2 + |f ′(±x)|2 + |pM (±x)|2 + |p′M (±x)|2

)
.

In view of the preceding steps we only have to treat the suprema over pM and p′M .
Because of

|pM (x)| ≤ |pM (x) − PMf(x)|+ |PMf(x)| ≤ ‖pM − PMf‖2,M + |PMf(x)|.
Lemma 4 and Steps 1–4 yield

lim
M→∞

sup
|x−M− 1

2 |≤1

|pM (x)|2 = 0 .

The supremum of p′M is treated in a similar fashion.
Now, given any ε > 0, choose M large enough so that ‖f − pM‖2,M < εα−

1
2 ‖f‖,∑

j∈JM
|f(xj)− pM (xj)|2wj < ε2‖f‖2 and ‖f‖ − ‖f‖2,M < εα−

1
2 ‖f‖. Then(∑

j∈Z
|f(xj)|2wj

)1/2

≥
( ∑

j∈JM

|f(xj)|2wj

)1/2

≥
( ∑

j∈JM

|pM (xj)|2wj

)1/2

−
( ∑

j∈JM

|f(xj)− pM (xj)|2wj

)1/2

≥ √
α‖pM‖2,M − ε‖f‖ ≥ √

α

(
‖f‖2,M − ‖pM − f‖2,M

)
− ε‖f‖

≥ √
α(‖f‖ − εα−

1
2 ‖f‖ − εα−

1
2 ‖f‖)− ε‖f‖ = (

√
α− 3ε)‖f‖.

This completes the proof of Theorem 2.

Proof of Corollary 2. The given polynomial actually interpolates the given data
{f(j), |j| ≤ M}. In this case the system matrix CM is the (2M + 1) × (2M + 1)
identity matrix, as is seen from

(CM )kl =
M∑

j=−M

1
2M + 1

e−2πi(k−l)j/(2M+1) = δkl .

Thus Theorem 2 is applicable.

Proof of Corollary 3. The main contributions to the error ‖f − pM‖2
2,M are the

terms
‖f − PMf‖2

2,M ,

sup
|x−M− 1

2 |≤1

(|f(±x)|2 + |f ′(±x)|2),

and
sup

|x−M− 1
2 |≤1

(|PMf(±x)|2 + |(PMf)′(±x)|2,
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as follows from (34), (36) and (37). The estimate of the corollary follows from
Lemmas 3 and 4 . The maximal gap condition yields the condition number of order
(1− δ)−2 (Proposition 2).

6. Conclusion

Theorem 2 provides a natural strategy to prove theorems about the approxima-
tion and reconstruction of entire functions of exponential type. It reduces these
questions to a finite-dimensional problem about the spectrum of certain Toeplitz
matrices and the sampling of trigonometric polynomials. The method outlined
in Theorem 2 could provide a new proof of the theorems of Duffin-Schaeffer [5]
and Beurling-Landau [2, 13], with the additional benefit of an explicit and efficient
numerical algorithm attached to the proof.

Let d(X) = limM→∞ 1
2M minr>0

∑
j∈Z χ[r−M,r+M ](xj) denote the Beurling den-

sity of a sampling set X = {xj , j ∈ Z}. Then Beurling’s theorem states that if
d(X) > 1, then an inequality of the form (33) holds. Conversely, if (33) holds for
some sampling set X , then d(X) ≥ 1.

The condition d(X) > 1 implies that for large M every interval of length 2M
contains at least [2Md(X)] ≥ 2M +1 samples. Thus, as in Proposition 1 the system
matrix CM is invertible, the least squares problem (LSP) has a unique solution.
In view of Theorem 2 it is therefore plausible to conjecture that the hypothesis
d(X) > 1 implies uniform estimates on the condition number of CM . We hope to
return to this question.

Theorem 2 and its proof carry over to higher dimensions with only minor mod-
ifications in the notation [10]. Theorem 2 allows us to reduce the sampling prob-
lem for multivariate band-limited functions to a finite-dimensional problem about
trigonometric polynomials, and thus offers a new strategy for establishing irreg-
ular sampling theorems in higher dimensions as well as corresponding numerical
algorithms.
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[6] H. G. Feichtinger, K. Gröchenig. Theory and practice of irregular sampling. In “Wavelets:
Mathematics and Applications”, J. Benedetto, M. Frazier, eds., pp. 305–363, CRC Press,
1993. MR 94i:94008
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[11] G. Hardy, J. E. Littlewood, G. Pólya. Inequalities. 2nd Ed., Cambridge Univ. Press. 1952.
MR 13:727e

[12] S. Jaffard. A density criterion for frames of complex exponentials. Michigan Math. J. 38
(1991), 339–348. MR 92i:42001

[13] H. Landau. Necessary density conditions for sampling and interpolation of certain entire
functions. Acta Math. 117 (1967), 37–52. MR 36:5604

[14] H. Landau. Extrapolating a band-limited function from its samples taken in a finite interval.
IEEE Trans. Information Theory 32(4) (1986), 464–470.

[15] B. S. Pavlov. Basicity of an exponential system and Muckenhaupt’s condition. Sov. Math.
Dokl. 20 (1979), 655–659. MR 84j:42042

[16] L. Reichel, G. S. Ammar, W. B. Gragg. Discrete least squares approximation by trigonometric
polynomials. Math. Comp. 57 (1991), 273–289. MR 91j:65027

[17] K. Seip. On the connection between exponential bases and certain related sequences in
L2(−π, π). J. Functional Anal. 130 (1995), 131–160. MR 96d:46030

[18] T. Strohmer. Efficient methods for digital signal and image reconstruction from non-uniform
samples. Ph. D. Thesis, University of Vienna, 1993.

[19] R. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, New York. 1980.
MR 81m:42027

[20] A. I. Zayed. Advances in Shannon’s sampling theory. CRC Press, 1993. MR 95f:94008

Department of Mathematics, The University of Connecticut, Storrs, CT. 06269-3009

E-mail address: groch@math.uconn.edu


