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ON TWO CLASSES OF SIMULTANEOUS PELL EQUATIONS
WITH NO SOLUTIONS

P. G. WALSH

Abstract. In this paper we describe two classes of simultaneous Pell equa-
tions of the form x2−dy2 = z2−ey2 = 1 with no solutions in positive integers
x, y, z. The proof is elementary and covers the case (d, e) = (8, 5), which was
solved by E. Brown using very deep methods.

1. Introduction

There have been several papers written that deal with the simultaneous solution
to two Pell equations. The general form of this system of equations is

ax2 − by2 = c,

dz2 − ey2 = f,

where a, b, c, d, e, f are nonzero integers such that the two equations are not multi-
ples of one another. It follows from the work of Thue [12] and Siegel [10] that these
systems have only a finite number of solutions in integers x, y, z. Furthermore,
Baker’s theorem on linear forms in logarithms of algebraic numbers [1] provides
a method to compute an upper bound for the size of the solutions. In [2], Baker
and Davenport used such an upper bound along with techniques from diophantine
approximation and lengthy multiprecise computations to prove that the system
x2−3y2 = −2, z2−8y2 = −7 has only the solutions (x, y, z) = (1, 1, 1), (19, 11, 31).
Grinstead [7] used Baker’s theorem but refined the technique of Baker and Daven-
porte ([2]) to show that the system x2 − 8y2 = 1, 3z2 − 2y2 = 1 has no solutions.
Brown [4] used Grinstead’s method, together with Baker’s theorem to show that
the only solution to the system x2 − 8y2 = 1, z2 − 5y2 = 1 is (x, y, z) = (1, 0, 1).

The purpose of this paper is to use elementary methods to describe two classes of
simultaneous Pell equations which have no nontrivial solutions. In particular, one
of the two classes contains the system considered by Brown in [4]. Thus, Theorem 1
generalizes the result in [4], and moreover, the proof relies only on basic properties
of solutions to Pell’s equation and the nonexistence of squares in a certain second
order linear recurrence.

Theorem 1. Let a ≥ 1 be an integer. Let q be a prime such that x2 − 2qy2 = −1
is solvable, and such that |22a+1 − q| = pb for some prime p and b ≥ 0. Then the
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system of simultaneous Pell equations

x2 − 22a+1y2 = 1,(1)

z2 − qy2 = 1(2)

has only the trivial solution (x, y, z) = (1, 0, 1).

If a = 1 and q = 5, then the hypotheses of Theroem 1 are satisfied, and this
is the system considered by Brown in [4]. We remark that by the main result of
Trotter in [11], x2−2qy2 = −1 is solvable for q ≡ 5 (mod 8), and so this hypothesis
can be removed from Theorem 1 for these primes.

Theorem 2. Let d = 22ac and e be integers, with c > 1 odd, a ≥ 1, and e odd,
such that de = 22ak4D for positive integers k, D with the property that the Pell
equation x2 −Dy2 = −4 has solutions in odd integers x, y. If |d− e| = pb for some
prime p and b ≥ 0, then the system of simultaneous Pell equations

x2 − dy2 = 1,(3)

z2 − ey2 = 1(4)

has only the trivial solution (x, y, z) = (1, 0, 1).

This result shows for example that no nontrivial solutions exist to (3) and (4)
when d = 20 and e = 17. Using the results of Cohn ([6]), one may extend this result
to those D for which x2 −Dy2 = −4 has no odd solutions x and y, but for which
x2−Dy2 = 4 has odd solutions. We forgo this analysis. The main ingredient in the
proof of this result is the absence of squares in the set of values of y of solutions to
x2 −Dy2 = 1, proved by Cohn in [5] and [6]. An interesting open problem, which
would have application to extending Theorem 2, is to prove an analogous result
of Cohn’s for those values of D for which x2 − Dy2 = 4 has no solutions in odd
integers x and y. Bennett [3] has recently proved that the system (3) and (4) has
at most 3 solutions for arbitrary but distinct positive integers d and e. His method
uses the theory of linear forms in the logarithms of algebraic numbers.

2. Proofs

The proofs of Theorems 1 and 2 rely on properties of solutions to Pell equations.
The reader is referred to [8] for a description of these properties.

Proof of Theorem 1. We will assume that 22a+1 > q, as the other case is proved in
the same manner. Put t = pb, then subtracting (2) from (1) yields x2 − z2 = ty2.
From the hypotheses it follows that q ≡ 1 (mod 4), and hence from (1) and (2) we
see that both x and z are odd, and that gcd(x− z, x+ z) = 2. Since t is a power of
an odd prime, it follows that there are positive integers A, B, with y = 2AB, such
that either x− z = 2tA2, x + z = 2B2 or x− z = 2B2, x + z = 2tA2. In either case
we deduce that x = B2 + tA2. Substituting this into (1) yields

B4 + (2t− 4 · 22a+1)B2A2 + t2A4 − 1 = 0,

which is the same as

(B2 − (22a+1 + q)A2)2 − 22a−1q(2A)4 = 1.(5)

Let T +U
√

2q denote the fundamental solution to the Pell equation x2−2qy2 = −1,
and for i ≥ 1 let Ti + Ui

√
2q = (T + U

√
2q)i. From the divisibility properties of
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solutions to x2 − 2qy2 = ±1 (see [8]), 4 divides Ui if and only if 4 divides i. From
(5) we find that there must be an integer i such that

|B2 − (22a+1 + q)A2|+ (2a+1A2)
√

2q = T4i + U4i

√
2q.

Again from the properties of solutions to Pell equations we have that U4i = 2T2iU2i,
gcd(T2i, U2i) = 1, T2i is odd, and U2i is even. It follows that there are positive
integers C and E such that T2i = C2 and U2i = 2aE2. Thus there is a positive
integer F such that either

C4 − 1 = 2qF 4(6)

or

C4 − 1 = 8qF 4,(7)

depending on whether a is even or odd. Since C is odd, gcd(C2 + 1, C2 − 1) = 2,
and 2 properly divides C2 + 1. It follows from either of (6) and (7) that there is a
positive integer G such that either C2 + 1 = 2G4 or C2 + 1 = 2qG4.

By the result of [9], the first of these two possibilities implies that either G = 1
or G = 13. If G = 13, then C = 239, and it is easily checked that C4 − 1 is not of
the form 8qF 4 or 2qF 4. Therefore this case does not lead to a solution of (1) and
(2). The case G = 1 results in the trivial solution (x, y, z) = (1, 0, 1).

The second possibility implies that there is an odd index l such that

C + G2
√

2q = Tl + Ul

√
2q.

We show that this cannot occur. Let P denote a prime dividing C2 = T2i. Then
since gcd(T2i, U2i) = 1, P divides U4i = 2T2iU2i, but P does not divide U2i. By the
divisibility properties of solutions to Pell’s equation, it follows that 4 divides any
index j for which P divides Uj . But P divides Tl, and hence P divides U2l = 2TlUl,
which is not possible from the fact that l is odd.

Proof of Theorem 2. We will assume that d > e, as the other case is proved in the
same manner. Let t = d− e, then subtracting (4) from (3) yields x2 − z2 = ty2. It
is evident that gcd(x − z, x + z) = 1 or 2. Thus, either x ± z = tA2, x ∓ z = B2

with y = AB, or x± z = 2tA2, x∓ z = 2B2 with y = 2AB. We deduce that either
2x = tA2 + B2 in the first case, or x = tA2 + B2 in the second case. Substituting
these into (3), simplifying, and using the quadratic formula, we find that

B2 = (d + e)± 2
√

deA4 + 1(8)

in the first case, and

B2 = (d + e)±
√

4deA4 + 1(9)

in the second case. From (8) there is an integer X such that

X2 − deA4 = 1,(10)

and from (9) there is an integer X such that

X2 − 4deA4 = 1.(11)

From (10) we have that X2 − 22a(kA)4D = 1. If a is odd we appeal to [5, p. 163,
Equation 3] to find that D = 5, 2(a−1)/2kA = 6, and X = 161. For all possible
choices of d and e satisfying the hypotheses of the theorem we find that the right
hand side of (8) is not a square. If a is even we appeal to [5, p. 163, Equation
1] to find that D = 5 and 2a/2kA = 2. In this case there are no possible values



388 P. G. WALSH

of d and e satisfying the hypotheses of the Theorem 2. From (11) we have that
X2 − 22a+2(kA)4D = 1. In the same manner as above we deduce from [5] that
there are no possible values of d and e which yield nontrivial solutions to (3) and
(4).
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