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CONVERGENCE OF A MULTISCALE FINITE ELEMENT
METHOD FOR ELLIPTIC PROBLEMS WITH RAPIDLY

OSCILLATING COEFFICIENTS

THOMAS Y. HOU, XIAO-HUI WU, AND ZHIQIANG CAI

Abstract. We propose a multiscale finite element method for solving second
order elliptic equations with rapidly oscillating coefficients. The main purpose
is to design a numerical method which is capable of correctly capturing the
large scale components of the solution on a coarse grid without accurately
resolving all the small scale features in the solution. This is accomplished
by incorporating the local microstructures of the differential operator into the
finite element base functions. As a consequence, the base functions are adapted
to the local properties of the differential operator. In this paper, we provide
a detailed convergence analysis of our method under the assumption that the
oscillating coefficient is of two scales and is periodic in the fast scale. While
such a simplifying assumption is not required by our method, it allows us to
use homogenization theory to obtain a useful asymptotic solution structure.
The issue of boundary conditions for the base functions will be discussed. Our
numerical experiments demonstrate convincingly that our multiscale method
indeed converges to the correct solution, independently of the small scale in the
homogenization limit. Application of our method to problems with continuous
scales is also considered.

1. Introduction

In this paper, we consider solving a class of two-dimensional, second order, el-
liptic boundary value problems with highly oscillatory coefficients. Such equations
often arise in composite materials and flows in porous media. In practice, the oscil-
latory coefficients may contain many scales spanning over a great extent [6]. When
a standard finite element or finite difference method is used to solve the equations,
the degrees of freedom of the resulting discrete system can be extremely large, due
to the necessary resolution for achieving meaningful (convergent) results. Limited
by computing resources, many practical problems are still out of reach using direct
simulations. On the other hand, it is often the large scale features of the solution
and the averaged effect of small scales on large scales that are of the main interest.
Thus, it is desirable to have a numerical method that can capture the effect of small
scales on large scales without resolving the small scale details.
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Here, we introduce a multiscale finite element method for solving partial differ-
ential equations with highly oscillating solutions. Our purpose is to capture the
large scale structures of the solutions correctly and effectively, without the above
restrictions. This is achieved by constructing the finite element base functions from
the leading order homogeneous elliptic equation. Typically, the size of the element
is larger than a certain cut-off scale of the oscillatory coefficient. Information at
scales smaller than the mesh size is built into the base functions. In our multiscale
method, the base functions can be very oscillatory. It is through these oscilla-
tory base functions that we capture the small scale effect on the large scales. The
small scale information within each element is brought into the large scale solution
through the coupling of the global stiffness matrix. Thus, the large scale solution
is correctly computed.

The main result of this paper is a sharp error estimate of our multi-scale finite
element method for general 2-D elliptic problems with separable two-scale coeffi-
cients. More specifically, we consider a model equation with periodic coefficients,
which depend on a small parameter ε determining the small scale of the problem.
In this case, homogenization theory can be used to describe the structure of the
solution. This multiscale solution structure plays a crucial role in our convergence
analysis. We are particularly interested in the situation where the mesh size h
is larger than ε. The convergence analysis shows clearly how the small scale in-
formation in the base functions leads to the correct large scale solution. Using
homogenization theory, we show that the multiscale method approximates the ho-
mogenized solution with second order accuracy in the limit as ε → 0. This result
cannot be obtained from the classical analysis alone, which only provides an overly
pessimistic estimate O(h2/ε2).

Our analysis also reveals an important phenomenon common in many upscaling
methods, i.e., the resonance between the mesh scale and the small scale in the
physical solution. A straightforward implementation of the multiscale finite element
method would fail to converge when the mesh scale is close to the small scale in
the physical solution. A deeper analysis shows that the boundary layer in the first
order corrector seems to be the main source of the resonance effect. By choosing
the boundary conditions for the base function properly, it is possible to eliminate
the boundary layer in the first order corrector. This would give rise to a nice
conservative difference structure in the discretization. It can be shown that this
conservative difference structure would lead to cancellation of resonance errors and
give an improved rate of convergence independent of the small scales in the solution.

This improved convergence is essential for problems with continuous scales, since
the mesh scale inevitably coincides with one of the small scales in the solution. Mo-
tivated by the analysis in this paper, we propose in a companion paper, [16], an
over-sampling strategy which eliminates the resonance error and gives rise to a
multiscale method truly independent of small scale features in the solution. Our
extensive numerical experiments show that the multiscale method with the over-
sampling strategy indeed gives convergent results even for problems with continuous
scales. The issues of computational efficiency, parallel implementation, and com-
parison with other existing methods are also discussed in detail in [16].

It should be pointed out that the idea of using base functions governed by the
differential equations, especially its application to the convection-diffusion equation
with boundary layers, has been studied for some years (see, e.g., [5] and references
therein). Similar idea applied to elliptic equations has also been considered by
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Babuška et al. in [3] for 1-D problems and in [2] for a special class of 2-D problems
with the coefficient varying locally in one direction using the approach outlined
in [4]. However, most of these methods are based on the special properties of
the harmonic average in one-dimensional elliptic problems. As indicated by our
convergence analysis, there is a fundamental difference between one-dimensional
problems and genuinely multi-dimensional problems. Special complications such
as the resonance between the mesh scale and the physical scale never occur in the
corresponding 1-D problems.

There are also other related methods based on homogenization theory and up-
scaling arguments. When the coefficients are periodic or quasi-periodic with scale
separation, the averaged solution can be obtained by solving the so-called cell prob-
lems, which are analytically derived from the homogenization theory (ref. [8, 17]).
Such an approach has been successfully used to solve some practical problems in
porous media and composite materials [11, 9]. However, it has a limited range of
applications; it is not applicable to general problems without scale separation. It is
also expensive to use when the number of separable scales is large [16]. Based on
some simple physical and mathematical motivations, numerical upscaling methods
have been devised and applied to more general problems with random coefficients
(cf. [10, 20]). But the design principle is strongly motivated by the homogenization
theory for periodic structures. Their applications to non-periodic structures are
not always guaranteed to work. There has also been success in achieving numer-
ical homogenization for some semi-linear hyperbolic systems, the incompressible
Euler equations, and 1-D elliptic problems using the sampling technique (see e.g.,
[14, 12, 1]). However, the sampling technique still has its own limitations. Its
application to general 2-D elliptic problems is still not satisfactory.

The rest of the paper is organized as follows. The formulations of the 2-D model
problem and the multiscale finite element method are introduced in the next section.
Some observations are made for the model problem and the multiscale method in
order to motivate later analysis. The homogenization theory of the model equation
is reviewed in §3. These results are used in §§4 and 5, where the convergence
analyses of the 2-D problem for h < ε and h > ε cases are presented respectively. In
§6, the asymptotic structure of the discrete linear system of equations is studied; it
shows how the boundary conditions of the base functions may affect the convergence
rate. Some numerical results are given in §7; they provide strong support for our
analytical estimates. Derivation of conservative difference structures for the discrete
2-D system is provided in the Appendix.

2. Formulations

In this section, we introduce the model problem and the multiscale method.
First, we establish some notation and conventions. In the following, the Einstein
summation convention is used: summation is taken over repeated indices. Through-
out the paper, we use the L2(Ω) based Sobolev spaces Hk(Ω) equipped with norms
and seminorms

‖u‖k,Ω =

∫
Ω

∑
|α|≤k

|Dαu|2


1
2

, |u|k,Ω =

∫
Ω

∑
|α|=k

|Dαu|2


1
2

.

H1
0 (Ω) consists of those functions in H1(Ω) that vanish on ∂Ω. H−1(Ω) is the

dual of H1
0 (Ω). We define H1/2(∂Ω) as the trace on ∂Ω of all functions in H1(Ω);
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a norm is given by ‖v‖1/2,∂Ω = inf ‖u‖1,Ω, where the infimum is taken over all
u ∈ H1(Ω) with trace v. Throughout, C (with and without a subscript) denotes a
generic positive constant, which is independent of ε and h unless otherwise stated.
Throughout the paper, we assume that Ω is a unit square domain in R2, which
satisfies the convexity assumption needed to obtain certain regularity properties
for elliptic operators.

2.1. Model problem and the multiscale method. Consider the following el-
liptic model problem:

Lεuε = f in Ω, uε = 0 on ∂Ω,(2.1)

where

Lε = ∇ · a(x/ε)∇
is the linear elliptic operator, ε is a small parameter, and a(x) = (aij(x)) is sym-
metric and satisfies α|ξ|2 ≤ ξiaijξj ≤ β|ξ|2, for all ξ ∈ R2 and with 0 < α < β. Fur-
thermore, aij(y) are periodic functions in y in a unit cube Y and aij(y) ∈ W 1,p(Y )
(p > 2). Below, for simplicity of notation we use u instead of uε (except in §3),
keeping in mind that u depends on ε.

The variational problem of (2.1) is to seek u ∈ H1
0 (Ω) such that

a(u, v) = f(v), ∀v ∈ H1
0 (Ω),(2.2)

where

a(u, v) =
∫

Ω

aij
∂v

∂xi

∂u

∂xj
dx and f(v) =

∫
Ω

fvdx.

It is easy to see that the linear form a(·, ·) is elliptic and continuous, i.e.,

α|v|21,Ω ≤ a(v, v), ∀v ∈ H1
0 ,(2.3)

and

|a(u, v)| ≤ β|u|1,Ω|v|1,Ω, ∀u, v ∈ H1
0 .(2.4)

A finite element method is obtained by restricting the weak formulation (2.2) to
a finite dimensional subspace of H1

0 (Ω). For 0 < h ≤ 1, let Kh be a partition of Ω
by rectangles K with diameter ≤ h, which is defined by an axi-parallel rectangular
mesh. In each element K ∈ Kh, we define a set of nodal basis {φi

K , i = 1, . . . , d}
with d (= 4) being the number of nodes of the element. We will neglect the subscript
K when working in one element. In our multiscale method, φi satisfies

Lεφ
i = 0 in K ∈ Kh.(2.5)

Let xj ∈ K (j = 1, . . . , d) be the nodal points of K. As usual, we require φi(xj) =
δij . One needs to specify the boundary condition of φi for well-poseness of (2.5), for
which we refer to §5.1. For now, we assume that the base functions are continuous
across the boundaries of the elements, so that

V h = span{φi
K : i = 1, . . . , d; K ∈ Kh} ⊂ H1

0 (Ω).

In the following, we study the approximate solution of (2.2) in V h, i.e., uh ∈ V h

such that

a(uh, v) = f(v), ∀v ∈ V h.(2.6)
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Remark 2.1. The above formulation of the multiscale method is not restricted to
rectangular elements; it can be applied to triangular elements, which are more
flexible in modeling more complicated geometries. In fact, in most of the analysis
below, the shape of element is irrelevant, except in §6 where we find that the
triangular elements have some advantages in discrete error cancellations.

2.2. General observations. As mentioned in the introduction, the purpose of
the multiscale method is to capture the large scale solution. This general idea can
be made more precise in the context of the above model problem. In this case,
there are two distinct scales in the solution, which are characterized by 1 and ε.
The large scale solution is nothing but the homogenized solution u0 (see §3), which
is the limit of u as ε → 0. In fact, u equals u0 up to O(ε) perturbations. It can
be shown that u0 is the solution of a homogenized elliptic problem with constant
coefficient; thus u0 is smooth. The oscillations at the ε-scale are contained in the
perturbations. Because the base functions φi are defined by the same operator Lε,
it is expected that they have local structure similar to that of u. Such a property
of φi is the key to the present method (see §5.2).

The multiscale base functions are smooth if h � ε and can be well approximated
by the standard continuous linear (bilinear) base functions. Thus, we expect the
multiscale method to behave similarly to linear finite element methods. In §4.1,
we apply the standard finite element analysis to the multiscale method with one
particular choice of the base functions (φi can be chosen differently by selecting
different boundary conditions on ∂K), and the result supports the expectation.

On the other hand, when h � ε, φi contains a smooth part and an oscillatory
part, which cannot be approximated by linear (bilinear) functions. In this case,
the multiscale method is very different from conventional finite element methods.
In fact, we will show that the multiscale method gives solutions that converge to
u0 in the limit as ε → 0, while the standard finite element method with piecewise
polynomial base functions does not. An intuitive explanation is as follows. The
effective coefficient a∗, which determines the homogenized operator, includes both
the average of a and the averaged result of the interaction of small scale oscillations
(see (3.7)). Polynomial base functions can only capture the first part (hence the
wrong operator), because they do not characterize any oscillations. In contrast,
multiscale base functions contain the small scale information in the same fashion
as u does. Therefore, they are able to accurately capture a∗ through the variational
formulation. This informal argument is explored in more detail in §§5 and 6.

It is interesting to note that the convergence of the multiscale method when
h > ε cannot be obtained from the standard finite element analysis, whose estimate
is too pessimistic (like (4.14)). The reason is that the standard analysis does not
take into account the structure of the solution nor that of the base functions. This
situation is rectified in §§5 and 6.

3. Homogenization and related estimates

In this section, we review the homogenization theory of equation (2.1) and recall
some estimates obtained by Moskow and Vogelius [21]. These results reveal the
structure of the solution and the multiscale functions. In §5, the estimates will be
used both globally for u and element-wise for φi

K .
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Let us consider the following elliptic problem:

Lεuε = f, in Ω, uε = g, on ∂Ω,(3.1)

where f ∈ L2(Ω) and g ∈ H
1
2 (∂Ω). Following [8, 21], we may write the second

order equation for uε as a first order system:

a(x/ε)∇uε − vε = 0,

−∇ · vε = f,

and look for a formal expansion of the form

uε = u0(x,x/ε) + εu1(x,x/ε) + · · · ,

vε = v0(x,x/ε) + εv1(x,x/ε) + · · · ,

where uj(x,y) and vj(x,y) are periodic in the “fast” variable y = x/ε.
Introducing ∇ = ∇x + 1/ε∇y, substituting the expansion into the above system

of equations, and collecting terms with the same power of ε, we get

O(ε−1) : a(y)∇yu0 = 0,(3.2)

O(ε−1) : −∇y · v0 = 0,(3.3)

O(ε0) : a(y)∇yu1 + a(y)∇xu0 − v0 = 0,(3.4)

O(ε0) : −∇y · v1 −∇x · v0 = f0.(3.5)

From (2.1) and (3.2)–(3.5), we have u0 = u0(x) satisfying

∇ · a∗∇u0 = f in Ω, u0 = g on ∂Ω,(3.6)

where a∗ is a constant (effective coefficient) matrix, given by

a∗ij =
1
|Y |

∫
Y

aik(y)(δkj − ∂

∂yk
χj)dy;(3.7)

χj is the periodic solution of

∇y · a(y)∇yχj =
∂

∂yi
aij(y)(3.8)

with zero mean, i.e.,
∫

Y
χjdy = 0. As shown in [8], a∗ is symmetric and positive

definite. Denote the homogenized operator as

L0 = ∇ · a∗∇;

thus L0u0 = f0. In addition, we have

u1(x,y) = −χj ∂u0

∂xj
.(3.9)

Note that u0(x) + εu1(x,y) 6= uε on ∂Ω, due to the construction of u1. Thus, we
introduce a first order correction term θε, satisfying

Lεθε = 0 in Ω, θε = u1(x,y) on ∂Ω,(3.10)

so that u0 + ε(u1(x,y) − θε) satisfies the boundary condition of uε.
The following lemma is proved in Proposition 1 of [21] for convex polygonal

domains and aij(y) ∈ C∞(Y ):
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Lemma 3.1. Let u0 denote the solution to (3.6) and suppose u0 ∈ H2(Ω); let
u1(x,y) be given by (3.9), and let θε ∈ H1(Ω) denote the solution to (3.10). There
exits a constant C, independent of u0, ε and Ω, such that

‖uε − u0 − ε(u1 − θε)‖1,Ω ≤ Cε |u0|2,Ω.(3.11)

From the above lemma, one can easily deduce the following corollary [21].

Corollary 3.2. Under the assumptions of Lemma 3.1, there exists a constant C,
independent of u0 and ε, such that

‖uε − u0‖0,Ω ≤ Cε ‖u0‖2,Ω.(3.12)

Remark 3.3. In obtaining the above estimates, we don’t really need to use the
strong regularity assumption, aij(y) ∈ C∞(Y ). In fact, it is sufficient to assume
that aij(y) ∈ W 1,p(Y ) (p > 2). In this case, we still have χj(y) ∈ W 2,p(Y ) ∩
C1,α(Ȳ ) with α = 1 − n/p (cf. Theorem 15.1 in [18]), which is sufficient to give
the above results without modifying the proof in [21]. This improvement on the
regularity assumption is important from practical considerations, since the aij in
general are not very smooth. It is also of practical interest to study the case when
the aij are only piecewise smooth and have jump discontinuities across certain in-
terfaces. The result depends on the geometry of the jump interfaces. We conjecture
that (3.11) and (3.12) still hold if the interfaces are sufficiently smooth and disjoint.
This and related issues are currently under study in [13].

4. Convergence for h < ε

As noted earlier, the multiscale method and the standard linear finite element
method are closely related when h � ε. This relation is explored in this section.
With some modifications, the standard finite element analysis can be carried out
for the multiscale method. For simplicity, we assume the φi are linear along ∂K.

4.1. Error estimates. Subtracting (2.6) from (2.2), we get the orthogonality
property

a(u − uh, v) = 0, ∀v ∈ V h.(4.1)

First, we have Céa’s lemma.

Lemma 4.1. Let u and uh be the solutions of (2.2) and (2.6) respectively. Then

‖u− uh‖1,Ω ≤ C
β

α
‖u− v‖1,Ω, ∀v ∈ V h.(4.2)

Proof. (4.2) is an immediate consequence of the Poincaré-Friedrichs inequality,
(2.3), (2.4), and (4.1).

Next, we study the approximation property of the base functions. Define the
local interpolant of a function u on K ∈ Kh as

(IKu)(x) =
d∑

j=1

u(xj)φj(x),

where xj are the nodal points of K. The global interpolant of u is then defined by

IKhu|K = IKu ∀K ∈ Kh.
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For convenience, we denote both the local and global interpolant as uI . equa-
tion (2.5) and linearity give that

∇ · a(x/ε)∇uI = 0 in K ∈ Kh.(4.3)

To obtain the interpolation error, we use the regularity estimate,

|u|2,Ω ≤ (C/ε)‖f‖0,Ω,(4.4)

which can be shown by following the proof of Lemma 7.1 in [18] (see also [13]).
The 1/ε factor in (4.4) is due to the small scale oscillations in u as shown by the
multiple scale expansion of u in §3.

Lemma 4.2. Let u ∈ H2(Ω) be the solution of (2.1), and uI ∈ V h be its in-
terpolant varying linearly along ∂K. There exist constants C1 > 0 and C2 > 0,
independent of h, such that

‖u− uI‖0,Ω ≤ C1(h2/ε) ‖f‖0,Ω,(4.5)

‖u− uI‖1,Ω ≤ C2(h/ε) ‖f‖0,Ω.(4.6)

Proof. Let ul be the standard bilinear interpolant of u in K ∈ Kh. From approxi-
mation theory we have

‖u− ul‖0,K ≤ C1h
2|u|2,K ,(4.7)

|u− ul|1,K ≤ C2h|u|2,K .(4.8)

In the following, we examine the difference between ul and uI on K. Since ul|∂K =
uI |∂K , we have ul − uI ∈ H1

0 (K), and by the Poincaré-Friedrichs inequality we get

‖ul − uI‖0,K ≤ C3h|ul − uI |1,K ,(4.9)

which, together with (2.1), (4.3), (4.8), and the boundedness of aij , yields

α|ul − uI |21,K ≤
∫

K

∇(ul − uI) · a∇(ul − uI)dx

= −
∫

K

(ul − uI)∇ · a∇(ul − uI)dx

= −
∫

K

(ul − uI)(∇ · a∇(ul − u)− f)dx

=
∫

K

∇(ul − uI) · a∇(ul − u)dx +
∫

K

(ul − uI)fdx

≤ C|ul − uI |1,K |ul − u|1,K + ‖ul − uI‖0,K‖f‖0,K

≤ |ul − uI |1,K(CC1h|u|2,K + C3h‖f‖0,K).

Thus, we obtain

|ul − uI |1,K ≤ h

α
(CC1|u|2,K + C3‖f‖0,K),(4.10)

and hence by (4.9)

‖ul − uI‖0,K ≤ h2

α
C3(CC1|u|2,K + C3‖f‖0,K).(4.11)

Therefore, using the triangle inequality, (4.8), and (4.10), we get

|u− uI |1,K ≤ |u− ul|1,K + |ul − uI |1,K ≤ h(C1|u|2,K + C2‖f‖0,K),
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where the constants are redefined and depend on a. Thus,

|u− uI |1,Ω = (
∑

K∈Kh

|u− uI |21,K)
1
2

≤ h(2
∑

K∈Kh

(C2
1 |u|22,K + C2

2‖f‖20,K))
1
2

≤
√

2h(C1|u|2,Ω + C2‖f‖0,Ω)

≤ C(h/ε) ‖f‖0,Ω,

(4.12)

where in the last step (4.4) is used. equation (4.5) can be derived similarly. Then,
(4.6) follows from (4.5) and (4.12).

From (4.2) and (4.6) we immediately have

Corollary 4.3. Let u and uh be the solutions of (2.1) and (2.6), respectively. Then
there exists a constant C, independent of h and ε, such that

‖u− uh‖1,Ω ≤ C(h/ε) ‖f‖0,Ω.(4.13)

Moreover, using the standard Aubin-Nitsche trick, one obtains

Theorem 4.4. Let u and uh be the solutions of (2.1) and (2.6), respectively. Then
there exists a constant C, independent of h and ε, such that

‖u− uh‖0,Ω ≤ C(h/ε)2 ‖f‖0,Ω.(4.14)

4.2. Comments. In the above proof, ul is used as an intermediate step towards
the final results. As a consequence, the results rely on the H2 regularity of u, which
is the source of the h/ε terms in (4.14). There may be other ways of obtaining the
estimates, but the results given above seem to be sharp in general, as supported
by the numerical computations. From (4.8), it is easy to show that the same
convergence holds for the linear finite element method, which confirms our previous
observation. It should be noted that (4.14) is useful only when h < ε (see the next
section).

On the other hand, if uI = u on ∂K, which is exactly the situation in 1-D, then
u − uI ∈ H1

0 (K) and ul is not needed. Following similar steps as above, it can be
shown that

‖u− uh‖1,Ω ≤ Ch‖f‖0,Ω,(4.15)

which is independent of |u|2,Ω in contrast to (4.13). Furthermore, the L2 estimate
becomes ‖u− uh‖0,Ω ≤ Ch2‖f‖0,Ω, independent of ε.

An interesting superconvergence result, i.e. uh ≡ u at the nodal points, can also
be obtained as follows. It is easy to check that for any v ∈ V h

a(uI , v) = a(u, v) = f(v) (1-D).

Thus, by (2.6) and choosing v = uI − uh, we obtain a(uI − uh, uI − uh) = 0. This
implies that uh = uI , the desired result.

However, in multi-dimensions, uI and u are in general not equal on ∂K. This is
the essential difference between one and multi-dimensional problems. For special
quasi 2-D problems, such as those considered in [2], Babuška et al. were able to
obtain (4.15) without using the H2 regularity of u. This was done by carefully
selecting some special base functions.
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5. Convergence for h > ε

From §4.1 we see that the multiscale method behaves similarly as the standard
finite element method when h < ε. However, in the following we show that the two
methods behave very differently in the limit as ε → 0. We obtain the estimates for
the case of h > ε by exploring the asymptotic structure in both u and φi, without
which the standard analysis fails to give the correct estimate, e.g., the estimates
given above imply that both methods fail to converge if h > ε.

We note that for h > ε, if a∗ is a constant, then from the homogenization theory
in §3, the multiscale base function φi consists of the standard linear function plus an
order ε oscillatory part. As discussed later, the oscillations do not match with those
of the solution in general. By Taylor expansion types of argument, it is easy to see
that the interpolation accuracy of the multiscale base and the linear base functions
are the same (see also §4.2). Thus, from the conventional approximation point of
view, multiscale bases do not seem to be superior to linear bases. This paradox
will be clarified in the analysis below, where we see that standard approximation
theory alone is not sufficient for analyzing the multiscale method.

5.1. The boundary condition of base functions. In §4, we used a linear bound-
ary condition for φi. Another choice of boundary conditions is to solve the reduced
elliptic problems on each side of ∂K with boundary conditions 1 and 0 at the two
end points, and use the resulting solution as the boundary condition for the base
function. The reduced problems are obtained from (2.5) by deleting terms with
partial derivatives in the direction normal to ∂K and having the coordinates nor-
mal to ∂K fixed as parameters. We call such boundary conditions for φ oscillatory
boundary conditions. It is clear that the reduced problems are of the same form
as (2.5). In case of a being separable in space, i.e., a(x) = a1(x

ε )a2(y
ε ), the base

function φi with oscillatory b.c., µi, can be computed analytically by forming a
tensor product. It is easy to verify that the resulting elements are conforming and
that

∑d
i=1 µi ≡ 1 on ∂K, and hence

d∑
i=1

φi
K ≡ 1 ∀K ∈ Kh.(5.1)

The same is true if µi is linear. We will see that (5.1) is important in obtaining
tight L2 estimates. For simplicity, we only present the proof in the case when µi is
linear. The estimates also hold if the above oscillatory boundary condition is used.
In §7 we will give numerical examples of using the oscillatory µi, which in some
cases leads to significant improvement in the accuracy of numerical results.

5.2. H1 estimates. We make the following observations. Due to (2.5), φi can be
expanded as

φi = φi
0 + εφi

1 − εθi + · · · ,(5.2)

where

L0φ
i
0 = 0 in K, φi

0 = µi on ∂K,(5.3)

φi
1 = −χj ∂φi

0

∂xj
,(5.4)

Lεθ
i = 0 in K, θi = φi

1 on ∂K.(5.5)
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Thus, the φi
0 form a set of finite element bases for solving (3.6). We denote by

V h
0 ∈ H1

0 (Ω) the space spanned by the φi
0. From the standard finite element

analysis, we see that u0 can be approximated by φi
0 with first and second order

accuracy in the H1 and L2 norms, respectively. Furthermore, by comparing (5.4)
with (3.9), it can be seen that u1 can be well approximated by φ1. Thus, we have
a match between the solution and the base function up to the ε order. Our main
result is

Theorem 5.1. Let u and uh be the solutions of (2.1) and (2.6), respectively. Then
there exist constants C1 and C2, independent of ε and h, such that

‖u− uh‖1,Ω ≤ C1h‖f‖0,Ω + C2(ε/h)
1
2 .(5.6)

Proof. The estimate of solution error (5.6) follows immediately from Cea’s Lemma
(Lemma 4.1) and following interpolation Lemma 5.3.

Remark 5.2. Throughout this section, we will use uI as the interpolant of the ho-
mogenized solution, u0, using the multiscale base functions φi. This is different
from the definition of uI in the previous section.

Lemma 5.3. Let u be the solution of (2.1) and uI ∈ V h the interpolant of the
homogenized solution u0, using the multiscale base functions φi. Then there exist
constants C1 and C2, independent of ε and h, such that

‖u− uI‖1,Ω ≤ C1h‖f‖0,Ω + C2(ε/h)
1
2 .(5.7)

To estimate ‖u− uI‖1,Ω, we match the expansions of uI and u and use Lemma
3.1. By (2.5), we have LεuI = 0 in K. Thus uI can be expanded in K as

uI = uI0 + εuI1 − εθIε + . . . ,

where L0uI0 = 0 in K and

uI1 = −χj ∂uI0

∂xj
.(5.8)

Clearly, uI0 ∈ V h
0 is an interpolant of u0:

uI0 =
d∑

i=1

u0(xi)φi
0.(5.9)

Moreover, since uI = uI0 on ∂K, the first order correction θIε satisfies

LεθIε = 0 in K, θIε = uI1 on ∂K.(5.10)

We have

Lemma 5.4. Let uI ∈ V h be the interpolant of u0 using base functions φi. uI0

and uI1 are defined by (5.9) and (5.8), respectively. Denote by θIε the solution of
(5.10). There exists a constant C, independent of ε and h, such that

‖uI − uI0 − εuI1 + εθIε‖1,Ω ≤ Cε‖f‖0,Ω.(5.11)

Proof. From (3.6) and elliptic regularity theory, we have

|u0|2,Ω ≤ C‖f‖0,Ω.(5.12)

Moreover, by standard approximation theory,

|u0l|2,K ≤ |u0 − u0l|2,K + |u0|2,K ≤ C|u0|2,K ,
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where u0l is the bilinear interpolant of u0. Thus, from L0(uI0 − u0l) = L0u0l, we
get

|uI0|2,K ≤ C|u0|2,K ,(5.13)

which together with Lemma 3.1 yields

‖uI − uI0 − εuI1 + εθIε‖1,K ≤ Cε|uI0|2,K ≤ C1ε|u0|2,K .

Taking the sum of the last inequality over Kh and using (5.12), we get (5.11).

Now consider the expansion of u:

u = u0 + εu1 − εθε + · · · .

Lemma 3.1 and (5.12) imply that

‖u− u0 − εu1 + εθε‖1,Ω ≤ Cε‖f‖0,Ω.(5.14)

Thus, using the expansions of u and uI , (5.11), (5.14), and the triangle inequality,
we have

‖u− uI‖1,Ω ≤ ‖u0 − uI0‖1,Ω + ‖ε(u1 − uI1)‖1,Ω

+ ‖ε(θε − θIε)‖1,Ω + Cε‖f‖0,Ω.
(5.15)

Therefore, we need to estimate the first three terms on the right hand side of (5.15).
By (5.9), (4.6), and (5.12), we have

‖u0 − uI0‖1,Ω ≤ Ch‖f‖0,Ω.(5.16)

Noting that χj(y) ∈ C1,α(Ȳ ), ‖χj‖L∞(Ω) ≤ C, we get

‖ε(u1 − uI1)‖0,Ω ≤ Cεh‖f‖0,Ω.

Next, since ‖∇χj‖L∞(K) ≤ C/ε, there exist C1 and C2 such that

|ε(u1 − uI1)|1,K ≤ ε (|u0 − uI0|1,K

d∑
j=1

‖∇χj‖L∞(K) + |u0 − uI0|2,K

d∑
j=1

‖χj‖L∞(K))

≤ C1|u0 − uI0|1,K + C2ε |u0|2,K .

Thus, taking sum of the last inequality over Kh and using (5.16) and (5.12), we
have

‖ε(u1 − uI1)‖1,Ω ≤ (C1h + C2ε)‖f‖0,Ω.(5.17)

For the last term on the right hand side of (5.15), we note that θIε does not
match with θε. This is because θε is determined by the global boundary conditions
imposed on u while θIε is determined locally. Thus, we cannot expect cancellation
between θIε and θε, and we need to estimate ‖εθε‖1,Ω and ‖εθIε‖1,Ω separately.
Using a standard estimate for (3.10) (cf. [19]), we have

‖εθε‖1,Ω ≤ Cε‖u1‖1/2,∂Ω.

From (3.9), ‖u1‖1/2,∂Ω can be calculated by using either the definition of ‖ · ‖1/2,∂Ω

for a bounded domain or the interpolation inequality. We have ‖u1‖1/2,∂Ω ≤
Cε−1/2, and hence

‖εθε‖1,Ω ≤ C
√

ε.(5.18)
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Similarly, for θIε in each K ∈ Kh, we have

‖ε∇θIε‖0,K ≤ Cε ‖uI1‖1/2,∂K .(5.19)

equation (5.8) implies that

‖uI1‖0,∂K ≤ Ch
1
2 and |uI1|1,∂K ≤ Ch

1
2 ε−1.

Thus, using the interpolation inequality and summing over Kh, we obtain

‖εθIε‖1,Ω ≤ h−
1
2 (C1ε + C2ε

1
2 ).(5.20)

Therefore, (5.7) follows from (5.15)–(5.20).

Remark 5.5. It should be noted that when h < ε, the asymptotic expansion from
homogenization theory is no longer useful. In this case, the expansion should be
done in terms of h, returning to standard approximation theory (§4.1). It is inter-
esting to see that since φi has the same asymptotic structure as u, the leading order
term in ‖u− uh‖1,Ω becomes ε/h, in contrast to h/ε from the standard analysis (see
§4.1). Moreover, (5.6) indicates that as ε → 0, ‖u− uh‖1,Ω = O(h). Therefore, the
multiscale base solution converges to the correct solution in the homogenized limit.

Remark 5.6. The above analysis can be applied to the standard linear finite element
method. It can be shown that there is an O(1) term in ‖eI‖1,Ω coming from
‖ε(u1 − uI1)‖1,Ω (uI1 = 0 in this case), which is independent of h and ε. Thus the
linear finite element method does not converge as ε → 0 when ε < h.

5.3. L2 estimates. The Aubin-Nitsche trick can be used again to obtain the L2

estimate. It follows from (5.7) and (5.6) that

‖u− uh‖0,Ω ≤ C1h
2‖f‖0,Ω + C2(ε/h)

1
2 .(5.21)

Note that the convergence rate is still dominated by the
√

ε/h term; thus no im-
provement is gained in (5.21) and the result is not sharp. Nevertheless, (5.21) shows
that u − uh = O(h2) as ε → 0. This observation points to another way of looking
at the problem.

Let uh
0 ∈ V h

0 be the Galerkin solution of (3.6). Since the µi are linear (see §5.1),
by Theorem 4.4 one has

‖u0 − uh
0‖0,Ω ≤ Ch2‖f‖0,Ω.(5.22)

Moreover, (3.12), (5.22), and the triangle inequality imply

‖u− uh‖0,Ω ≤ ‖u− u0‖0,Ω + ‖u0 − uh
0‖0,Ω + ‖uh − uh

0‖0,Ω

≤ C1ε‖u0‖2,Ω + C2h
2‖f‖0,Ω + ‖uh − uh

0‖0,Ω.
(5.23)

Therefore the problem becomes that of finding the L2-convergence from uh to uh
0 .

Note that intuitively the convergence in L2(Ω) cannot be better than O(ε), due to
the mismatch between θε and θIε (see §5.2). Thus, in general, using (5.23) should
not amplify the error bound significantly.
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Next, we show that the order of convergence is determined by how well uh ap-
proximates uh

0 at the discrete nodal points, i.e., the convergence analysis is trans-
formed to a discrete one. For any K ∈ Kh, consider

‖uh − uh
0‖0,K =

∥∥∥ d∑
i=1

(uh(xi)φi − uh
0 (xi)φi

0)
∥∥∥

0,K

=
∥∥∥ d∑

i=1

[(uh(xi)− uh
0 (xi))φi + uh

0 (xi)(φi − φi
0)]
∥∥∥

0,K

≤
d∑

i=1

|uh(xi)− uh
0(xi)| ‖φi‖0,K +

∥∥∥ d∑
i=1

uh
0(xi)(φi − φi

0)
∥∥∥

0,K
.

(5.24)

We will show that the global contribution of the second term on the right hand side
of the inequality is O(ε). Denote ũ =

∑d
i=1 uh

0 (xi)φi; then Lεũ = 0. Hence ũ has a
multiple scale expansion and, by (3.11),

‖ũ− ũ0 − εũ1 + εθ̃ε‖0,K ≤ Cε|ũ0|2,K ,

where ũ0 =
∑d

i=1 uh
0(xi)φi

0, ũ1 = −χj∂ũ0/∂xj , and θ̃ε is the correction term,
defined similarly as θIε (see (5.10)). It follows that

‖ũ− ũ0‖0,Ω ≤ ε(C|ũ0|2,Ω + ‖ũ1‖0,Ω + ‖θ̃ε‖0,Ω),(5.25)

where |ũ0|2,Ω is defined by

|ũ0|22,Ω =
∑

K∈Kh

|ũ0|22,K .

Since uh
0 (xi) is a smooth solution on the grid, i.e., its divided difference is bounded,

one can verify that the right hand side of (5.25) is bounded by Cε, where C is a
constant independent of ε and h.

From (5.24), (5.25), and the fact that ‖φi
K‖0,K ≤ Ch, we have

‖uh − uh
0‖0,Ω ≤ C

(∑
i∈N

(uh(xi)− uh
0 (xi))2h2

) 1
2

+ Cε,

where N is the set of indices of all nodal points on the mesh. Thus, ‖uh − u‖0,Ω

is O(h2 + ε) plus the discrete l2 norm of (uh − uh
0 )(xi). In the next section, we

show that to the leading order the error in discrete l2 norm is in general O(ε/h)
by formally applying the multiple scale expansion technique to the discrete linear
system of equations for uh(xi). The approach is not rigorous, but it reveals the
insight of subtle error cancellation and points to possible ways of improving the
multiscale method. Therefore, from (5.23) and (5.24) we may formally conclude
that

‖u− uh‖0,Ω ≤ C1h
2‖f‖0,Ω + C2ε + C3

ε

h
(ε < h).(5.26)

Numerical tests are supplied in §7 to confirm (5.26).

Remark 5.7. The estimate (5.26) is a clear improvement over (5.21). It is inter-
esting to note that in both cases, h < ε and h > ε, the ratio between ε and h is
the dominating factor in the error estimates. Indeed, there are two scales in the
discrete problem, ε and h, and hence their ratio is an intrinsic parameter for the
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problem. In case of h > ε, the above results indicate that to capture the averaged
behavior of Lε, h needs to be sufficiently large compared to ε in order to get enough
samples of the small scales. On the other hand, our numerical tests in §7 indicate
that results better than (5.26) can be obtained in certain cases. This is due to some
further error cancellation, which is analyzed in §6.

6. Discrete error analysis

As shown in §5.3, the L2 estimate of convergence is determined by the conver-
gence of uh to uh

0 at the nodal points. Denote by Uh the nodal point value of uh.
The linear system of equations for Uh is

AhUh = fh,(6.1)

where Ah and fh are obtained from a(uh, v) and f(v) by using v = φi for i ∈ N .
Our central aim in this section is to estimate the rate of convergence from Uh to
the nodal values of uh

0 . and to investigate possible ways to improve the convergence
rate by constructing better boundary conditions for the base functions.

The key ideas of our analysis can be best illustrated by studying the 1-D model
problem, which is given in §6.1. As mentioned above (see §4.2), the 1-D problem is
rather special, and conventional finite element analysis gives sharp estimates. The
estimates, in fact, do not rely on homogenization theory or the solution structure.
However, such an analysis in higher dimensions is impossible. Here, we use a formal
asymptotic expansion to analyze (6.1). This approach reveals the subtle structure
of the discrete system, which is otherwise unattainable from a conventional analysis.
More important, the expansion is fully general and applicable to multi-dimensional
problems.

After studying the 1-D problem, we briefly analyze the 2-D problem in §6.2. We
will emphasize the new difficulty due to the 2-D effect and describe how to overcome
it.

6.1. One-dimensional case. In this subsection, we present the analysis for the
1-D problem to show the structure of Uh and demonstrate the discrete error cancel-
lation. These results are valid for 2-D problems with separable coefficients, where
the base functions are the tensor products of the 1-D bases.

Consider the solution of
d

dx
a(

x

ε
)
du

dx
= f in I = (0, 1),

with boundary conditions u(0) = u(1) = 0. Subdivide the interval I by a uniform
partition

P : 0 = x0 < x1 < . . . < xN = 1

with mesh size h = 1/N . Let N = {0, 1, . . . , N}, I = {xi|i ∈ N}, and Ii =
[xi, xi+1]. The multiscale base function is defined as in 2-D by

− d

dx
a
dφi

dx
= 0, ∀x ∈ I \ I; φi(xj) = δij , ∀j ∈ N .(6.2)

Thus, the stiffness matrix is given by

Ah
ij =

∫ xi+1

xi−1

a(x/ε)
dφi

dx

dφj

dx
dx (j = i− 1, i, i + 1).(6.3)
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Noting that φi−1 + φi ≡ 1 in Ii−1 for all i, we have

Ah
ii = −(Ah

ii−1 + Ah
ii+1).

Moreover, since Ah
ij = Ah

ji, we may define Bh
i = Ah

ii−1; thus, Ah
ii+1 = Ah

i+1i = Bh
i+1

and AhUh can be written in a conservative form as

(AhUh)i = D+(Bh
i D−Uh

i ) (i = 1, . . . , N − 1),(6.4)

where D+ and D− are the forward and backward difference operators. As shown
below, this conservative form is a key in the discrete analysis. In addition, Ah

0Uh
0

can be written in the conservative form, and we can define Bh
0i = Ah

0ii−1 (i =
1, . . . , N − 1).

We note that since ε is a small parameter in (6.1), we may formally expand Ah,
fh, and Uh with respect to ε:

Ah = Ah
0 + εAh

1 + · · · , fh = fh
0 + εfh

1 + · · · , Uh = Uh
0 + εUh

1 + · · · .(6.5)

These expansions are determined by using the expansion of φi, i.e., (5.2). It is
straightforward to derive

Bh
i = −a∗

h
− ε

a∗

h2
(χi − χi−1) + · · · ,(6.6)

where χ is the solution of the cell problem (see (3.8)) and χi = χ(xi/ε). From
the first term on the right hand side we see that Ah

0 is the stiffness matrix for
the homogenized equation. Similarly, expanding fh we find that fh

0i is given by∫ 1

0
fφi

0dx. Thus, Uh
0i = uh

0 (xi).
To determine the rate of convergence, we estimate the leading order error Uh

1 .
Let Gh = (Ah

0 )−1. The O(ε) terms in (6.5) give

Uh
1 = Ghfh

1 −GhAh
1Uh

0 .

Let us consider the second term here; the first term can be estimated similarly.
To calculate GhAh

1Uh
0 , we note that expanding (6.4) preserves the conservative

structure at all orders. In particular, we have

(Ah
1Uh

0 )i = D+(Bh
1iD

−Uh
0i),(6.7)

where Bh
1i is given by the second term on the right hand side of (6.6) (without ε).

It follows that

(GhAh
1Uh

0 )i =
N−1∑
j=1

Gh
ijD

+(Bh
1jD

−Uh
0j) (i = 1, . . . , N − 1)

= −
N∑

j=1

Bh
1j(D

−Gh
ij)(D

−Uh
0j) (Gi0 = GiN = 0)

= O(1/h).

(6.8)

In the derivation, we have used the (piecewise) smoothness of Gh and Uh
0j , implying

that D−Gh
ij and D−Uh

0j are O(h). From this and a similar estimate for Ghfh
1 , we

obtain

‖εUh
1 ‖l2 = O(ε/h).(6.9)
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Remark 6.1. In the above derivation, besides utilizing the conservative structure
and the summation by parts, which are independent of the spatial dimension, we
used the properties of the 1-D discrete Green’s function Gh. The 2-D Gh has a
different structure. However, the O(ε/h) estimate still holds in 2-D (see §6.2).

We note that (6.8) can be further improved, since Bh
1 has a difference structure

(see (6.6)) and hence further summation by parts is possible. Indeed, we have
N∑

j=1

Bh
1j(D

−Gh
ij)(D

−Uh
0j) = −(a∗/h2)

N∑
j=1

D−χj(D−Gh
ij)(D

−Uh
0j)

= (a∗/h2)[χ0(D−Gh
i1)(D

−Uh
01)

+
N−1∑
j=1

χjD
+((D−Gh

ij)(D
−Uh

0j))

− χN (D−Gh
iN )(D−Uh

0N )]

= O(1).

Note that in the last step we have used

D+D−Gh
ij = h2δij/a∗ and D+D−Uh

0j = O(h2).

Thus, we see that the difference form is essential for improving the estimate. A
better estimate for Ghfh

1 can be derived similarly. Here, we just mention that fh
1

has difference form due to the fact that the slope of φi
0 has opposite signs in the

intervals Ii−1 and Ii.
Thus, (6.9) now improves to

‖εUh
1 ‖l2 = O(ε),(6.10)

which is independent of ε and h. In practice this is very important, since for
problems with many scales, h is inevitably close to one of the small scales. We will
see in the next subsection that a similar estimate (6.14) holds also in 2-D under
certain conditions.

6.2. Two-dimensional error cancellation. As remarked above, (6.9) is valid
in 2-D. Here we just outline the proof, since it is essentially the same as the one
presented in the previous subsection. The details are given in Appendix A.

Following the 1-D argument, one can show that the leading order contribution
of Uh in 2-D is Uh

0 . Moreover, due to (5.1), Ah
1Uh

0 can be written in a generalized
conservative form:

(Ah
1Uh

0 )ij =
4∑

s=1

(D+
s Bs

ijD
−
s )Uh

0ij ,(6.11)

where (i, j) is the 2-D index for grid points, and D+
s and D−

s are forward and
backward difference operators in i, j, and the two diagonal directions (see (A.10)).
The role of Bs is similar to Bh

1 in (6.7). Using (6.11) and summation by parts
along the directions according to D+

s , one obtains (6.9), provided that the divided
differences of the discrete Green’s function Gh, i.e., D−

s Gh (s = 1, . . . , 4), are
absolutely summable.

To show that D−
s Gh are indeed summable, we need to use some results for

the regularized Green’s function G for the homogenized operator L0, obtained by
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Figure 1. Rectangular mesh with triangulation.

Frehse and Rannacher [15]. Their results were obtained for triangular elements.
For simplicity, we consider a triangulation given by Figure 1.

In this case, V h
0 is identical to the linear finite element space considered in

[15]. There should be no difficulty in extending the results to rectangular elements.
Without getting into the details, we only cite the important estimates that are
relevant for our purpose; for details of the definitions and derivations, see [15]. One
of the main results in [15] is the following two estimates:

‖G − Gh‖1,1,Ω ≤ Ch| log(h)| and ‖D2G‖0,1,Ω ≤ C| log(h)|,(6.12)

where Gh is the Galerkin projection of G on V h
0 ; ‖ · ‖0,1,Ω and ‖ · ‖1,1,Ω are 0 and

1 norms based on L1(Ω) respectively (indicated by the second subscripts). We see
that Gh consists of the nodal values of Gh. From (6.12), the fact that |∇G| is
integrable (independently of h), and the equivalence between D−

s Gh/h and DsGh

(Ds being the directional derivative) in each K, one easily deduces that the divided
differences of Gh are absolutely summable.

The more interesting but also more challenging result for 2-D is (6.10). Here,
the effect of dimensionality shows up. We have seen that the key to improving (6.9)
is to explore the difference structures in fh

1 and Bs
ij . The method of finding the

difference forms in Bs and fh
1 is outlined in Appendix A. The idea is to convert

volume integrals over K into boundary integrals over ∂K. Here we only consider
the troublesome term,

ε′
∫

∂K′
θkniaij

∂θl

∂x′j
ds′ (ε′ = ε/h, x′j = xj/h),(6.13)

which in general cannot be written in difference forms (see (A.12)).
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To find a resolution to this problem, we need to further understand the structure
of θk. Recall that L′εθk = 0 and θk = g(x′/ε′) is highly oscillatory on ∂K ′ (see
(5.10)). This gives θk a boundary layer structure, which has been analyzed in [7]
for the half space problem and further in [21] for problems in convex polygons. The
analysis is complicated. The main result is that there exist a constant γ > 0 such
that ∇θk decays like exp(−γxn/ε′), where xn is the coordinate along the inward
normal to the boundary. From this, we may conclude that θk has a boundary layer
with thickness O(ε′). This observation is consistent with the O(1/

√
ε′) estimate of

‖θk‖1,K′ .
In the 1-D problem, the θk have no boundary layers. In fact, to the leading

order, they are linear functions. Therefore, dθk/dx do not appear in the Ah
1 . The

main difference between 1-D and 2-D problems is that the boundary condition on
θk in 1-D is given at two nodal points and hence there is no oscillation in the
boundary condition, whereas in 2-D it is given along the line segments of ∂K and
the oscillation occurs.

The structure of θk is solely determined by its boundary condition, which in turn
is determined by the boundary conditions of φk. Therefore, a judicious choice of
µk may remove the boundary layer of θk. In this case, we would have θk

,j = O(1)
on ∂K ′. Thus (6.13) would become O(ε′) and does not enter Ah

1 . Such bound-
ary conditions do exist, e.g., we may set φk = φk

0 + εφk
1 on the boundary of K,

which enforces θk = 0 in the element. We do not advocate such an approach, since
it requires solving the cell problems to obtain φk

1 . The point is that finding the
appropriate boundary conditions is a local problem, which is determined by the
properties of Lε. In [16], we introduce an over-sampling technique to overcome
the difficulty associated with the boundary layer of θk. This technique does not
rely on the homogenization assumptions and can be applied to general multiple
scale problems. Our extensive numerical experiments demonstrate that the multi-
scale method with the over-sampling technique indeed gives convergent results for
problems with continuous scales.

Furthermore, if a is separable in 2-D, the base functions can be constructed from
the tensor products of the above 1-D bases. Such a construction corresponds to
using the oscillatory µi (see §5.1) as the boundary condition for φi. In this case,
it is easy to show that the 2-D θi do not have boundary layers. This is a special
example of obtaining the appropriate boundary condition without solving the cell
problem. On the other hand, if the linear boundary conditions are used, the θi will
have boundary layers.

It is worth mentioning that in some cases, the special base functions used in [2]
satisfy (2.5), although they were constructed differently. It can be shown that these
base functions have the desirable boundary conditions in the sense that the θi have
no boundary layers.

By using (6.12) it can be shown that, similarly to G, the second order divided
differences of Gh, i.e., D+

s D−
t Gh/h2 (s, t = 1, . . . , 4), are absolutely summable and

the results are bounded by C| log(h)|, where C > 0 is a constant independent of h.
It follows that if Bs can be written in difference forms, using summation by parts
one more time as in the 1-D case would give GhAh

1Uh
0 = O(h | log(h)|), and hence

we have

‖εUh
1 ‖l2 = O(ε | log(h)|) (in 2-D).(6.14)
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This estimate is slightly weaker than (6.10), but it is still a great improvement over
(6.9).

7. Numerical experiments

In this section, we study the convergence and accuracy of the multiscale method
through numerical computations. The model problem is solved using the multiscale
method with base functions defined by both linear and oscillatory boundary con-
ditions (see §5.1). Since it is very difficult to construct a test problem with exact
solution and sufficient generality, we use resolved numerical solutions in place of
exact solutions. The numerical results are compared with the theoretical analysis.
In addition, we give a numerical example of applying the method to more general
problems with nonseparable scales. For more practical applications of the method
and other numerical issues, such as the parallel implementation and performance
of the method, see [16].

7.1. Implementation. The implementation of the multiscale method is fairly
straightforward. We outline the implementation here and define some notation
to be frequently used below. We consider problems in a square domain with unit
length. Let N be the number of elements in the x and y directions. The size of
mesh is thus h = 1/N . To compute the base functions, each element is discretized
into M ×M subcell elements with size hs = h/M . Rectangular elements are used
in all numerical tests.

To solve the subcell problem, we use the standard linear finite element method.
After solving the base functions, the local stiffness matrix Ae and the right hand
side vector f e are computed from (A.1) using numerical quadrature rules. When
the base is solved by using the finite element method, we compute the gradient
of a base function at the center of a subcell element and use the two-dimensional
centered trapezoidal rule for the volume integration. This procedure ensures that
the entries of Ae (hence of Ah) are computed with second order accuracy. In our
computations, we only solve three base functions, i.e., φi (i = 1, 2, 3). The fourth
one is obtained from φ4 = 1−∑3

i=1 φi.
The amount of computation in the volume integral for Ae can be reduced by

recasting it as a boundary integral using (2.5). However, it turns out that this
approach may yield a global stiffness matrix that is not positive definite when the
subcell resolution is not sufficiently high; large errors result from integration by
parts.

We use the multigrid method with matrix dependent prolongation [22] to solve
for the base functions and the linear system resulting from the multiscale finite
element discretization. We also use this multigrid method to solve for a well-
resolved solution of the model problem by the linear finite element method. The
method is very robust for general 2-D second order elliptic equations (see [22]).
Our numerical tests show that the rate of convergence for this multigrid method is
almost independent of ε.

To facilitate the comparison among different schemes, we use the following short-
hands: LFEM stands for the standard linear finite element method and MFEM
stands for the multiscale finite element method. An addition letter appended to
these shorthands, “L” or “O”, indicates that a linear or an oscillatory boundary
condition, respectively, is specified for the base functions.
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Table 1. Results of Example 7.1 (h < ε, M = 8, umax ≈ 0.02).

MFEM-O MFEM-L LFEM
ε N ‖E‖l2 rate ‖E‖l2 rate ‖E‖l2 rate

0.08 64 5.60e-4 6.90e-5 2.55e-4
128 2.32e-4 1.3 1.58e-5 2.1 6.65e-5 1.9
256 7.11e-5 1.7 3.58e-6 2.1 1.66e-5 2.0
512 1.87e-5 1.9 7.09e-7 2.3 3.92e-6 2.1

0.04 128 5.82e-4 5.65e-5 2.39e-4
256 2.39e-4 1.3 1.23e-5 2.2 6.20e-5 1.9
512 7.33e-5 1.7 2.71e-6 2.2 1.55e-5 2.0

0.02 256 5.92e-4 5.10e-5 2.32e-4
512 2.42e-4 1.3 1.08e-5 2.2 5.98e-5 2.0
1024 7.42e-5 1.7 2.32e-6 2.2 1.50e-5 2.0

7.2. Numerical results. In all the examples below, the resolved solutions are
obtained using LFEM. Given the wave length of the small scale ε, we solve the
model problem twice on two meshes with one mesh size being twice the other.
Then the Richardson extrapolation is used to approximate the exact solutions from
the numerical solutions on the two meshes. Throughout our numerical experiments,
both of the mesh sizes used to compute the well-resolved solution are less than ε/10,
so that the error of the extrapolated solutions is less than 10−7. In Tables 1–9 we
present the absolute error; the maxima of the solutions are given so as to provide
a measure of the relative error. All computations are performed on the unit square
domain Ω = (0, 1)× (0, 1).

Example 7.1. In this example, we solve (2.1) with

a(x/ε) =
1

2 + P sin(2π(x − y)/ε)
,(7.1)

where P is a parameter controlling the magnitude of the oscillation. We take
P = 1.8 in this example. The right hand side function f(x, y) is given by

f(x, y) = −1
2
[(6x2 − 1)(y4 − y2) + (6y2 − 1)(x4 − x2)].(7.2)

On ∂Ω, we impose u = 0. Here the effective coefficient a∗ is a full 2×2 matrix. In
Table 1, the results of convergence tests for h < ε are given, where E = U − Uh is
the error at the nodal points. Clearly, the MFEM-L is O(h2/ε2) as LFEM, which
is consistent with (4.14); on the other hand, MFEM-O converges slower but the
rate increases as h decreases. We note that the boundary condition for the base
functions has a strong influence on the convergence of the method. Here, the linear
boundary condition leads to significantly better accuracy. We will see more of such
an effect below; see e.g., Table 4. The result of LFEM is listed in the table just for
the purpose of reference. It should be emphasized that the multiscale method is
not designed for resolved computations.

In Tables 2 and 3, the convergence of the method with h > ε is shown. Table 2
indicates that the error is proportional to h−1, which together with results of Table
3 confirms the O(ε/h) estimates given in §6.1 and (5.26). In this case, the linear
and oscillatory boundary conditions of the φi lead to similar accuracy.
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Table 2. Results of Example 7.1 (ε = 0.005).

Mesh MFEM-O MFEM-L
N M ‖E‖∞ ‖E‖l2 rate ‖E‖∞ ‖E‖l2 rate
32 64 2.01e-4 8.29e-5 2.73e-4 1.15e-4
64 32 5.07e-4 2.07e-4 -1.3 5.81e-4 2.44e-4 -1.1
128 16 9.38e-4 3.87e-4 -0.90 1.12e-3 4.74e-4 -0.96
256 8 2.20e-3 9.13e-4 -1.2 2.02e-3 8.63e-4 -0.86

Table 3. Results of Example 7.1 (ε/h = 0.32, M = 32).

MFEM-O MFEM-L LFEM
N ε ‖E‖l2 rate ‖E‖l2 rate MN ‖E‖l2

8 0.04 1.30e-4 1.36e-4 256 6.20e-5
16 0.02 1.63e-4 -0.33 1.98e-4 -0.54 512 5.98e-5
32 0.01 1.94e-4 -0.25 2.31e-4 -0.22 1024 5.88e-5
64 0.005 2.07e-4 -0.09 2.44e-4 -0.08 2048 5.83e-5

Moreover, we note that in Table 3 the ratio ε/h is of order 1, well beyond the
validity regime for the asymptotic expansion. Still, the error is rather small. We
repeat the test by doubling the ratio. We observe that the error also becomes twice
as large. Therefore, we may estimate that the constant in front of ε/h is about
2× 10−4, which is rather small. In fact, from the table we see that the error of the
multiscale solution is comparable to that of the LFEM solution, which is obtained
on a fine mesh with N2M2 elements of size hs. We stress that the resolutions
of LFEM and MFEM are different, although they use the same total number of
elements at the fine level. The resolution of MFEM is h; scales smaller that h are
captured rather than resolved. In contrast, the LFEM resolves the smallest scale
with hs. The comparison in Table 3 indicates that the MFEM can produce fairly
good results when the well resolved solutions are not obtainable due to practical
limitations of computer memory. This makes the MFEM very useful in practice.

Example 7.2. Here, we use

a(x/ε) =
1

4 + P (sin(2πx/ε) + sin(2πy/ε))
(P = 1.8),

f(x, y) = −1, u = g(x, y) =
√

4− P 2

2
(x2 + y2) on ∂Ω.

In this case, a∗ is a scalar constant and φi
0 are bilinear functions. As shown in

Table 4, MFEM-O becomes much more accurate than MFEM-L in the resolved
convergence test. In addition, it can be seen clearly that MFEM-O converges faster
than h2/ε2 (approximately O(h2/ε)), which can be attributed to the oscillatory
boundary conditions for the base functions. The change of the behavior of MFEM-
O is more clearly seen in Tables 5 and 6, which include the results for h > ε. As
shown by Table 6, MFEM-O converges like O(ε) in the maximum norm and even
faster in the l2 norm. In contrast, MFEM-L does not converge as we decrease the
mesh size.

To better understand the above results, we examine how the structure of θk may
affect the rate of convergence. For this purpose, we solve the base functions in the
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Table 4. Results of Example 7.2 (h < ε, M = 8, umax ≈ 0.87).

MFEM-O MFEM-L LFEM
ε N ‖E‖l2 rate ‖E‖l2 rate ‖E‖l2 rate

0.08 64 3.62e-5 3.73e-4 6.90e-4
128 8.94e-6 2.0 9.74e-5 1.9 1.79e-4 1.9
256 2.24e-6 2.0 2.43e-5 2.0 4.48e-5 2.0

0.04 128 1.67e-5 3.88e-4 7.14e-4
256 4.11e-6 2.0 1.01e-4 1.9 1.85e-4 1.9
512 8.62e-7 2.3 2.52e-5 4.0 4.62e-5 2.0

0.02 256 1.11e-5 3.85e-4 7.12e-4
512 2.74e-6 2.0 1.00e-4 1.9 1.84e-4 1.9
1024 3.97e-7 2.8 2.49e-5 2.0 4.60e-5 2.0

Table 5. Results of Example 7.2 (ε = 0.005).

Mesh MFEM-O MFEM-L
N M ‖E‖∞ ‖E‖l2 rate ‖E‖∞ ‖E‖l2 rate
32 64 5.73e-5 1.09e-5 5.73e-4 3.01e-4
64 32 1.52e-5 2.09e-5 -0.94 1.22e-3 6.68e-4 -1.1
128 16 5.51e-5 2.46e-5 -0.24 2.27e-3 1.25e-3 -0.90
256 8 1.02e-4 5.34e-5 -1.1 4.65e-3 2.57e-3 -1.0

Table 6. Results of Example 7.2 (ε/h = 0.32, M = 32).

MFEM-O MFEM-L
N ε ‖E‖∞ rate ‖E‖l2 rate ‖E‖∞ ‖E‖l2

8 0.04 9.07e-4 5.14e-4 1.15e-3 2.60e-4
16 0.02 5.12e-4 0.82 1.39e-4 1.9 1.11e-3 5.82e-4
32 0.01 2.88e-4 0.83 4.63e-5 1.6 1.12e-3 6.50e-4
64 0.005 1.52e-4 0.92 2.09e-5 1.1 1.22e-3 6.68e-4

rescaled domain K ′ = (0, 1)× (0, 1). Specifically, we let the base function φ equal
1 at point (1, 1) and 0 at other corners. We compute the base functions obtained
by using linear and oscillatory boundary conditions, µl and µo, respectively. The
contour plots are given in Figure 2, where ε′ = 0.2, the solid lines are for µo and the
dash lines for µl. The two solutions are almost indistinguishable. In Figure 3, we
plot the contours of the correctors, θl and θo, obtained from φ−φ0 + ε′χj∂φ0/∂x′j.
Here φ0 = x′y′ (bilinear) and the χj are obtained from numerical solutions of the
cell problem (3.8). Clearly, the θl, corresponding to the boundary condition µl,
has a boundary layer with a thickness of O(ε′); whereas the θo, corresponding to
the boundary condition µo, has a rather weak boundary layer. This test confirms
our idea of obtaining error cancellation by removing the boundary layers in θ. On
the other hand, numerically we found also cases in which the boundary layer does
not hinder the convergence of MFEM. However, it is a general trend that weaker
boundary layers correspond to the more accurate MFEM solutions.

It should be noted that in our convergence analysis the base functions are as-
sumed to be exact. This is not the case in the above examples, nor in practice.
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Figure 2. Multiscale base functions used in MFEM-O and
MFEM-L for Example 7.2. Solid line: MFEM-O; dash line:
MFEM-L.
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Figure 3. First order correctors of the base functions shown in
Figure 2. Left: θl; right: θo.

Therefore, it is desirable to know how the accuracy of base functions influences
the final results. To this end, a Chebyshev spectral method was used for solving
the base functions and computing the quadratures in Ah and fh. We find that
the accuracy of the final results is relatively insensitive to the accuracy of the base
functions. In particular, second order accuracy in the base functions and in the
numerical quadratures seems to be sufficient for obtaining accurate results. This is
further demonstrated below.

Example 7.3. We choose the coefficient a(x, y) to be separable in space, i.e.,

a(x) =
1

(2 + P sin(2πx/ε))(2 + P sin(2πy/ε))
,

for which we have a∗ = 1/(2
√

4− P 2); f(x, y) and g(x, y) are the same as in
Example 7.2. In this case, the exact base functions are known analytically; we
use MFEM-E to indicate MFEM with the exact bases. The comparison in Table 7
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Table 7. Results of Example 7.3 (ε/h = 0.32, M = 32, umax ≈ 0.87).

MFEM-O MFEM-E
N ε ‖E‖l2 rate ‖E0‖l2 rate ‖E‖l2 rate ‖E0‖l2 rate
16 0.04 1.03e-4 4.37e-3 6.92e-5 4.30e-4
32 0.02 4.73e-5 1.1 2.26e-3 1.0 2.72e-5 1.3 2.22e-4 1.0
64 0.01 2.24e-5 1.1 1.15e-3 1.0 1.03e-5 1.4 1.13e-4 1.0
128 0.005 1.13e-5 1.0 5.80e-4 1.0 4.19e-6 1.3 5.69e-4 1.0

Table 8. Results of Example 7.4 (M = 32, umax ≈ 0.16).

MFEM-O MFEM-L LFEM
N ε ‖E‖l2 rate ‖E‖l2 rate MN ‖E‖l2

8 0.04 1.04e-3 9.44e-4 256 2.73e-4
16 0.02 2.55e-4 2.0 1.67e-4 2.5 512 2.72e-4
32 0.01 4.86e-5 2.4 4.61e-5 1.9 1024 2.72e-4
64 0.005 1.05e-5 2.2 9.59e-5 -1.1 2048 2.73e-4

clearly shows that the convergence and accuracy of the final results are not sensitive
to the accuracy of the base functions. Note that E0 in the table is the error
compared with the homogenized solution u0.

Example 7.4. In this example, a non-smooth coefficient (C0,α)

a(x, y) =
1

1 + | sin(2πx/ε)|+ | sin(2πy/ε)|
is chosen. Moreover, f = −1 and g = 0. The convergence of MFEM solutions are
shown in Table 8 for fixed ε/h = 0.32 (M = 32). The LFEM solutions obtained on
equivalent fine meshes are shown for comparison. We see that the multiscale finite
element method handles non-smooth coefficients very well. In this case, we obtain a
second order convergence for MFEM-O. At present, we don’t have a full explanation
for this “super” convergence. It is probably due to some additional cancellation of
errors. We believe MFEM can also be applied to problems with discontinuous
coefficients, as long we can obtain accurate approximation of the multiscale base
functions. For interface problems, the geometry of the jump interfaces often has
singularities (e.g., checkerboard problem). These singularities pose challenges to
both conventional FEM and the multiscale finite element method. In the context
of MFEM, the singularities need to be handled carefully in order to obtain accurate
base functions. We are currently investigating effective methods for computing the
multiscale base functions with complicated geometric singularities. This will be
reported in a future paper.

Example 7.5. In this last example, we show some results of solving problems with
nonseparable scales. The coefficient is chosen as

a(x, y) = 4 + P (cos(2π tanh(5(x− 0.5))/ε) + sin(2π tanh(5(y − 0.5))/ε)),

and f(x, y) and g(x, y) are the same as in Example 7.2. Here the parameter ε is
used to control the smallest scale of the problem. It can be seen that a(x, y) oscil-
lates more rapidly as x or y becomes close to 0.5. In the calculations presented in
Table 9, we have used P = 1, and ε = 0.025, so the smallest scale of the problem is
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Table 9. Results of Example 7.5: l2 norm error (umax ≈ 1.73).

N M MFEM-O MFEM-L LFEM
64 32 6.66e-5 3.71e-4 4.22e-3
128 16 2.54e-5 6.07e-4 1.59e-3
256 8 1.11e-5 7.82e-4 1.65e-3
512 4 4.53e-6 3.39e-4 6.58e-4

about 0.005. Again, we use LFEM to obtain a well resolved solution. As in the pre-
vious examples, the convergence and accuracy of MFEM depend on the boundary
conditions of the base functions. In this case, the oscillatory boundary condition
leads to better results. The under-resolved solutions using LFEM are also shown for
comparison. As expected, the errors of LFEM solutions on a coarse grid are larger
than those of MFEM solutions. One reason is that the linear finite element method
tends to average out the small scale information and cannot correctly capture the
scale interaction. We note that the difference between LFEM and MFEM-L is most
significant when N = 64, which corresponds to ε/h = 0.32. The discrepancy be-
comes smaller as h decreases, since the small scales are eventually resolved by the
fine grid.

We remark that the purpose of the multiscale method is to provide a systematic
approach to capture the small scale effect on the large scales when we cannot afford
to resolve all the small scale features in the physical solution. In this regard, it is
most relevant to test the performance of the method when h is sufficiently large
compared to ε. In the computations shown in Table 9, the N = 64 case roughly
satisfies this requirement. We clearly see that MFEM gives a superior performance
than the corresponding LFEM. As before, we note that the boundary conditions
have a great effect on the accuracy of the method. In [16] we study this important
issue further and propose an over-sampling technique to eliminate the boundary
layers in the first order corrector. This technique can be applied to general elliptic
problems with many scales, and gives an improved rate of convergence for MFEM.

7.3. Remarks. The results of the above numerical experiments can be summarized
as follows. The numerical results confirm our analysis of the multiscale method
applied to the model problem (2.1). In particular, our numerical results confirm
that the discrete error analysis is correct and sharp. Furthermore, the boundary
condition on the base functions can have a significant effect on the convergence
and accuracy of the multiscale method. At present, we do not have the optimum
boundary condition, which is the target of our future research, but the oscillatory
boundary condition devised in §5.1 seems to be useful for many problems. In any
case, further study of the local boundary conditions for the base functions is very
important for improving the multiscale method. The numerical results also indicate
that the accuracy of the solution is insensitive to the accuracy of the base functions.
It has been demonstrated that second order accurate base functions are sufficient
for practical purposes.

Appendix A. Expansions of the 2-D discrete linear system

In this appendix, we derive an asymptotic expansion for (6.1) in the form of
(6.5). From (5.2) and ∂φi

0/∂xj = O(1/h), it is evident that the natural parameter
for the expansion of φi is ε/h. From another point of view, φi is defined on elements



MULTISCALE METHOD 939

with size h. Thus we can obtain the same result by a scaling argument. For all
K ∈ Kh, define

K ′ = {x′ : x′ = x/h,x ∈ K}
and ε′ = ε/h. Thus, diam(K ′) = 1, and y = x/ε = x′/ε′ is the fast variable. We
have L′ε = ∇x′ · a∇x′ and L′εφ

i = 0. Therefore, φi can be expanded as

φi = φi
0 + ε′φi

1 − ε′θi + · · · ,

where φi
0, φi

1, and θi are defined by (5.3), (5.4), and (5.5), respectively, with Lε,
xj , and K being replaced by their rescaled counterparts.

To simplify the presentation, we use the “comma” notation below for the deriva-
tives, e.g., φi

,j = ∂φi/∂x′j . Furthermore, we use superscript “e” to denote the local
stiffness matrix and variables in an element. Thus, for K ∈ Kh, we write

Ae
kl =

∫
K′

aijφ
k
,iφ

l
,jdx

′, fe
k = h2

∫
K′

fφkdx′ (k, l = 1, . . . , d).(A.1)

Substituting the expansions of φk and φl into (A.1) and noting that

χi
,j =

1
ε′

∂χi

∂yj
=

1
ε′

χi
,yj

,

we have the zeroth order terms as below:

Āe
kl =

∫
K′

aij(φk
0,iφ

l
0,j − χp

,yi
φk

0,pφ
l
0,j − χq

,yj
φl

0,qφ
k
0,i + χp

,yi
φk

0,pχ
q
,yj

φl
0,q)dx

′.

Let σij = aik − aikχj
,yk

. Then we have a∗ij = 〈σij〉, where 〈·〉 denotes average over
Y . We may recast the above expression as

Āe
kl =

∫
K′

(σijφ
k
0,iφ

l
0,j − σpjχ

i
,yp

φk
0,iφ

l
0,j)dx

′.(A.2)

Since 〈σij − a∗ij〉 = 0, it can be shown [14] that∫
K′

(σij − a∗ij)φ
k
0,iφ

l
0,jdx

′ ≤ Cε′,

where C is independent of ε (and h). Moreover, (3.8) implies that

σij,yi = 0,(A.3)

from which integration by parts yields

〈σpjχ
i
,yp
〉 =

∫
Y

σpjχ
i
,yp

dy = −
∫

Y

σpj,ypχidy = 0.

Therefore, we have ∫
K′

σpjχ
i
,yp

φk
0,iφ

l
0,jdx

′ ≤ Cε′,

and hence

Āe
kl =

∫
K′

a∗ijφ
k
0,iφ

l
0,jdx

′ +
∫

K′
(σij − a∗ij)φ

k
0,iφ

l
0,jdx

′ −
∫

K′
σpjχ

i
,yp

φk
0,iφ

l
0,jdx

′

= Ae
0 + O(ε′),

which implies that Āh = Ah
0 + O(ε/h).
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Now, we collect O(ε′) terms in the expansion, and get

Ae
1kl = −

∫
K′

σij [φk
0,j(χ

qφl
0,iq + θl

,i) + φl
0,j(χ

pφk
0,ip + θk

,i)]dx
′

+
∫

K′
ε′aijθ

k
,iθ

l
,jdx

′ +
1
ε′

∫
K′

(σij − a∗ij − σpjχ
i
,yp

)φk
0,iφ

l
0,jdx

′.
(A.4)

Some explanations need to be made for the terms containing θk
,i (or θl

,j). We note
that L′εθk = 0 and θk is oscillatory on ∂K (see (5.10)); hence the derivatives of θk

can be large. However, from the earlier analysis we know that |θk|1,K′ = O(1/
√

ε′).
Thus by the Cauchy-Schwarz inequality, the second integral on the right hand side
of (A.4) is O(1). Moreover, note that θl is bounded by the maximum principle.
Using (A.3) and integration by parts, we have∫

K′
σijφ

k
0,jθ

l
,idx

′ =
∫

∂K′
niσijφ

k
0,jθ

lds′ −
∫

K′
σijφ

k
0,ijθ

ldx′ = O(1),(A.5)

where ni is the ith component of the unit outward normal vector on ∂K ′. Obviously,
the estimate holds for

∫
K′ σijφ

l
0,jθ

k
,idx

′ and for the other terms in (A.4). Thus, we
obtain

Ah = Ah
0 +

ε

h
Ah

1 + O(
ε2

h2
).

The expansion can be carried to higher order terms, but for our purpose, it suffices
to stop at the first order.

Using the expansion of φi, we can express fh as follows:

fh = fh
0 + ε′fh

1 + · · · .

In each K ∈ Kh, we have

fe
0i = h2

∫
K′

fφi
0dx

′ and fe
1i = −h2

∫
K′

f(χpφi
0,p + θi)dx′.(A.6)

It follows that Uh of (6.1) can be expanded as

Uh = Uh
0 + ε′Uh

1 + · · · ,

where Ah
0Uh

0 = fh
0 and

Ah
0Uh

1 = fh
1 −Ah

1Uh
0 .(A.7)

We will show that Ah
1Uh

0 can be written in a conservative form. By (5.1), one has
d∑

k=1

φi
,k ≡ 0,

d∑
k=1

φk
,ij ≡ 0.

Moreover, from
d∑

k=1

φk
1 =

d∑
k=1

n∑
p=1

χpφk
0,p =

n∑
p=1

χp
d∑

k=1

φk
0,p ≡ 0

and (5.5) we get

d∑
k=1

θk ≡ 0 and
d∑

k=1

θk
,i ≡ 0.
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From the above identities and (A.4), we have for all K ∈ Kh

d∑
j=1

Ae
1ijU

h
0j =

d∑
j=1,j 6=i

Ae
1ij(U

h
0j − Uh

0i) (i = 1, . . . , d).(A.8)

This equation and the symmetry of Ae
1 then imply that Ah

1Uh
0 can be written in a

conservative form. More precisely, assuming that the rectangular mesh consists of
N × N elements (hence h = 1/N) and that the vertical and horizontal grid lines
are labeled by i and j (i, j = 0, . . . , N), we may write Ah

1Uh
0 in the stencil format

centered at node (i, j) as

(Ah
1Uh

0 )ij =
4∑

s=1

(D+
s Bs

ijD
−
s )Uh

0ij .(A.9)

Here, the Bs
ij (s = 1, . . . , 4) are assembled from the Ae

1kl (k 6= l); k and l are local
indices in an element. The difference operators D+

s and D−
s are defined as follows:

for any v defined on the nodal points,

D+
1 vij = vi+1j − vij ,

D+
2 vij = vij+1 − vij ,

D+
3 vij = vi+1j+1 − vij ,

D+
4 vij = vi+1j−1 − vij ,

D−
1 vij = vij − vi−1j ;

D−
2 vij = vij − vij−1;

D−
3 vij = vij − vi−1j−1;

D−
4 vij = vij − vi−1j+1.

(A.10)

Equation (A.9) also holds for the triangulation of the rectangular mesh (see e.g.,
Figure 1), except that there are fewer terms. The above calculation can also be
applied to more general triangulations with more complexity.

In the following, we outline the method of finding the difference forms in Bs and
fh
1 without going into the complicated details of algebra. We would like to point

out that the triangular elements have some advantages over the rectangular ones
in studying such difference forms. The main difference between the two types of
elements is that the φi

0 are always linear for the former, while they are in general
unknown functions for the latter. Thus, the analysis of the triangular elements is
much simpler. In addition, there are cases in which Bs can be written in difference
forms on triangular elements but not on the rectangular ones with bilinear φi

0.
Thus, in the following, we consider the triangulation as depicted in Figure 1.

First, we consider Bs assembled from Ae
1 as described above. Since the φk

0 are
linear, from (A.4) we have

Ae
1kl = −

∫
K′

σij(φk
0,jθ

l
,i + φl

0,jθ
k
,i)dx

′ +
∫

K′
ε′aijθ

k
,iθ

l
,jdx

′

+
1
ε′

∫
K′

σ̃ijφ
k
0,iφ

l
0,jdx

′,
(A.11)

where σ̃ij = σij − a∗ij − σpjχ
i
,yp

and 〈σ̃ij〉 = 0. Using the Fourier expansion, it can
be shown that there exists a periodic third rank tensor κmij such that 〈κmij〉 = 0
and σ̃ij = κmij,ym . Then from (A.11), (A.5), and the fact that φk

0,ij = 0, we obtain,
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using integration by parts,

Ae
1kl = −

∫
∂K′

niσij(φk
0,jθ

l + φl
0,jθ

k)ds′ + ε′
∫

∂K′
θkniaijθ

l
,jds′

+
∫

∂K′
nmκmijφ

k
0,iφ

l
0,jds′ + O(ε).

(A.12)

Therefore, to the leading order Bs can be expressed by the sum of boundary inte-
grals in (A.12) from relevant elements. The integrands may be further simplified
by using the fact that the φk

0 are linear base functions. Note that for two adjacent
elements, the outward normal vectors for the two elements point in the opposite
directions at the interface of the elements. This implies that the values of the
boundary integrals along that interface have opposite signs if the (simplified) inte-
grands are continuous at the interface. From this observation and (A.12), one can
verify that for the triangulation in Figure 1 the contributions to Bs from the first
and third integrals in (A.12) can be written in difference forms. The derivation is
rather tedious and is omitted here. However, we also find that the second term
in (A.12) prevents Bs from having a difference structure. In general, Bs

ij has the
following expression:

Bs
ij = D−

1 Cs
ij + D−

2 Ds
ij + Bs

θ

where Cs
ij and Ds

ij are uniquely defined functions for i and j, and Bs
θ is due to∫

∂K′ niaijθ
kθl

,j . When θ has boundary layer structures, Bs
θ in general cannot be

written in difference form. However, as we pointed out in §6.2, if we can eliminate
the boundary layer in θ by choosing a proper boundary condition for φi, then Bs

θ

would only contribute to the next order terms. Therefore, Bs admits a conservative
form.

For fh
1ij , we need to consider the sum of fe

1 (see (A.6)) in the six elements
centered with the common node (i, j) (Figure 1). It is easy to verify that the sum
of
∫

K′ fχpφi
0,pdx

′ over the six elements can be written in difference forms in the i
and j directions. Moreover, from the above discussion of the leading order solution
of θk, it can be shown that the sum of

∫
K′ fθkdx′ consists of terms in difference

forms and some O(h) terms.
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Methode der finiten Elemente, Finite Elemente (J. Frehse, ed.), Bonn. Math. Schrift., no. 89,
1975, pp. 92–114. MR 57:11104

[16] T. Y. Hou and X. H. Wu, A multiscale finite element method for elliptic problems in composite
materials and porous media, J. Comput. Phys. 134 (1997), 169–189. MR 98e:73132

[17] S. M. Kozlov, Averaging differential operators with almost periodic, rapidly oscillating coef-
ficients, Math. USSR Sbornik 35 (1978), 481–498. MR 81m:35017

[18] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and quasilinear elliptic equations, Aca-
demic Press, New York, 1968. MR 39:5941
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