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ON BEST POSSIBLE ORDER OF CONVERGENCE ESTIMATES
IN THE COLLOCATION METHOD AND GALERKIN’S METHOD

FOR SINGULARLY PERTURBED BOUNDARY VALUE
PROBLEMS FOR SYSTEMS OF FIRST-ORDER

ORDINARY DIFFERENTIAL EQUATIONS

I. A. BLATOV AND V. V. STRYGIN

Abstract. The collocation method and Galerkin method using parabolic
splines are considered. Special adaptive meshes whose number of knots is
independent of the small parameter of the problem are used. Unimprovable
estimates in the L∞-norm are obtained. For the Galerkin method these esti-
mates are quasioptimal, while for the collocation method they are suboptimal.

Introduction

It is well known that the spline collocation method for a nonstiff boundary value
problem leads to a priori high-order accuracy estimates in the uniform norm [1]–[3].

For the Galerkin method in nonstiff problems the corresponding estimates are
quasioptimal [4]–[6]. For the investigation of stiff systems it is appropriate to use
strongly nonuniform meshes [12]–[15]. This circumstance significantly complicates
the problem. Moreover, for stiff problems, it is difficult to select the principal part
of a differential operator. To overcome these difficulties, the authors of [7]–[11]
proposed Petrov-Galerkin type methods involving special bases in the test spaces;
by means of them it may be possible to approximate solutions very well, not only
in the center of an interval but also in boundary layers. In the present article
we use these ideas. For numerical analysis we use C1 quadratic splines on meshes
proposed by N. S. Bakhvalov. These meshes have a little number of knots, but they
are denser and closer in the boundary layers. This allows us to obtain high-order
accuracy with small additional computational work. The estimates obtained in this
article have the same accuracy as analogous estimates for nonstiff boundary value
problems. It is shown that these estimates are unimprovable, and, for the Galerkin
method, they are quasioptimal.

Note that for collocation methods similar ideas are used in the papers by Asher
and Weiss [12]–[13] and by Ringhofer [14], but they use other meshes and splines
of high defects.
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In conclusion we note that our investigation of the Galerkin method is based
on the remarkable ideas of J. A. Nitsche, F. Natterer, R. Scott, A. H. Schatz and
L. B. Wahlbin [15]–[18].

1. Statement of the problem.

Prelininaries and notation

Let ∆: − 1 = t−p < · · · < tp = 1 denote any partition of the interval [−1, 1],
and let hs = ts+1 − ts. By Bi,r(t) we denote the B-spline of degree r on the
partition ∆ having support [ti, ti+r+1]. We assume that Bi,r are normalised so that∑i

j=i−r Bj,r(t) ≡ 1, t ∈ [ti, ti+1]. Let S(∆, r, 1) be the space of polynomial splines
of degree r and defect 1 on the partition ∆. Throughout this paper ε denotes a
small positive parameter; C,C1, C2 · · · will be used to denote positive constants
independent of ε and the partition ∆.

As usual, Cs[−1, 1] denotes the space of all scalar, vector or matrix functions on
[−1, 1] which are continuous together with their derivatives up through order s in
[−1, 1]; ‖ · ‖Cs will be the norm in this space.

We use the notation ‖ · ‖p for the norm in Lp[−1, 1] (1 ≤ p ≤ ∞). Using the
sharp order function, we shall write f(ε,m) = O∗(g(ε,m)) if there exist constants
C1 and C2 such that, for some ε0 > 0 and m0 ∈ N , and for every ε ∈ (0, ε0] and
m ≥ m0, the estimates

C1|f(ε,m)| ≤ |g(ε,m)| ≤ C2|f(ε,m)|
hold.

If only the first inequality holds, we shall write f(ε,m) = O(g(ε,m)).
On the interval [−1, 1] consider now the problem

Lεx = εx′ −A(t)x = d(t), x = (x1, x2, . . . , xn)T ∈ Rn,(1.1)

x1(−1) = · · · = xk(−1) = xk+1(1) = · · · = xn(1) = 0.(1.2)

Here A(t) is a matrix and d(t) is a vector function of class C3. Suppose that the
matrix A(t) has eigenvalues ν1(t), ν2(t), . . . , νn(t) such that, for any t ∈ [−1, 1],
ν1(t) < ν2(t) < · · · < νk(t) < 0 < νk+1(t) < · · · < νn(t); |νi(t)| ≥ ν0 > 0.

Let the matrix B reduce the matrix A(t) to diagonal form, i.e.,

B−1AB = diag(ν1(t), ν2(t), . . . , νn(t)).

Represent the matrix B in the corresponding block form

B =
∥∥∥∥B11 B12

B21 B22

∥∥∥∥ ,
where B11 is a k × k matrix.

Suppose that detB11(−1) detB11(1) detB22(−1) detB22(1) 6= 0.
The following statements are known [19].

Lemma 1.1. There exists a constant C and an ε0 > 0 such that for all ε ∈ (0, ε0]
the operator Lε has a Green function Gε(t, ξ) satisfying∥∥∥∥ ∂i

∂ξi
Gε(t, ξ)

∥∥∥∥ ≤ C/εi+1 exp(−ν0|t− ξ|/ε),(1.3)

and, for the integral operator associated with Gε(t, ξ), the following estimates hold:

‖Gε‖C→C ≤ C, ‖Gε‖C→C1 ≤ C/ε.(1.4)
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Lemma 1.2. There exists an ε0 > 0 such that for all ε ∈ (0, ε0] the problem (1.1)–
(1.2) has a unique solution xε(t). Moreover, for i = 0, 1, 2, 3, we have

‖x(i)
ε (t)‖ ≤ C(1 + ε−k(exp(ν0(t− 1)/ε) + exp(ν0(−1− t)/ε))).(1.5)

Lemma 1.3. The homogeneous system Lεx = 0 has the fundamental system of
solutions (F.S.S.) ζ1(t, ε), . . . , ζn(t, ε) (0 < ε ≤ ε0) for which the representations

ζi(t, ε) = {bi(t) + εχi(t, ε)} exp
(

1
ε

∫ t

−1

νi(s)ds
)
, i = 1, 2, . . . , k,(1.6)

ζi(t, ε) = {bi(t) + εχi(t, ε)} exp
(
−1
ε

∫ 1

t

νi(s)ds
)
, i = k + 1, k + 2, . . . , n,

(1.7)

are valid. Here

‖χ(j)
i (t, ε)‖∞ ≤ C/εj , j = 0, 1, 2, 3,(1.8)

and bi(t) is an eigenvector of A(t) associated with the eigenvalue νi(t).

2. Galerkin and collocation methods.

Formulation of the main results

To construct a suitable partition of [−1, 1] we use the Bakhvalov approach [20].
Let a = 1− (3/ν0)ε ln(1/ε); note that a→ 1 as ε→ 0. Define

g(t) =

{
t, t ∈ [0, a],
a− 3ε/ν0 + (3/ν0) exp((ν0/(3ε))(t− 1)), t ∈ [a, 1].

For t ∈ [−1, 0] we set g(t) = −g(−t). Then g(t) belongs to C1[−1, 1] and maps
[−1, 1] onto [−b, b] in a one-to-one fashion, where b = a+ (3/ν0)(1 − ε). Let m be
any natural number. On [0, b] we set

τi =

{
ai/m, i = 0, 1, . . . ,m
a+ (b− a)(i −m)/m, i = m+ 1,m+ 2, . . . , 2m.

Points τi on the interval [−b, 0] are introduced symmetrically.
Knots ti of the partition ∆ of the interval [−1, 1] will be defined by ti = g−1(τi),

where g−1 is the inverse of the function g. Let h = 1/m. We shall distinguish three
cases:

h� ε,(α)

0 < C1 ≤ ε/h ≤ C2,(β)

ε ln(1/ε) � h.(γ)

Recall here that hj = tj+1 − tj .

Lemma 2.1. In the case (γ) the following relations hold:

3ε/(ν0(j −m+ 2)) ≤ hj ≤ 3ε/(ν0(j −m)), j > m+ 1,

hj = O(ε ln(1/ε)), j = m,

hj = h(1 +O(ε ln(1/ε))), j = 0, 1, . . . ,m− 1.
(2.1)
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Proof. For j ≥ m we have

hj = g−1(τj+1)− g−1(τj)

= 3ε/ν0{ln[(j −m+ 1)(b− a)/m+ 3ε/ν0]

− ln[(j −m)(b− a)/m+ 3ε/ν0]}.
(2.2)

Hence, in accordance with MacLaurin’s formula, we get (2.1) for j ≥ m + 1. For
j ≤ m these formulas are obvious. The lemma is proved.

We next define trial and test spaces. For the trial spaces we take

E = {u = (u1(t), u2(t), . . . , un(t))T , ui(t) ∈ S(∆, 2, 1), u1(−1) = u2(−1)

= · · · = uk(−1) = uk+1(1) = · · · = un(1) = 0}.
For the test space consider F = LεE. It is clear that dimE = dimF = (4m+1)n,

independently of ε.
Define the collocation method in the following manner. First introduce colloca-

tion points

ξi = (ti−1 + ti)/2, i = 1, 2, . . . ,m,

ξi = (ti + ti+1)/2, i = −1,−2, . . . ,−m,
ξi = ti−1, i = m+ 1,m+ 2, . . . , 2m+ 1,
ξi = ti+1, i = −m− 1,−m− 2, . . . ,−2m− 1.

Let I = {−2m − 1,−2m, . . . ,−m − 3,−m − 1,−m, . . . ,−1, 1, 2, . . . ,m,m + 1,
m + 3,m + 4, . . . , 2m + 1} be the index set. The collocation method consists in
finding u(t) ∈ E so that u(t) satisfies

Lεu|t=ξj = d(ξj), j ∈ I(2.3)

{Lεu|t=ξm+2}ν = {d(ξm+2)}ν , ν = 1, 2, . . . , k,(2.4)

{Lεu|t=ξ−m−2}ν = {d(ξ−m−2)}ν , ν = k + 1, . . . , n(2.5)

in case (α), and u(t) satisfies

Lεu|t=tj = d(tj), j = −2m,−2m+ 1, . . . , 2m(2.6)

in cases (β) and (γ).
The Galerkin method of least-square type consists in finding u(t) ∈ E so that

for each v ∈ F ,

(Lεu, v) = (d, v).(2.7)

Here ( , ) denotes the inner product in (L2[−1, 1])n.
In this paper the Galerkin method is considered only in the case (γ). Recall that

h = 1/m.

Theorem 1. There exist constants C > 0, ε0 > 0, h0 > 0, γ0 > 0 such that for
all ε ∈ (0, ε0] and h ∈ (0, h0] with h ≤ γ0ε the problem (2.6) has a unique solution
u(t) and

‖xε(t)− u(t)‖∞ + ε‖x′ε(t)− u′(t)‖∞ ≤ Ch2.(2.8)

Theorem 2. For every γ1 > 0 there exist numbers C > 0, ε0 > 0, h0 > 0 such
that for all ε ∈ (0, ε0] and h ∈ (0, h0] with γ1ε ≤ h ≤ ε/γ1 the problem (2.6) has a
unique solution u(t) and the estimate (2.8) holds.
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Theorem 3. There exist numbers ε0 > 0, h0 > 0, γ2 > 0, C > 0 such that for all
ε ∈ (0, ε0] and h ∈ (0, h0] with ε ln(1/ε) ≤ γ2h the problem (2.3)–(2.5) has a unique
solution u(t), and the estimate (2.8) is valid.

The following theorem shows that, for the collocation method, the estimates
(2.8) are best possible in order.

Theorem 4. There exist a constant C1 > 0 and a function d(t) ∈ C3[−1, 1] inde-
pendent of ε and h such that, for sufficiently small ε and h, in all three cases (α),
(β), (γ) the estimate

‖xε(t)− u(t)‖∞ ≥ C1h
2(2.9)

holds.

Theorem 5. There exist numbers ε0 > 0, h0 > 0, γ2 > 0, C > 0 such that for all
ε ∈ (0, ε0] and h ∈ (0, h0] satisfying ε ln(1/ε) ≤ γ2h the problem (2.7) has a unique
solution u(t), and

‖xε(t)− u(t)‖∞ ≤ Ch3.(2.10)

Remark 2.1. As will be shown

inf
u∈E

‖xε(t)− u(t)‖∞ = O(h3).

Thus the estimate (2.10) in general is unimprovable and quasioptimal.

3. Proof of Theorems 1–3

The proofs of Theorems 1–3 are based on the notion of interpolation projection.

Definition 3.1. The linear operator P : C[−1, 1] → F = LεF such that PP = P
and (Pd)(tj) = d(tj) for any d ∈ C[−1, 1] (j = −2m, . . . , 2m) is said to be the
interpolation projection for cases (α) and (β); in the case (γ) the interpolation
conditions take the form

(Pd)(ξj) = d(ξj) for j ∈ I,
{(Pd)(ξm+2)}ν = {d(ξm+2)}ν , ν = 1, . . . , k,

{(Pd)(ξ−m−2)}ν = {d(ξ−m−2)}ν , ν = k + 1, . . . , n.

Lemma 3.1. There exist numbers ε0 > 0, h0 > 0. γ2 > 0, C > 0 such that for
all ε ∈ (0, ε0] and h ∈ (0, h0], if ε ln(1/ε) ≤ γ2h, then the interpolation projection
P (ε, h) exists and

‖P (ε, h)‖C→C ≤ C.

Remark 3.1. Analogous statements are true in the cases (α) and (β).

Lemma 3.2. Let d̂(t) ∈ F be the best approximation of d(t) ∈ F in the sense of
the norm in C[−1, 1]. Then in cases (α), (β) and (γ) we have ‖d− d̂‖∞ ≤ Ch2 for
some C.

Lemma 3.3. For all ε ∈ (0, ε0] and h ∈ (0, h0] such that the interpolation projec-
tion P exists, the collocation problem has a solution u(t) in cases (α), (β) and (γ).
Moreover, for i = 0, 1,

‖xε(t)− u(t)‖Ci ≤ ‖Gε‖C→Ci(1 + ‖P‖C→C)‖d− d̂‖C .
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It is easy to see that Lemmas 3.1–3.3 and Lemma 1.3 imply Theorems 1–3.
We outline the proofs of Lemmas 3.1–3.3. The proof of Lemma 3.3 follows from

the estimates
‖xε − u‖Ci = ‖GεPd−Gεd‖Ci ≤ ‖Gε‖C→Ci‖Pd− d‖C

≤ ‖Gε‖C→Ci(‖P (d− d̂)‖+ ‖d− d̂‖C)

and Lemmas 3.1 and 3.2.
The proof of Lemma 3.2 is based on the approximation theorems of de Boor [21]

for the space of splines on nonuniform meshes. These theorems and Lemmas 1.2
and 2.1 imply that there is a function

∗
x(t) ∈ E which satisfies

‖xε(t)− ∗
x(t)‖∞ ≤ Cg3, ε‖x′ε(t)−

∗
x′(t)‖∞ ≤ Ch2.(3.1)

Letting
∗
d = Lε

∗
x, due to (3.1) we obtain ‖d− d̂‖∞ ≤ ‖d−

∗
d‖∞ ≤ Ch2, i.e., the

assertion of Lemma 3.2. For details of the proof, see [7] and [9].

Remark 3.2. The case a = 1− 2/ν0ε ln(1/ε) was considered in [7]–[9]. To establish
the statements in the case a = 1− 3/ν0ε ln(1/ε) there are no essential changes.

The proof of Lemma 3.1 is based on the following statements.

Proposition 3.1. The interpolation projection P exists if and only if there exists
a basis N1, . . . , Nq (Ni = Ni(t, ε, h)) in F such that, in the cases (α) and (β), the
system of linear equations

q∑
j=1

αjNj(ti) = fi, i = −2m, . . . , 2m,(3.2)

has a unique solution; and, in the case (γ), the system of linear equations
q∑

j=1

αjNj(ξi) = fi, i ∈ I,


q∑

j=1

αjNj(ξm+2)


ν

= {fm+2}ν , ν = 1, 2, . . . , k,(3.3)


q∑

j=1

αjNj(ξ−m−2)


ν

= {f−m−2}ν , ν = k + 1, . . . , n,

has a unique solution for any collection of vectors f j ∈ Rn.

Proposition 3.2. Let the basis {Nj(t)} from Proposition 3.1 satisfy the following
conditions:

1)
∑q

j=1 ‖Nj(t)‖Rn ≤ C1 for any t ∈ [−1, 1].
2) There exists a constant C2 such that for any collection of n-dimensional vec-

tors fj with ‖fj‖Rn ≤ 1, the solution of system (3.2) (or (3.3)) satisfies the estimate
max1≤j≤q |αj | ≤ C2.

Then for the family of interpolation projections, the uniform estimate ‖P‖C→C ≤
C1C2 holds.
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For proofs of these simple assertions, see [8] and [9].
A basis satisfying the conditions in Propositions 3.1 and 3.2 is called an N -basis.

Thus to prove Lemma 3.1 and Theorems 1–3 it is sufficient to construct an N -basis
in F = F (ε, h).

Lemma 3.4. There are functions

Nij(t, ε) = bj(ti+1)Bi+1,1(t) + Φij(t, ε) + µij(t, ε),

(i = m+ i0,m+ i0 + 1, . . . , 2m− 2;

i = −2m− 2, . . . ,−m− i0 − 4; j = k + 1, k + 2, . . . , n),

(i = m+ i0 − 1, . . . , 2m− 2;

i = −2m− 2, . . . ,−m− i0 − 3; j = 1, 2, . . . , k),

(3.4)

in the space F such that

suppµij ⊂ [t−2m, t−m−1] ∪ [tm+1, t2m],(3.5)

supp Φij(t, ε) ⊂ [ti+1, ti+3],(3.6)

‖dνΦij/dt
ν‖L∞[−1,1] ≤ C/(|j| −m)h−ν

j , ν = 0, 1,(3.7)

‖dνµij/dt
ν‖L∞[tq,tq+1] ≤ C/max{(|i| −m)3, (|q| −m)3}h−ν

q , ν = 0, 1,(3.8)

where i0 is a sufficiently large number and C is independent of i0.

Lemma 3.4 was proved in [7] and [11], where the estimates (3.7) and (3.8) were
obtained only for ν = 0. We shall prove them for ν = 1. As it was shown in the
proof of a lemma on basis functions in [9], the functions µij(t, ε) can be written in
the form µij(t, ε) = Lεκij(t, ε), where κij ∈ [S(∆, 2, 1)]n, and, moreover,

‖κij‖∞ ≤ C/(|i| −m).(3.9)

Consider the function µij(t, ε) on an arbitrary interval [tq, tq+1]. Represent this
function in the form

µij(t, ε) = εx′(t, ε)−Aq(t)κij(t, ε)− (A(t) −Aq(t))κij(t, ε),(3.10)

where

Aq(t) = A(tq) +A′(tq)(t− tq) + 1
2A

′′(tq)(t− tq)2.

Taking into account the smoothness of A(t) and the fact that κij(t, ε) is a poly-
nomial of the second degree on [tq, tq+1], by (3.9) and Lemma 2.1 we have∥∥∥∥ dν

dtν
(A(t)−A(tq))κij(t, ε)

∥∥∥∥
L∞[tq,tq+1]

≤ Ch2
q/(|i| −m)

≤ Cε2/((|i| −m)(|q| −m)) ≤ C/max{(|i| −m)3, (|q| −m)3}
(3.11)

for ν = 0, 1. According to estimates (3.11) and (3.8), for ν = 0 we have

‖εx′(t, ε)−Aq(t)κij(t, ε)‖L∞[tq,tq+1] ≤ C/max{(|i| −m)3, (|q| −m)3}.(3.12)

The function εκij(t, ε)−Aq(t)κij(t, ε) is an n-dimensional vector function, each
component of which is a polynomial of degree ≤ 4 on [tq, tq+1]. Using the equiva-
lence of norms in the space of polynomials of fourth degree on [tq, tq̇+1], by (3.12)
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we get ∥∥∥∥ ddt (εκ′ij −Aq(t)κij)
∥∥∥∥

L∞[tq,tq+1]

≤ Ch−1
q /max{(|i| −m)3, (|q| −m)3}.(3.13)

By (3.10), (3.12) and (3.13) the estimate (3.8) follows from ν = 1. The estimate
(3.7) for ν = 1 may be proved analogously. The lemma is proved.

For i = −m− i0 − 2, . . . ,m+ i0 − 2 and j = 1, . . . , k, put

Nij(t) = Lε(Bi,2bj(ti)),(3.14)

and for i = −m− i0 − 3, . . . ,m+ i0 − 1 and j = k + 1, . . . , n define

Nij(t) = Lε(Bi+1,2bj(ti+1)).(3.15)

As was shown in [8] and [11], the set {Nij} is a basis in F in cases (β) and (γ).
From (3.9) and (3.8) it follows that it is an N -basis. This completes the proof of
Theorem 2.3.

Note that in the case (α) (Theorem 1) the proof of Lemma 3.1 is considerably
easier and does not require construction of an N -basis (see [9]).

4. Proof of Theorem 4

Let b1(t) = (b1,1(t), . . . , b1,n(t)) be an eigenvector of the matrix A(t), associated
with λ1(t), and let ei = (0, . . . , 0, 1, 0, . . . , 0) be the unit vector. Put

d(t) = A(t)
n∑

i=1

(
b1,i(−1)

t− 1
2

− b1,i(1)
t+ 1

2

)
ei.(4.1)

Let xε be the solution of the problem (1.1)–(1.2), and u(t) the unique solution of
the corresponding collocation problem (2.6). We shall prove that the estimate (2.9)
holds (in the cases (α), (β), (γ)), if ε and h are sufficiently small.

Let

x(t) =
n∑

i=1

(
ζ1,i(−1, ε)

t− 1
2

− ζ1,i(1, ε)
t+ 1

2

)
ei,(4.2)

and

d(t) = Lεx(t),(4.3)

where ζ1(t, ε) = (ζ1,1(t, ε), . . . , ζ1,n(t, ε))T is an element of an F.S.S. of the equation
Lεx = 0 (see (1.6)). From (1.6)–(1.8), (4.1) and (4.3) we conclude that

‖d(t)− d(t)‖C3 ≤ Cε.(4.4)

Let xε(t) = Gεd(t) and xε(t) = Gεd(t) be solutions of the problem (1.1)–(1.2)
with right-hand sides d(t) and d(t), respectively, and let u(t) and u(t) be solutions
of the corresponding collocation problem in cases (α), (β), (γ). Take yε(t) =
xε(t)− xε(t) and v(t) = u(t)− u(t).

Proposition 4.1. For sufficiently small ε and h

‖yε(t)− v(t)‖∞ ≤ Cεh2.(4.5)
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Indeed, yε(t) solves the problem (1.1)–(1.2) with the right-hand side d(t)− d(t),
and v(t) solves the corresponding collocation problem. Then the estimate (4.5)
follows from (4.4) and Theorems 1–3. The proposition is proved.

Rewrite the estimate (4.5) in the form

‖(xε − u)− (xε − u)‖∞ ≤ Cεh2.(4.6)

This means that the estimate (2.9) will be proved when we show that

‖xε(t)− u(t)‖∞ ≥ Ch2.(4.7)

From (4.2) and (4.3) it follows that

xε(t) = x(t) + ζ1(t, ε),(4.8)

since xε(−1) = xε(1) = 0. Let us prove the estimate (4.7). First of all we observe
that, due to (1.6)–(1.8), we have

d2

dt2
(ζ1(t, ε))=

(
ν1(t)
ε

)2

b1(t) exp
{

1
ε

∫ t

−1

ν1(s) ds
}

+O(ε−1) exp
{

1
ε

∫ t

−1

ν1(s) ds
}
.

(4.9)

Since for −1 ≤ t ≤ tm−2 collocation points coincide with knots of the partition ∆
in all three cases, we have εu(ti) = A(ti)u(ti)+d(ti) (i = −2m,−2m+1, . . . ,m−3).
Hence on [−1, t−m−3],

εu′(t) = R[A(t)u(t) + d(t)],(4.10)

where R denotes the projection which maps every n-dimensional vector-function f
into the n-dimensional broken line interpolating f on t−2m, . . . , t−m−3. From (4.10)
we have

u(t) = u(−1) +
1
ε

∫ t

−1

R[A(s)u(s) + d(s)] ds(4.11)

for t ∈ [−1, t−m−3]. It is obvious that

xε(t) = xε(−1) +
1
ε

∫ t

−1

[A(s)xε(s) + d(s)] ds.(4.12)

From (4.11) and (4.12) we obtain

xε(t)− u(t) = (xε(−1)− u(−1)) +
1
ε

∫ t

−1

(d(s)−Rd(s)) ds

+
1
ε

∫ t

−1

RA(s)(xε(s)− u(s)) ds = S1 + S2 + S3.

(4.13)

Assume that the estimate (4.7) does not hold. Then there exists a function
ν(ε, h) → 0 as ε→ 0, h→ 0 such that

‖xε(t)− u(t)‖∞ ≤ ν(ε, h)h2.(4.14)

To be specific, let m be an even number. Put t = t−3/2m in (4.13). Then from
(4.14) we have

‖xε(−1)− u(−1)‖Rn ≤ ν(ε, h)h2(4.15)
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and ∥∥∥∥1
ε

∫ t−3/2m

−1

RA(s)[xε(s)− u(s)]ds
∥∥∥∥

Rn

≤ C(t−3/2m + 1)/εν(ε, h)h2 ≤ Cν(ε, h)h2.

(4.16)

The last inequality holds since Lemma 2.1 implies that, for −2m ≤ i ≤ −3/2m
in cases (α), (β), (γ),

C1εh ≤ ti+1 − ti ≤ C2εh, C1 > 0, C2 > 0.(4.17)

Hence (t−3/2m + 1) ≤ Cε.
Further, due to the smoothness of d(t) and (4.17),∥∥∥∥1

ε

∫ t−3m/2

−1

(d(s)−Rd(s))ds
∥∥∥∥

Rn

≤ Cε−1(t−3m/2 + 1)(εh)2 ≤ C(εh)2.(4.18)

Let I be the unit matrix and E be the identity operator in C[−1, 1]. Then, by
(1.6) and (4.8),

1
ε

∫ t−3m/2

−1

[A(s)xε(s)−RA(s)xε(s)]ds

=
1
ε

∫ t−3m/2

−1

(E −R)(A(s)xε(s))ds

+
1
ε

∫ t−3m/2

−1

(E −R)(ν1(s)ζ1(s, ε))ds

+
1
ε

∫ t−3m/2

−1

(E −R)(A(s)− ν1(s)I)

×
(
εη1(s, ε) exp

(
1
ε

∫ s

−1

ν1(τ, ε)dτ
))

= J1 + J2 + J3.

(4.19)

To evaluate J1, J2, J3, let us use the formula for the residual term in linear
interpolation on [ti, ti+1]. According to this formula, for each function f(s) ∈
C2[−1, 1], for s ∈ [ti, ti+1] we have

[(E −R)f(s)]j =
[f ′′(η)]j

2
(s− ti)(s− ti+1), η ∈ [ti, ti+1],(4.20)

where j is a number of a component of the vector f = (f1, f2, . . . , fn).
Due to (4.2) we have |xε(s)| ≤ C. By virtue of this fact and (4.17), (4.20), for

f = xε we get

J1 ≤ Cεh2.(4.21)

Relations (1.7) and (1.8) imply that the second derivative of the function located
under the symbol (E−R) in the expression for J3 is estimated by C/ε. Considering
this estimate and formulas (4.20) and (4.17), we obtain

J3 ≤ Cεh2.(4.22)

Let us estimate J2. Choose a number j in such a way that b1,j(−1) ≥ C > 0 holds
for the jth component. Due to the smoothness of b1(t), for any η ∈ [−1, t−3m/2]
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with ε small we have b1,j(η, ε) ≥ C > 0. Therefore from (1.6)–(1.8) and (4.9) we
get

−1
2
[ν1(η)ζ ′′1 (η, ε)]j ≥ ε−2C exp

(
1
ε

∫ η

−1

ν1(s)ds
)
≥ Cε−2, C > 0,(4.23)

for η ∈ [ti, ti+1] (−2m ≤ i ≤ −3m/2) (since by virtue of (4.17) η + 1 ≤ Cε and
ν1(η) ≤ −ν0 < 0).

From (4.23) and (4.20), for s ∈ [ti, ti+1] (−2m ≤ i ≤ −3m/2) we have

[(E −R)(ν1(s)ζ1(s, ε))]j ≥ Cε−2(s− ti)(ti+1 − s).(4.24)

By (4.24) and (4.17) we obtain

1
ε

∫ t−3m/2

−1

[(E −R)(ν1(s)ζ1(s, ε))]j

≥ 1
ε3

−3m/2−1∑
i=−2m

∫ ti+1

ti

C(s− ti)(ti+1 − s)ds

=
C

ε3

−3m/2−1∑
i=2m

(ti+1 − ti)3

6
≥ Ch3m

2
≥ Ch2, C > 0.

(4.25)

However, (4.25) contradicts (4.13)–(4.19) and (4.21)–(4.22). Theorem 4 is proved.

5. Preliminary results

This section is devoted to preparations for proving Theorem 5.

5.1. On series and finite sums estimates.

Proposition 5.1. For every γ and δ (1 < γ ≤ δ) there is a constant C(γ, δ) such
that, for all numbers k and s,

+∞∑
i=−∞

1
(1 + |k − i|)γ(1 + |i− s|)δ

≤ C(γ, δ)
(1 + |k − s|)γ

.

Proof. Let k < s. Let us divide the sum in the left side of the inequality into four
sums,

∑
1,
∑

2,
∑

3,
∑

4, in accordance with the change in i : i ∈ (−∞, k] for
∑

1;
i ∈ (k, k+ [(s− k)/2]) for

∑
2; i ∈ [k+ [(s− k)/2] + 1, s] for

∑
3; and i ∈ [s+ 1,∞)

for
∑

4. We then obtain

∑
1

≤ 1
(1 + s− k)δ

k∑
i=−∞

1
(1 + |k − i|)γ

≤ C(γ)
(1 + s− k)δ

≤ C(γ)
(1 + s− k)γ

.

The terms
∑

2,
∑

3,
∑

4 are estimated in the same way. The proposition is proved.

Proposition 5.2. Let the function F (x) = f(k−x)g(x−s) be monotone increasing
(decreasing) and continuous on the interval [q, p]. Then

p−1∑
i=q

F (i) ≤
∫ p

q

F (x)dx

 p∑
i=q+1

F (i) ≤
∫ p

q

F (x)dx

 .

This is a modification of the Cauchy-MacLaurin criterion.
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5.2. Some properties of singular exponents on the mesh ∆.

Lemma 5.1. For each γ ∈ (0, 1] and q = m+ 1, . . . , j (j ≥ m+ 1) the estimates

exp(κν0(t− tj)/ε) = O∗((q −m)3κ/(j −m)3κ), t ∈ [tq, tq+1],(5.1)

are valid.

Proof. Due to Lemma 2.1 we have

tj − t≥ tj − tq+1 =
j−1∑

ν=q+1

hν≥ 3ε
ν0

j−1∑
ν=q+1

1
ν −m+ 2

=
3ε
ν0

ln((j−m)/(q−m))+O(1).

Substituting this in the exponential we obtain (5.1). This proves the lemma.

Lemma 5.2. Let functions g1(t, ε), g2(t, ε) ∈ C3[−1, 1] be such that for some κ ∈
(0, 1]

|dig1(t, ε)/dti| ≤ Cε−i exp(κν0(t− tj)/ε), t ∈ [tm+1, tj ], 0 ≤ i ≤ 3,

|dig2(t, ε)/dti| ≤ Cε−i exp(κν0(tj − t)/ε), t ∈ [tj , 1], 0 ≤ i ≤ 3.

Then there exist functions Z1(t, ε), Z2(t, ε) ∈ S(∆, 2, 1), approximating g1 and g2,
such that ∥∥∥∥di(Z1 − g1)

dti

∥∥∥∥
L∞[tq,tq+1]

≤ Cε−i

(j −m)3κ(q −m)3−i−3κ
(i = 0, 1;m+ 1 ≤ q ≤ j − 1)

(5.2)

and ∥∥∥∥di(Z2 − g2)
dti

∥∥∥∥
L∞[tq,tq+1]

≤ Cε−i

(q −m)3−i
(i = 0, 1; q ≥ j).(5.3)

Proof. By virtue of an approximation theorem of de Boor [21] there is a function
Z1(t, ε) such that for m+ 1 ≤ q ≤ j − 1 and i = 0, 1∥∥∥∥di(Z1 − gi)

dti

∥∥∥∥
L∞[tq,tq+1]

≤ Ch3−i‖g′′′1 ‖L∞[tq−1,tq+2]

≤ C(ε/(q −m))3−iε−3 exp(ν0(tq − tj)/ε).

But, according to Lemma 5.1, exp(ν0(tq− tj)/ε) ≤ C(q−m)3κ/(j−m)3κ, implying
(5.2). The estimate (5.3) is obtained similarly. The lemma is proved.

5.3. Properties of N-bases in trial spaces. Let us study the functions Nij from
Lemma 3.4. Let bp(t) be an eigenvector of A(t) and let

Nij =
n∑

p=1

γi,j
p (t)bp(t).(5.4)

Lemma 5.3. The representations

γi,j
p (t) = δjpBi+1,1(t) + Φ̂ij(t, ε) + µ̂ij(t, ε)(5.5)

are valid, where δqp is the Kronecker symbol, j, p = 1, . . . , n, t ∈ [tm+i0+2, 1] ∪
[−1, t−m−i0−2], and i changes on the index set from Lemma 3.4. In addition, Φ̂ij

and µ̂ij satisfy formulas (3.5)–(3.8).
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Proof. Let the vectors b∗p(t) be such that (bq(t), b∗p(t)) = δqp for each fixed t (here the
inner product is considered in Rn). From (5.4), by simple computations, one can
show that γi,j(t) = (Nij(t), b∗p(t)). Hence by virtue of continuity and smoothness
of bp(t) and by formulas (3.4)–(3.8), we get the lemma.

Denote the length of the B-spline support in the representation (3.4), (3.14),
(3.15) of the function Nij by Zij . Let L∗ε = −εd/dt−AT (t) be the formal conjugate
operator of Lε.

Lemma 5.4. There exists a constant C such that for any x(t) ∈ (L∞[−1, 1])n,
‖x‖∞ ≤ 1,

|(x, L∗εNij)| ≤ Cmax{Lij , ε}.(5.6)

Proof. Let Lij ≤ Cε. Consider the case in which Nij has the representation (3.4)
(the representations (3.14) and (3.15) are considered similarly). We have

|(x, L∗εNij)| ≤ ‖L∗εNij‖1 ≤ ‖L∗εBi+1,1bj(ti+1)‖1 + ‖L∗εΦij(t)‖1‖L∗εµij(t, ε)‖1.
Further, by virtue of (3.7) and the inequalities ‖Bi+1,1‖1 ≤ CLij and ‖B′i+1,1‖1 ≤
C, we have

‖L∗εBi+1,1bj(ti+1)‖1 + ‖L∗εΦij‖1 ≤ C(ε+ Lij)(5.7)

and, due to (3.8),

‖L∗εµij‖1 ≤
∑

|p|≥m+1

∫ tp+1

tp

‖εµ′ij −A(t)µij‖Rndt

≤
∑

|p|≥m+1

Cε

max{(|p| −m)3, (|i| −m)3}

+
∑

|p|≥m+1

Chp

max{(|p| −m)3, (|i| −m)3} .

(5.8)

From (5.7) and (5.8) the estimate (5.6) follows for Lij ≤ Cε. In the case Lij � ε,
the representation (3.14) or (3.15) holds for Nij , the term δij is missing, and the
term containing the B-spline is estimated similarly to (5.7). This proves the lemma.

Lemma 5.5. For any p and q with m+i0 ≤ p ≤ q ≤ 2m−2, and for j = 1, 2, . . . , n,
the estimates ∥∥∥∥∥L∗ε

q∑
ν=p

Nνj

∥∥∥∥∥
1

≤ Cε ln((q −m)/(p−m))

are valid.

Proof. We have

L∗ε

q∑
ν=p

Nνj(t) = L∗ε

q∑
ν=p

Bν+1,1(t)ej(tν+1) + L∗ε

q∑
ν=p

Φνj(t) + L∗ε

q∑
ν=p

µνj(t).

Further, by virtue of Lemmas 3.4, 2.1 and the above relation, we have
q∑

ν=p

Bν+1,1(t) ≡ 1 for t ∈ [tp+2, tq+1],
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and ∥∥∥∥∥L∗ε
q∑

ν=p

Bν+1,1(t)ej(tν+1)

∥∥∥∥∥
1

≤ ε‖B′p+1,1(t)ej(tp+1)‖1

≤ C(ε+ tq+2 − tp+1) ≤ Cε ln((q −m)/(p−m)).

Next, according to (3.6), (3.7) and Lemma 2.1,∥∥∥∥∥L∗ε
q∑

ν=p

Φνj(t, ε)

∥∥∥∥∥
1

≤ ε

∥∥∥∥∥
q∑

ν=p

Φ′νj(t, ε)

∥∥∥∥∥
1

+ C

∥∥∥∥∥
q∑

ν=p

Φνj(t, ε)

∥∥∥∥∥
1

≤ ε

q+2∑
κ=p+1

∫ tκ+1

tκ

q∑
ν=p

‖Φ′νj‖Rndt+ C

q+2∑
κ=p+1

∫ tκ+1

tκ

‖Φνj‖Rndt

≤ Cε

q+2∑
κ=p+1

1/(κ−m) + C(tq+3 − tp+1)

≤ Cε ln((q −m)/(p−m)).

Finally,

∥∥∥∥∥L∗ε
q∑

ν=p

µνj(t, ε)

∥∥∥∥∥
1

≤ ε

2m−1∑
κ=m+1

∫ tκ+1

tκ

q∑
ν=p

‖µ′νj(t, ε)‖Rndt+ C

2m−1∑
κ=m+1

∫ tν+1

tκ

q∑
ν=p

‖µνj(t, ε)‖Rndt

≤
2m−1∑

κ=m+1

q∑
ν=p

Cε

max{(κ−m)3, (ν −m)3}

≤
2m−1∑

κ=m+1

2m−1∑
ν=m

Cε

max{(κ−m)3, (ν −m)3}

≤ Cε
2m−1∑

κ=m+1

1
(κ−m)3

≤ Cε.

The lemma is proved.

5.4. Properties of bases which are biorthogonal to bases {Nij}.
Lemma 5.6. In the space F there are bases {λij(t)} which are biorthogonal to the
bases {Nij} (i.e., (Nij , λps) = δijδps); moreover,

λij(t) =
n∑

s=1

2m−2∑
p=−2m−2

γij
psNps,(5.9)
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where

|γij
ps| ≤ C/((1 + |i− p|)2 max{Lij, Lps}),(5.10)

|γij
ps| ≤ C/((1 + |i− p|)5/2(LijLps)1/2).(5.11)

This lemma was proved in [11].

Lemma 5.7. There exists a constant C such that for every i, j and ν with
−2m − 2 ≤ i ≤ 2m − 2, 1 ≤ j < n, −2m ≤ ν ≤ 2m − 1, and for every t ∈
[tν , tν+1], the following estimates hold:

‖λij(t)‖Rn ≤ C/(Lij(1 + |i− ν|)2),(5.12)

‖λij(t)‖Rn ≤ C/((Lij max
1≤s≤n

Lνs)1/2(1 + |i− ν|)5/2).(5.13)

Proof. Applying Lemma 5.6, we have

‖λij(t)‖Rn ≤
n∑

s=1

2m−2∑
p=−2m−2

|γij
ps|‖Nps(t)‖Rn

≤ C

n∑
s=1

ν∑
p=ν−2

|γij
ps|{|Bp(t)| + ‖µps(t)‖Rn},

(5.14)

where Bp(t) denotes a B-spline of the first or second degree in the corresponding
basis function representation.

Further, due to (5.10), Lemma 3.4 and Proposition 5.1,

n∑
s=1

2m−2∑
p=−2m−2

|γij
ps|‖µps(t)‖Rn =

n∑
s=1

∑
m+i0≤|p|≤2m

|γij
ps|‖µps(t)‖Rn

≤ C/Lij

n∑
s=1

∑
m+i0≤|p|≤2m

1/((1 + |p− i|)2 max{(|p| −m)3, (||ν| −m|+ 1)3})

≤ C/(Lij max{(1 + |i −m|)2, (1 + | |ν| −m|)3}) ≤ C/(Lij(1 + |i− ν|)2.
The similar estimate of the first term in (5.14) follows from (5.10). Using a

similar argument, the estimate (5.12) can be proved.
Using (5.1), we can prove (5.13) in the same way. The proof is completed.

Lemma 5.8.

‖λij‖1 ≤ C.(5.15)

Proof. Lemma 3.4 implies that ‖Nps‖1 ≤ CLps. Hence by (5.10) we have

‖λij‖1 ≤
n∑

s=1

2m−2∑
p=−2m−2

|γij
ps|‖Nps‖1

≤ C
n∑

s=1

2m−2∑
p=−2m−2

Lps/((1 + |i− p|)2 max{Lps, Lij})

≤ C

n∑
s=1

2m−2∑
p=−2m−2

1/(1 + |i− p|)2 ≤ C.

The lemma is proved.
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Lemma 5.9.

‖Gελij‖∞ ≤ Cmin{1/ε, 1/Lij}.(5.16)

Proof. From the inequalities ‖Gε(t, ξ)‖∞ ≤ Cε and ‖Nps/Lps‖1 ≤ C and Lemma
5.6 we get

‖Gελij(t)‖Rn ≤
n∑

s=1

2m−2∑
p=−2m−2

|γij
ps|‖GεNps(t)‖Rn

≤ C

n∑
s=1

2m−2∑
p=−2m−2

‖Gε(Nps/Lps)‖Rn/(1 + |i− p|)2

≤ C/ε

n∑
s=1

2m−2∑
p=−2m−2

‖Nps/Lps‖1/(1 + |i− p|)2 ≤ Cε.

By virtue of Lemma 1.1, ‖Gε‖L∞→L∞ ≤ C, and hence

‖Gελij(t)‖∞ ≤ C‖λij‖∞ ≤ C/Lij.

The lemma follows from the last inequalities. The proof is completed.

5.5. Some properties of the Green function in the problem (1.1)–(1.2).

5.5.1. Expansion of the Green function in the eigenvectors of the matrix A(t). Let
bν(t) be the eigenvectors of A(t), and expand Gε(t, ξ) in the following way:

Gε(t, ξ) =
n∑

ν=1

βν(t, ξ)eT
ν (ξ).(5.17)

Lemma 5.10. The estimates (ν = 1, 2, . . . , n)∥∥∥∥ ∂q

∂ξq
βν(t, ξ)

∥∥∥∥
Rn

≤ C

ε1+q
exp(−ν0|t− ξ|/ε), q = 0, 1,(5.18)

hold.

Proof. This follows from Lemma 1.1, the relation βν(t, ξ) = (Gε(t, ξ), b∗ν(ξ)) (see
the proof of Lemma 5.3) and the smoothness of the vector b∗ν(ξ).

5.5.2. On spline approximation of the Green function. Let t∈ [ts,ts+1]⊂ [tm+i0+2, 1].
We shall construct two specific spline approximations of the function Gε(t, ξ) as a
function of ξ when t is fixed.

Lemma 5.11. There is a matrix function Z1(t) such that:
1. For each fixed t, the rows of Z1(t) are elements of the space F .
2. maxξ∈[tν ,tν+1] ‖Z1(t, ξ)−Gε(t, ξ)‖Rn×n ≤ C/(ε(ν −m)2), s ≤ ν ≤ 2m− 1.
3. suppZ1(t, ξ) ⊂ [t∗, 1], where t∗ = ts−[(s−m−1)/2] (t is fixed, ξ changes).
4. ‖Z1(t, ξ)‖L∞ ≤ C/ε (−1 ≤ t, ξ ≤ 1).

Lemma 5.12. There is a matrix function Z2(t, ξ) such that:
1. The rows of Z2(t, s) are elements of the space F for every fixed t.
2. maxt∈[tν ,tν+1] ‖Z2(t, ξ)−Gε(t, ξ)‖Rn×n ≤ C/(ε(s−m)2), m+ 1 ≤ ν ≤ s.
3. suppZ2(t, ξ) ⊂ [tm+1, t∗], where t∗ ≥ ts; ts is a knot such that either t∗ = 1

or t∗ − ts = O∗(ε).
4. ‖Z2(t, ξ)‖L∞ ≤ C/ε (−1 ≤ t, ξ ≤ 1).
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Let us prove Lemma 5.11. The proof of Lemma 5.12 is similar.
Consider an arbitrary row gε(t, ξ) of the matrix Gε(t, ξ) for some fixed t. For

this row let us consider the problem Lεδ(ξ) = [gε(t, ξ)]T with boundary conditions
(1.2). The solution δε(t, ξ) of this problem may be estimated as follows:

‖δε(t, ξ)‖Rn =
∥∥∥∥∫ 1

−1

Gε(ξ, τ)gε(t, τ)dτ
∥∥∥∥

Rn

≤ C

ε2

∫ 1

−1

exp(−ν0|ξ − τ |/ε) exp(−ν0|t− τ |/ε)dτ

≤ C

ε

(
1 +

|t− τ |
ε

exp
(
−ν0 |t− τ |

ε

))
≤ C(κ)/ε exp(−κν0|t− ξ|/ε)

for every κ ∈ (0, 1). Analogous estimates are also valid for ∂jδε(t, ξ)/∂ξj , j = 1, 2, 3.
Letting κ = 2/3, from Lemma 5.1 we get that there is a spline δε,m(t, ξ) defined

as a function of ξ on (ts+1, 1] and satisfying (for i = 0, 1) the inequality

‖(δε,m(t, ξ)− δε(t, ξ))(i)‖L∞[tν ,tν+1] ≤
C

εi+1(ν −m)2
, ν ≥ s.(5.19)

Continue the functions δε,m on the interval [−1, 1] in such a way that the quantity
ε‖δ̇ε,m‖∞ + ‖δε,m‖∞ is controlled. With this aim in mind, take a point t∗ = tµ
(µ = s− [(s−m−1)/2]). It is easy to show that ts− t∗ = O∗(ε). Let t∗∗ be a closer
knot to the middle of interval [t∗, ts]. Then t∗∗ − t∗ = O∗(ε) and ts − t∗∗ = O∗(ε).
By using t∗, t∗∗, and ts we construct “patch-functions” (see [7]) Z̃1(t) and Z̃2(t),
parabolic splines and for which

Z̃
(i)
j (t∗) = 0 (i, j = 0, 1),

Z̃1(ts) = 0, Z̃ ′1(ts) = 1, Z̃2(ts) = 1, Z̃ ′2(ts) = 0.

From estimates obtained in [7] it follows that

‖Z̃(i)
1 (t)‖∞ ≤ Cε1−i, ‖Z̃(i)

2 (t)‖∞ ≤ Cε−i (i = 0, 1).(5.20)

For t ∈ [t∗, ts] we put

δε,m(t, ξ) = δε,m(t, ts+0)Z̃2(ξ) + δ′ε,m(t, ts+0)Z1(ξ).(5.21)

The continued function is sewn smoothly into the point ts and vanishes with
its derivative at the point t∗. Obviously it is possible to consider this function as
defined in the whole interval [−1, 1], if we put δε,m(t) = 0 for t ∈ [−1, tµ]. From
estimates of gε(t, ξ) (see Lemma 1.1) and the definition of δε,m(t, ξ) it follows that

‖δ(i)ε,m(t, ts+0)‖Rn ≤ C/ε1+i.(5.22)

From (5.20)–(5.22) we obtain

‖Lεδε,m(t, ξ)‖L∞[t∗,ts] ≤ Cε.(5.23)

Now let Z1(t, ξ) be the matrix whose rows are the vectors Lεδε,m(t, ξ). Then
from (5.19) and (5.13) we let Lemma 5.11.

Let us establish two estimates on the approximation of the functions Gε(t, ξ)
and Zp(t, ξ).
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Lemma 5.13. The following estimates hold:∥∥∥∥∫ 1

−1

(Gε(t, ξ)− Z1(t, ξ))λij(ξ)dξ
∥∥∥∥

Rn

≤ C

ε

(
1

(i−m)3/2
+

1
(1 + |i− s|)3/2

)(5.24)

for t ∈ [ts, ts+1], m+ i0 + 2 ≤ s ≤ i+ 2; and∥∥∥∥∫ 1

−1

(Gε(t, ξ)− Z2(t, ξ))λij(ξ)dξ
∥∥∥∥

Rn

≤ C

ε

(
1

(i−m)3/2
+

1
(1 + |i− s|)3/2

)(5.25)

for t ∈ [ts, ts+1], m+ i0 + 2 ≤ i+ 2 ≤ s ≤ 2m− 1.

Proof. Let us prove (5.24). The estimate (5.25) is established in a similar way. We
have ∥∥∥∥∫ 1

−1

(Gε(t, ξ)− Z1(t, ξ))λij(ξ)dξ
∥∥∥∥

Rn

≤
∫ t

−1

(Gε(t, ξ)− Z1(t, ξ)‖Rn×n‖λij(ξ)‖Rndξ

+
∫ 1

t

‖Gε(t, ξ)− Z1(t, ξ)‖Rn×n‖λij(ξ)‖Rndξ.

(5.26)

Further, due to (5.13),∫ t

−1

‖Gε(t, ξ)− Z1(t, ξ)‖Rn×n‖λij(ξ)‖Rndξ

≤
∫ t

−1

‖Gε(t, ξ)‖Rn×n‖λij(ξ)‖dξ +
∫ t

−1

‖Z1(t, ξ)‖Rn×n‖λij(ξ)‖Rndξ,

(5.27)

∫ t

−1

‖Gε(t, ξ)‖Rn×n‖λij(ξ)‖Rndξ

≤ C

ε

∫ t

−1

exp(−ν0|ξ − t|/ε)‖λij(ξ)‖Rndξ

=
C

ε

(∫ tm

−1

+
∫ tm+1

tm

+
∫ t

tm+1

)
.

(5.28)

Since ε| ln ε| � 1/m and t ∈ [tm+1, 1], we have exp(−ν0|ξ − t|/ε) ≤ Cε2 for
ξ ∈ [−1, tm]. Thus, according to (5.15),

1/ε
∫ tm

−1

exp(−ν0|t− ξ|)‖λij(ξ)‖Rndξ ≤ Cε.(5.29)

Further, due to (5.13),

1
ε

∫ tm+1

tm

exp(−ν0|ξ − t|/ε)‖λij(ξ)‖Rndξ ≤ C‖λij(ξ)‖L∞[tm,tm+1]

≤ C(i −m)1/2

ε| ln ε|(i−m)5/2
≤ C

(ε(i−m)2)
.

(5.30)
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Now applying Lemmas 5.1, 5.7, 2.1 and Proposition 5.2 we obtain

1
ε

∫ t

tm+1

exp(−ν0|ξ − t|/ε)‖λij(ξ)‖Rndξ

≤ C

ε

s∑
p=m+1

∫ tp+1

tp

exp(−ν0|ξ − t|/ε)‖λij(ξ)‖Rndξ

≤ C

ε

s∑
p=m+1

hp(p−m)3(p−m)1/2(i−m)1/2

ε(s−m)3(1 + |i− p|)5/2

≤ C

ε

s∑
p=m+1

ε(p−m)3(p−m)1/2(i−m)1/2

(p−m)ε(s−m)3(1 + |i− p|)5/2

≤ C

ε

(i −m)1/2

(s−m)1/2

s∑
p=m+1

1
(1 + i− p)5/2

≤ C

ε

{
(s−m)/(1 + i− s)5/2, s−m ≤ i− s,

1/(1 + i− s)3/2, s−m > i− s,

≤ C/(ε(1 + i− s)3/2).

(5.31)

By means of property 4 from Lemma 5.11 and (5.13) we get analogously

∫ t

−1

‖Z1(t, ξ)‖Rn×n‖λij(ξ)‖Rndξ =
∫ t

t∗
‖Z1(t, ξ)‖Rn×n‖λij(ξ)‖Rndξ

≤ C

ε

∫ t

t∗
‖λij(ξ)‖Rndξ

≤ C

ε

s∑
p=s′

∫ tp+1

tp

((p−m)(i −m))1/2/(1 + |i − p|)5/2ε−1dξ

≤ C

ε
(i−m)1/2

s∑
p=s′

1
(1 + i− p)5/2(p−m)1/2

≤ C

ε

(i−m)1/2

(s−m)1/2

s∑
p=s′

1
(1 + i− p)5/2

≤ C

ε(1 + i− s)3/2
,

(5.32)

where s′ = s− [(s−m− 1)/2].
From (5.27) and (5.32) we obtain the estimate

∫ t

−1

‖Gε(t, ξ)− Z1(t, ξ)‖Rn×n‖λij(ξ)‖Rndξ

≤ C

ε
(1/(1 + i− s)3/2 + 1/(i−m)3/2).

(5.33)
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Due to property 2 from Lemma 5.11, estimate (5.11), Lemma 2.1 and Proposi-
tion 5.1, we have∫ 1

t

‖Gε(t, ξ)− Z1(t, ξ)‖Rn×n‖λij(ξ)‖Rndξ

≤ C

ε

2m−1∑
ν=s

1
(ν −m)3

ε

ν −m

(i−m)1/2(ν −m)1/2

ε/(1 + |i− ν|)5/2

=
C(i −m)1/2

ε

2m−1∑
ν=s

1
(ν −m)5/2

(1 + |i− ν|)5/2

≤ C

ε(i−m)2
.

(5.34)

From (5.33) and (5.34) we obtain (5.24). The lemma is proved.

5.5.3. On decomposition of the matrix Zp(t, ξ) in the basis functions of the space
F . Since each row Zp(t, ξ) (p = 1, 2) is an element of F , it may be decomposed in
the basis {NT

ij}, i.e.,

Zp(t, ξ) =
n∑

j=1

2m−2∑
i=−2m−2

αp
ij(t)N

T
ij (ξ),(5.35)

where the αp
ij(t) are column vectors. Let us study the coefficients αp

ij(t).

Lemma 5.14. Let t ∈ [ts, ts+1] ⊂ [tm+i0+2, 1]. Then

αp
ij(t) = βj(t, ti+2)

(
1 +O

(
1

|i| −m

)
+O

(
1

ε(|i| −m)2

))
(5.36)

(if s ≤ i + 2, then for p = 1; if s > i + 2, then for p = 2), where βj(t, ξ) is the
function from (5.17).

Proof. To be specific, let s ≤ i+ 2. For ξ ∈ [tm+i0+2, 1] we have

Z1(t, ξ) =
n∑

j=1

2m−2∑
κ=m+i0

α1
κj(t)N

T
κj(ξ),(5.37)

since Nκj(ξ) = 0 for κ < m+ i0 and ξ ∈ [tm+i0+2, 1] (see Lemma 3.4).
Further, in accordance with Lemma 5.11,

Z1(t, ξ) = Gε(t, ξ) +O(1/(ε(i −m)2), ξ ∈ [tν , tν+1], ν ≥ s+ 1.(5.38)

Substitute ξ = tν in this representation and apply (5.37). Then

n∑
j=1

2m−2∑
κ=m+i0

α1
κj(t)N

T
κj(ξ) = Gε(t, tν) +O(1/(ε(ν −m)2)(5.39)

for ν = s+ 1, s+ 2, . . . , 2m. To simplify (5.39) we use the decompositions obtained
in Lemmas 5.3 and 5.10, and write

NT
κj(t) =

n∑
q=1

γκ,j
q (t)eq(t), Gε(t, tν) =

n∑
p=1

βq(t, tν)eq(tν).
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Substitute these decompositions in (5.39) and equate the coefficients of the vectors
eq(tν). In accordance with (5.5) we get

(5.40)
2m−2∑

κ=m+i0

(δνκ+2 + Φ̂κj(tν) + µκj(tν))α1
κj(t) = Bj(t, tν) +O(1/(ε(ν −m)2),

ν = s+ 1, s+ 2, . . . , 2m, j = 1, 2, . . . , n.

Since Lemma 5.11 yields ‖Z1(t, ξ)‖Rn×n ≤ C/ε, from (5.37) we then obtain

(5.41)
2m−2∑

κ=m+i0

(δνκ+2 + Φ̂κj(tν) + µ̂κj(tν))α1
κj(t) = O(1/ε),

ν = m+ i0 + 2, . . . , s, j = 1, 2, . . . , n,

in a similar way.
Let us consider (5.40), (5.41) as a system of linear algebraic equations with

unknowns α1
αj(t). From Lemma 5.3 it follows that for sufficiently large i0 the matrix

of this system has its inverse matrix bounded uniformly in ε and m. Therefore,
since ‖Gε(t, ξ)‖Rn×n ≤ C/ε, we have

max
ν,j;t∈[−1,1]

‖α1
κj(t)‖Rn ≤ C/ε.(5.42)

By virtue of Lemma 5.3, the values µκj(t̂ν) and Φκj(t̂) satisfy the relations

|µ̂κj(tν)| ≤ Cmin{1/(κ−m)3, 1/(ν −m)3}, Φ̂κj(tν) = O(1/(κ−m))δνκ+2.

(5.43)

Finally, transform the system (5.40) in the following way. Move the terms with
number κ = m + i0, . . . , s − 2 to the right-hand side and use the estimates (5.42),
(5.43). As a result we get

2m−2∑
κ=s−1

δνκ+2(1 +O(1/(κ−m))α1
κj(t) = βj(t, tν) +O(1/(ε(ν −m)2)

for ν = s+ 1, s+ 2, . . . , 2m. This is a system with a diagonal matrix. Solving this
system, we have

α1
κj(t) = βj(t, tκ+2)(1 +O(1/(κ−m)) +O(1/(ε(κ−m)2))).

Hence (5.36) holds. The proof is completed.

6. Properties of the functions Gελij(t)

The two statements below play an important role in the proof of Theorem 5.

Lemma 6.1. The following formulas are valid:
1◦. For −m ≤ i ≤ m− 3, t ∈ [ts, ts+1], and −2m ≤ s ≤ 2m− 1,

‖Gελij(t)‖Rn ≤ Cm

(
1

(1 + |i− s|)2 +
1

(n− |i|)3/2

)
.(6.1)

2◦. For |i| ≥ m + i0, t ∈ [ts, ts+1], and s ∈ [−2m,m + i0 + 1] (i > 0) or
s ∈ [−m− i0 − 2, 2m− 1] (i < 0),

‖Gελij(t)‖Rn ≤ C

ε

(
1

(1 + |i− s|)2 +
1

(|i| −m)3/2

)
.(6.2)
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Lemma 6.2. For |i| ≥ m+ i0, t ∈ [ts, ts+1], |s| ≥ m+ i0 + 2, and i > s we have

Gελij(t) = βj(t, ts)
(

1 +O

(
1

|i| −m

)
+ ε−1O

(
1

(|i| −m)2
+

1
(1 + |i− s|)3/2

))
,

(6.3)

where the βj(t, ξ) are defined on [−1, 1]× [−1, 1], and

‖∂qβj(t, ξ)/∂ξq‖Rn ≤ C

ε1+q
exp(−ν0|t− ξ|/ε), q = 0, 1.(6.4)

6.1. Proof of (6.1). Let t ∈ [ts, ts+1]. In accordance with (5.12), the relation
Lij = O∗(1/m) and Lemma 1.1 we have

‖Gελij(t)‖Rn =
∥∥∥∥∫ 1

−1

Gε(t, ξ)λij(ξ)dξ
∥∥∥∥

Rn

=
2m−1∑

ν=−2m

∥∥∥∥∫ tν+1

tν

Gε(t, ξ)λij(ξ)dξ
∥∥∥∥

Rn

≤ c

ε

2m−1∑
i=−2m

m

(1 + |i−m|)2
∫ tν+1

tν

exp(−ν0|t− ξ|/ε)dξ

≤ Cm
2m−1∑

ν=−2m

1
(1 + |i−m|)2 exp(−ν0|t− tν |/ε)(1− exp(−ν0hν/ε).

(6.5)

If ν changes from −m to m, then all values exp(−ν0|t− tν |/ε), except maybe a
single one, would have been of order O(ε2) due to the condition ε| ln ε| � 1/m. If
|ν| ≥ m+ 1, then

1− exp(−ν0hν/ε) ≤ Chν/ε ≤ C/(|ν| −m).

From these facts we have

‖Gελij(t)‖Rn ≤ Cm

(1 + |i−m|)2 + Cm

(
2m−1∑

ν=m+1

1
(1 + |i− ν|)2

exp(−ν0|t− tν |/ε)
ν −m

)

+
−m−1∑
ν=−2m

1
1/(1 + |i− ν|)2

exp(−ν0|t− tν |/ε)
|ν| −m

≤ Cm

(1 + |i− s|)2 + Cm

(
2m−1∑

ν=m+1

1
(ν − i)3(ν −m)

+
−m−1∑
ν=−2m

1
(|ν| −m)(i− ν)2

)
.

(6.6)

Further,
2m−1∑

ν=m+1

1
(ν − i)2(ν −m)

=
2m−i∑

ν=m+1

(· · · ) +
2m−1∑

ν=2m−i+1

(· · · )

≤ C ln(m− i)
(m− i)2

+ C

∞∑
ν=2m−i

1
(ν −m)2

≤ C

(m− |i|)3/2
.

The second sum in (6.6) is estimated analogously. Thus from (6.6) we get

‖Gελij‖Rn ≤ Cm(1/(1 + |i− s|)2 + 1/(m− |i|)2).
This concludes the proof.
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6.2. Proof of (6.2). To be specific, let i ≥ m+ i0 and t ∈ [ts, ts+1] ⊂ [−1, tm+i0+2]
(the other case is considered in a similar way). By virtue of (5.9), (5.10) and
Lemma 5.1

‖Gελij(t)‖Rn =

∥∥∥∥∥
2m−1∑

ν=−2m

∫ tν+1

tν

Gε(t, ξ)λij(ξ)dξ

∥∥∥∥∥
Rn

≤
2m−1∑

ν=−2m

n∑
s=1

1
Lνs

(1 + |i− ν|)2
∫ tν+1

tν

exp(−ν0|t− ξ|/ε)dξ

≤ C

ε

2m−1∑
ν=−2m

1
(1 + |i− ν|)2 max

ξ∈[tν ,tν+1]
exp(−ν0|t− ξ|/ε).

(6.7)

First consider the case when t ∈ [t−m−i0−2, tm+i0+2]. Since ε| ln ε| � 1/m, due
to Lemmas 5.1 and 2.1 we then have

max
ξ∈[tν ,tν+1]

exp(−ν0|t− ξ|/ε) ≤


O(ε2), for all ν except maybe ν = s− 1,

s, s+ 1, if t ∈ [t−m, tm],
O(1/(1 + |ν −m|)2), if t ∈ [tm, tm+i0+2],
O(1/(1 + |ν −m|)2), if t ∈ [t−m−i0−2, t−m].

(6.8)

Therefore from Proposition 5.1 we have

c

ε

2m−1∑
ν=−2m

1
(1 + |i−m|)2 max

ξ∈[tν ,tν+1]
exp(−ν0|t− ξ|/ε)

=
C

ε

(−m−i0∑
ν=−2m

1
(1 + |i− ν|)2(1 + |ν −m|)2) +

1
(1 + |i− s|)2

+
2m∑

ν=m+i0

1
(1 + |i− ν|)2

)

≤ C

ε

(
1

(1 + |i− s|)2 +
1

(1 + |i−m|)2
)
.

(6.9)

From (6.8) and (6.9) we have

‖Gελij(t)‖Rn ≤ C

ε

(
1

(1 + |i− s|)2 +
1

(1 + |i−m|)2
)
,

which yields the estimate (6.2).
Now let t ∈ [−1, t−m−i0−2]. In this case we have

‖Gελij(t)‖Rn ≤
∥∥∥∥∫ t−m

−1

Gε(t, ξ)λij(ξ)dξ
∥∥∥∥

Rn

+

∥∥∥∥∥
∫ 1

t−m

Gε(t, ξ)λij(ξ)dξ

∥∥∥∥∥
Rn

.(6.10)

Since |Lij | ≥ h2m−1 ≥ Cm/ε, by virtue of (5.11) one gets∥∥∥∥∫ t−m

−1

Gε(t, ξ)λij(ξ)dξ
∥∥∥∥

Rn

≤ C

m5/2

m

2

∫ t−m−1

−1

‖Gε(t, ξ)‖Rn×ndξ ≤ C

εm5/2
.

The second term in (6.10) may be estimated from the inequality

‖Gε(t, ξ)‖Rn×n ≤ C/ε exp(ν0(ξ − t)/ε) ≤ Cε2
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for g ∈ [t−m, 1] (compare (6.8)). This concludes the proof.

6.3. Proof of Lemma 6.2. To be specific, let i ≥ m + i and s ≥ m+ i0 + 2. In
the case s ≤ i+ 2 we have

Gελij(t) =
∫ 1

−1

(Gε(t, ξ)− Z1(t, ξ))λij(ξ)dξ +
∫ 1

−1

Z1(t, ξ)λij(ξ)dξ.(6.11)

Due to Lemma 5.13,

∥∥∥∥∫ 1

−1

(Gε(t, ξ)− Z1(t, ξ))λij(ξ)dξ
∥∥∥∥

Rn

≤ C

ε

(
1

(|i| −m)3/2
+

1
(1 + |i− s|)3/2

)
.

(6.12)

Further, according to the definition of λij(t) and (5.35), (5.36),

∫ 1

−1

Z1(t, ξ)λij(ξ)dξ = α1
ij(t) = βij(t, ti+2)(1 +O(1/(|i| −m)) +O(1/(ε(|i| −m)2).

(6.13)

The relations (6.11), (6.13) and (5.17) imply formulas (6.3)–(6.4). Lemma 6.2 is
proved.

7. Proof of Theorem 5

7.1. Galerkin projection. LetD = {x ∈ (C1[−1, 1])n : x1(−1) = · · · = xk(−1) =
xk+1(1) = · · · = xn(1) = 0} be the domain of definition of the operator Lε. Let
x ∈ D and f = Lεx. Then x is the solution of the corresponding problem (1.1)–(1.2)
for d = f .

Let Pm be the orthogonal projection of (L2[−1, 1])n onto F (ε,m). It is easy
to show that the Galerkin problem (2.7) for d = f is equivalent to the problem
PmLεxm = Pmf or Lεxm = Pmf . Hence xm = GεPmf = GεPmLεx. The operator
Qm = GεPmLε : D → E is called the Galerkin projection (see [4]). Obviously
Q2

m = Qm.
Error estimates for the solution of problem (2.7) are closely connected to an

estimate of the norm of projection Qm. Namely, the following statement is true.

Lemma 7.1. The following estimates hold:

‖x−Qmx‖∞ ≤ (1 + ‖Qm‖∞)‖x− x̃m‖∞,
where

‖Qm‖∞ = ‖Qm‖L∞→L∞ = sup
x∈D : ‖x‖∞≤1

‖Qmx‖∞,

and x̃ is the best approximation of x in E in the sense of L∞[−1, 1].

Since Qmx̃m = xm, the proof is evident.
Since xε satisfies (1.5), one can easily obtain ‖xε − x̂ε‖∞ ≤ C/m3 through de

Boor’s approximation theorem analogously to Lemma 5.2. Hence, by means of
Lemma 7.1, we conclude that it is sufficient to prove the estimate

‖Qm‖∞ ≤ C(7.1)

uniformly in ε and m.
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7.2. Representation of Galerkin projection and preliminary estimates.
Considering

Qm = GεPmLε and Pmy =
n∑

j=1

2m−2∑
i=−2m−2

(y,Nij)λij(t),

we have

Qmx =
n∑

j=1

2m−2∑
i=−2m−2

(Lεx,Nij)Gελij(t).(7.2)

Since we need to bound the norm of Qm, we shall further consider ‖x‖∞ ≤ 1.
Integrating (7.2) by parts, we get rid of the derivative of the function x. As a result
we obtain

Qmx =
∑
i,j

[(xε, L
∗
εNij) + εφε(x(−1), Nij(−1)) + εψε(x(1), Nij(1))]Gελij(t),

(7.3)

where φε and ψε are bilinear functionals, bounded uniformly on ε, by means of
which the terms outside the integral are expressed.

From estimates of the function Nij (see Lemma 3.4) we obtain

|φε(x(−1), Nij(−1)) ≤ C, |ψε(x(1), Nij(1))| ≤ C, i = −2m− 2, 2m− 2,
(7.4)

|φε(x(−1), Nij(−1))| ≤ C/(2m+ 2− |i|)3,
|ψε(x(1), Nij(1))| ≤ C/(2m+ 2− |i|)3, i 6= −2m− 2, 2m− 2.

(7.5)

Due to Lemma 5.9, ‖εGελij‖ ≤ C. This fact and (7.4), (7.5) lead to∥∥∥∥∥∥
∑
i,j

ε(φε(x(−1), Nij(−1)) + ψε(x(1), Nij(1)))Gελij

∥∥∥∥∥∥
∞

≤ C.(7.6)

From (7.3), (7.4) it follows that, if the bound∥∥∥∥∥∥
n∑

j=1

2m−2∑
i=−2m−2

(x, L∗εNij)Gελij(t)

∥∥∥∥∥∥
∞

≤ C(7.7)

holds for arbitrary x ∈ (L∞[−1, 1])n with ‖x‖∞ ≤ 1, then it would be sufficient to
prove the estimate (7.1).

7.3. Proof of (7.7). We first notice that, by (5.6) and (5.16), every term in the
sum (7.7) is bounded uniformly in ε and m. Thus it is sufficient to bound each of
the expressions

I1 =

∥∥∥∥∥
m−3∑

i=−m

(x, L∗εNij)Gελij(t)

∥∥∥∥∥
∞

(7.8)

and

I2 =

∥∥∥∥∥
2m−2∑

i=m+i0

(x, L∗εNij)Gελij(t)

∥∥∥∥∥
∞

(7.9)
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(the estimate of the sum
∑−m−i0

i=−2m−2 can be obtained through a similar argument
as for (7.9)).

We first consider I1. Let t ∈ [ts, ts+1]. According to (6.1) and (5.6) we have∥∥∥∥∥
m−3∑

i=−m

(x, LεNij , Gελij(t))

∥∥∥∥∥
Rn

≤ C

m

m−3∑
i=−m

‖Gελij(t)‖Rn

≤ C

m∑
i=−m

1
(1 + |i− s|)3/2

≤ C,

and hence

I1 ≤ C.(7.10)

Now let us bound I2. If t ∈ [ts, ts+1] ⊂ [−1, tm+i0+2], then I2 can be bounded in
the same way as I1 by (5.6) and (6.2). Let t ∈ [ts, ts+1] ⊂ [tm+i0+2, 1]. In this case
by (7.6) and (6.3)–(6.4) we have

∥∥∥∥∥
2m−2∑

i=m+i0

(x, L∗εNij)
(
βj(t, Ti+2)

(
1 +O

(
1

i−m

)
+O

(
1

ε(i−m)2

)

+
1

ε(1 + |i− s|)3/2

)) ∥∥∥∥∥
Rn

≤ C

2m−2∑
i=m+i0

(
1

(i−m)2
+

1
(1 + |i−m|)3/2

)

+ Cε

∥∥∥∥∥
2m−2∑

i=m+i0

βj(t, ti+2)
i−m

∥∥∥∥∥
Rn

+

∥∥∥∥∥
2m−2∑

i=m+i0

(x, L∗εNij)βj(t, ti+2)

∥∥∥∥∥
Rn

≤ C + C

∣∣∣∣∣
2m−2∑

i=m+i0

1
i−m

exp(−ν0|t− ti+2|/ε)
∣∣∣∣∣+
∥∥∥∥∥

2m−2∑
i=m+i0

(x, L∗εNij)βj(t, ti+2)

∥∥∥∥∥
Rn

.

(7.11)

Further, due to Lemma 5.1, we get∣∣∣∣∣
2m−2∑

i=m+i0

1
i−m

exp(−ν0|t− ti+2|/ε)
∣∣∣∣∣

≤ C

(
s−2∑

i=m+i0

(i−m)2

(s−m)3
+

2m−2∑
i=s−1

(s−m)3

(i−m)4

)
≤ C.

Thus, to complete the estimation of I2 it is sufficient to bound the last expression
in (7.11). For every j = 1, 2, . . . , n∥∥∥∥∥

2m−2∑
i=m+i0

(x, L∗εNij)βj(t, ti+2)

∥∥∥∥∥
Rn

≤
∥∥∥∥∥

s−2∑
i=m+i0

(x, L∗εNij)βj(t, ti+2)

∥∥∥∥∥
Rn

+

∥∥∥∥∥
2m−2∑
i=s−1

(x, L∗εNij)βj(t, ti+2)

∥∥∥∥∥
Rn

.

(7.12)
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To bound each sum in the right-hand side of (7.12), use Abel’s transformation

q∑
i=p

(Ai+1 −Ai)bi = Aq+1bq −Apbp −
q−1∑
i=p

Ai(bi+1 − bi).(7.13)

To estimate the first sum put bi = βj(t, ti+2); then

Ai = −
s−2∑
ν=i

(x, L∗εNνj) (i = m+ i0,m+ i0 + 1, . . . , s− 2; p = m+ i0, q = s).

Then, by virtue of (7.12) and (7.13),

∥∥∥∥∥
s−2∑

i=m+i0

(x, L∗εNij)βj(t, ti+2)

∥∥∥∥∥
Rn

≤
∥∥∥∥∥
(
x, L∗ε

s−2∑
ν=m+i0

Nνj

)
βj(t, tm+i0+2)

∥∥∥∥∥
Rn

+ ‖(x, L∗εNs−2j)βj(t, ts)‖Rn

+

∥∥∥∥∥
s−3∑

i=m+i0

(
x, L∗ε

s+2∑
ν=i

Nνj

)
(βj(t, ti+2)− βj(t, ti+1))

∥∥∥∥∥
Rn

.

(7.14)

Further, due to Lemmas 5.1, 5.5 and estimates (6.4),∥∥∥∥∥
(
x, L∗ε

s−2∑
ν=m+i0

Nνj

)
βj(t, tm+i0+2)

∥∥∥∥∥
Rn

≤ C

ε

∣∣∣∣∣
(
x, L∗ε

s−2∑
ν=m+i0

Nνj

)
exp(ν0(tm+i0+2 − t)/ε)

∣∣∣∣∣
≤ ε ln(s−m) ≤ C,

(7.15)

‖(x, L∗εNsj)βj(t, ts)‖∞ ≤ C‖x‖∞ ≤ C,(7.16)

∥∥∥∥∥
s−3∑

i=m+i0

(
x, L∗ε

s−2∑
ν=i

Nνj

)
(βj(t, ti+2)− βj(t, ti+1))

∥∥∥∥∥
Rn

≤ C

∥∥∥∥∥
s−3∑

i=m+i0

∣∣∣∣∣
(
x, L∗ε

s−2∑
ν=i

Nνj

)∣∣∣∣∣hi(1/ε2) exp(−ν0|t− ti+2|/ε)
∥∥∥∥∥

Rn

≤ C‖x‖∞,∥∥∥∥∥
s−3∑

i=m+i0

ln((s−m− 2)/(i−m))
i−m

exp(−ν0|t− ti+2|/ε)
∥∥∥∥∥

Rn

≤ C

(s−m)3

s−3∑
i=m+i0

ln((s−m− 2)/(i−m))(i −m)2 ≤ C

(7.17)

(the last step in (7.17) is made by means of Proposition 5.2).
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From (7.14)–(7.17) the estimate for the first sum in (7.12) follows. The second
sum is estimated in the same way by setting

bi = βj(t, ti+2), Ai =
i−1∑

ν=s−1

(x, L∗εNij),

i = s− 1, s, . . . , 2m− 1, p = s− 1, q = 2m− 2,

and making calculations analogous to (7.14)–(7.17). This completes the proof of
Theorem 5.

8. Numerical examples

To confirm the theoretical results we consider the following examples.

Example 1.

εx′ =
(−1 1

3 1

)
x+

(
1
−1

)
, x = (x1, x2)T ,(8.1)

x1(−1) = x2(1) = 0.(8.2)

The exact solution of the problem (8.1)–(8.2) may be written in the form

x1(t) = C1 exp(2t/ε)− C2 exp(−2t/ε) + 0.5,

x2(t) = 3C1 exp(2t/ε) + 3C2 exp(−2t/ε)− 0.5,

where
C1 = (exp(2/ε)− exp(−2/ε))/(2(3 exp(4/ε) + exp(−4/ε))),

C2 = (3 exp(2/ε)− exp(−2/ε))/(2(3 exp(4/ε) + exp(−4/ε))).

Example 2 ([23]).

εx′ = A(t, λ)x + f(t, ε, λ), x = (x1, x2)T , x−1(−1) = x2(1) = 0,(8.3)

A(t, λ) = E(t, λ)
(−1 0

0 2

)
E−1(t, λ),

E(t, λ) = E−1(t, λ) =
(

sinλt cosλt
cosλt − sinλt

)
.

(8.4)

Example 2 differs from the example considered in [23] only by inessential vari-
ation of the boundary conditions. Analogously with [23] (see (7.1)) we write the
solution of the problem (8.3), (8.4) in the form

x(t) = E(t, λ)Φ(t, λ)s + xp(t),

where E(t, λ)Φ(t, λ) is a fundamental matrix of a homogenous system (8.3) (see
[23]) and xp(t) = (exp(t), exp(−t))T . A constant vector s should be chosen in such
a way that x(t) satisfies the boundary condition (8.4). As in [23], we set λ = π/4.

The results of the numerical computations for Examples 1 and 2 are presented
in Tables 1–6. For ε and m the corresponding cell contains the quantity

ee,m = max
i=1,2

max
−2m≤j≤2m

max
0≤k≤10

|xi
m(tj + k(tj+1 − tj)/10)− xε(tj + k(tj+1 − tj)/10)|

in the upper part of the cell and the observed rate

vε,m = log2(eε,m/2/eε,m)

in the lower part of the cell.
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The numerical results for the collocation method are given in Tables 1–4. Ta-
bles 1 and 2 contain the results for Examples 1 and 2, respectively, for the algorithm
in cases (α) and (β); the analogous results for case (γ) are presented in Tables 3
and (4). The numerical results for the Galerkin method are presented in Tables 5
and 6. The symbol “−” means the observed rate becomes negative.

Our numerical examples show that the observed rates of convergence for the
collocation method tends to 2 uniformly in ε and m with 1/(εm) ≤ const in cases
(α) and (β), and in ε and m with εm ≤ const in case (γ). Note that, for ε� 1/m
in cases (α) and (β), and for 1/m� ε in case (γ), errors of evaluation strictly grow.
This means that different values ε/m need to be applied in different algorithms.

The observed rate for the Galerkin method is close to 3 uniformly for small ε.

Table 1

\ m
ε \ 4 8 16 32 64 128

2E − 1
3.51E − 2 7.35E − 3

2.25

1.73E − 3

2.08

4.24E − 4

2.03

1.05E − 4

2.01

2.62E − 5

2.007

1E − 1
4.68E − 2 9.33E − 3

2.33

2.19E − 3

2.09

5.38E − 4

2.03

1.33E − 4

2.01

3.31E − 5

2.008

3E − 2
5.60E − 2 1.08E − 2

2.38

2.58E − 2

2.06

6.27E − 4

2.04

1.55E − 4

2.02

3.85E − 5

2.008

1E − 2
5.88E − 2 1.12E − 2

2.40

2.69E − 3

2.05

6.54E − 4

2.04

1.61E − 4

2.02

4.01E − 5

2.009

1E − 3
1.71E − 1 1.13E − 2

3.92

2.74E − 3

2.05

6.66E − 4

2.04

1.64E − 4

2.02

4.08E − 5

2.009

1E − 4
1.84E + 0 1.14E − 2

7.34

2.75E − 3

2.05

6.67E − 4

2.04

1.65E − 4

2.02

4.09E − 5

2.009

1E − 5
1.88E + 1 8.54E − 2

7.79

2.75E − 3

4.96

6.67E − 4

2.04

1.65E − 4

2.02

2.009

2.009

1E − 6
1.91E + 2 8.67E − 1

7.78

6.04E − 3

7.17

6.67E − 4

3.13

1.65E − 4

2.02

4.09E − 5

2.009



712 I. A. BLATOV AND V. V. STRYGIN

Table 2

\ m
ε \ 4 8 16 32 64 128

2E − 1
3.51E − 2 7.35E − 3

2.29

1.73E − 3

2.08

4.24E − 4

2.03

2.39E − 4

0.83

4.51E − 2

−
1E − 1

4.82E − 2 9.33E − 3

2.33

2.19E − 3

2.09

5.38E − 4

2.03

1.33E − 4

2.01

3.31E − 5

2.008

3E − 2
5.60E − 2 1.08E − 2

2.23

2.58E − 3

2.06

6.27E − 4

2.04

1.55E − 4

2.02

3.85E − 5

2.008

1E − 2
5.89E − 2 1.12E − 2

2.40

2.69E − 3

2.05

6.54E − 4

2.04

1.61E − 4

2.02

4.01E − 5

2.009

1E − 3
6.02E − 2 1.13E − 2

2.41

2.75E − 3

2.05

6.66E − 4

2.04

1.64E − 4

2.02

4.08E − 5

2.009

1E − 4
6.03E − 2 1.14E − 2

2.41

2.75E − 3

2.05

6.67E − 4

2.04

1.65E − 4

2.02

4.09E − 5

2.009

1E − 5
6.03E − 2 1.14E − 2

2.41

2.75E − 3

2.05

6.67E − 4

2.04

1.65E − 4

2.02

4.09E − 5

2.009

1E − 6
6.03E − 2 1.14E − 2

2.41

2.75E − 3

2.05

6.67E − 4

2.04

1.65E − 4

2.02

4.09E − 5

2.009

Table 3

\ m
ε \ 4 8 16 32 64 128

2E − 1
3.74E − 2 8.23E − 3

2.18

2.03E − 3

2.02

5.00E − 4

2.02

1.24E − 4

2.01

3.10E − 5

2.004

1E − 1
4.10E − 2 8.46E − 3

2.28

2.07E − 3

2.03

5.06E − 4

2.03

1.25E − 4

2.01

3.12E − 5

2.006

3E − 2
4.33E − 2 8.44E − 3

2.36

2.05E − 3

2.04

4.99E − 4

2.04

1.23E − 4

2.02

3.06E − 5

2.008

1E − 2
4.40E − 2 8.39E − 3

2.41

2.03E − 3

2.03

4.94E − 4

2.04

1.22E − 4

2.02

3.03E − 5

2.009

1E − 3
1.76E + 0 8.37E − 3

7.71

2.02E − 3

2.05

4.91E − 4

2.04

1.21E − 4

2.02

3.01E − 5

2.009

1E − 4
1.92E + 2 9.38E − 1

7.68

1.27E − 3

6.02

4.91E − 4

4.69

1.21E − 4

2.02

3.01E − 5

2.009

1E − 5
2.00E + 4 1.01E + 2

7.63

1.34E + 0

6.23

1.96E − 2

6.10

3.27E − 4

5.90

3.01E − 5

3.44

1E − 6
∞ 1.04E + 4

∞
1.39E + 2

6.23

2.12E + 0

6.03

3.29E − 2

6.01

5.16E − 5

9.23
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Table 4

\ m
ε \ 4 8 16 32 64 128

2E − 1
3.42E − 2 2.59E − 2

0.40

4.68E − 2

−
6.68E − 2

−
1.19E − 1

−
1.64E + 0

−
1E − 1

3.97E − 2 8.40E − 3

2.24

3.07E − 3

1.45

4.45E − 3

−
5.29E − 3

−
5.98E − 3

−
3E − 2

4.29E − 2 8.43E − 3

2.35

2.05E − 3

2.04

4.99E − 4

2.04

1.23E − 4

2.02

7.06E − 5

0.80

1E − 2
4.35E − 2 8.39E − 3

2.38

2.03E − 3

2.05

4.94E − 4

2.04

1.21E − 4

2.02

3.03E − 5

2.009

1E − 3
4.46E − 2 8.37E − 3

2.42

2.02E − 3

2.05

4.91E − 4

2.04

1.21E − 4

2.02

3.01E − 5

2.009

1E − 4
4.48E − 2 8.36E − 3

2.42

2.02E − 3

2.05

4.91E − 4

2.04

1.21E − 4

2.02

3.01E − 5

2.009

1E − 5
4.48E − 2 8.36E − 3

2.42

2.02E − 3

2.05

4.91E − 4

2.04

1.21E − 4

2.02

3.01E − 5

2.009

1E − 6
4.48E − 2 8.36E − 3

2.42

2.02E − 3

2.05

4.91E − 4

2.04

1.21E − 4

2.02

3.01E − 5

2.009

Table 5

\ m
ε \ 4 8 16 32 64 128

2E − 1
1.18E − 3 1.49E − 4

2.99

1.85E − 5

3.01

2.28E − 6

3.02

3.12E − 7

2.87

4.61E − 8

2.66

1E − 1
1.73E − 3 2.13E − 4

3.02

2.66E − 5

3.00

3.32E − 6

3.00

4.08E − 7

3.02

5.21E − 8

3.23

3E − 2
2.66E − 3 2.88E − 4

3.21

3.47E − 5

3.05

4.25E − 6

3.03

5.26E − 7

3.01

6.47E − 8

3.02

1E − 2
3.62E − 3 3.88E − 4

3.22

4.28E − 5

3.18

4.78E − 6

3.16

5.76E − 7

3.05

7.05E − 8

3.03

1E − 3
5.21E − 3 6.04E − 4

3.11

6.87E − 5

3.14

7.64E − 6

3.17

8.26E − 7

3.21

9.11E − 8

3.18

1E − 4
6.15E − 3 7.40E − 4

3.05

8.82E − 5

3.07

1.04E − 5

3.08

1.21E − 6

3.10

1.39E − 7

3.12

1E − 5
6.76E − 3 8.25E − 4

3.03

1.00E − 4

3.04

1.22E − 5

3.04

1.46E − 6

3.06

1.75E − 7

3.06

1E − 6
7.18E − 3 8.83E − 4

3.02

1.08E − 4

3.03

1.33E − 5

3.02

1.62E − 6

3.04

1.98E − 7

3.03
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Table 6

\ m
ε \ 4 8 16 32 64 128

2E − 1
5.66E − 3 5.80E − 4

3.29

9.53E − 5

2.61

1.21E − 5

2.98

1.52E − 6

2.99

2.92E − 7

2.38

1E − 1
7.31E − 3 9.58E − 4

2.93

1.23E − 4

2.96

1.56E − 5

2.98

1.96E − 6

2.99

2.46E − 7

2.99

3E − 2
8.56E − 3 1.13E − 3

2.92

1.43E − 4

2.98

1.82E − 5

2.97

2.28E − 6

3.00

2.85E − 7

3.00

1E − 2
8.93E − 3 1.22E − 3

2.87

1.54E − 4

2.99

1.96E − 5

2.97

2.44E − 6

3.01

3.05E − 7

3.00

1E − 3
9.10E − 3 1.25E − 3

2.86

1.59E − 4

2.97

2.02E − 5

2.98

2.53E − 6

3.00

3.14E − 7

3.00

1E − 4
9.11E − 3 1.26E − 3

2.85

1.59E − 4

2.99

2.03E − 5

2.97

2.53E − 6

3.00

3.13E − 7

3.01

1E − 5
9.11E − 3 1.26E − 3

2.86

1.59E − 4

2.99

2.03E − 5

2.97

2.53E − 6

3.00

3.09E − 7

3.03

1E − 6
9.12E − 3 1.26E − 3

2.86

1.60E − 4

2.98

2.04E − 5

2.97

2.62E − 6

2.96

3.27E − 7

3.00
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