
MATHEMATICS OF COMPUTATION
Volume 68, Number 225, January 1999, Pages 371–384
S 0025-5718(99)01031-5

MAXIMUM EXCURSION AND STOPPING TIME
RECORD-HOLDERS FOR THE 3x + 1 PROBLEM:

COMPUTATIONAL RESULTS

TOMÁS OLIVEIRA E SILVA

Abstract. This paper presents some results concerning the search for initial
values to the so-called 3x+1 problem which give rise either to function iterates
that attain a maximum value higher than all function iterates for all smaller
initial values, or which have a stopping time higher than those of all smaller
initial values. Our computational results suggest that for an initial value of n,
the maximum value of the function iterates is bounded from above by n2f(n),
with f(n) either a constant or a very slowly increasing function of n. As a by-
product of this (exhaustive) search, which was performed up to n = 3 · 253 ≈
2.702 · 1016, the 3x + 1 conjecture was verified up to that same number.

1. Introduction

The 3x + 1 problem, also known as the Collatz problem, is concerned with the
behavior of the iterates of the function T (n) : N0 → N0 defined by

T (n) =

{
n/2 if n is even,

(3n + 1)/2 if n is odd.

(N0 denotes the set of non-negative integers.) The 3x + 1 conjecture asserts that
repeated iteration of T (n), starting from any positive integer n, eventually produces
the value 1 [3]. This easily stated conjecture has not yet been proved (or disproved).
To prove it, one has to prove that the iterates1 T (k)(n) of T (n) remain bounded
for each n > 0, and that the only solutions in the positive integers of the equation
n = T (k)(n) are k even, and n = 1 or n = 2. A very good account on the history of
the 3x + 1 problem, as well as a large collection of known results and conjectures
related to it, can be found in [3]. We will follow the notation and terminology of
that paper whenever possible.

The trajectory of n is the sequence
(
T (k)(n)

)∞
k=0

. The stopping time of n, de-
noted by σ(n), is the least positive k for which T (k)(n) < n, if it exists, or infinity,
otherwise. The maximum excursion of the trajectory of n, denoted by t(n), is the
maximum value of T (k)(n) for k ≥ 0, if it exists, or infinity, otherwise. We call
n > 1 a σ-record-holder if σ(m) < σ(n) for all 1 < m < n, i.e., if all integers
smaller than n (and larger than 1) have smaller stopping times. Similarly, we call

Received by the editor January 3, 1997.
1991 Mathematics Subject Classification. Primary 26A18; Secondary 11Y99.
Key words and phrases. 3x+1 problem, Collatz problem, algorithm, search, 3x+1 conjecture.
1T (k)(n) denotes the k-th iterate of T (n): T (0)(n) = n, T (1)(n) = T (n), and, for k > 0,

T (k)(n) = T (T k−1(n)).

c©1999 American Mathematical Society

371

372 TOMÁS OLIVEIRA E SILVA

n a t-record-holder if t(m) < t(n) for all 1 < m < n. The main objective of this
paper is to find all t-record-holders in the interval 1 < n < 3 · 253, with the purpose
of studying empirically the rate of growth of t(n). As a side result, we also check
the 3x+ 1 conjecture, and find all σ-record-holders, in the same range. The results
of a previous search, conducted by Leavens and Vermeulen, broader in scope but
on a smaller range (5.6 · 1013), are reported in [4].

Equipped with these definitions, the 3x + 1 conjecture states that every integer
n ≥ 2 has a finite stopping time (which implies that t(n) < ∞ for all n ≥ 2). This
alternative formulation of the 3x + 1 conjecture rests on the observation that if it
is known that all trajectories for n < n0 reach the value 1 after a finite number
of iterates, then, to prove the same for n0, it is enough to iterate T at n0 until
T (k)(n0) < n0, i.e., up to k = σ(n0).

The rest of this paper is organized as follows. In section 2 we describe some in-
teresting facts about the structure of the iterates of T (n). These facts are exploited
in section 3, and lead to the construction of an efficient algorithm to search exhaus-
tively for t- and σ-record-holders. The results of this exhaustive search are reported
in section 4, and provide numerical evidence for a conjecture, stated in section 5,
concerning the growth of t(n). Subsection 4.1 provides a theoretical analysis of the
speedup of the proposed search algorithm over a “naive” search algorithm.

Unless explicitly stated otherwise, the theoretical results reported in this paper
were (re)discovered by the author. Quite probably, most of them, if not all, are
common knowledge in the 3x + 1 research community.

2. On the structure of the iterates of T (n)

Our first task is to show that it is possible to determine, using only the last k
base-2 digits of n0, which branches of T (n) will be taken in the computation of
T (k)(n0). For k = 1 this is an immediate consequence of the definition of T (n), and
is put is evidence by setting n0 = 2n1 + r0, where r0 is the last base-2 digit of n0.
In fact, applying T (n) to n0 gives

T (n0) = T (2n1 + r0) =

{
n1 if r0 = 0,

3n1 + 2 if r0 = 1.

It is also clear that we can compute T (2)(n0) directly, by setting n1 = 2n2 + r1,
where r1 is the last base-2 digit of n1 (and therefore the next to last base-2 digit
of n0). A few simple computations yield

T (2)(n0) =


n2 if r0 = 0 and r1 = 0, i.e., if n0 = 4n2 + 0,
3n2 + 2 if r0 = 0 and r1 = 1, i.e., if n0 = 4n2 + 2,

3n2 + 1 if r0 = 1 and r1 = 0, i.e., if n0 = 4n2 + 1,
9n2 + 8 if r0 = 1 and r1 = 1, i.e., if n0 = 4n2 + 3.

It is possible to proceed in the same fashion to compute T (k)(n0) for all positive k.
The fate of each new iterate requires the knowledge of one more base-2 digit of n0.
Let n0 = 2knk + mk, with2 nk = bn0/2kc and mk = n0 mod 2k. We claim that

Property 1. The general form of T (k)(n) is

T (k)(n0) = 3y(k;n0)nk + T (k)(mk), k ≥ 0,(1)

2bxc denotes the largest integer smaller than or equal to x.

T - AND σ-RECORD-HOLDERS FOR THE 3x + 1 PROBLEM 373

where y(k; n0) is the number of odd branches of T (n) that were taken in the com-
putation of T (k)(n0) [or of T (k)(mk)].

This result is clearly true for k = 0, 1, and 2. For the general case, it can be
proven easily by induction, with the help of the formulas nk = 2nk+1 + rk and
mk+1 = rk2k + mk, where rk is the last base-2 digit of nk. In fact, applying these
formulas to (1), and also using (1) to simplify the result, gives

T (k)(n0) = 2 · 3y(k;n0)nk+1 + T (k)(mk+1).(2)

The computation of T
(
T (k)(n0)

)
then shows that if (1) is valid up to a certain k

then it is also valid for k + 1, thereby proving our claim. Note that

y(k + 1; n0) = y(k + 1; mk+1) =

{
y(k; n0) if T (k)(mk+1) is even,

y(k; n0) + 1 if T (k)(mk+1) is odd.

Our next task is to show that the result of the k-th iteration of T (n) can be
naturally expressed in base-3, as suggested by (1). We claim that

Property 2. For k ≥ 0,

T (k)(mk) < 3y(k;mk).(3)

That is, T (k)(mk), when expressed in base-3, has no more that y(k; mk) digits.
Again, this is clearly true for k = 0, 1, and 2. Once again, the general case can be
proven easily by induction. Assuming that (3) is true up to a certain k allows us
to conclude that

T (k)(mk+1) = 3y(k;n0)rk + T (k)(mk) < 2 · 3y(k;n0).

It is then a simple matter to verify that (3) is also true for k + 1, proving our
claim. In words, properties 1 and 2 state that the representation of T (k)(n0) in
base-3 is very simple: the last y(k; n0) digits are given by T (k)(mk), and the rest
by nk [cf. (1) and (3)]. This is illustrated in Figure 1, where it is shown pictorially
that the computations leading to T (k)(n0), for an arbitrary non-negative n0, are
naturally organized in a binary tree.

Our final task is to explain some additional structure that we have noticed in the
iterates of T (n). Generalizing the ideas that led to (2), it is not difficult to verify
that

Property 3. For 0 ≤ p ≤ k,

T (p)(n0) = 2k−p · 3y(p;mk)nk + T (p)(mk),

and

T (p)(mk) < 2k−p · 3y(p;mk)nk.

Concerning the relative order of the iterates of T (n), we have observed numeri-
cally that

Property 4. For 1 ≤ k ≤ 40 and 1 < mk < 2k, if we sort the numbers

2k−p · 3y(p;mk), 0 ≤ p ≤ min{k, σ(mk)},

374 TOMÁS OLIVEIRA E SILVA

n n

n1 n2

n11 n22

n111 n222

n1111 n2222
n11111 n22222

n01111 n1111

n0111 n111
n10111 n202

n00111 n0202

n011 n11

n1011 n202
n11011 n2122

n01011 n101

n0011 n02
n10011 n122

00011 n01

n01 n1

n101 n2

n1101 n22

11101 n222

n01101 n11

n0101 n1
n10101 n2

n00101 n02

n001 n02

n1001 n122
n11001 n211

n01001 n0222

n0001 n01
n10001 n12

n00001 n002

n0 n

n10 n2

n110 n22

n1110 n222
n11110 n2222

n01110 n111

n0110 n11
n10110 n202

00110 n02

n010 n1

n1010 n2
n11010 n22

n01010 n1

n0010 n02
n10010 n122

00010 n01

n00 n

n100 n2

n1100 n22
n11100 n222

n01100 n11

n0100 n1
n10100 n2

00100 n02

n000 n

n1000 n2
n11000 n22

n01000 n1

n0000 n
n10000 n2

00000 n

Figure 1. This tree describes the results of iterating T (n) k-times,
0 ≤ k ≤ 5. The node depth is equal to the number of iterates of
T (n). Inside each node (oval box), the number in the left-hand
side is n0 (expressed in base-2), and the number in the right-hand
side is T (k)(n0) (expressed in base-3). To conserve space, inside
each node nk was replaced by just n.

in increasing order, then the corresponding numbers

T (p)(mk), 0 ≤ p ≤ min{k, σ(mk)},
also become sorted in increasing order.3

This property implies that

Property 5. If 1 ≤ k ≤ 40, 1 < mk < 2k, and nk ≥ 0, then the relative order of
the numbers T (p)(mk) is the same as that of the numbers T (p)(2k · nk + mk) for
0 ≤ p ≤ min{k, σ(mk)}.

This implies that the maximum (and the minimum) of the first k ≤ 40 iterates
occurs, for each 1 < mk < 2k and for all nk ≥ 0, always in the same iterate number.
A simple consequence of property 5, which follows from the comparison of the p-th
iterate of 2k · nk + mk with the 0-th iterate, is

Property 6. Let σ(mk) = p ≤ k ≤ 40 and 1 < mk < 2k. Then, the stopping time
of the trajectory of 2k · nk + mk, for any nk ≥ 0, is exactly equal to p.

3To reduce the computational effort, we have restricted the verification of this property to the
upper bound min{k, σ(mk)} and to k ≤ 40. (The reason for this will become apparent later on.)
We conjecture that it remains true for k > 40, and that it can be extended to p > σ(mk), as long

as T (p)(mk) > 1.

T - AND σ-RECORD-HOLDERS FOR THE 3x + 1 PROBLEM 375

The two congruence classes not treated in property 6, viz. mk = 0 and mk = 1,
are special. The first one gives rise either to a cycle of period one, if k = 1 and
nk = 0, or to a trajectory with a stopping time equal to one, if k > 0 and nk > 0
[recall that T (2n) = n]. The second one gives rise either to a cycle of period two,
if k = 2 and nk = 0, or to a trajectory with a stopping time equal to two, if k > 1
and nk > 0 [recall that T (2)(4n + 1) = 3n + 1]. We then have

Property 7. The stopping time of the trajectory of 2n, n > 0, is one, and the
stopping time of the trajectory of 4n + 1, n > 0, is two.

Note that properties 4, 6, and 7, taken together, confirm the coefficient stopping
time conjecture [3, p. 11] for stopping times smaller than 41.

Figure 2. The search tree for 0 ≤ k ≤ 5. A small open circle (◦)
after a node indicates a cycle (for nk = 0). A small shaded circle
(•) after a node indicates that the stopping time for the congruence
class of initial values associated with that node is exactly equal to
that node’s depth. These two types of nodes do not need to be
subdivided. Only the nodes with maximal depth (and without a
circle) are used in the search.

3. The exhaustive search strategy

Properties 6 and 7 are fundamental to our exhaustive search strategy. They allow
us to discard the offspring of all nodes of Figure 1 that satisfy T (k)(mk) ≤ mk. All
nodes of the resultant (pruned) tree, which is depicted in Figure 2, are associated
with one of three cases:

1. The last iterate attained, for the first time, a value lower than the initial value
of the trajectory (the node’s depth is the stopping time for all initial trajectory
values belonging to the congruence class associated with that node). These
nodes are marked with a shaded circle, and do not need to be subdivided.

2. The last iterate reached, for nk = 0 (k is the depth of the node), a value equal
to the initial value of the trajectory (a cycle). These nodes are marked with
an open circle in Figure 2, and, for nk > 0, they behave as the nodes marked
with a shaded circle. Hence, they also do not need to be subdivided.

3. The maximal depth used in the tree construction was reached. The stop-
ping time for all initial trajectory values belonging to the congruence class
associated with nodes of this kind is larger that the maximal tree depth.

The nodes of type 1 or 2 above will be called closed nodes. All other nodes of the
tree will be called open nodes. The number of open and closed nodes at each depth
of the tree, denoted respectively by no(k) and nc(k), up to depth 40, are presented

376 TOMÁS OLIVEIRA E SILVA

Table 1. Number of open and closed nodes at depth k

k no(k) nc(k) no(k)/2k nc(k)/2k

0 1 0 1.000 000 0.0
1 1 1 0.500 000 0.500 000
2 1 1 0.250 000 0.250 000
3 2 0 0.250 000 0.0
4 3 1 0.187 500 0.062 500
5 4 2 0.125 000 0.062 500
6 8 0 0.125 000 0.0
7 13 3 0.101 563 0.023 438
8 19 7 0.074 219 0.027 344
9 38 0 0.074 219 0.0

10 64 12 0.062 500 0.011 719
11 128 0 0.062 500 0.0
12 226 30 0.055 176 0.007 324
13 367 85 0.044 800 0.010 376
14 734 0 0.044 800 0.0
15 1 295 173 0.039 520 0.005 280
16 2 114 476 0.032 257 0.007 263
17 4 228 0 0.032 257 0.0
18 7 495 961 0.028 591 0.003 666
19 14 990 0 0.028 591 0.0
20 27 328 2 652 0.026 062 0.002 529
21 46 611 8 045 0.022 226 0.003 836
22 93 222 0 0.022 226 0.0
23 168 807 17 637 0.020 123 0.002 102
24 286 581 51 033 0.017 082 0.003 042
25 573 162 0 0.017 082 0.0
26 1 037 374 108 950 0.015 458 0.001 623
27 1 762 293 312 455 0.013 130 0.002 328
28 3 524 586 0 0.013 130 0.0
29 6 385 637 663 535 0.011 894 0.001 236
30 12 771 274 0 0.011 894 0.0
31 23 642 078 1 900 470 0.011 009 0.000 885
32 41 347 483 5 936 673 0.009 627 0.001 382
33 82 694 966 0 0.009 627 0.0
34 151 917 636 13 472 296 0.008 843 0.000 784
35 263 841 377 39 993 895 0.007 679 0.001 164
36 527 682 754 0 0.007 679 0.0
37 967 378 591 87 986 917 0.007 039 0.000 640
38 1 934 757 182 0 0.007 039 0.0
39 3 611 535 862 257 978 502 0.006 569 0.000 469
40 6 402 835 000 820 236 724 0.005 823 0.000 746

in Table 1. In that table, we also present the ratios no(k)/2k and nc(k)/2k. The
latter gives us the densities of the trajectories with stopping time exactly equal
to k. The former gives us the density of trajectories with stopping time higher
than k [in the notation of [3], this density is given by 1 − F (k)]. In the appendix,
we present a set of recurrence formulas to compute no(k) and nc(k). It produces
correct results provided property 4 is true up to (and including) k. In Figure 3 we
depict the graph of the base-10 logarithm of no(k)/2k = 1 − F (k) as a function
of k, for k ≤ 100.

T - AND σ-RECORD-HOLDERS FOR THE 3x + 1 PROBLEM 377

0 10 20 30 40 50 60 70 80 90 100

�3:5

�3:0

�2:5

�2:0

�1:5

�1:0

�0:5

0:0

Node depth k

lo
g
1
0

� n
o
(k
)=
2
k
�

Figure 3. This linear–log graph depicts the ratio between open
nodes at depth k of the search tree, and the total number of nodes
(2k) at that same depth. Shaded circles (•) represent exact val-
ues (generated by our program), open circles (◦) represent values
computed with the recurrence formulas described in the appendix,
and crosses (×) represent the upper bound of 1 − F (k) given by
Theorem D of [3].

Our search strategy is to analyze only initial values that belong to congruence
classes corresponding to nodes of type 3. As Table 1 and Figure 3 demonstrate, to
reduce the density of these nodes, thus speeding up the search, one should use a
maximal tree depth as large as possible. In our program we have used a maximal
depth of 40. This depth is the largest one that can be used in the construction of
a pruned tree similar to that of Figure 2, without taking precautions against arith-
metic overflows in a machine with 64-bit registers (DEC Alpha). Since a maximal
depth this large gives rise to an enormous number of type 3 nodes — 6 402 835 000
to be exact — it is impractical to store and sort them in increasing order of their
corresponding congruence classes. This makes a sequential search infeasible.4 In-
stead, our program processes the congruence classes in the order in which they are
generated. Although this makes the program somewhat more complicated, this
method has the important advantage that it requires an insignificant amount of
memory.

To cope with the nonsequential search, the program maintains two lists, sorted by
the initial value of the trajectories: one for candidate t-record-holders, and another
for candidate σ-record-holders. To reduce drastically the overhead of managing
these two lists, the program analyzes 210 “consecutive” initial values belonging to
the congruence class of each type 3 node. Since these 210 values are tested in
increasing order, only one pass (per node) through these lists is required to update
them. In normal circumstances, these lists have less that 80 and 40 elements,
respectively.

Each type 3 node has associated with it three numbers: m40; T (40)(m40), which
is larger than m40; and y(40; m40). Since these numbers are available, it is sensible

4The search reported in [4] appears to use a sequential search, making use, among other things,
of a (sorted) pruned tree of depth 16.

378 TOMÁS OLIVEIRA E SILVA

to put them to good use. We do that by using property 1 to compute with very
little overhead T (40)(n40 · 240 + m40), thus avoiding the initial 40 iterates of T (n).
Note that, since the 210 values of n40 are consecutive, we only need to apply (1) for
the first one, which requires one time-expensive multi-precision multiplication and
one time-inexpensive multi-precision addition. The remaining 210 − 1 values only
require one (inexpensive) multi-precision addition each.

Our search strategy introduces two problems. The first one is that σ-record-
holders with stopping times smaller than 41 are not reported. Since σ(27) = 59 >
40, the missing ones can be found very easily by testing all initial values between 2
and 27. A more serious problem occurs for t-record-holders. It is quite expensive
to compute, for each type 3 node, the maximum of the first 40 iterates for its
congruence class (recall property 5). Since that information is important only
for small initial values, we have not done it. This has the implication that the
maximum excursion information for small initial values may be inaccurate, if that
maximum excursion occurs before the fortieth iterate. To generate the missing t-
record-holders, and to remove the wrong ones, we, a posteriori, analyzed the results
of the search. Let ck be the k-th candidate t-record-holder. Using the simple bound

T (k)(n) ≤ 3k − 1
2k − 1

n,

it is clear that if
340 − 1
240 − 1

ck+1 < t(ck)

then there can be no t-record-holders between ck and ck+1 with a maximum ex-
cursion occurring in the first 40 iterates. Based on this observation, we traversed
the candidate t-record-holders list looking for the last candidate that did not sat-
isfy this condition. We then analyzed all initial values smaller than the candidate
immediately following the last one found. It turned out that we had to analyze all
initial values smaller than 319 804 831. (As it happens, this number is rather con-
servative. The largest t-record-holder with a maximum excursion occurring before
the fortieth iterate is 704 511.)

There is one final (and important) optimization that did not occur to us. We
found the idea, in a form more general than the one described here, in [4]. The idea
is to ignore initial values that belong to the trajectory of a smaller initial value (this
is a special case of the so-called trajectory coalescence). Consider, for example, the
trajectory of 2n + 1, which is (2n + 1, 3n + 2, . . .). Since 3n + 2 > 2n + 1 for all
n ≥ 0, it is clear that 3n+ 2 cannot be a t- or a σ-record-holder. It is therefore not
necessary to analyze initial values congruent to 2 mod 3. The next interesting case
is based on the relation T (3)(8n + 3) = 9n + 4, which renders the analysis of initial
values congruent to 4 mod 9 unnecessary. Other cases of this sort can be found by
iterating several times the inverse function T−1(n), with an initial value belonging
to each one of the congruence classes modulo 3k, and looking for an inverse iterate
smaller that the initial value. The congruence classes for which this happens will be
called closed. Table 2 presents the number of closed congruence classes modulo 3k

for 1 ≤ k ≤ 10. Unfortunately, the percentage of closed congruence classes increases
very slowly with k. Thus, there is hardly any advantage in using congruent classes
modulo 3k with a “large” k. In our program we have used k = 2, which excludes
4/9 of all initial values, and requires a very small amount of memory to implement.

T - AND σ-RECORD-HOLDERS FOR THE 3x + 1 PROBLEM 379

Table 2. Number of closed congruence classes modulo 3k

k n(k) n(k)/3k

1 1 33.333%
2 4 44.444%
3 12 44.444%
4 37 45.679%
5 111 45.679%
6 335 45.953%
7 1 013 46.319%
8 3 039 46.319%
9 9 145 46.461%

10 27 435 46.461%

4. Computational results

We have coded a program that implements all the techniques described in the
previous section. All multi-precision arithmetic was performed on numbers stored
in two 64-bit registers. The program was coded entirely in C. The function T (n)
was implemented with a multi-precision version of the code

if(n & 1)
n += (n >> 1) + 1;

else
n >>= 1;

which avoids a time consuming multiplication by 3. The test to update the max-
imum excursion was placed inside the if part of the code, together with a test
to detect arithmetic overflows. The stopping condition for the iterations was
T (k)(n) < n, and was placed inside the else part of the code. Note that the
existence of a cycle would put the program into an endless loop, which did not
happen.

It turned out that the idea of using (1) to do several iterates of T (n) in one step
did not bring any speed advantage. This was due to the time-consuming multi-
precision multiplication it requires, to the large amount of memory required to
implement it, to the extra time required to test for a possible maximum excursion,
and to the extra time required to test the stopping condition T (k)(n) < n. Remark-
ably, the same idea was used with success in [4], being responsible for a program
speedup factor of 7.

One important feature of our program is that its working set (“active” code and
data) fits nicely into the processor’s on-chip caches. Each run of the program tests
exhaustively an interval of 240+10 initial values, and takes around 6 CPU weeks on
a DEC Alpha 266MHz computer. We have used 4 DEC Alpha computers during
the search, two 266MHz models and two older 133MHz models, each one testing a
different range. The results of the search are presented in Tables 3 and 4. These
results, up to 5.6 ·1013 for t-record-holders, and up to 6.8 ·1012 for σ-record-holders,
are in perfect accord with the results reported in [4].

For the record, our search program tests, on the average, an interval of about
317 million integers each second (on a DEC Alpha 266MHz machine, and with the
program written entirely in C).

380 TOMÁS OLIVEIRA E SILVA

Table 3. List of all t-record-holders up to 3 · 253 ≈ 2.702 · 1016

n t(n) t(n)/n2

2 2 0.500
3 8 0.889
7 26 0.531

15 80 0.356
27 4 616 6.332

255 6 560 0.101
447 19 682 0.099
639 20 762 0.051
703 125 252 0.253

1 819 638 468 0.193
4 255 3 405 068 0.188
4 591 4 076 810 0.193
9 663 13 557 212 0.145

20 895 25 071 632 0.057
26 623 53 179 010 0.075
31 911 60 506 432 0.059
60 975 296 639 576 0.080
77 671 785 412 368 0.130

113 383 1 241 055 674 0.097
138 367 1 399 161 680 0.073
159 487 8 601 188 876 0.338
270 271 12 324 038 948 0.169
665 215 26 241 642 656 0.059
704 511 28 495 741 760 0.057

1 042 431 45 119 577 824 0.042
1 212 415 69 823 368 404 0.048
1 441 407 75 814 787 186 0.036
1 875 711 77 952 174 848 0.022
1 988 859 78 457 189 112 0.020
2 643 183 95 229 909 242 0.014
2 684 647 176 308 906 472 0.024
3 041 127 311 358 950 810 0.034
3 873 535 429 277 584 788 0.029
4 637 979 659 401 147 466 0.031
5 656 191 1 206 246 808 304 0.038
6 416 623 2 399 998 472 684 0.058
6 631 675 30 171 305 459 816 0.686

19 638 399 153 148 462 601 876 0.397
38 595 583 237 318 849 425 546 0.159
80 049 391 1 092 571 914 585 050 0.171

120 080 895 1 638 950 788 059 290 0.114
210 964 383 3 202 398 580 560 632 0.072
319 804 831 707 118 223 359 971 240 6.914

1 410 123 943 3 562 942 561 397 226 080 1.792
8 528 817 511 9 072 297 468 678 299 012 0.125

12 327 829 503 10 361 199 457 202 525 864 0.068
23 035 537 407 34 419 078 320 774 113 520 0.065
45 871 962 271 41 170 824 451 011 417 002 0.020
51 739 336 447 57 319 808 570 806 999 220 0.021
59 152 641 055 75 749 682 531 195 100 772 0.022
59 436 135 663 102 868 194 685 920 926 084 0.029
70 141 259 775 210 483 556 894 194 914 852 0.043
77 566 362 559 458 306 514 538 433 899 928 0.076

110 243 094 271 686 226 824 783 134 190 180 0.056
204 430 613 247 707 630 396 504 827 495 544 0.017
231 913 730 799 1 095 171 911 941 437 256 778 0.020
272 025 660 543 10 974 241 817 835 208 981 874 0.148
446 559 217 279 19 766 638 455 389 030 190 536 0.099
567 839 862 631 50 270 086 612 792 993 117 994 0.156
871 673 828 443 200 279 370 410 625 061 016 864 0.264

2 674 309 547 647 385 209 974 924 871 186 526 136 0.054
3 716 509 988 199 103 968 231 672 274 974 522 437 732 7.527
9 016 346 070 511 126 114 763 591 721 667 597 212 096 1.551

64 848 224 337 147 637 053 460 104 079 232 893 133 864 0.151
116 050 121 715 711 1 265 292 033 916 892 480 613 118 196 0.094
201 321 227 677 935 2 636 975 512 088 803 001 946 985 208 0.065
265 078 413 377 535 2 857 204 078 078 966 555 847 716 826 0.041
291 732 129 855 135 3 537 558 936 133 726 760 243 328 464 0.042
394 491 988 532 895 6 054 282 113 227 445 504 606 919 650 0.039
406 738 920 960 667 12 800 696 705 021 228 411 442 619 682 0.077
613 450 176 662 511 22 881 441 742 972 862 145 992 619 776 0.061
737 482 236 053 119 37 684 665 798 782 446 690 107 505 928 0.069

1 254 251 874 774 375 1 823 036 311 464 280 263 720 932 141 024 1.159
5 323 048 232 813 247 1 964 730 439 297 455 725 829 478 995 944 0.069
8 562 235 014 026 655 13 471 057 008 351 679 202 003 944 688 336 0.184

10 709 980 568 908 647 175 294 593 968 539 094 415 936 960 141 122 1.528

T - AND σ-RECORD-HOLDERS FOR THE 3x + 1 PROBLEM 381

Table 4. List of all σ-record-holders up to 3 · 253 ≈ 2.702 · 1016

n σ(n)

2 1
3 4
7 7

27 59
703 81

10 087 105
35 655 135

270 271 164
362 343 165
381 727 173
626 331 176

1 027 431 183
1 126 015 224
8 088 063 246

13 421 671 287
20 638 335 292
26 716 671 298
56 924 955 308
63 728 127 376

217 740 015 395
1 200 991 791 398
1 827 397 567 433
2 788 008 987 447

12 235 060 455 547
898 696 369 947 550

2 081 751 768 559 606
13 179 928 405 231 688
31 835 572 457 967 712
70 665 924 117 439 722

739 448 869 367 967 728
1 008 932 249 296 231 886

The computer search reported in this paper, which took approximately 4 CPU
years, is still running. Please contact the author for the latest results.

4.1. Theoretical analysis of the search speedup. It is instructive to estimate
the speedup of the program with respect to what we call a naive search. In a naive
search, all initial values are tested, sequentially, to check if they are a t- or a σ-
record-holder (or both). As explained before, it is sufficient to iterate T at n until
T (k)(n) < n. Thus, the number of iterates performed for each initial value is equal
to its stopping time. The average stopping time is given by the formula

σnaive =
∞∑

k=1

k
nc(k)

2k
.

This number can be estimated using the data of Table 1, extended by the output
of the recurrence formulas reported in the appendix. Performing the necessary
computations gives the estimate

σnaive ≈ 3.493,

382 TOMÁS OLIVEIRA E SILVA

which agrees very well with empirical data. On the other hand, the average number
of iterates required to test each initial value belonging to one of the congruence
classes associated with the open nodes at depth 40 of the search tree is

σ40 =
240

no(40)

∞∑
k=41

(k − 40)
nc(k)

2k

(recall that the first 40 iterates are done almost for free), which gives the estimate

σ40 ≈ 18.674.

This estimate also agrees very well with empirical data. The search speedup is thus

240

no(40)
σnaive

σ40
≈ 32.118.

It remains to analyze the speedup due to the final optimization discussed in
section 3 (trajectory coalescence). Since gcd(2k, 3p) = 1 for all k, p ≥ 0, the integers
belonging to one of the congruence classes modulo 2k (3p) are distributed uniformly
among the congruence classes modulo 3p (2k). In particular, the 210 initial values
n40 ·240+m40 that are tested for each type 3 node are distributed (almost) uniformly
among the congruence classes modulo 9. We claim that the average number of
iterates required to test the initial values belonging to one of these 9 congruence
classes is the same for all 9 congruence classes. This follows from the observation
that the numbers n40 which make n0 belong to a given congruence class modulo 9
are uniformly distributed among the congruence classes modulo a power of 2. This
forces the average number of iterates for each congruence class modulo 9 to be
equal to that of any other congruence class (recall that the pruned tree involves
the distribution of initial values among congruence classes modulo powers of 2).
From this argument we conclude that the trajectory coalescence optimization is, in
theory, completely independent of all previous optimizations, and so it introduces
an extra speedup factor of 9/5 (only 5 of the 9 congruence classes modulo 9 need
to be tested). This gives a total speedup factor of approximately 57.813.

The speedup factor just given disregards the extra time required to manage
each one of the searches (the naive and ours), as well as the extra time required
to identify the two types of record-holders. Since the average number of iterates
required to test each initial value in the naive search is rather small, the (small)
time required to test for t- and σ-record-holders may have a significant impact on
the program speed. On the other hand, our search algorithm was designed to make
these overheads small with respect to the time required to iterate T (n) σ40 times
(on the average). For example, the entire search tree can be generated in around
one hour (on a DEC Alpha 266MHz machine), which is less than 0.1% of the total
search time. The code that manages the two record-holder lists also contributes
with a small fraction to the total search time. A direct comparison of the search
times of the two algorithms gave a speedup of around 67, which shows that in our
programs the overheads are considerably more significant in the naive search.

5. Concluding remarks

The main purpose of the search was to analyze the growth of the function t(n).
Figure 4 displays a graph with all t-record-holders, and their respective maximum
excursions, found in the search. This figure suggests the following.

T - AND σ-RECORD-HOLDERS FOR THE 3x + 1 PROBLEM 383

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

5

10

15

20

25

30

log
10

n

lo
g
1
0

t
(n
)

Figure 4. This log-log graph depicts all t-record-holders produced
by the search reported in this paper. We also present the function
n 7→ n2 (solid line) and the function n 7→ 8n2 (dashed line).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

200

400

600

800

log
10
n

�

(n
)

Figure 5. This log-linear graph depicts all σ-record-holders pro-
duced by the search reported in this paper.

Conjecture 1. The maximum excursion t(n) satisfies

t(n) < n2 f(n),

where f(n) is either a constant or a very slowly increasing function of n.

With the data we have available it is not clear if f(n) is, or isn’t, a constant.
In fact, t(n) > n2 occurs for only seven t-record-holders for n < 3 · 253, and in all
cases found to date t(n) < 8n2. This conjecture is in accord with theoretical results
concerning the maximum excursions of a stochastic model of the 3x+1 problem [2].

For completeness, Figure 5 displays a graph with all σ-record-holders found in
the search, together with their respective stopping times. Unfortunately, the growth
of the stopping times of σ-record-holders appears to be somewhat more erratic than
the growth of the maximum excursion of t-record-holders. Nevertheless, Figure 5

384 TOMÁS OLIVEIRA E SILVA

shows that the stopping times of σ-record-holders appear to increase more or less
linearly with the logarithm of the trajectory starting value. Given the average
behavior of the stopping time, that was to be expected.

An important side result of our search is the verification of the 3x+1 conjecture
up to n = 3 · 253 ≈ 2.702 · 1016. This upper limit can be used to improve the lower
bound on the length of nontrivial cycles of T (n) given in [1].

Acknowledgment

The author wishes to express his gratitude to J. C. Lagarias, for making available
to the author his rather extensive annotated bibliography on the 3x + 1 problem.

Appendix

In this appendix we present simple recurrence formulas to compute no(k) and
nc(k). It turns out that it is very convenient to break no(k) into smaller terms. Let
no(k, p), 0 ≤ p ≤ k, be the number of open nodes at depth k for which y(k; mk) = p.
Clearly, no(0, 0) = 1, and no(k) =

∑k
p=0 no(k, p). When an open node at depth

k−1, k > 0, is subdivided, one of the two nodes it generates will satisfy y(k, mk) =
y(k − 1, mk−1), and the other one will satisfy y(k, mk) = y(k − 1, mk−1) + 1. If
all the nodes generated by this process were open nodes, this would imply that
no(k, p) = no(k− 1, p− 1)+ no(k− 1, p), with the assumption that no(k− 1,−1) =
no(k − 1, k) = 0, giving a binomial distribution for no(k, p). However, some of the
nodes generated may be closed nodes. Assuming that property 4 holds for all k,
this happens when 3p < 2k. Therefore we have, for k > 0,

no(k, p) =

{
0 if 3p < 2k,

no(k − 1, p− 1) + no(k − 1, p) if 3p > 2k.

Defining nc(k, p) in the same way as no(k, p) we also have

nc(k, p) =

{
no(k − 1, p) if 3p < 2k,

0 if 3p > 2k.

(Actually, at most one of the numbers nc(k, p) may be non-zero.) Knowing no(k, p)
and nc(k, p), it is a trivial task to compute no(k) and nc(k). These recurrence
formulas were verified with a computer for k ≤ 40.

References

[1] Shalom Eliahou, The 3x+1 problem: new lower bounds on nontrivial cycle lengths, Discrete
Mathematics 118 (1993), no. 1–3, 45–56. MR 94h:11017

[2] J. C. Lagarias and A. Weiss, The 3x + 1 problem: two stochastic models, The Annals of
Applied Probability 2 (1992), no. 1, 229–261. MR 92k:60159

[3] Jeffrey C. Lagarias, The 3x+1 problem and its generalizations, The American Mathematical
Monthly 92 (1985), no. 1, 3–23. MR 86i:11043

[4] G. Leavens and M. Vermeulen, 3x + 1 search programs, Computers and Mathematics, with
Applications 24 (1992), no. 11, 79–99. MR 93k:68047

Departamento de Electrónica e Telecomunicações / INESC Aveiro, Universidade de

Aveiro, 3810 Aveiro, Portugal

E-mail address: tos@inesca.pt

