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A FINITE ELEMENT APPROXIMATION FOR A CLASS OF
DEGENERATE ELLIPTIC EQUATIONS

BRUNO FRANCHI AND MARIA CARLA TESI

Abstract. In this paper we exhibit a finite element method fitting a suitable
geometry naturally associated with a class of degenerate elliptic equations
(usually called Grushin type equations) in a plane region, and we discuss the
related error estimates.

1. Introduction

Let Ω denote the bounded subset of R2 = Rx×Ry defined by Ω =]−1, 1[×]−1, 1[,
and let Γ be its boundary. We consider the second order differential operator in
divergence form in Ω defined by

L = −
2∑

i,j=1

∂i(aij(z)∂j),(1.1)

where the coefficients aij = aji are measurable real-valued functions and, for some
ν ∈ (0, 1),

ν(ξ2 + λ2(x)η2) ≤
2∑

i,j=1

aij(z)ζiζj ≤
1
ν

(ξ2 + λ2(x)η2)(1.2)

for any ζ = (ζ1, ζ2) = (ξ, η) and z = (x, y) ∈ R2. Here λ is a bounded nonnegative
Lipschitz continuous function in R. For simplicity, the reader can think of a model
operator of the form

L0 = −∂2
1 − λ2(x)∂2

2 .

Operators of this form are known as Grushin type operators, and regularity proper-
ties of the weak solutions of Lu = f have been widely studied in the last few years:
see, for instance, [FL], [X], [FS], [F], [FGuW1], [FGuW2]. Grushin operators can
be viewed as (generalized) Tricomi operators for transonic fluids restricted to the
subsonic region. In addition, note that every second order differential operator
in divergence form on the plane with nonnegative principal part and which is not
totally degenerate at any point (i.e. its quadratic form does not vanish identically
at any point) can be written, after a suitable change of variables, as an operator
whose principal part is a Grushin type operator (see [X] for an explicit calculation).
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A fruitful approach to the study of these operators was shown (see [FL]) to
consist in associating with the operator L a suitable (non-Riemannian) metric d
which is basically given by the minimum time required to pass from a given point
to another along continuous curves which are piecewise integral curves of the vector
fields ±∂1 and ±λ∂2 (see Definition 2.1 for a precise definition). If for instance we
are interested in the Hölder continuity of the weak solutions (De Giorgi-Nash-Moser
theorem) or in Harnack’s inequality for positive weak solutions, then we can repeat
the classical arguments developed for elliptic equations ([DG], [Mo]) by replacing
the usual Euclidean balls by the so-called metric balls, i.e. by the balls of the metric
d.

The aim of the present paper is to show that a similar geometric approach
can lead to a natural finite element method for this class of operators. In fact,
we shall exhibit a triangulation of a plane region by means of a family of non-
isotropic triangles fitting the geometry associated with the metric d, in the sense
that each triangle of our triangulation contains and is contained in two metric balls
of comparable radii. The shape of these triangles will not be trivial to describe,
since metric balls are not invariant under Euclidean translations, so that we cannot
just repeat a fixed ball by translation. Analogously, there are no simple dilations
enabling us to rescale our geometry or our estimates.

In a similar spirit, a finite difference method for ultraparabolic equations of
Kolmogorov type has recently been developed in [MP].

We point out that our approach is not precisely an adaptive method, since,
roughly speaking, the geometry is fixed a priori and it is given by our model operator
∂2
1 +λ2(x)∂2

2 , which plays the role of a Laplace-Beltrami operator for our geometry.
An adaptive method might be superposed on this choice of the geometry, keeping
in mind the oscillation of the coefficients (note that, in this spirit, the function λ is
not a coefficient, but a structure term).

We note explicitly that, because of the lack of ellipticity when λ vanishes, we are
forced to seek weak solutions belonging to function spaces which are larger than

the usual Sobolev space
◦
H1(Ω) and that are given by the completion of C∞0 (Ω)

with respect to the norm

‖u‖L2(Ω) + ‖∂1u‖L2(Ω) + ‖λ∂2u‖L2(Ω),

so that in general our weak solutions do not belong to
◦
H1(Ω).

In fact, this approach has been used for a much larger class of degenerate elliptic
operators, whose prototype is given by Hörmander’s well known sum-of-squares
operators in Rn of the form

∑n
j=1X

2
j , where X1, . . . , Xn are smooth vector fields

such that the rank of the Lie algebra generated by them equals n at any point.
For instance, if we choose λ(x) = |x|k, for some positive integer k, then our model
operator ∂2

1 + |x|2k∂2
2 is a Hörmander operator. Since we are dealing with non-

smooth functions λ, we shall have to impose further conditions on λ to replace this
rank hypothesis (see Hypothesis (H) below).

If we try to follow the scheme of Moser’s proof of the pointwise regularity of the
weak solutions of Lu = f , two points appear from the beginning to play a crucial
role: the fact that the metric d is doubling (i.e. the volume of a metric ball of
radius 2r is controlled by a constant times the volume of a ball of radius r having
the same center), and a suitable Sobolev-Poincaré inequality on metric balls, where,
on the right hand side, we have to replace the usual gradient ∇u by the ‘degenerate



A FINITE ELEMENT APPROXIMATION 43

gradient’ ∇λu = (∂1, λ∂2) associated with the operator. These inequalities contain
deep information concerning the geometry associated with the metric d, since they
show that the geometric dimension of the metric space defined by d is much larger
than 2 (or than n in general) and, roughly speaking, it is as large as λ is degenerate.
This phenomenon has been studied in the general context of Hörmander’s vector
fields, and it appears clearly in a family of isoperimetric inequalities associated with
a family of such vector fields (see [FGaW], [FLW], [CDG1] [CDG2], [GN], [Gr]).

Unfortunately, this dimensional phenomenon affects our error estimates nega-
tively. Indeed, first of all, we do not have any Sobolev imbedding theorem to
control the pointwise values of a weak solution in the interpolation operator by
means of some higher Sobolev norm, as in the elliptic case. Roughly speaking, this
estimate is possible for a function u ∈ Hs(Rn) if n < 2s, and, as we pointed out
before, the dimension of (Ω, d) is in general much higher than 2. Nevertheless, it
is possible to bypass this difficulty, but the same dimensional phenomenon appears
again in the numerical approximation, since, corresponding to a mesh of N points,
we find in the error estimate a factor N−1/(2γ+2), where γ ≥ 0 and γ + 2 is basi-
cally the geometric dimension of (Ω, d) (all these quantities will be defined formally
later). In other words, a large number of triangles is required to obtain small errors,
much larger than in the elliptic case, and larger and larger as λ becomes ‘flat’ at
the points where it vanishes, so that our approximation converges, but the rate of
convergence is affected by the order of degeneration of the function λ. Then, it
is necessary to take this phenomenon into account when we compare our numeri-
cal results with those we can obtain just by running numerical elliptic procedures
outside of any theoretical scheme. Indeed, this näıve approach gives locally good
results away from the zeros of λ (since the operator L is locally elliptic in these
regions). Note that, as we shall discuss later by means of numerical examples, our
error estimates are sharp.

In Section 2 we characterize the geometry associated to a given class of operators,
in Section 3 we set up the general framework for a finite element method fitting the
given geometry, in Section 4 we prove error estimates and in Section 5 we discuss
the algorithmic implementation of the method, and we show, by means of a suitable
choice of the right hand side of the equation, that – as we can expect – the error
estimate in the energy norm can be better than the error we obtain by using a
standard mesh, or even an adaptive one (but we stress again that the use of a
standard mesh has no justification, since there are solutions which do not belong
to the usual Sobolev space H1(Ω)). In addition, we exhibit numerical examples
showing that our error estimate is optimal. This will be done by analyzing the
error (in the energy norm associated with the operator) when the data have been
chosen in such a way that the solution does not belong to the usual Sobolev space.

2. Preliminaries

Through this paper we will denote a generic point in R2 by z = (x, y). In the
sequel, we will assume that the function λ satisfies the following assumption:

Hypothesis (H). There exists a positive constant c1 such that, for any compact
interval I ⊆ R,

0 < c1 max
I
λ ≤ 1

|I|

∫
I

λ(x)dx ≤ max
I
λ,

where |I| denotes the Lebesgue measure of I.
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This condition is called the RH∞ condition in [F] and [FGuW1], and it implies
basically that λ is not flat where it vanishes. For instance, if p is any polynomial in
x1, then λ(x1) = |p(x1)|α (α ≥ 1) belongs to RH∞. Indeed, by rescaling, we can
reduce ourselves to proving that max[0,1] |q|α ≈

∫ 1

0
|q(x)|αdx when q is a polynomial

of degree ≤ m, m fixed. But both max[0,1] |q| and (
∫ 1

0 |q(x)|αdx)1/α are norms on
the finite-dimensional linear space of all polynomials of degree ≤ m, and so they
are equivalent. For some comments concerning the intrinsic geometric meaning of
RH∞, see also [CF].

Let us recall now the definition of the metric associated with a family of vector
fields {λ1∂1, . . . , λn∂n} (see [FP], [FL], [NSW]) and the main results we will need
through this paper.

The distance we shall define is sometimes called Carnot–Carathéodory distance,
or control distance: indeed, it arises naturally in many optimal control probles (see,
e.g., recent accounts in [J]).

Definition 2.1. We say that an absolutely continuous curve γ : [0, T ] → R2 is a
sub-unit curve if for any ζ = (ξ, η) ∈ R2,

〈γ̇(t), ζ〉2 ≤ |ξ|2 + λ2(γ(t))|η|2

for a.e., t ∈ [0, T ] (note that to simplify our notation we have considered λ here as
a function of z ∈ R2). If z1, z2 ∈ R2, we put

d(z1, z2) = inf {T > 0; there exists a sub-unit curve γ : [0, T ] → R2

such that γ(0) = z1, γ(T ) = z2}.

By the assumption (H), d(z1, z2) < ∞ for any z1, z2 ∈ R2, and hence it is a
metric. To prove this, we will need only to prove that we can connect each pair of
points z1 = (x1, y1) and z2 = (x2, y2) by means of a sub-unit curve. Arguing as
in [FL] and [F], it is easy to see that we can reduce ourselves to the case x1 = x2

and λ(x1) = 0. But in that case we note that, by hypothesis (H), the function
s→ λ(x1 + s) cannot vanish identically on (0, t) for any t > 0. Thus, it is enough
to move away from z1 along the segment s → (x1 + s, y1) (which is a sub-unit
curve), until we reach a point (x̄, y1) such that λ(x̄) > 0, and then we can ‘climb
along a vertical’ segment up to the point (x̄, y2) because s → (x̄, y1 + s) is also a
sub-unit curve. Finally, by repeating backward the previous ‘horizontal’ segment
at the level y = y2, we can achieve the proof.

Let us now introduce a function which will play a key role in the description of
the metric balls relatives to d.

If z = (x, y) ∈ R2 and r > 0, put

F (z, r) = F (x, r) =
∫ x+r

x

λ(s)ds.(2.1)

We shall see later (Theorem 2.3) that r and F (x, r) are respectively the sizes of a
metric ball in the directions of the coordinate axis.

In what follows we will say that a constant c ≥ 0 is a geometric constant if it
depends on the constant c1 of Hypothesis (H) and on supλ. To avoid cumbersome
notation, at many points we will denote by the same letter c different geometric
constants.
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We have:

Proposition 2.2 ([FGuW1, Proposition 2.5]). Suppose hypothesis (H) holds.
Then for any point z0 = (x0, y0) ∈ R2 there exist a neighborhood U of z0 and
a geometric constant γ ≥ 0 such that

(i) F (z, θt) ≥ cθ1+γF (z, t), 0 < θ < 1;
(ii) F−1(z, θt) ≤ cθ1/(1+γ)F (z, t), 0 < θ < 1;
(iii) F (z, θt) ≤ cθF (z, t), 0 < θ < 1;
(iv) if d(z1, z2) < ct, then F (z1, t) ∼ F (z2, t),

for 0 < t < t0 and z ∈ U , where c is a geometric constant.
In particular, the following crucial inequality follows from (i):∫ t

0

λ(x + sξ) ds ≥ ct1+γ(2.2)

for any z = (x, y) ∈ U , ξ ∈ S0 = {ξ ∈ R : |ξ−ξ0| ≤ δ} ⊂ [−1, 1]\{0} and t ∈ (0, t0).

We observe that, because of Proposition 2.2 (ii), the following doubling property
holds:

F (z, r) ≤ F (z, 2r) ≤ cF (z, r)(2.3)

for any z ∈ U , and r < r0, r0 and c being geometric constants.
We can now combine Proposition 2.2 above with the characterization of the d-

balls given in [F], Theorem 2.3. The following theorem contains the description of
the geometry given by d.

Theorem 2.3. Let the assumption (H) be satisfied. Then:
(i) d(z1, z2) <∞ for any z1, z2 ∈ R2, and hence d is a metric.
(ii) If we denote by B(z, r) the d-ball centered at z and of radius r (i.e. B(z, r) =

{z′ ∈ R2; d(z, z′) < r}), then there exist two geometric constants t1 > 0 and
b > 1 such that, for any z0 ∈ R2 and t ∈ (0, t1), we have

Q(z0, t/b) ⊆ B(z0, t) ⊆ Q(z0, bt),(2.4)

where, for any r > 0,

Q(z0, r) = {z = (x, y) ∈ R2 : |x− x0| < r and |y − y0| < F (z0, r)}.
(iii) There exist two geometric constants A > 0 and r0 > 0 such that

|B(z, 2r)| ≤ A |B(z, r)|(2.5)

for any z ∈ U and r ∈ (0, r0), i.e. the metric space (R2, d) is a space of
homogeneous type with respect to Lebesgue measure.

(iv) If θ > 0, then

c1(θ)|B(z, r)| ≤ |B(z, θr)| ≤ c2(θ)|B(z, r)|(2.6)

for any z ∈ U and r < r0 and for some suitable constants c1(θ) and c2(θ)
which are geometric constants, except for the dependence on θ.

Throughout this paper, we will denote by∇λ = (∂1, λ∂2) the degenerate gradient
associated with the operator L, and we will put

|∇λu|2 = |∂1u|2 + λ2(x)|∂2u|2.(2.7)

Moreover, we will denote by H1
λ(Ω) the degenerate Sobolev space associated with

∇λ, i.e. the set of u ∈ L2(Ω) such that

∂1u ∈ L2(Ω), λ∂2u ∈ L2(Ω),
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endowed with the natural norm

‖u‖2
H1

λ(Ω) = ‖u‖2
L2(Ω) + ‖∂1u‖2

L2(Ω) + ‖λ∂2u‖2
L2(Ω)(2.8)

We note that a Meyers-Serrin type theorem holds for these spaces, i.e.

C∞(Ω) ∩H1
λ(Ω) is dense in H1

λ(Ω)

(see [Fr], [FSSC] and [GN]). Therefore, it will be natural to denote by
◦
H1
λ(Ω) the

closure of C∞0 (Ω) in H1
λ(Ω).

Hypothesis (H) implies suitable forms of classical Sobolev-Poincaré inequalities,
where, as we pointed out in the Introduction, the constant γ in Proposition 2.2
plays the role of a dimension: see for instance [F] and [FGuW1]. However, what we
need here is only a simple form of this inequality, which states that the L2-norm
of a compactly supported function in Ω can be controlled by the L2-norm in Ω of
its degenerate gradients, which is therefore equivalent to the norm in H1

λ(Ω) (see,
e.g., [F], Theorem 4.7).

Theorem 2.4. Suppose Hypothesis (H) holds; then there exists a geometric con-
stant c > 0 such that ∫

Ω

|u|2dz ≤ c

∫
Ω

|∇λu|2dz

for all u ∈
◦
H1
λ(Ω).

Note that Theorem 2.4 implies that, if u ∈
◦
H1
λ(Ω), then

‖u‖L2(Ω) ≤ c‖∇λu‖L2(Ω),(2.9)

so that the quadratic form

A(u, u) =
∫

Ω

|∇λu|2dz

associated with the operator L is coercive on
◦
H1
λ(Ω).

We can now state the main result concerning the Dirichlet problem for L in Ω.

Theorem 2.5. Let f0, f = (f1, f2) be such that f0, |f | ∈ L2(Ω). Then there exists

a unique u ∈
◦
H1
λ(Ω) solution of the Dirichlet problem

(P )

{
Lu = −divλf + f0 in Ω,
u = 0 on Γ,

(2.10)

where divλf = ∂1f1 + λ∂2f2, in the sense that

A(u, ϕ) =
∫

Ω

{∂1u∂1ϕ+ λ2∂2u∂2ϕ}dz =
∫

Ω

{f1∂1ϕ+ f2∂2ϕ+ f0ϕ}dz = Lf(ϕ)

for any ϕ ∈ C∞0 (Ω).

The proof follows straightforwardly by standard arguments from the Lax-
Milgram theorem because of our Poincaré inequality (Theorem 2.4).

Arguing as in [F] and in [FS], Theorems 5.11 and 6.4 respectively, we can prove
the following result.

Theorem 2.6. If f0, |f | ∈ Lp for p > p0 = p0(λ), then the solution u of (P) is
Hölder continuous in Ω.
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3. Finite element method

Let us start by constructing a triangulation of Ω which fits the geometry associ-
ated with the operator. Note that the parameter n which will be considered from
now on has nothing to do with the dimensionality of the space, which is fixed and
equal to 2.

Theorem 3.1. For any n > 0 there exists a finite decomposition Tn of the domain

Ω =
⋃

K∈Tn

K,

where
(i) each K is a compact triangle with nonempty interior Int(K);
(ii) Int(K1) ∩ Int(K2) = ∅ for distinct K1, K2 ∈ Tn;
(iii) if F = K1 ∩ K2 6= ∅, where K1 and K2 are distinct elements of Tn, then

F must be a side for both K1 and K2 or a vertex for both K1 and K2 (this
means that no vertex of one triangle lies on the edge of another triangle);

(iv) for any K ∈ Tn there exist z̄K , ¯̄zK ∈ R2 and r̄K , ¯̄rK > 0 such that

B(z̄K , r̄K) ⊆ K ⊆ B(¯̄zK , ¯̄rK), 0 < c ≤ r̄K
¯̄rK

≤ C,

c and C being geometric constants;
(v) supK r̄K ≤ const n−1/(1+γ), where γ is the constant appearing in Proposition

2.2.

Proof. Let us start by constructing the vertices of our triangulation in the set Ω
+

where x ≥ 0, y ≥ 0. By reflection across the axes we will obtain all the vertices of
the triangulation.

First, let us choose α > 0 such that α
∫ 1

0 λ(s)ds = 1. Without loss of generality,
we can assume that the constant c1 in Hypothesis (H) is such that αc1 < 1, and let
δ0, δ1, . . . , δn be chosen so that

δ0 = 0, α

∫ δj+1

δj

λ(s)ds =
1
n

for j = 0, 1, . . . , n− 1.(3.1)

This choice is always possible by putting Λ(t) =
∫ t
0 λ(s)ds (which is strictly

increasing by Hypothesis (H)) and

δj = Λ−1
( j

αn

)
, j = 1, . . . , n.(3.2)

Then we can consider the triangulation of Ω
+

given by the family of nodes

(δj ,
k

n
), j = 0, . . . , n; k = 0, . . . , n.

Note that the nodes

(δn,
k

n
), k = 0, . . . , n,

and

(δj ,
n

n
), j = 0, . . . , n,

belong to Γ. From the above construction it is clear that N ∼ n2, where N is the
number of nodes in the triangulation.
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It is easy to see that the triangulation associated with this family of nodes
satisfies (i)-(iii).

Let us prove (iv). To this end, let K be a triangle of Tn. Its vertices will be of
the following forms: either

(δj ,
k

n
), (δj+1,

k

n
), (δj+1,

k ± 1
n

), j = 0, . . . , n− 1, k = 0, . . . , n− 1,

or

(δj ,
k

n
), (δj+1,

k

n
), (δj ,

k ± 1
n

), j = 0, . . . , n− 1, k = 0, . . . , n− 1.

For simplicity, let us consider only the case with K given by the vertices

P1 = (δj ,
k

n
), P2 = (δj+1,

k

n
), P3 = (δj ,

k + 1
n

).(3.3)

Set ¯̄zK = (δj ,
k

n
) and r̃K = max{ α

c1
, 1} · (δj+1 − δj), where c1 is the constant of

Hypothesis (H). We have

F (¯̄zK , r̃K) =
∫ δj+r̃K

δj

λ(s)ds ≥ c1r̃K max
[δj ,δj+r̃K ]

λ

≥ α(δj+1 − δj) max
[δj ,δj+1]

λ

≥ α

∫ δj+1

δj

λ(s)ds =
1
n

=
k + 1
n

− k

n
,

so that:

K ⊆ Q(¯̄zK , r̃K) ⊆ B(¯̄zK , br̃K),(3.4)

and hence the second inclusion in (iv) is proved with ¯̄rK = br̃K . To prove the first
inclusion, set

z̄K =
(
δj + θ(δj+1 − δj),

k + θ

n

)
, r̃K = ε(δj+1 − δj),

where θ, ε ∈ (0, 1) are fixed constants such that θ + ε < 1/(1 + 1
c1α

), ε < c1αθ.
Let us prove that Q(z̄K , r̃K) ⊂ K, so that, by Theorem 2.3, we can choose

r̄K = r̃K/b. To this end, it will be enough to show that:

(a) the vertex
(
δj + θ(δj+1 − δj) + ε(δj+1 − δj), k+θn + F (z̄K , r̃K)

)
lies below the

line z2 = 1
n(δj+1−δj){−z1 + k(δj+1 − δj) + δj+1} = ψ(z1) (which connects P2

and P3),
(b) the vertex

(
δj + θ(δj+1 − δj)− ε(δj+1 − δj), k+θn − F (z̄K , r̃K)

)
lies above the

line z2 = k
n (which connects P1 and P2), and

(c) the vertex
(
δj + θ(δj+1− δj)− ε(δj+1− δj), k+θn −F (z̄K , r̃K)

)
lies on the right

of the line z1 = δj (which connects P1 and P3).
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Indeed:
(a)

k + θ

n
+ F (z̄K , r̃K) =

k + θ

n
+

∫ δj+θ(δj+1−δj)+ε(δj+1−δj)

δj+θ(δj+1−δj)

λ(s)ds

≤ k + θ

n
+ ε(δj+1 − δj) max

[δj+θ(δj+1−δj),δj+(θ+ε)(δj+1−δj)]
λ

≤ k + θ

n
+ ε(δj+1 − δj) max

[δj ,δj+1]
λ

(since δj+1 − δj > 0 and θ + ε < 1)

≤ k + θ

n
+

ε

c1

∫ δj+1

δj

λ(s)ds

(by Hypothesis (H))

=
k + θ

n
+

ε

αc1n
<

1
n

(1− θ − ε+ k)

(since 2 < 1 +
1
c1α

)

= ψ
(
δj + θ(δj+1 − δj) + ε(δj+1 − δj)

)
.

(b)

k + θ

n
− F (z̄K , r̃K) ≥ k + θ

n
− ε

αc1n

(arguing as above)

=
k

n
+

1
n

(θ − ε

αc1
) >

k

n
.

(c) δj + θ(δj+1 − δj)− ε(δj+1 − δj) > δj, since ε < c1αθ < θ.
To achieve the proof of (iv), we note that both r̄K and ¯̄rK are given by a geometric

constant times δj+1 − δj , so that assertion (iv) is completely proved.
On the other hand, by (3.1) and (2.2),

1
αn

=
∫ δj+1

δj

λ(s)ds = ξ0

∫ (δj+1−δj)/ξ0

0

λ(δj + sξ0)ds ≥ c(ξ0)(δj+1 − δj)1+γ ,

and then (v) is proved.

We can proceed now in a standard way by defining a finite dimensional space Vn
in the following way: Let P1, . . . , PN , N = N(n) be the nodes of Tn which belong
to Int(Ω). We consider the set Φn of all continuous piecewise linear functions
ϕj , j = 1, . . . , N , such that

ϕj ≡ 0 on Γ and ϕj(Pi) = δij , i = 1, . . . , N,(3.5)

and we denote by Vn the linear space generated by Φn.

Lemma 3.2. Vn ⊂
◦
H1
λ(Ω) for n ≥ 1

Proof. It is enough to note that Vn ⊂
◦
H1(Ω) ⊂

◦
H1
λ(Ω).
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A function vn ∈ Vn now has the representation

vn(z) =
N∑
i=1

vn(Pi)ϕi(z),(3.6)

and our Dirichlet problem can be approximated by the following one.
Find un ∈ Vn such that

(Pn) A(un, vn) = Lf (vn) ∀vn ∈ Vn.(3.7)

As in the elliptic theory, the above problem can be solved by solving an N × N
linear system of equations whose stiffness matrix has elements given by(

a(ϕi, ϕj)
)
i,j=1,...,N

.

We will see in Section 5 a discussion of a numerical solution of this problem.
Again as in the classical theory, we can define an interpolation operator

Πn : C0(Ω̄) → Vn as follows:

Πn(v) =
N∑
i=1

v(Pi)ϕi.(3.8)

4. Error estimate

Suppose now that f = (f1, f2) belongs to Lp(Ω) with p > p0 as in Theorem 2.6,
so that the solution u of the Dirichlet problem (2.10) is continuous on Ω.

We will follow the classical Galerkin approximation scheme (see [QV], 6.2.1).
This technique provides us with an error estimate giving the rate of convergence
of the approximate solutions un to u in the norm of the space of weak solutions
H1
λ(Ω). It must be noticed that this error estimate is optimal, as will be clear from

the numerical results reported in Section 5. As in the usual elliptic case, the error
estimates rely on L2 estimates of the second derivatives of u; however, because of
the lack of ellipticity when x = 0, we cannot expect usual H2 estimates to hold,
but, in the spirit of our approach, if we denote by X1, X2 the vector fields ∂1 and
λ(x)∂2 respectively, our second order degenerate Sobolev space H2

λ(Ω) will consist
of these u ∈ H1

λ(Ω) such that each monomial XiXju belongs to L2(Ω) for i, j = 1, 2,
endowed with its natural norm.

Unfortunately, the corresponding estimates up to the boundary seem rather hard
to obtain. Nevertheless, if we restrict ourselves to a diagonal operator of the form

L0 = −∂2
1 − λ2(x)∂2

2 ,

where λ is a C0,1 function satisfying Hypothesis (H), these boundary estimates can
be deduced from analogous interior estimates.

For instance, if λ2 = µ2, where µ is a smooth function such that µ(m)(0) 6= 0
for some m > 0, then these a priori interior estimates for second order ‘derivatives’
hold as a particular case of a deep result of Rotschild and Stein ([RS]). Note that
if λ has such a form, then Hypothesis (H) is automatically satisfied (see below).
For instance, the prototype Grushin operator corresponding to λ(x) = |x|γ satisfies
this assumption when γ ∈ N (note that the choice of the symbol γ for the exponent
is not casual here, since it is consistent with (2.2)).

Let us start with the following general result that does not rely on any particular
structure of L.
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Theorem 4.1. Suppose λ is a C0,1 function satisfying Hypothesis (H) such that
λ2 ∈ C1,1, its zeros are isolated and belong to Int(Ω), and that (λ2)

′′ ≥ 0 in
a neighborhood of these zeros. If f ∈ L∞(Ω), then there exists a unique u ∈
◦
H1
λ(Ω) ∩C0,σ(Ω) for some σ ∈ (0, 1) such that

Lu = f in Ω.

If in addition XiXju ∈ L2(Ω) for i, j = 1, 2 (where X1 = ∂1, X2 = λ(x)∂2), then

the Galerkin approximations un ∈ Vn defined by (3.7) converge to u ∈
◦
H1
λ(Ω) as

n→∞ and the following error estimate holds:

‖u− un‖H1
λ(Ω) ≤ Bn−1/(1+γ),

where B depends on ‖f‖L2(Ω) and on ‖XiXju‖L2(Ω), i, j = 1, 2.

Remark. Suppose in addition we know that for any f ∈ L2(Ω) we have u ∈ H2
λ(Ω)∩

◦
H1
λ(Ω). This implies that the map u→ Lu is a bijection from H2

λ(Ω)∩
◦
H1
λ(Ω) onto

L2(Ω), and hence, by the closed graph theorem, the following a priori estimate
holds:

2∑
i,j=1

‖XiXju‖L2(Ω) ≤ C‖f‖L2(Ω).

If such an estimate holds, then the error estimate can be written in the form

‖u− un‖H1
λ(Ω) ≤ Bn−1/(1+γ)‖f‖L2(Ω),

where B is a geometric constant.

Proof of Theorem 4.1. First of all we notice that f ∈
⋂
p≥1 L

p(Ω), and hence u ∈
◦
H1
λ(Ω) ∩C0,σ(Ω) for some σ ∈ (0, 1) by Theorem 2.6.
Without loss of generality, we may assume that λ(0) = 0 and λ(x) > 0 if x 6= 0.

Moreover, we can assume that λ(x′) ≥ λ(x′′) for 0 ≤ x′′ ≤ x′ and λ(x′) ≤ λ(x′′) for
x′′ ≤ x′ ≤ 0. As in [QV], Theorem 5.2.1, there exist B1, B2 > 0, depending only
on ν and the constant c of (2.9), such that

‖un‖H1
λ(Ω) ≤ B1‖f‖L2(Ω),(4.1)

‖un − u‖H1
λ(Ω) ≤ B2 inf

vn∈Vn

‖u− vn‖H1
λ(Ω).(4.2)

On the other hand,

inf
vn∈Vn

‖u− vn‖H1
λ(Ω) ≤ ‖u−Πn(u)‖H1

λ(Ω),(4.3)

since Πn(u) is well defined because of the continuity of u and it belongs to Vn
because of Lemma 3.2. By combining (4.2) and (4.3) it will follow that un → u in
H1
λ(Ω) once we have proved that ‖u−Πn(u)‖H1

λ(Ω) → 0 as n→∞.
Now

‖u−Πn(u)‖H1
λ(Ω) ≤ c

{
‖u−Πn(u)‖L2(Ω) + ‖∇λ(u −Πn(u))‖L2(Ω)

}
= c

∑
K∈Tn

{
‖u−Πn(u)‖L2(K) + ‖∇λ(u−Πn(u))‖L2(K)

}
.(4.4)
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We have:

Lemma 4.2. There exists a geometric constant B3 > 0 such that, if we put X1 =
∂1, X2 = λ∂2, then, if K ∈ Tn,

‖u−Πn(u)‖L2(K) + ‖∇λ(u −Πn(u))‖L2(K)

≤ B3

{
‖X2

1u‖L2(K) + ‖X2
2u‖L2(K) + ‖X2X1u‖L2(K)

}
n−1/(1+γ).(4.5)

Note that Int(K) intersects neither Γ nor the degeneration line x = 0, so that
u ∈ C2,α

loc (IntK), by classical Schauder estimates.

Proof. First, let us estimate∫
K

|∇λ(u−Πn(u))|2dxdy =
∫
K

|∇λ(u−
3∑
i=1

u(Qi)ϕi)|2dxdy = I2,(4.6)

where Q1, Q2, Q3 are the vertices of K.
Suppose for instance that K has vertices (δj , kn ), (δj+1,

k
n ), (δj , k+1

n ), and put{
x = δj + (δj+1 − δj)x′,
y = k

n + 1
ny

′ .
(4.7)

The above change of variables maps K onto the base triangle of vertices (0,0), (1,0),
(0,1), and its Jacobian determinant is 2|K|, so that, if we denote by ṽ any function
v written in the new variables x′, y′, we get∫

K

|v −Πn(v)|2dxdy = 2|K|
∫
K̃

|ṽ −
3∑
i=1

ṽ(Q̃i)ϕ̃i|2dx′dy′(4.8)

Note now that
∂x′ ṽ = (δj+1 − δj)∂̃xv, ∂y′ ṽ =

1
n
∂̃yv.

Then∫
K

|∂x(u−
3∑
i=1

u(Qi)ϕi)|2dxdy = 2|K|
∫
K̃

|∂̃x(...)|2dx′dy′

=
2|K|

(δj+1 − δj)2

∫
K̃

|∂x′ (̃...)|2dx′dy′

=
1

n(δj+1 − δj)

∫
K̃

|∂x′ (̃...)|2dx′dy′.(4.9)

Analogously∫
K

|λ(x)∂y(u−
3∑
i=1

u(Qi)ϕi)|2dxdy

= n(δj+1 − δj)
∫
K̃

λ2(δj + (δj+1 − δj)x′)|∂y′ (̃...)|2dx′dy′

≤ n(δj+1 − δj) · ( max
[δj ,δj+1]

λ)2
∫
K̃

|∂y′ (̃...)|2dx′dy′

≤ 1
c12

n

(δj+1 − δj)

(∫ δj+1

δj

λ(t)dt
)2

∫
K̃

|∂y′ (̃...)|2dx′dy′

= c
1

n(δj+1 − δj)

∫
K̃

|∂y′ (̃...)|2dx′dy′, by (3.1),
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so that

I2 ≤ c
1

n(δj+1 − δj)
|ũ−

3∑
i=1

ũ(Q̃i)ϕ̃i|2H1(K̃)
,(4.10)

where Q̃1, Q̃2, Q̃3 are vertices of K̃, and | · |Hk(K̃) denotes the seminorm given by the
sum of the L2−norms of the highest derivatives. We can now apply the following
classical estimate:

|ũ−
3∑
i=1

ũ(Q̃i)ϕ̃i|2H1(K̃)
≤ c|ũ|2

H2(K̃)
(4.11)

(see, for instance [QV], Theorem 3.4.1), and we get

I2 ≤ c
1

n(δj+1 − δj)

{
‖∂2
x′ ũ‖2

L2(K̃)
+ ‖∂2

y′ ũ‖2
L2(K̃)

+ ‖∂y′∂x′ ũ‖2
L2(K̃)

}
= c

{ (δj+1 − δj)3

n
‖∂̃2
xu‖2

L2(K̃)
+

1
n5(δj+1 − δj)

‖∂̃2
yu‖2

L2(K̃)

+
(δj+1 − δj)

n3
‖∂̃y∂xu‖2

L2(K̃)

}
= c

{
(δj+1 − δj)2‖∂2

xu‖2
L2(K) +

1
n4
‖∂2
yu‖2

L2(K) +
1
n2
‖∂y∂xu‖2

L2(K)

}
= {J1 + J2 + J3}.

(4.12)

First of all, we note that J1 can be written as follows:

J1 = (δj+1 − δj)2‖X2
1u‖2

L2(K);

the next step will consist of proving that

J2 ≤ c(δj+1 − δj)2‖X2
2u‖2

L2(K) and J3 ≤ c(δj+1 − δj)2‖X2X1u‖2
L2(K).(4.13)

To this end, we observe that, if x ∈ K, then, by the monotonicity of λ,

λ(x) ≥ λ(δj) ≥
1

δj − δj−1

∫ δj

δj−1

λ(t)dt =
1

n(δj − δj−1)
,

so that (4.13) will follow by proving that

δj − δj−1 ≤ c(δj+1 − δj)(4.14)

for all j = 0, 1, . . . , n− 1.
On the other hand, it is easy to see that

d((δj−1, k/n), (δj , k/n)) ≤ δj − δj−1,

so that, by Proposition 2.2 (iv), we have

F ((δj , k/n),δj − δj−1) ≤ cF ((δj−1, k/n), δj − δj−1)

= c

∫ δj

δj−1

λ(t)dt =
c

αn
= c

∫ δj+1

δj

λ(t)dt

= cF ((δj , k/n), δj+1 − δj) ≤ F ((δj , k/n), c′(δj+1 − δj)),

by Proposition 2.2 (iii), and hence (4.14) follows by the monotonicity of the function
t→ F ((δj , k/n), t).
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Thus

I2 ≤ c(δj+1 − δj)2
{
‖X2

1u‖2
L2(K) + ‖X2

2u‖2
L2(K) + ‖X2X1u‖2

L2(K)

}
≤ n−2/(1+γ)

{
‖X2

1u‖2
L2(K) + ‖X2

2u‖2
L2(K) + ‖X2X1u‖2

L2(K)

}
,

by Theorem 3.1 (iv) and (v). Finally, the term

I1 =
∫
K

|u− Πn(u)|2dxdy

can be handled in the same way.
Combining (4.4) and (4.5), we complete the proof of Theorem 4.1.

Theorem 4.3. Let λ be as in Theorem 4.1, and let the following interior a priori
estimate hold: if v ∈ H1

λ,loc(R2) is such that L0v = g ∈ L2(Ω), then for any
ψ ∈ C∞0 (R2) ∑

i,j=1,2

‖XiXj(ψv)‖L2(Ω) ≤ Cψ‖g‖L2(Ω).

Then the following error estimate for the Galerkin approximations of the solution

u ∈
◦
H1
λ(Ω) of L0u = f ∈ L∞(Ω) holds:

‖u− un‖H1
λ(Ω) ≤ Bn−1/(1+γ)‖f‖L2(Ω),

where B is a geometric constant.

Proof. By Theorem 4.1 and the subsequent remark, we have only to prove that
XiXju ∈ L2(Ω) for i, j = 1, 2. Consider the following covering {Fj} for Ω:
F1 =] − ∞,−1/4[×R, F2 =]1/4,+∞[×R, F3 =] − 1/3, 1/3[×]− 3/4, 3/4[, F4 = e2
+]−1/3, 1/3[×]−1/3, 1/3[, F5 = −e2+]−1/3, 1/3[×]−1/3, 1/3[, where e2 = (0, 1).
Let moreover {ψj, j = 1, 2, 3, 4, 5} be a partition of unity subordinate to the cover-
ing {Fj}, with ψj ∈ C∞

0 (R2), 0 ≤ ψj ≤ 1, supp ψj ⊂ Fj . We have∑
i,j

‖XiXju‖L2(Ω) ≤
∑
k

∑
i,j

‖XiXj(ψku)‖L2(Fk).

Consider now k = 1, 2: these cases can be easily reduced to usual elliptic estimates.
Indeed, in F1 and F2 the H2

λ norm is equivalent to the usual Sobolev norm, for
λ is bounded away from zero on these regions. On the other hand, for the same
reason, the operator L0 is elliptic on F1 and F2, and then it satisfies standard H2

a priori estimates by a well known regularity result on planar angular regions due
to P. Grisvard ([G]). Thus, if we take into account that

L0(ψku) = ψkf − 2〈∇λψk,∇λu〉 − uL0ψk = gk,

and that ‖gk‖L2(Ω) ≤ c‖f‖L2(Ω), we get for k = 1, 2∑
i,j

‖XiXj(ψku)‖L2(Fk) ≤ c‖ψku‖H2(Ω) ≤ c‖L0(ψku)‖L2(Ω) + ‖ψku‖L2(Ω)

≤ c‖f‖L2(Ω).

Thus we can restrict ourselves to considering, for instance, the region F4. We set
F4 = Q, Q− = e2+]− 1/3, 1/3[×]− 1/3, 0[ and Q+ = e2+]− 1/3, 1/3[×]0, 1/3[. We
can assume that ψ4 = ψ satisfies ψ ≡ 1 on B(e2, 1/4).
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As above, uψ ∈
◦
H1
λ(Ω) and L0(uψ) = g ∈ L2(Ω), with ‖g‖L2(Ω) ≤ c‖f‖L2(Ω).

We now define

G1(x, y) =

{
g in Q−,

0 in Q+,

and we denote by v1 ∈
◦
H1
λ(Q) the solution of the problem

(P1)

{
L0v1 = G1 in Q,

v1 = 0 on ∂Q.

Let G2(x, y) = G1(x, 2 − y) and let v2 ∈
◦
H1
λ(Q) be the solution of the problem

(P2)

{
L0v2 = G2 in Q,

v2 = 0 on ∂Q.

We have:
(1) v1, v2 ∈ C0,α(Q);
(2) v2(x, y) = v1(x, 2− y).

The first property holds as above, arguing as in [FS], whereas the second property
follows from the uniqueness of the solution of (P2), if we prove that v1(x, 2 − y)
solves (P2). To this end, let ϕ ∈ C∞0 (Q); then∫

Q

[(v1)x(x, 2− y)ϕx(x, y)− λ2(x)(v1)2−y(x, 2 − y)ϕy (x, y)] dxdy

=
∫
Q

[
(v1)x(x, η)ϕx(x, 2− η)− λ2(x)(v1)η(x, η)ϕ2−η(x, 2 − η)

]
dxdη

=
∫
Q

[
(v1)x(x, η)ψx(x, η) + λ2(x)(v1)η(x, η)ψη(x, η)

]
dxdη

(where ψ(x, η) = ϕ(x, 2 − η))

=
∫
Q

G1(x, η)ψ(x, η)dxdη =
∫
Q

G1(x, η)ϕ(x, 2 − η)dxdη

=
∫
Q

G1(x, 2 − y)ϕ(x, y)dxdy

=
∫
Q

G2(x, y)ϕ(x, y)dxdy.

Now we put v = (v1 − v2)
∣∣
Q−

, so that v(x, y) = (v1(x, y)− v1(x, 2 − y))
∣∣
Q−
, v ∈

C0,α(Q−) and v ≡ 0 on ∂Q−. Moreover, v ∈ H1
λ(Q−). We assume we have proved

that v ∈
◦
H1
λ(Q−), and we verify that L0v = g in Q−. Let ϕ ∈ C∞0 (Q−); then∫

Q−
(vxϕx + λ2vyϕy)dxdy

=
∫
Q−

[
(v1)xϕx + λ2(v1)yϕy

]
dxdy −

∫
Q−

[
(v2)xϕx + λ2(v2)yϕy

]
dxdy

=
∫
Q−

(G1 −G2)ϕdxdy =
∫
Q−

gϕdxdy,

since G1 ≡ g in Q− and G2 ≡ 0 in Q−. Hence by uniqueness v = uψ.
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We prove now that if v ∈ H1
λ(Q−) ∩ C0,α(Q−) and v ≡ 0 on ∂Q−, then

v ∈
◦
H1
λ(Q−). To this end we consider the covering for Q− given by E1 = Q− ∩

(]−∞,−1/4[×R), E2 = Q− ∩ (]1/4,+∞[×R), E3 = Q− ∩ (R×]1 − 2δ,+∞[), E4 =
Q− ∩ (R×]1 − δ,−∞[), and let {ϕi, i = 1, 2, 3, 4,} be a partition of unity sub-

ordinate to this covering. It will be enough to prove that vϕi ∈
◦
H1
λ(Q−) for

i = 1, 2, 3, 4. This is clear for vϕ1 and vϕ2, since vϕ1, vϕ2 ∈ H1(Q−) and so

v ∈
◦
H1(Q−) ⊆

◦
H1
λ(Q−) by the usual results on Sobolev spaces. We now prove that

vϕ3 = ṽ ∈
◦
H1
λ(Q−); vϕ4 can be treated analogously. To prove that ṽ ∈

◦
H1
λ(Q−)

we will prove that ṽ can be approximated by functions ṽn ∈ H1
λ(Q−) such that

supp ṽn ⊂ Q−. Indeed, since the usual convolutions with Friedrich’s mollifiers do
converge in H1

λ(Q−) ([FSSC], [GN]), each ṽn can be approximated in H1
λ(Q−) by

functions in C∞0 (Q−), and hence the statement follows.
Let ψn : [0,+∞) → [0 : +∞) be a smooth function such that ψn ≡ 1 on

[0, 1 − 1/n], ψn ≡ 0 on [1 − 1/2n,+∞), 0 ≤ ψn ≤ 1, |ψ′
n| ≤ 3n: we set ṽn = ψnṽ.

It follows that supp ṽn ⊂ Q− and ‖ṽn − ṽ‖L2(Q−) = ‖ṽ(ψn − 1)‖L2(Q−). Now
ṽ(ψn − 1) → 0 a.e. and |ṽ(ψn − 1)| ≤ |ṽ|, and hence the norm tends to zero.
Therefore ṽn → ṽ in L2(Q−). Analogously ∂xṽn → ∂xṽ in L2(Q−). Assume we
have proved that ‖λ∂y ṽn‖L2(Q−) ≤ C. It follows from the reflexivity of H1

λ(Q−)
that (ṽn)n∈N converges weakly in H1

λ(Q−), and then ṽn → ṽ weakly in H1
λ(Q−)

since ṽ ∈ H1
λ(Q−) and ṽn → ṽ in L2(Q−). Hence, by Mazur’s theorem, ṽ is the

limit in H1
λ(Q−) of a sequence of finite convex combinations of {ṽk, k ∈ N} which

are still functions supported in Q−, and we are done.
Let us prove now that ‖λ∂y ṽn‖L2(Q−) is bounded. We notice that

∂ṽ

∂y
∈ L2(Q− ∩ {|x| ≥ ε})

for every ε > 0, and hence the function y → ∂ṽ
∂y (x, y) is in L1

loc for almost every x.
Therefore, using the property ṽ(x, 1) ≡ 0, we have

|ṽ(x, y)| ≤
∫ 1

y

|∂ṽ
∂y

(x, t)|dt ≤
√

1− y

(∫ 1

y

|∂ṽ
∂y
|2dt

)1/2

for (x, y) ∈ Q−. We then have

‖λ∂y ṽn‖L2(Q−) ≤ ‖λψn(∂y ṽ)‖L2(Q−) + ‖λṽ(∂yψn)‖L2(Q−).

The first term tends to ‖λ∂y ṽ‖L2(Q−) as n→∞, as above. Concerning the second
one, we have

‖λṽ(∂yψn)‖2
L2(Q−) ≤ 9n2

∫ 1/3

−1/3

dxλ2(x)
∫ 1

1−1/n

dyṽ2(x, y)

≤ 9n2

∫ 1/3

−1/3

dxλ2(x)
∫ 1

1−1/n

dy(1− y)
∫ 1

2/3

|∂ṽ
∂y

(x, t)|2dt

= 9n2

∫
Q−

dxdt|λ∂ṽ
∂y

(x, t)|2
∫ 1

1−1/n

dy(1− y)

=
9
2
‖λ∂ṽ
∂y
‖2
L2(Q−),

and the statement is proved.
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Now results on interior regularity for problems (P1) and (P2) guarantee that
X2

1vi, X1X2vi, X2X1vi, X
2
2vi ∈ L2(B(e2, 1/4)), and hence it follows that X2

1u,
X1X2u, X2X1u,X

2
2u ∈ L2(Ω).

Corollary 4.4. Let λ be such that λ = |µ|, where µ is a smooth function such that

µ(0) = µ′(0) = · · · = µ(m−1)(0) = 0

and µ(m)(0) 6= 0 for some m ≥ 1. Then the conclusion of Theorem 4.3 holds.

Proof. The two vector fields Y1 = ∂1, Y2 = µ∂2 satisfy Hörmander’s rank condition
since the rank of the Lie algebra generated by Y1 and Y2 equals 2 at each point of
R2. Thus the interior a priori estimate of Theorem 4.3 follows from Theorem 16
(d) in [RS]. Thus we have only to show that Hypothesis (H) is satisfied, since the
remaining assumptions of Theorem 4.1 follow straightforwardly. On the other hand,
Hypothesis (H) follows by Proposition 5 in [FW], where it is shown in particular
that, because of the Hörmander condition, the function µ belongs to RH∞, i.e. its
average on any interval is equivalent to its L1 norm on the same interval, and so
we are done.

5. Algorithm and numerical results

In this section we will describe some numerical tests of our previous results; as
we pointed out in the Introduction, the number γ+2 plays the role of a dimension,
which can be very large if the operator is strongly degenerate. Because of this, to
test the trend of our estimates we have to work with a mesh containing a large
number of points, and, for this reason, we have to choose our implementation
rather carefully. The algorithm we used to perform our numerical integrations is
MGGHAT, a unified multilevel adaptive refinement method, in which a unified
approach to the combined processes of adaptive refinement and multigrid solution
has been very conveniently implemented. A detailed technical description of the
method can be found in [M1], [M2].

In our case the refinement cannot be obviously performed by bisecting pairs of
triangles, since we want to reproduce the geometry associated with the differential
operator considered. The hierarchical basis scheme can nevertheless be applied,
since also for the geometries considered in this paper it is possible to implement
divisions (which reproduce the geometry required) of a pair of triangles, correspond-
ing to the addition of a new basis function having support for the pair of triangles
divided, and leaving the existing basis functions unchanged; in fact we modified the
part of the program producing the mesh generation, according to our geometry.

Indeed, from (3.2) it can be seen that at each level of refinement all the old
nodes are maintained, and some new ones are added. This is exactly the principle
on which the hierarchical basis approach is based. The hierarchical basis coincides
with the usual nodal basis at the first level of refinement. As refinement proceeds,
with each division one or more new nodes are added, and for each node a new
basis function is defined so that it has the value 1 at the new node and 0 at all
other nodes, but the existing basis functions remain unchanged. The choice of
hierarchical basis leads to a representation of Πn(u) which differs from (3.8), and
then to a different stiffness matrix: the algorithmical gain is described in [BDY]
and [M2].
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As an example, we choose

λ =
√
βm|x|m−1 for β > 0 and m > 1,

so that it is easy to check that (2.2) holds with γ = m− 1. Put

R = β|x|2m + y2 and u = R1/m,

and, finally,

v = (1 − x2)(1 − y2)u.

A direct calculation shows that v ∈
◦
H1
λ(Ω), and that f = L0v ∈ L∞(Ω); on the

other hand, if m > 2.5, then v does not belong to the usual Sobolev space
◦
H1(Ω).

This fact is not surprising, since the function u is equivalent to the square of the
distance d of the point (x, y) from the origin (see [FL]), so that it reflects in a rather
subtle way the properties of the model operator L0 and it is strictly connected with

the Sobolev space
◦
H1
λ(Ω).

We can now evaluate the discretization error in the energy norm

‖∂x(v − vn)‖L2(Ω) + ‖λ∂y(v − vn)‖L2(Ω),

which not only is the norm naturally associated with the operator, but it also is the
only ‘reasonable’ norm, since in general the H1-norm of v is infinite. By Theorem

2.4, the energy norm is equivalent to the norm in
◦
H1
λ(Ω).

In the following pictures we plotted these errors in a log-log scale as a function
of N , the number of the nodes of our triangulation, which we recall is proportional
to n2 (we call the triangulation corresponding to the geometry naturally associated
to the operator the natural triangulation, see Figure 3), and we compared it with
the errors we obtain (for the same number of nodes) by using an adaptive version of
our triangulation, a uniform triangulation and an adaptive uniform triangulation.
The graphs in Figure 1 correspond to β = 128 and m = 4 (γ = 3) and m = 6
(γ = 5), respectively. The choice of a large β has been suggested by the need of
amplifying the behaviors we are interested in studying.

Finally, we evaluated the trend of the error estimate, reported in Table 1, by
comparing it with the theoretical estimate (always in the same logarithmic scale)
in the cases m = 2 (γ = 1) and m = 3 (γ = 2). The expected trend for the
errors is of the form N b, where by our error estimate b = −0.25 for γ = 1 and
b = −0.16̄ for γ = 2. The results obtained from the linear fitting of the data, i.e.
b = −0.242± 0.008 for γ = 1 and b = −0.17± 0.01 for γ = 2, shown in Figure 2,
are a clear indication of the optimality of the error estimate.
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Figure 1. Plot of the discretization error in energy norm, as a
function of the number of nodes N , obtained with four different
triangulation types: natural (i.e. obtained using the geometry nat-
urally associated to the operator), uniform (i.e. obtained using
Euclidean geometry), adaptive uniform (i.e. obtained by an adap-
tive refinement method in the Euclidean geometry) and adaptive
natural (i.e. obtained by an adaptive refinement method in the
geometry naturally associated to the operator); for γ = 3 (m = 4)
(Figure 1a, top) and γ = 5 (m = 6) (Figure 1b, bottom).
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Figure 2. Fitting of the discretization error in H1
λ norm for

γ = 1 (m = 2) (Figure 2a, top) and γ = 2 (m = 3) (Figure
2b, bottom). The smaller nodes have been discarded to consider
only the asymptotic regime. The line superimposed on the data is
the result of numerical fit. The data have been fitted with the lin-
ear function f(N) = a×N b, where N is the number of nodes used
in the triangulation. We obtained the values b = −0.242 ± 0.008
for γ = 1, corresponding to the theoretical prediction b = −0.25,
and b = −0.17 ± 0.01 for γ = 2, corresponding to the theoretical
prediction b = −0.16̄. The set of data used are also reported in
Table 1.
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Table 1

N γ = 1 γ = 2
545 0.1483
1089 0.1279
2113 0.1039 0.1265
4225 0.0895 0.1080
8321 0.0763 0.0978
16641 0.0674 0.0877

Figure 3. Example of a triangulation with 128 triangles obtained
with the geometry naturally associate to the operator, with γ =
1 (m = 2).
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and Harnak inequality for a class of degenerate elliptic operators, Atti Accad. Naz.
Lincei, Cl. Sci. Fis. Mat. Natur 5 (9) (1994), 167–175. MR 95i:35115
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