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NUMERICAL SOLUTION OF A FAST DIFFUSION EQUATION

MARIE-NOELLE LE ROUX AND PAUL-EMILE MAINGE

ABSTRACT. In this paper, the authors consider the first boundary value prob-
lem for the nonlinear reaction diffusion equation: u; — Au™ = auP! in , a
smooth bounded domain in R%(d > 1) with the zero lateral boundary condi-
tion and with a positive initial condition, m € ]0,1[ (fast diffusion problem),
a > 0 and p; > m. Sufficient conditions on the initial data are obtained
for the solution to vanish or become infinite in a finite time. A scheme for
the discretization in time of this problem is proposed. The numerical scheme
preserves the essential properties of the initial problem; namely existence of
an extinction or a blow-up time, for which estimates have been obtained. The
convergence of the method is also proved.

1. INTRODUCTION

In this paper, a numerical scheme is proposed to solve the reaction diffusion
problem: find a nonnegative function u defined on €, a smooth domain R%(d > 1)
and such that

up — Au™ = auP? reN,t>0
(1.1) u(t,z) = 0 redd,t>0
u(0,2) = wup(z) >0 x €,

where m € 10, 1] (fast diffusion problem), o > 0 and p; > m.

This problem and analogous problems have been studied from a theoretical point
of view by several authors: Aronson-Crandall-Peletier [2], Berryman-Holland [3],
Friedman-Lacey [4], Friedman-McLeod [5], [6], Levine-Sacks [13], Sabinina [15], and
Sacks [16], [17], [18]. M.-N. Le Roux has proposed a numerical method in [8] and
[9] to compute the solution of a similar problem (1.1) with m > 1 (slow diffusion
problem).

In the case a = 0, there exists an extinction time 7™ such that the problem
(1.1) has a unique classical solution, positive on Q x [0, 7*[ and null for ¢ > T*
(see [3], [15]). Concerning this last case, a semidiscretization in time is proposed
in [10] by M.-N. Le Roux, for which the numerical solution has the same properties
as the exact solution, so it allows the calculation of a numerical extinction time.

In the case a > 0, according to the values of py, the solution of (1.1) may vanish
or blow up in a finite time:

e For p; € [m,1], the solution of (1.1) cannot blow up, but it may vanish in
some finite time;
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e For p; > 1, it is possible for the solution to vanish or blow up in some finite
time according to the initial data.

Here, we study the semidiscretization in time of the problem (1.1): we propose a
scheme whose solution has the same properties as the solution of the theoretical
problem, in particular extinction or blow up in a finite time. A complete discretiza-
tion of (1.1) using a P;-finite element method has been studied in [14]; the results
obtained are the same as for the semidiscretization in time and the proofs are anal-
ogous, so, we shall not develop this point. Further, numerical results concerning
this problem or similar problems may be found in [12] or [14].

An outline of this paper follows.

In §2, we recall some theoretical results and set up sufficient conditions on the
initial data for the solution to vanish or blow up in a finite time.

In §3, we define a numerical scheme for the semidiscretization in time of (1.1)
and we prove the existence of the numerical solution. An iterative method to solve
the nonlinear equation obtained at each time step is proposed and its convergence
is proved.

In §4, we study the behavior of the numerical solution; it has similar properties
as the exact solution.

In §5, we prove the convergence of the numerical method.

2. ASYMPTOTIC BEHAVIOR OF THE SOLUTION

By using the variable v = «™, it is more convenient to work with the transformed
equation

(2.1) pvP~ly, + Av = av”, t>0,
' v(0) = vy =uj" >0,
where p = i, r=2Ls0op>1andr>1 A denotes the operator —A of domain
D(A) = H}(Q) N H?(Q).
This problem has a unique solution at least on a bounded interval ([16]).
We suppose that p satisfies the following hypothesis:

d+2
(2.2) p>1ifd§2;1<p<di—2

if d > 2, (Hl)

which assures continuous and compact embedding of H{(2) in LPF1(Q). Then, we
denote

1
(2.3) C(Q) = Inf e g () o0 —5— / V| *d.
lellpqr /o

We suppose also that the initial condition is in Hg(Q) N C¢(Q),e > 0.
For s > 1, we denote by ||.||s the natural norm in L*(Q2) and by ||.||oc the one of
L>(Q).

Lemma 2.1. If r < p, the solution v of (2.1) exists for all t > 0 and satisfies

—-r —-r —-r :
(2.4) o127 < llwoll? +ath, ifr <p,

(2.5) lo(@®)llo < Hvollooexp(%t), ifr=p.
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If r > p, the solution exists at least on the interval [0, T}], where
1 p 1

ar=p ful”

(2.6)

and satisfies
T
Th—t°

(2.7) oI5 < llvollss™”

Proof. In the same way as Sacks in [17], we obtain that the solution of (2.1) is
bounded by the solution w of the ordinary differential equation

(2.8) pwP L' (t) = aw"(t), t>0,
' w(0) = [[v0]l oo -
The solution w is written w(t) = ||vg]|oo(1 +a%||vo||ggpt)r'_; ifr#pand w(t) =

[volloc exp(5t) if 7 = p.

So, it is defined for all ¢t > 0 if » < p and for ¢ < T if r > p and we deduce the
estimates (2.6) and (2.7).

We introduce the Lyapunov functional J* defined by

(2.9)
1
J*(p) = = / V| de — X o dx Yo € HY(Q) N L™THQ).
2 Ja r+1 Jq

Lemma 2.2. The mapping t — J*(v(t)) is decreasing.

Proof. By multiplying the first equation of (2.1) by v; and integrating on 2, we
obtain

(2.10) p/ P (v, 2dx +/ VoVude = a/ v opdx;
Q Q Q

this equality may also be written as % .J*(v(t)) = —p [, vP~!(v;)?dw, so the deriv-
ative in time of J*(v) is negative, which proves the result.

Lemma 2.3. Fort > 0, we have the inequality

1 p+1 _, 1
(2.11) lvolby — 2= = Tt < lo(t)][21.

Proof. By multiplying the first equation of (2.1) by v and integrating on 2, we
obtain

(2.12) p/ vPurdr + / |Vo?de = a/ v,
Q Q Q
that is
p_d p+1 * _ 7'—1/ r+1
(2.13) P dtHU(t)||p+l+2J (v(t))—aT+1 Qv dx.

As the mapping ¢t — J*(v(t)) is decreasing, we get #%Hv(t)”iﬂ +2J*(vg) > 0;
we deduce immediately (2.11).

Now we show that if J*(vg) < 0 the solution of (2.1) tends to +oo in the case
r < p or blows up in a finite time in the case r > p.
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Theorem 2.4. If J*(vg) < 0 and r < p, then . hril lo(t)|[p+1 = o0, except in

the case r =1 and J*(vg) = 0.
If J*(vo) <0 and r > p, the solution of (2.1) blows up in a finite time T, such
that

(2.14) ThW<Ty, <Tp

with
1 1 1

(2.15) =P 't .
ar—pr—=1Cy(Q) |lvoll, 7}

where Co(Q) is a positive constant depending only on (.
Moreover, fort € [0,Ty], we have the inequality

1
T, |7»p
(2.16) ||Uo||p+1 {m] < ||U(t)||p+l'

Proof. Let us prove the result first in the case 7 < p. The relation (2.12) may also
be written as

(2.17)

L L@t =~ + 1wt

1 = | dx

as the mapping ¢t — J*(v(t)) is decreasing, and by using the positive constant
defined in (2.3), we get

2 L @ZH + (10 (w0) 2 T @)

If J*(vg) < 0, this inequality leads to ||v(t )||]DJrl > Hvo||erl + wC’( Q)t, then
im[o()]p1 = +ov.

If r > p, we use the equality (2.13) and we get

p “ p+1 * r— r+1
(2.18) I + 27 () 2 al g Jelo)l 5
By using the Holder inequality
(2.19)
_r=p
ol T3 > Co( )]l f) Yo e LTHH(Q) with C2(Q) = (mes Q)™ PFI,
we deduce if J*(vg) < 0, then
d (r—p) r—1r—p
— Co (2
L RO < —alg =E Ga(@)

and by integrating in time we get
-1

Co(Dlvoll, 1| < llo(t)

7" —1r—p
7" +1

The first member of this inequality becomes infinite at the time T5. We deduce that
Ty is a bound on the maximal time of existence, and by using the same argument

as Levine-Sacks ([13]), we obtain that the solution blows up at a time T}, < T and
from Lemma 2.1 such that T, > T3.

lvolly1 |t I3
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Theorem 2.5. Ifr < p and v satisﬁes

(2.20) ool < C(2)/Ca(9),
then the solution of (2.1) vanishes in a finite time T, such that
(2.21) Te, <T. <T,
with
(2.22)
L = l p ||US||p+l and T, = p ||U0||p+1 '
2 p+1 J*(vo) P=1C(Q) - Ca(Qalvol
Proof. From the relation (2.12) we get
p 1 2 r+1
o1 E @I + CE@Nv®) 541 < allo(®)7 11
The right side can be bounded by using the Holder inequality
r+1 r+1
(2.23) ol 1 < C2(9) Il o € Ly (9).
Thus by denoting ¢(t) = C’(Q) —aCo(Q)]|v(t)] ;j&, we get
-1
(2.24) IIU( st < _T (t)-

465

We can check that if ¢(0) > 0, namely aCo (Q)Hvo||p+1 < C(9), the mapping t —

©(t) is increasing, which in addition to (2.24) implies dt||v( )||p+1 < —pp%lgo(()). By

integrating in time we get

p—1

lo(@)l1p1 < llvollpsr — = (0)t.

If the right side of this inequality becomes null in a finite time, then the solution

v vanishes in a finite time 7. such that T, < T,.

From Theorem 2.4, the solution cannot vanish if J*(vg) < 0; hence the left

inequality in (2.21) proceeds easily from (2.11).
Theorem 2.6. If r > p and vy satisfies

r—1 e
(225) a7 ol ol < €,
the solution of (2.1) vanishes in a finite time T, such that
(2.26) T., <T.<T.,
with

a(r—1) r—p =
(2.27) Te, =Ty —Th|1- =1 lvoll 227 llvol 27
Proof. From the relation (2.12) we get
p+ — dt” vl + CONo@)lsy < alloOS @I
Hence we deduce
p d

—— —lv®)ll}51 + Q) < allo@) 12 o)1
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We use the estimate (2.7) to obtain

d p—1 p—1 T r—
prll L ()Ilp+1+7 c(Q) Se—E T 7 loollsc ™It [

Let us denote Cy = pp%lC'(Q), p=2=r

(@ - o) < —eu — oy

and by integrating in time between 0 and ¢, it follows that
(2.28)

ClTl}( T} gy,

@I < olled - 0] T S

r— 1 :

If vy satisfies ||110||]DJrl < if}, 1||vo|| Plluollyy < C(Q), the right
side of the inequality (2.28) becomes null at the time T, such that

lvollb
1— (p+1)— 2 5

T, — Te pt+l T}L-‘rl
( 1 2) 1 ClTl

We conclude that the function v becomes null in a finite time 7, < T¢,.

The left inequality of (2.26) again proceeds from (2.11).
In the particular case r =1 (i.e., py = m) we have more accurate results.
We introduce the functional F' defined by

(2.29)
1 2J*
F(p) = —5— / (|Vgo|2 — acpz)dx = 72@) Y € H&(Q)
lell,y1 /o el

Let us denote A; the first eigenvalue of the Dirichlet problem —Ap = Ap,z € Q,
p=0,z € 00.

We have the inequality F'(y) > C(92 ) , and since
-1
(2.30) EII Oy = —TF(v(t))
we get
p—1 - 1 /\1 —
(2.31) lo@) 11551 < llvollpyr — P L

Then, if a@ < A1, the second member becomes null in a finite time, so the solution
vanishes in a finite time T, such that

< p A1 ||UO||p+1
CTp—1N—a CH)
We easily prove that the mapping ¢t — F'(v(t)) is decreasing, then from (2.30),
we get

(2.32) lo()[1551 = [lool

p+1 = p+1

p—1 p—
-2 Pt
p
In the case Ay > 0, if F'(vp) < 0, then we obtain immediately that . liril o) |lp+1=

+4o00; if it is not the case, by using the same argument as Friedman and McLeod
in [6], we prove again that . 1i111 lo(t)||p+1 = 400 ([14]).
— 400
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If @« = A1, then the problem has a global solution which tends to 6p; ast — 400
(p1 is the eigenfunction corresponding to A satisfying p1 > 0, |[p1]|L1(0) = 1 and

0= (J, ngldx)%). The proof uses the same argument as Sacks in [18].
In the particular case r = p (i.e.,, p1 = 1) we also have more precise results
(see [10]).
We define the functional G as
G(e) = [ IVoldn, ¥ € HY(@),
lel?, s ||,,+1 o
and we prove that the mapping ¢t — G(v(t)) is decreasing. From the equality

P
1 dtH ( )||p+1 ( (t)) = a”v( )H;D—i-l

we get

p—1 p—1
exp(—ocTt)Hv()pH—l——/ G(v exp(—a » )dS—HUO”pHa

and since the function ¢t — G(v(t)) is decreasing, we obtain

(2.33) lo()P1 > exp(ﬂ%ﬂ(” vollhy GZJO)) + GZJO)
and
(2.34)

lo®)27) < exp (O‘th) (II ol — G(z;(t))) , GO

(07

Since G(v(t)) > C(Q), if 04||vo||p+1 < C(€), the solution vanishes in a finite time

T, such that
T, < P n( ) )
alp—1)  \C(Q) — al|vo| 3y

If oz||vo||erl > G(vp), then the solution tends to infinity as t — +oo0.

3. DEFINITION OF THE NUMERICAL SCHEME

If we use a classical Euler scheme for the semidiscretization in time of the prob-
lem, the corresponding numerical solution cannot vanish or blow up after a finite
number of time steps.

So, we generalize here the numerical scheme used in [8]: if v, is the approximate
value of the solution at the time level ¢, = nAt (At is the time step), then v, 41 is
the solution of the equation

(3.1)

P vn+1(vﬁﬁ — 0P AtAv, 1 = At(agvp ot F agvh v, 7P)
with a1 + as = a, g, as > 0.

If r < p, we choose as = 0,7 = « in order to avoid negative powers in the
second member.

If r > p, if as = 0, the solution of (3.1) may become null in a finite time, but
it cannot blow up in a finite time when this physical peculiarity appears for the
continuous problem. If oy = 0, the solution may become null or infinite in a finite
time, but this solution is not always bounded by the solution of the differential
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equation (2.8) as it is the case for the exact solution; it depends on the values of r

and p. So we choose a; and as such that the numerical solution is bounded by the

solution of the differential equation and is as close as possible to this solution.
This leads us to consider the following values of oy and as:

a] = q, O[QZO 1f7’§p,

2p—1— —

zua, OZQZT pa ifp<r<2p-1,
p—1 -1

a; =0, ag =« ifr>2p—1.

(3.2) o1

Lemma 3.1. If the solution v, is positive on Q, v, € H3(Q) N C¢(Q), (e €]0,1])
and satisfies

1
(3.3) as?

At|jvn||LF <1 in the case r > p,

then the problem (3.1) has a mazimal nonnegative solution v € Hi(Q) N C?(Q).
Besides every nonnegative solution v satisfies 0 < v < .

Proof. The problem (3.1) may be written as Av,y1 = f(vn41), where f is the
function defined by

(3.4)

flu) = m [(1 + aﬁ%Atvfj”) vﬁ_lu — <1 — ozgp —

where f satisfies f(0) = 0.

1
atr) ).

In addition, if (3.3) is satisfied, (3.1) has a constant supersolution C), such that

lon]|25" + ar =1 Atflu, |1

3.5 crl =
(3:5) 1 — B At v, [|5)"

Hence we deduce from a result from Amann [1] that (3.1) has a minimal solution

(the null solution) and a maximal solution ¥ € C5(§2). Besides any solution satisfies
veC?(Q) and 0 < v <.

Lemma 3.2. Under the hypothesis of the previous lemma, (3.1) has at most one
positive solution.

The proof is the same as in [8].
In order to set up a sufficient condition for the solution of the numerical sheme
to be positive, we introduce the functional F', which is defined by

(3.6)

1
o [ (196l —ng+)da, Vo € By N L@,
11

F(p) =
Lemma 3.3. Under the hypothesis of the Lemma 3.1 and if vy, satisfies

p—1 _
(3.7) P AtF(w) < a7,

then (3.1) has a positive solution in H} () NC?(Q).
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Proof. Let us introduce the set K and the functional J,, on Hg ()

(3.8) K= {v € H(}(Q)//Q <1 — = 1Atv¢;ﬂ) o|Pde = 1},

(3.9)
/ Vol dz — — I)At/ v”‘1<1—|—a1p_

and let us consider the minimization problem ¢, € K, J,(p,) = miﬁ Jn(v). By
ve

1
Atv;_p) v2de,

using a Holder inequality, we easily set

p+1

p (1 + ozlpp%l Atv;_p) p71
Jn(’U) > —m / ’U£+1 3 dil', Yo € K.
(1 — ag—Atvﬁ p)

p—1

Hence, J, has a lower bound on K.

Let @, be a minimizing sequence; since Jp,(|¢n,k|) = J(¢n, k), Wwe may suppose
¢n.k>0- This sequence is bounded in H{ (£2), so we can extract a subsequence, again
labeled ¢y, , which converges to ¢, weakly in HJ(2) and strongly in LPT1(Q).
Hence we have ¢, > 0, p, € K and for all v € H}(2), we obtain

(3.10)
Apn — <%vp Ly alv > On = Jn((pn) (1 — agp —

1
Ato] P ) @b

Then, if J,,(¢,) < 0, the solution v,4+1 of the problem (3.1) is defined by
1

It remains to determine a sufficient condition for J,,(p,) < 0.
Since the function ¢, = ([, (VAT — oy ”;%Atv;“)dx)_rilvn belongs to K, we
necessarily have J,,(¢n) < J,(¥,), where

(3.12)
In(¥n) = ||Un||;2;+1 <F(vn) - W” n|p+1)

2
X (/ <U5+ Ck2p Atv7l+ > )
Q

Hence if J,,(¢,,) < 0, namely if &= lAtF(vn) < ||vn|\p+1, then we obtain J,(¢,) < 0
and (3.1) admits one positive solutlon

Now we prove that the numerical solution is bounded by one of the differential
equations (2.8), as it is true for the exact solution.

Lemma 3.4. If the parameters an and ag are chosen as in (3.2) and if the hy-
potheses of Lemmas 3.1 and 3.3 are satisfied, we have the inequality
1

r—p p=r .
~lvoll st if v#p,

(3.13) vnllo < ||vo|oo(1+a
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«
(3.14) Ionlloe < leoll oo exp ().

Proof. We denote by w,, the solution of the differential equation (2.8) at the time
level t,, = nAt,

1

_ p—r rp)\"
wy, =wo| 14+ Atw, if r # p,
p

lo'
Wy, = Wo €XP (— tn),
p

and we prove the lemma recurrently: the result is true for n = 0 since w(0) = ||vg||0o-
Then wy4+1 is a supersolution of (3.1) if f(wy+1) < 0; namely

-1 _ -1
Atv;_p) <whi; <1 —al Atvfl_p>,
p

vP1 <1 +ay 2
that is

-1
vPt <1 + oqp ’ Atv;_p)

p=1

— p—r —1
<wP! (1 + a%Atw;_IO <1 - agp » Atv;_p) ifr#p

and
-1 -1
vP~! <1 + ozp—At> < wPlexp (MAt) if r =p.
p p
As ||vp]|co < wp, in the case r = p, the above inequality is immediately verified and

in the case r # p it will be true if
(3.15)
p—1
—1 —1 - p=r
1+ alp Atw, P < (1 - agp Atwfl_p) (1 + auAtw;_p)
p p p

Let us prove that this last inequality holds if @ and ay are chosen as in (3.2). For
this, we consider the mapping h : x — (1 — agz)(1 + aﬁ), where p = g:i,r £ .
This function is defined for z > 0 if » < p and for —aﬁ < 1if r > p. Moreover, it is

easy to check that A"’ (x) > 0V € [0, =#[. So we have the inequality h(0)+zh'(0) <
h(zx). In particular, for z = %Atw;_p, we obtain the inequality (3.15). We deduce

[lvn+1lloo < wpt1, which achieves the proof.

Computation of the positive solution of the numerical scheme. Equation
(3.1) may be written as
AUn—H = f(Un+1)7
where f is the function defined in (3.4).
In order to compute a numerical solution of (3.1), we use a result of Keller [7].
The function f satisfies the inequality f(v) — f(u) > —m(v — u), where m is the
function defined on Q by

(3.16)

m= =t (e (1t

with C,, defined in (3.5).

1 -1
Atvfj”) —vpt <1 + oqp Atv;_p>)
p
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So if we define the sequence (vn41,;)j>0 by

(3.17) (A+mI)vns141 = f(nt1,5) + Mg
or
(3.18)

(A + mI)Un-l-l,j-l-l = m <1 _ 2p > 1 :L—P) ( CP 1_ Un+1 J)Un-i-l,ja
we obtain a monotone sequence if the first iterate is a subsolution or a supersolution;
it is the choice of v,41,0 that determines whether the sequence is decreasing or
increasing. This sequence converges to the solution. For example, we can choose
Un+1,0 = Cp, since C, is a supersolution and the sequence (v,41,5);j>0 is a decreasing
sequence converging to v,41.

If » > p, the constant C;,, may be very large when t,, is close to T;. So we
shall prove that in this case we again obtain a convergent sequence (Un+1,5);>0 by
choosing vp41,0 = Un.-

In order to prove this result, we need the following lemma.

Lemma 3.5. For n > 1, we have the inequality

2+ o B Ao, |07
Un+1 >

3.19
(3.19) 1-— ag—AtanHT P

p—T1
) v, ifr > p.

Proof. Let T > 1; the function 77 Tv, will be a supersolution of (3.1) if

- 1
Avy, > m((ﬂ; + o 1Atv£) —T(vﬁ —al Atvﬁ)),
but

D 1 p—1, ,_ p—1, ,_
Avy, = ———— v (1 Ato, " o, — (1 — Atv, 8 ok ),
T - At (v”_1< T v”_1>v ( 2y U"_l)vn)

which implies Av,, > —ﬁvﬁ. Then for n > 1, the inequality will hold if

p
(p— 1AL

T —2)0P > vl + Tl
n n n’

which will be true if
2+ alﬂAtanH“p

1-— ag—AtanH

T>

Theorem 3.6. If r > p and vp41,0 = vp(n > 1), the sequence (Un415)j>0 CON-
verges uniformly to v,41.

Proof. Let us consider the sequences (w;);>0, (2;);>0 obtained from (3.18) with the
following respective initial values:
1

1— == At||vn|\r P\ p—1 o
wo = Un+1, 20 = .
0 2—|—O[1 At”’l}nHT P n+ n

The following inequalities hold: wo < vp, < 20 (see (3.19)). Since the operator
(A4 mlI) is monotone and the mapping u — f(u) + mu is increasing, we deduce
that wy < Un+1,j5 < Zj-
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Besides, since wy is a subsolution of (3.1), the sequence (w;);>o is a monotone
increasing sequence converging uniformly to v,4+1. In the same way, since zg is
a supersolution of (3.1), the sequence (z;);>0 is a monotone decreasing sequence
converging uniformly to v, 1. Therefore, the sequence (w;);>¢ converges uniformly
to Un+1-

Remark 3.7. We also observe that the sequence (vn11,5);>0 converges more rapidly
by taking v,41,0 = v, in the case r < p.

4. PROPERTIES OF THE NUMERICAL SOLUTION

In this part, we check that the numerical solution has the same properties as
the exact solution. We prove that the solution of the numerical scheme exists
and remains positive during at least a finite lapse of time and we obtain sufficient
conditions for this solution to become infinite or null in a finite time.

Lemma 4.1. For n > 0, we have the inequality

(4.1)
b= 1 1 2 r—p, p+1 r—1,2
, AtHv T o (|an+1| — v, Pup ) — gy, Un+1)dx
n—+ p+1
< ||Un||p+1 an+1”p+1

Proof. By multiplying equation (3.1) by v,41 and integrating on 2, we get
. vfﬂ_l( ﬁ_& —v,’;_l)dx—FAt/ |an+1|2dx
r—1Jq Q

:At(al/ ort Z+1dx+a2/ v pvﬁiidw).
Q Q

Besides, we have the inequality

1
[t (o = 2w = o (o 77 = o253,
We deduce the result.

Lemma 4.2. For n > 0, we have the inequalities.

If r <p,

(4.2)
p—1 1 9 4l
||Un||p+1 ||Un+1||p+1 < _At—Q (|V’Un| — v, )dz
P lonll,yy

Ifr>p,

(4.3)
p+1 p+1

||Un||p+1 - an+1”p+1

1 —1
p+ —At /(|an|2—av;+1>dx+a2p /v;—l’(vﬁ“ Upﬂ)dx )
p Q p+1Jg
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Proof. From Lemma 3.3, the solution of (3.1) is written as

1
—1

Un+1 = (_ %At‘]ﬂ(@n)) ’ $n-

Moreover, the function ¢,, as an element of K satisfies

/Q(l—agp

With both the previous arguments, we obtain

(-2

Besides, from (3.12) we get

Ien) < i) ([ (102

and we obtain

-1 _
_p—AtJn(’Un) < (/ <1 — Oézp
p Q
X (/ <1 — = 1Atv;_p)vzﬂda¢> '
Q p

If r < p, then as = 0 and we get

Atv, ™ p) WP de = 1.

—

T

-1
At " p)vﬁiid:E)p = _pp AtJn(on).

_ 2

1 p+1
Atv, P ) A dx) ,

2

1 p+I
Atv;_p) vP Tt da:)

(4.4)

P

1

+

p—
_TAtJ n(vn) < ||Un||p+1||vn+l||p+1a
since
J _ \V/ 2 r+1 dr — p ;D"rl,
n(vn) /Q(| vn| av,™ " )dx (p—l)At”vn||p+1

we deduce (4.2).
If r > p, then as > 0 and by using the Young inequaulity7 we get

-1
———AtJ,(v,) § —_— <1 —042 Atvr p)vp+1da:
p p
L2 1—a2p At TP vpﬂdz,
and by using the definition of .J,,, we obtam
p—1 2 r 1 1
It [ (190l - oot )do < g (<lenll 4 oneal)
p Q
-1 2 1
—p—AtOéQ/ ——— P t! —— ot ) unPde,
p o\p+1 p+ p+1
which gives the result. O

Lemma 4.3. Forn > 0, we have

(4.5) / 0 (Upg1 — ) de < 21%1 At(J*(vn) — J*(Un+1)).
Q
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Proof. From the following inequality shown in [8],

a?7 (b —a)? < aPtt —prt 4 Ziib%bp_l —aP™hy,
p—
we deduce that
- 2 +1 +1, p+1 -1 -
/sz 1(Un-i-l —vp)dr < ||vn||§+1 an+1”§+1 1 QU721+1(UZ+1 — vy 1)d$~

Besides, we have
2 p—1 p—1
/ Un-i—l (Un+1 — Uy )dZII
Q

-1
= pTAt <—/ (|an+1|2 — vl on Tt — agvziivr p)dx).
Q

Therefore, the previous inequality becomes

- +1
/Q B (wns1 — v)2d < [onlEEE — onia 2]

1
+ %At(—/ (IVUpt1)® — erv?, jon =t — vl un” p)dx).
Q

If r < p, we have the inequality

1 1_pt1
onlP31 = llonsa 57 < . |\Un||p+1(||vn||p+1 [onr1ll251),

and from (4.2), we get
+1
ol = lomsalf < 222 At [ (90, = aoft ).

If r > p, we use the inequality (4.3) directly and we obtain r > p and r <p

1
/ Vi (Vng1-vn) da < ]iAt/ (|an|2 - avfl) dx
Q 2 Q
-1
At/ﬂv,ﬁ_p (vﬁ"’l ﬂj) dz

+1 _
pp At/ (|an+1|2—alvfl+lv; ! agvnﬂvr p) dx.

+042p

By using the Young inequality, we easily prove that
/ VP (Vg — vn) dzx < 2—At (J*(vn) = T (vnt1))
Q p

and we deduce that the sequence (J*(v,,))n>0 is nonincreasing.
Now we state an existence theorem concerning the positive solution of the nu-
merical scheme.

Theorem 4.4. In the case r < p, if J*(vo) <0, then (3.1) has for n > 0 a positive
solution v,11 € HYH(Q) N CAQ). If J*(vg) > 0, then this problem has a positive
solution at least until the time T, defined in (2. 22) this solution can become null
after this time.
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Proof. For n > 0, (3.1) has a maximal solution. We prove that this solution is
positive and then unique during a nonempty lapse of time. From (4.2), we have

41 +1_p+1
(4.6) lvalliry = lvnallnry < » = At|vn |2, F(vn)
and F(v,)||vall21 < 2J%(vn) — a7 lvall7 1

Since the sequence (J*(vn))n>0 is decreasing, we get F(vn)|lvnll2,1 < 2J*(vo)
and we deduce

p+1

(4.7) looll5 7 — 2——

1
rt P w)tns < flomen 211,

So, if J*(vg) < 0, the solution (v, )n>0 is positive for any n > 0, and if J*(vp) is
positive, it is positive at least until the time T,
We deduce from Lemma 3.4 that this solution is always bounded.

Theorem 4.5. In the case r > p, if J*(vo) < 0, then (3.1) has a positive solution
for n >0 at least until the time T1 defined in (2.6).

If J*(vg) > 0, (3.1) has a positive solution during a nonempty lapse of time; this
solution may become null only after the time T,,, or blow up only after the time T1.

Proof. In this case, from Lemma 3.4, (3.1) has a bounded solution at least until
the time T3 and from the inequality (4.3), we get

+1
”UnHZ.;-l ||Un+1||p+1

1 -1 -1 -1
p+ —— At J(v,) — alr + as ! S /’U;-de
p r+1 r+1 p+1 Q

-1
pp At/ﬂ un Pl d,

and again we obtain

— g

1 1 «
onll25} = flona 231 < 2272 . LAtT* (o).

Then the inequality (4.7) holds and we conclude as in the previous theorem.

Theorem 4.6. If r < p and J*(vo) < 0, then HIEI_ lonlp+1 = +o0, (except in
the case r =1 and J*(vg) = 0).

The proof of this theorem is analogous to the proof of Theorem 2.4.

Theorem 4.7. Ifr > p and J*(vy) < 0, then the solution of the numerical scheme
blows up in a finite time T;" such that

(4.8) Ty <Ty <Ty with Ty >Ts defined in (2.15).
Proof. According to the definition of J,, in Lemma 3.3, we have

p— 1 * r—1 r+1
P Ao = ol + 82w + (02 - a2,

Since the sequence (J*(vy,))n>0 is decreasing, if J*(vg) < 0, then we get J*(v,,) < 0;

hence
a9 otz + (2 )

—1 -
Atflvn |1} < —TAtJ (V).

+1
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From the inequality (4.4) we have
(4.10)

-1 _ —
_pTAtJn(vn) < ||vn+1||§+} (/ (1 P
Q

Therefore, by using this estimate in (4.9), we obtain

+1 p—1
o7+ ( ) 2L Ao

2
>p+1

1
Atv, P ) Pty

-1
+1

1
< Jonpa 772 (|vn||5il -

2

F1
r+1 P .
r+1 ’

hence we get

1 g lonlit
1= (Fha—ao) 2t s

””n”p+1

—1
||Un||p+1 < ||vn+1||§+1'

2
+1\ p+1
p 1 ||”n||7+1
<1 Al

llonllpia

Besides, by taking into account the inequality (1 —qz)™' < (1 —2)77 (0< ¢ <1,
0 <z < 1) and using a Holder inequality, we deduce that

(4.11)
+ (o — 0o) B ACH(@) o7

[0l -
D 1— ;)2?042TAtC2( )an||p+l

> ||Un+1||p+1

In order to simplify the notations, let us denote

= - C5 (),
V=T, @ 2(2)
~1 —1
8= <:+1a—a2>02(9)1)—,
p—
6 = CQ(Q) y An = ||U"||p+1'

It is easy to verify that the quantity (y + ) is positive. From (4.11), the sequence
(zn)n>0 is increasing and satisfies

r—1
“n Pl gl

— <z
1 _ ")/Atzr P — n+1
Otherwise, for a,b > 0, we have the 1nequahty (see [14])

(v + B)At

4.12 ot gt < P Ly -
(.12) e A U ]
Hence we obtain
r—1,1-—r
r—p Zn Zn-i-l —r T,
+ /)AL ——TT— <P 2P
p—1 G +6) 1—~Atzy P 1

namely,

r—1 r—p
r—p Zn Zn _ .

At + +ﬁ—< > — < ) At < zZP7m— P
! ((7 )p —1 \znt1 Nzt i
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Let us consider the function f : 2 — (v + ﬁ);%’{ﬂ‘l — vx"P. The previous
inequality is written
(4.13) YAt + f(I)AL < 2T - P

Zn+1

The function f achieves its minimum at the point zg such that xg_l = j %ﬁ and

is decreasing on the interval [0, zo], then we shall use the estimates, f(;2) > f(1)
if xg > 1, and f(Z22) > f(xo) if 2o < 1.

Zn+1
If zo < 1, we obtain yT=2At < 227" — 2015 if 29 > 1, we get (v + ﬁ)g:llet <
2P — P
n n+1*

It remains to know the sign of (g — 1) according to r and p. Let rg € [p,2p — 1]
be the unique root of the equation (rg + 1)3 = 2(p + 1)(r + 1). We easily get the
following results.

o If p <r <ry, then zp < 1 and we obtain

r— r— 13
(4.14) ol > Ivo||p+’f<—T/ = )
2 n

with T4 = %Tz; we conclude as in Theorem 2.4.
o If o < r <2p—1, then zp > 1 and the inequality (4.14) holds with T} =

(r=1)(p+1)
P17 12

eIf2p—1 < r <p++/p?>—1, then zyp > 1 and (4.14) holds with 75 =

(r=1)(p+1)
2(r—p) L.

o If r > p+ /p? — L, then 2o < 1 and (4.14) holds with T}, = %TQ.
Thus we obtain an upper bound on the blow up time according the values of r

and p and we can check that Tj > T5 in all cases.

Remark 4.8. The difference between the times T and T4 proceeds from the upper
bound of the second member of the inequality (4.4) we used to obtain (4.10).

We now set up a sufficient condition on the initial data for the numerical solution
to vanish in a finite time.

Theorem 4.9. If r < p and if vy satisfies (2.20), then the solution of (3.1) van-
ishes in a finite time T such that Tp, < T < Te, with T, defined in (2.22).

The proof of this theorem is analogous to that of Theorem 2.5.

Theorem 4.10. If p <r < 2p—1 and if vy satisfies

r—1 _1 e p—1 e
419 ol il < (1 o= Huwlsrar) o)

then the solution of (3.1) vanishes in a finite time T, such that T,, < T} < T/, .
And, if there exists a positive constant 61 such that

r—1
p—1
then we have the estimate T,y — T = O(At) with T,, defined in (2.27).

e3

(4.16) e

lvoll 2o P llvollyt < C(2)(1 - 61),
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Proof. The inequality (4.1) may be written as

||Un+1||p+1 ||Un||p+1
—1 1
D= At

2
p ||vn+1||p+1

2 1
X (—/ |Vv,41] dx+a2/ v pvﬁde%—Oﬂ/“Z ! 721+1d$>
Q Q Q

and by using the Sobolev constant C'(2) we easily get

||Un+1||p+1 HU””p—i—l

-1 r— r—
< AtT (_C(Q) + asllvnll p||Un+1||p+1 + ailvnllo p||vn+1||p+1>

r—=p
e}

— Aol ) - EoE arc(e),

namely

-1
nvn+ng+l(1—-az

<nme@+m

From Lemma 3.4, we have [|v,||75P < mt—||vo||55P; that is, ||v,||50P < 211

= Ty —tn — r—paTli—t,"
Hence we obtain
azp—1 1
n 1— ——A¢
ol (1- 222 arp )
arp—1 1 p—1
<o lIP77( 1 At - AtC(Q).
Joallh (14 S v ) - R avc(@)

By using the notations Cy = ’)%C’(Q) and p = 2= ;, the previous inequality be-
comes

(4.17)
_ a
o lP72 (T1 - —MAt) < ||vn||p+1( - Elum) ~ AICH(T) — t,,).
In the case r < 2p — 1, we have 22 = % d = ”T_l, and by multiplying (4.17)

by (T — tp+1)"*~1, we obtain
(T1 = tng1)* |vnsa 1051
(4.18) < lonlPr1 (T =t + (= DAL)(T) — tngr)" ™"
— AtCl (Tl - tn)(Tl - tn+1)u_l'
Since pu > 1, we get (Th —t, + (1 — 1) A)(Ty — tp 1)1 < (Ty —t,)* and we obtain
||Un+1||p+1(T1 tny1)" < ||Un||p+1( —tn)" = CLAHTy — t,)(Th — tn+1)#_la
which implies
[ B2 (T = tnga)" < ool By T = CLAEY " (Ty = £)(Ty — t41)" "
§=0
Since the mapping t — (T} —t + At)(Ty — t)*~! is decreasing, we have
tn+2

Atz (Tl - tj)(Tl - tj+1)u_1 > / (Tl — s+ At)(Tl - S)M_lds7
j=0 At
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that is

Ati(T — ;) (Ty — 1)

Jj=0
1 At At
> m ((Tl - At)” (Tl + 7) - (Tl - tn+2) <T1 —tpy1 + 7)) .

Hence we obtain

-1
[vn+1 ”54-1 (T1 — tpi)"

Ch At
< Junlg} - - - Ao (1 + 2F)
C At
+ u+11(T1 — tnt2)" <T1 —tnt1 + 7)
If vy satisfies
Ch At
4.19 T — AT+ —
(4.19) Jenlgs} < S - o (114 51),

then the right side of this inequality will be null for ¢, = Te’3 such that
At
(Tl — z-'e/3 + 7) (Tl — z—'e/3 — At)#
At +1
— (T, — Ary (Tl " 7) L ol

= (T1 — At)” (Tl + %) — T1N+1 + (Tl — TES)N+1.

Since T7, is bounded, we deduce easily that (T —Te, )" —(T1 =T/, )"t = O(At),
which gives To, — To.. = O(At) if the quantity (77 — Te,) is greater than a positive

€3

real § (independent of At). Then, as (T} — Ty, )*+! = TF (1 - %)7 the estimate

holds if there exists §; > 0 such that % < 1— 07 or if vy satisfies (4.16).
Besides, as (T — At)*(Th + %) > T (Th — pAt), the inequality (4.19) holds if

Cl(

||U0||p+1 < 77 (Ty — pAt); namely

r— p—1 -
- Hvollr P|lwolp41 < (1= a==—=AtlJuoloc*)C(2).
The lower bound T, of the extinction time proceeds from Theorem 4.4.

Theorem 4.11. If r > 2p — 1 and if vy satisfies (2.25), then the solution of the
numerical scheme vanishes in a finite time T} such that T, < TF < T,.

Proof. In this case, We have a; = 0 and as = «; then by multiplying the inequality
(4.17) by (11 — tn)"*~ ", we obtain

[vn 1|73 (Th =t — pAE)(Ty = )" < [l |21 (T1 — ta)" — ALCY(Th — 1,)".
Since the inequality
(T1 =t — pA(T1 = )7 > (T1 = tagr),
holds, we get
vn st 253 (Th = tnsa)" < JlonlP73 (T4 — )" — CLAK(TY — £,)",
p+ p+
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which implies
(4.20) lons1llhsr < T llvollpsy — CLAEY  (Th —t5)".
j=0

But,

n tnt1
Atz (Tl — tj)u 2 / (Tl — s)“ds = (T{H_l — (Tl — tn+1)u+l).
=0 0

p+1

From this estimate and (4.20), we obtain

ClTl Tlu C'1
N T, —tp).
HU Hp+1 > (||U0|p+1 ) (Tl — tn)“ + it 1( 1 )
If ||vo||p 1 < if;l, then the right side of this inequality becomes null at ¢,, = Te,.

Thus the solution vanishes in a finite time 77 < T¢, and from Theorem 4.4 such
that T, < T7.

In the particular case r = 1 we obtain the following results analogous to the
theoretical case (see [14]).

o If a < Ay, the numerical solution vanishes after a time 77 such that

.o Al
T, <T*<
1SS 0T —a 09

e If o = )1, the numerical solution converges in LPT(Q) to p; with

fp1 < (/Qvgpldx)%.

o If @ > A, then lim |vy|pr1 = +o0.
n— —4oo

In the particular case r = p we have the following inequalities (see [11]):
P At () < (14 a2 Al = a5 < 22 ArG(0,)

Since the sequence (G(vy))n>0 is decreasing, we obtain

p—1 " G(vg) G(vg)
e R N (e e

D — 1 " G Un G Un,
||v””p+1 = (1+0‘7At) (||U0|p+1 (oz )) + ( )

«

and

Therefore, if vy satisfies a||v0|\p+1 < C(9), there exists a time T, = NAt such that
the solution of the numerical scheme becomes null and we have

)N c@)
Q) —allwllyyy

-1
(1 + a——A¢
p

. _1 .
e If vy satisfies af|vol| 1 >G(vo), then nlnioo lvnllp+1 = +oo.
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5. CONVERGENCE OF THE NUMERICAL SCHEME

Let T'X,be the time existence of the numerical solution. We define a piecewise
linear approximation uas of the weak solution u of (1.1) by

t—tn §

(5.1) upa=E + ; (vP , —oP) YVt € [tn,tnt1], t <Tar,
T = inf TA,(T* >Ty).

and we denote oot (T >1Ty)

Let T' < T*. Here we prove that the solution of the numerical scheme converges
to the weak solution of (1.1) on the interval [0, T].
We need the following two lemmas.

Lemma 5.1. Ifvy € HE(Q)NC(Q), (¢ €]0, 1[), then there exists a positive constant
C depending on Q, a, p,r such that

(5.2)
al —1
> [ vusa(vnsn = o) 087} — o e < Em A1+ CAN( () = 7 (o))
n=0"$
Proof. By multiplying (3.1) by (vn4+1 — v,,) and integrating on Q we get
(5.3)

p - _
(p——l)At \/{;U’n«-’—l(vn-‘rl - Un)(”ﬁﬁ —ob ) da

1 1
= {——/ |an+1|2dx+—/ |an|2dx+a/v;(vnﬂ—vn)dx}
2 Ja 2 Jo Q
1
+ [—-/ IV (Vg1 — vp)|° da
2 Ja
b [ (e = o) (0 — o)
Q

+a1/ v;_l(v,ﬂ_l — vn)Qda:] .
Q

By using the Young inequality, we have

(07

+1 +1\ .
o [ onvs = vde < S (7 = a5

hence
(5.4)

1 1
——/ |Von i1 [Pz + —/ Vo, |2z + a/ vy (Upt1 — Op)de < J*(vn) — T (Vng1)-
2/ 2/ Q
Besides, we have
1 2 A1 2
(5.5) —= | |V(vnpg1 —vp)|de < —— | (vp41 — vn)°dx.
2Jq 2 Ja

If r < p, then a3 = @ and as = 0 and the second part of the second member of
(5.3) may be bounded by

(5.6) /Q (ow;—l _ %) (i1 — vm)2da.
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Let us denote Q4 = {z € Q/v~!(2) > 3L}; so the quantity (5.6) may be bounded
by

p—r
r—1 200 < 2a\ " p—1 2,
av) " (Vg1 — vp) da < a| — VP (vp41 — ) de,
Qy A1 Q

and from Lemma 4.3, we obtain

(5.7) /Q [av;_l - %} (Ung1 — vp)dz < CAL(T (vy) — J* (Upy1))

with C = 2@%(%\—?)2:1.
If » > p, then we denote M = sup, a;<r [|[Vnllco, and the second part of the
second member of (5.3) is bounded by

A
(5.8) / (OqMT_pvﬁ_l + QopMP~ 1yl 7P — 71> (Unt1 — vn)de.
Q
If we denote Q4 = {z € Q/aspMP~ v 7P > A} then this quantity is bounded by
/ (ar M7 7PuE= Y appMP ™ 0l 7P (041 — vp) d.
Q4

-1 2p—r—1
If r < 2p — 1, then we have the estimate v}, P < (%) —» vP~Lon Qy, and

if r > 2p — 1, then we have the estimate v P < M"=2P=1yP=1  So in these two
cases, we obtain

A
/ (OélMT_pU;_p + opMP 1y P — 71> (Vns1 — vn)?dx
Q

< C’l/ vﬁ_l(v,ﬂ_l —v,)%dx
Q

2p—r—1

with C7 = Max(ay M"7P + apr—l(%) = a1 M"TP + aopMTTP).
By using Lemma 4.3 we deduce that

(5.9)
A
/ (quT_pv;_p + agpMP~ 1yl 7P — 71) (Vps1 — vn)?da
Q

1
< 2%0@@* (0n) = J* (Uns1))-

Then from the inequalities (5.3), (5.4), (5.7), (5.9), we obtain the lemma.

Lemma 5.2. If NAt < T, then there erists a positive constant C(p) independent
of the initial condition such that

(5.10)
N
>,

D P p—1 p—1
Upyq — Vb — Up+1 (vm_l—vn )}dx

p
p—1

< CALF (J*(vg) — J*(un)) 7T .
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Proof. We recall a result shown in [10]: there a positive constant C'(p) such that

>

N P
S C(p)Np_il <Z/ vn-l—l(vn-l-l - ’Un)(vﬁ—_& - ’Ug_l)dl)
n=0 Q

P P p p—1 _ p-1
Upy1 = Up — p— 1UH+1(Un+1 - Up ) dx

_P_

N p+1
+ (Z/ﬂvﬁ‘l(unﬂ - Un)2d$>
n=0

With Lemmas 5.1 and 4.3, the right side of this inequality is bounded by

_p_
p+1

C(p)N7H [<Z%1At(1 + CAL)(JT* (vg) — J*(UN))>

+ <21%1At (J*(vo) — J*(vzv))) pﬂ}

so, for NAt < T, by CAtﬁ(J*(UO) — J*(UN))#.

Theorem 5.3. The function ua; converges when At tends to 0, to the weak solu-
tion of problem (1.1) in C(0,T; L*(2)).

Proof. The function ua; is bounded in C(0,T;L>*(Q)) from Lemma 3.4 and in
C(0,T; H}(12)). Besides, in the same manner as in [10], we obtain that Lua; €
L?(0,T;L'(Q)). Hence, there exists a subsequence, again labeled ua;, such that
ua¢ converges to some function w in C(0,7T; LY(Q)) with ¢ < % ifd>2, q¢g<o0
if d =2 and in C(0,T;Q) if d = 1 ([19]).

It remains to prove that u is a weak solution of problem (1.1). Let ¢ be a test
function in C?(Q x (0,T)) N CH(Q x [0,T)); p(z,t) = 0 for x € 9.

Multiplying the equality (3.1) by ¢ and integrating on 2, we get

p -1 —1
/Qp_lvnﬂ(vﬁﬂ—vﬁ )npdx

+ At/ﬂ (Un+140 — Vv, o — agvl ol ) da = 0;

hence, for T'= NAt we get

(5.11)
N-1

L[t p -1 -
Z Kt/ /Qﬁvn-i-l(vﬁ-i-l — b~ )pdrdt
t’Vl

n=0

N—-1 tnt1
+ Z / / (Vi1 A — a1vp 0] L — 052U£+1U;_1<p)d17dt =0.
n=0 ’tn Q
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The first term of this equality may be written as

N-—1 1 tnt1 D L
Z E/ /Q ( Unt1(vp 1 — wh ) - Upg1 vﬁ) pdxdl
n=0 tn

p 1
/ / UA SD(I{,U(“
0 0 dt t '

From (5.10) the first part of this equality tends to zero when At — 0 and the
second part tends to

(5.12)

_ /0 ! /Q ué—fd:cdw /Q w(z, Typ(a, T)dz — /Q wo(2)p(, 0)d.

We prove in a classical manner ([14]) that the second term of (5.11) when At — 0
tends to

T 1 r
(5.13) / / (uﬁ Ap — au@p) dxdt.
0o Ja

So u satisfies the equation

T T
de / / 1 r
— u——dxdt + uP Ap — auP ¢ | dxdt
/0 /Q dt 0 Q( )
— [ w@ple.0)de ~ [ ula, Tyl Tz
Q Q

and is a weak solution of (1.1)
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