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A PARALLEL METHOD
FOR TIME-DISCRETIZATION OF PARABOLIC PROBLEMS

BASED ON CONTOUR INTEGRAL REPRESENTATION
AND QUADRATURE

DONGWOO SHEEN, IAN H. SLOAN, AND VIDAR THOMÉE

Abstract. We treat the time discretization of an initial-value problem for a
homogeneous abstract parabolic equation by first using a representation of the
solution as an integral along the boundary of a sector in the right half of the
complex plane, then transforming this into a real integral on the finite interval
[0, 1], and finally applying a standard quadrature formula to this integral. The
method requires the solution of a finite set of elliptic problems with complex
coefficients, which are independent and may therefore be done in parallel. The
method is combined with spatial discretization by finite elements.

1. Introduction

We consider the initial-value problem

ut +Au = 0, for t > 0, with u(0) = u0,(1.1)

where A is a symmetric, positive definite operator with a compact inverse, defined
on a dense subset D of a Hilbert space H , with inner product (·, ·). The solution
may be written in the form (cf. [8], Theorem 1.7.7)

u(t) =
1

2πi

∫
Γ

e−ztR(z;A)u0 dz, for t > 0,(1.2)

where R(z;A) = (A − zI)−1 is the negative of the resolvent of A, and Γ is a
conveniently chosen path in the right half plane. With the minimal eigenvalue of
A bounded below by λ0 > 0, and with 0 ≤ γ < λ0, we shall use Γ = Γγ = {z =
γ + σ ± iσ;σ ≥ 0}, with Im z increasing from −∞ to ∞. This representation may
be obtained by applying the Laplace transform, defined by

w(z) = û(z) =
∫ ∞

0

eztu(t) dt, for Re z ≤ γ,(1.3)

to the initial value problem (1.1). In this way we derive

Aw − zw = u0, i.e., w(z) = R(z;A)u0, for Re z ≤ γ,(1.4)
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and then retrieve u(t) by the inverse of the Laplace transform (1.3) taken along
{z; Re z = γ}, subsequently deforming this path to Γγ . This is possible since
w(z) = R(z;A)u0 exists for z ∈ C \ [λ0,∞), and since ‖R(z;A)‖ ≤ C(|z| + 1)−1

for z bounded away from [λ0,∞). Since A is self-adjoint the representation (1.2)
may also be established by deforming Γ into a union of small circles around the
eigenvalues of A, in which case (1.2) reduces to the eigenfunction expansion of u(t).

The contour integral representation (1.2) of u(t) may be written as

u(t) =
∫ ∞

0

e−(γ+σ)tg(t;σ) dσ,(1.5)

where

g(t;σ) =
1

2πi
(
νe−iσtw(γ + νσ)− ν̄eiσtw(γ + ν̄σ)

)
, with ν = 1 + i.(1.6)

In our applications w will be a complex-valued function, satisfying w(z) = w(z̄)
because of (1.4), in which case g(t;σ) is real, and

g(t;σ) =
1
π

Im
(
νe−iσtw(γ + νσ)

)
.(1.7)

Our approach to the approximate solution of (1.1) is to apply a quadrature
scheme to (1.5). We shall later also apply our method to the discretization in
time of an initial value problem of the form (1.1) which has been obtained from an
initial boundary value problem for a parabolic partial differential equation by first
discretizing in the space variables by finite elements.

We consider quadrature approximations to the integral in (1.5) of the form

U(t) =
∑

j

ωj(t)g(t;σj), for t > 0,(1.8)

with non-negative quadrature points σj and positive quadrature weights ωj(t). The
construction of such a quadrature rule will be accomplished by first changing the
variable in (1.5) to y = e−ασt, where α is a positive number to be specified later,
obtaining

u(t) =
e−γt

αt

∫ 1

0

y−1+1/αg(t;σ(y)) dy, with σ(y) =
1
αt

log
1
y
,(1.9)

and then applying a standard quadrature rule. For simplicity, our first approxi-
mation uses the composite trapezoidal rule based on a uniform partition of [0, 1],
0 = y0 < y1 < · · · < yN = 1, where yj = j/N, j = 0, · · · , N. We recall that for the
integral If =

∫ 1

0 f(y) dy the composite trapezoidal rule is

TNf =
1

2N
(
f(y0) + 2f(y1) + 2f(y2) + · · ·+ 2f(yN−1) + f(yN )

)
,(1.10)

and that the quadrature error satisfies (see [1], p. 220)

|TNf − If | ≤ 1
8N2

∫ 1

0

|f ′′(y)| dy.(1.11)

Applying this with f(y) = (αt)−1y−1+1/αg(t;σ(y)), we get a quadrature rule of the
form (1.8), with

σj =
1
αt

log
1
yj

=
1
αt

log
N

j
, j = 0, . . . , N,(1.12)
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and the corresponding weights (except the first and the last, which have an addi-
tional factor of 1

2 ) are

ωj(t) =
e−γt

αtN
y
−1+1/α
j =

e−γt

αtN
(
j

N
)−1+1/α.(1.13)

The positive number α is then chosen so as to make the error bound in (1.11) small.
It turns out, as we shall see below, that

‖f ′′(y)‖ ≤ C(α, t)y−3+1/α‖u0‖, for y ∈ [0, 1],

and hence the integral in the vector version of (1.11) is finite for α < 1/2, so that
the error in that situation is of optimal order O(N−2).

Assume now that the solution is sought for t > τ , where τ is a positive number
chosen by the user. For the method to be efficient it is crucial that the same set of
points σj be used for a whole range of t values. Since the σj depend on α and t only
through the product αt, this product should thus be held constant in a time interval
[τ, T ], implying that α must vary with t. In view of the above it is natural to base
the choice of the σj on αt = 1

2τ, or α = 1
2τ/t, because t > τ is then equivalent to

α < 1/2.
Having thus fixed τ and chosen α = 1

2τ/t, thereby securing O(N−2) convergence
for each t > τ , we may still ask for the properties of the method for t ≤ τ , or
for α ≥ 1/2. Since f(y0) = f(0) = 0 if α < 1 because g(t;σ) is bounded, the
quadrature point at y = 0 (corresponding to σ = ∞) does not contribute to the
quadrature sum for α < 1. If α ≥ 1, we define the quadrature sum so as to omit
the y = 0 term; that is, we “ignore the singularity” (see [1], Section 2.12.7) in
the situation in which there is an endpoint singularity. Thus our quadrature sums
always run only from j = 1 to j = N . With this understanding we shall be able
to show error estimates for 0 < t ≤ τ which are of lower order than O(N−2); the
order is O(N−2t/τ ) for 0 < t < τ , with an additional factor log logN when t = τ .
A full statement is in Theorem 2.2.

Thus, the definition of our method may be summarized as follows: We first
choose γ ∈ [0, λ0) and the threshold τ > 0, then for t and α satisfying αt = 1

2τ

we determine σj = 2τ−1 log(N/j), j = 1, . . . , N, then solve the N complex-valued
elliptic problems (1.4) with z = γ + νσj , ν = 1 + i, and finally form g(t;σj) and
U(t) = Uτ (t) from (1.8), (1.6), and (1.13). In the fully discrete case the elliptic
problems (1.4) are solved approximately by the finite element method.

Instead of the trapezoidal rule we can apply the composite Simpson rule (pro-
vided N is even),

SNf =
1

3N
(
f(y0) + 4f(y1) + 2f(y2) + 4f(y3) + · · ·+ 4f(yN−1) + f(yN)

)
,(1.14)

with the error estimate

|SNf − If | ≤ C

N4

∫ 1

0

|f (iv)(y)| dy.(1.15)

In this case it turns out, as we shall see, that the full O(N−4) convergence order is
obtained only for α < 1

4 , and it is then appropriate to choose α so that αt = 1
4τ, to

secure again the full order of convergence for t > τ . Once more convergence rates
of lower orders may be shown for t ≤ τ . The full Simpson’s rule result is stated as
Theorem 2.3.



180 DONGWOO SHEEN, IAN H. SLOAN, AND VIDAR THOMÉE

We now turn to discretization in both space and time of an initial boundary value
problem for a parabolic partial differential equation. For simplicity we consider the
case of the heat equation, viz.

ut −∆u = 0 in Ω, with u = 0 on ∂Ω, for t > 0,

u(·, 0) = u0 in Ω,
(1.16)

where Ω ⊂ Rd is a domain with smooth boundary ∂Ω. We thus choose the Hilbert
space H as L2(Ω) with (v, w) =

∫
Ω v(x)w(x) dx. Here A = −∆, the Laplacian,

which is defined in D(A) = H2(Ω) ∩H1
0 (Ω). Setting

A(v, z) =
∫

Ω

∇v(x) · ∇z(x) dx,

and letting Vh denote piecewise linear finite element subspaces with standard prop-
erties, the finite element approximation wh(z) ∈ Vh of the solution w of (1.4)
satisfies

A(wh, χ)− z(wh, χ) = (u0, χ), ∀χ ∈ Vh, for z /∈ [λ0,∞).(1.17)

The semidiscrete approximation uh(t) ∈ Vh to (1.1) is defined by

(uh,t, χ) +A(uh, χ) = 0, ∀χ ∈ Vh, for t > 0, with uh(0) = Phu0,(1.18)

where Ph denotes the orthogonal projection in L2(Ω) onto Vh. Defining the discrete
analogue Ah : Vh → Vh of A = −∆ by

(Ahψ, χ) = A(ψ, χ), ∀ψ, χ ∈ Vh,

we see that (1.18) is of the form (1.1) with A replaced by Ah. Similarly, (1.17) is
of the form (1.4). It may be proved, analogously to (1.2) and (1.5), that

uh(t) =
1

2πi

∫
Γ

e−ztwh(z) dz =
∫ ∞

0

e−(γ+σ)tgh(t;σ) dσ,

where (cf. (1.7)) gh(t;σ) = Im(νe−iσtwh(γ+ νσ))/π. Our fully discrete approxima-
tion Uh(t) is then obtained by application of the quadrature approximation (1.8)
to this integral, so that

Uh(t) =
N∑

j=1

ωj(t)gh(t;σj).(1.19)

It will follow from our main result that in the trapezoidal rule case ‖Uh(t)−uh(t)‖ =
O(N−2) for t > τ , uniformly in h, with lower orders of convergence for t ≤ τ .
Together with the known estimate ‖uh(t) − u(t)‖ = O(h2) for t > 0, this will give
a complete error estimate of order O(N−2 + h2) for the fully discrete problem in
this case (see Section 3). Similarly, in the Simpson rule case the complete error
estimate is of order O(N−4 + h2).

The error bounds to be shown later limit the range of t-values that can effectively
be covered with fixed quadrature points σj ; for example, for γ = 0 we shall see that
restriction to an interval τ ≤ t ≤ 2τ might be appropriate, while for γ > 0 a larger
interval could be suitable – see Tables 1-3 and associated discussion. The error
bounds will also show that this is not a method of preference for small times t.

We remark that our method is introduced and studied so far only for a homoge-
neous parabolic equation. However, the initial value problem for the inhomogeneous
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equation,

ut +Au = f, for t > 0, with u(0) = u0,(1.20)

in the special case in which f is independent of time, may be reduced to an initial-
value problem of the form (1.1). In fact, let u∞ denote the stationary solution of
(1.20) defined by Au∞ = f . Then the solution of (1.20) may be written u(t) =
u∞ + v(t), where

vt +Av = 0, for t > 0, with v(0) = u0 − u∞,

and our method may be applied to determine v(t).
In the finite element application to this problem it is natural to take as discrete

initial values vh(0) = Phu0 − Thf , where Th = A−1
h Ph, with Ah and Ph as above.

This differs from the initial value suggested by (1.18), which is Ph(u0 − u∞), by
Thf − Phu∞ = (Th − PhT )f, where T = A−1. By the stability of the solution
operator for the homogeneous semidiscrete equation the contribution to the error
of this difference is bounded by Ch2e−λ0t‖f‖, see, e.g., [10].

In the title we described this as a parallel method. The reason is clear from
the formula (1.19). To compute Uh(t) for a range of times t ≥ τ we need to
solve the finite element problems (1.17) for z = γ + νσj , j = 1, . . . , N . These
problems are completely independent, and can therefore be computed on separate
processors, with no need for shared memory. In contrast, the normal step-by-step
time-marching methods for parabolic problems are not easily parallelizable.

Our method, like the method of eigenfunction expansion, requires that the op-
erator A be independent of time and symmetric positive definite. However, the
representation (1.2) is valid for more general operators A that generate analytic
semigroups, and our time discretization method naturally extends to this case; we
plan to return to the analysis of such problems on a later occasion.

Numerical methods for inhomogeneous parabolic and hyperbolic equations based
on the use of Fourier transformation have been considered in [2], [3], [7], and [9], and
provided the starting point for the present work. For other methods for parabolic
equations of non-timestepping type, see, e.g., [11, Chapter 9], [5], and [6].

2. Analysis of the quadrature scheme

We recall that in addition to (1.2) the solution of (1.1) admits the representation

u(t) = E(t;A)u0 =
∞∑

l=1

e−λlt(u0, ϕl)ϕl,

where {ϕl}∞l=1 and {λl}∞l=1 are a basis of orthonormal eigenfunctions and corre-
sponding eigenvalues of A, and where E(t;A) = e−At is the semigroup generated
by −A. Similarly, the approximate solution defined by (1.8) and (1.6) may be
expressed as

U(t) = Q(t;A)u0 =
∞∑

l=1

Q(t;λl)(u0, ϕl)ϕl,(2.1)

where Q(t;A) is a rational function of A, viz.

Q(t;A) =
N∑

j=1

ωj(t)
1
π

Im
(
νe−iσj tR(γ + νσj ;A)

)
;
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recall that the imaginary part of a bounded linear operator B on the Hilbert space
H is defined by ImB = (B −B∗)/(2i). This makes it possible below to reduce the
proofs of the stability and error estimates to the scalar case

u′ + λu = 0, for t > 0, with u(0) = 1.(2.2)

We suppose first that the time discretization is accomplished by the trapezoidal
rule, and show the following stability property of our time discretization operator.

Proposition 2.1. Let τ > 0, and assume that the eigenvalues of A are bounded
below by λ0, and let 0 ≤ γ < λ0. Let U(t) = Q(t;A)u0 be the N -point trapezoidal
rule approximation to (1.9), with g(t;σ) given by (1.6), and with αt = 1

2τ . Then
there is a constant C independent of t and τ such that, with log+ x = max(log x, 0),

‖U(t)‖ = ‖Q(t;A)u0‖ ≤ Ce−γt
( 1
1 + t

+ log+

1
t

+
1
τ

1
Nmin(1,2t/τ)

)‖u0‖, t > 0.

Proof. It suffices to show this for the scalar problem (2.2), with a constant C
independent of λ ≥ λ0. In fact, by (2.1),

‖Q(t;A)u0‖ =
( ∞∑

l=1

Q(t;λl)2(u0, ϕl)2
)1/2 ≤ max

l
|Q(t;λl)| ‖u0‖,

so it suffices to show that

|Q(t;λ)| ≤ Ce−γt
( 1
1 + t

+ log+

1
t

+
1
τ

1
Nmin(1,2t/τ)

)
for λ ≥ λ0,(2.3)

where it follows from the expression above that

Q(t;λ) =
N∑

j=1

ωj(t)
1
π

Im(νe−iσj t(λ− γ − νσj)−1).

Recalling that ν = 1 + i, we have, for λ ≥ λ0 > γ ≥ 0, with C = C(λ0 − γ),

1
π
| Im(νe−iσt(λ− γ − νσ)−1)| ≤ C|λ− γ − νσ|−1 ≤ C(σ + 1)−1.

Hence

|Q(t;λ)| ≤ C
N∑

j=1

ωj(t)(σj + 1)−1 ≤ C
e−γt

αtN

N∑
j=1

y
−1+1/α
j (σ(yj) + 1)−1 = Ce−γtJN ,

where JN is a Riemann sum for the first integral in

J =
1
αt

∫ 1

0

y−1+1/α(σ(y) + 1)−1 dy =
∫ ∞

0

e−σt(σ + 1)−1 dσ.

For α ≤ 1, i.e., for t ≥ 1
2 τ , the function y−1+1/α(σ(y) + 1)−1 is increasing from 0

to 1 as y increases from 0 to 1, and therefore the sum of the first N − 1 terms of
JN is bounded by J , so that

JN ≤ J +
1

αtN
= J +

2
τ N

.

The bound (2.3) is therefore proved for 2t/τ ≥ 1 by

J = et

∫ ∞

t

e−x

x
dx ≤ C

{
1 + log 1

t , t ≤ 1
1
t , t ≥ 1

}
≤ C

( 1
1 + t

+ log+

1
t

)
.(2.4)
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It remains to bound JN when α > 1, i.e., to prove (2.3) for 2t/τ < 1. We then
need to handle the product of the decreasing function y−1+1/α and the increasing
function (σ(y) + 1)−1. For this purpose we first show that

(σ(yj) + 1)−1 ≤ C(σ(yj−1) + 1)−1, for 2 ≤ j ≤ N − 1,(2.5)

with C independent of j and N , from which it will follow for 2 ≤ j ≤ N − 1 that

N−1y
−1+1/α
j (σ(yj) + 1)−1 ≤ CN−1y

−1+1/α
j (σ(yj−1) + 1)−1

≤ C

∫ yj

yj−1

y−1+1/α(σ(y) + 1)−1 dy,

and hence, by summation of this bound over j = 2, . . . , N − 1,

JN ≤ C
(
J +

1
τ N1/α

+
1
τ N

)
≤ C

(
J +

1
τ

1
Nmin(1,2t/τ)

)
.

Since σ(y) = 2 log(1/y)/τ , the claim (2.5) is equivalent to showing the bounded-
ness of (log(1/yj−1) + τ/2)/(log(1/yj) + τ/2) for τ ≥ 0, 2 ≤ j ≤ N , or (since this
ratio takes its maximum value at τ = 0) that ϕ(y) = log(y − k)/ log y is bounded
in [2k, 1 − k], where k = 1/N . But ϕ(y) → ∞ when y → k and y → 1. It then
suffices to show that ϕ(2k) and ϕ(1 − k) are bounded, and that ϕ(y) has only one
stationary point in (2k, 1− k) (which then has to be a minimum). We have

ϕ(2k) =
logN

log(N/2)
≤ log 3

log(3/2)
, for N ≥ 3,

and

ϕ(1− k) =
log(1− 2k)
log(1− k)

= 2 +O(
1
N

), as N →∞,

so that both ϕ(2k) and ϕ(1 − k) are bounded for N ≥ 3. A stationary point y of
ϕ(y) has to satisfy (y − k)−1 log y − y−1 log(y − k) = 0, or g(y) = g(y − k), where
g(y) = y log y. But g(0) = g(1) = 0, g(y) < 0 for y ∈ (0, 1), and g′(y) = 0 only for
y = e−1, so that g(y) = g(y − k) has exactly one solution in (k, 1) for k < 1. Thus
the claim is established, and the proof is complete.

Note that the stability bound contains a term with a factor τ−1, and thus is not
uniformly bounded for small τ .

Let us remark that, with a slightly modified definition of the approximate so-
lution U(t), and with a mild regularity assumption on u0, it is possible to show
uniform boundedness of the time discrete solution as t tends to 0 for fixed τ > 0.
In fact, writing instead of (1.2) for the exact solution

u(t) =
1

2πi

∫
Γγ

e−zt(1 + z)−εR(z;A) (I +A)εu0 dz, with ε > 0,

we may define an approximate solution Uε(t) by

Uε(t) = Qε(t;A)(I +A)εu0,

where

Qε(t;A) =
N∑

j=1

ωj(t)
1
π

Im
(
νe−iσjt(1 + γ + νσj)−εR(γ + νσj ;A)

)
.
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With this choice we first have to apply (I +A)ε to the given initial data; for ε = 1
this simply entails application of A. Similarly to our earlier estimate, we find in
the scalar case A = λ that

|Qε(t;λ)| ≤ e−γt

αtN

N∑
j=1

y
−1+1/α
j (σj + 1)−1−ε

≤ Ce−γt
( ∫ ∞

0

e−tσ(σ + 1)−1−ε dσ +
1
τ

1
Nmin(1,2t/τ)

)
≤ Ce−γt

( 1
1 + t

+
1
τ

1
Nmin(1,2t/τ)

)
.

Thus, in this case, since (I +A)εA−ε is bounded in H ,

‖Uε(t)‖ ≤ Ce−γt
( 1
1 + t

+
1
τ

1
Nmin(1,2t/τ)

)‖Aεu0‖, for t ≥ 0,

in which there is no longer any logarithmic behavior as t→ 0.
We now return to the main theme and show an error estimate for the approximate

solution U(t) defined by the trapezoidal rule.

Theorem 2.2. Let τ > 0 and assume the eigenvalues of A are bounded below by
λ0, and let 0 ≤ γ < λ0. Assume that the quadrature approximation U(t) is obtained
by applying the trapezoidal rule (1.10) (with the y0 term omitted) to the integral in
(1.9), where g(t;σ) is defined by (1.6), and α is chosen so that αt = τ/2. Then
there exists C = C(λ0 − γ) > 0, such that

‖U(t)− u(t)‖ ≤ C‖u0‖e−γt



1
N2

( 1 + t2

τ2(1 + t− τ)
+
t2

τ2
log+

1
t− τ

)
, t > τ,

1
N2

(
log logN +

1
τ2

+ log+

1
τ

)
, N ≥ 3, t = τ,

1
N2t/τ

(1 + τ2

τ2
+ log+

1
τ − t

+ log+

1
t

)
, 0 < t < τ.

Proof. Again it suffices to consider the scalar problem (2.2), since it follows in the
same way as in the proof of Proposition 2.1 that

‖U(t)− u(t)‖ ≤ max
l
|Q(t;λl)− e−λlt| ‖u0‖.

Thus it is sufficient to show that the modulus of the scalar quadrature error ε(t;λ) =
|Q(t;λ) − e−λt| can be estimated as in the theorem (with ‖u0‖ = 1) for λ ≥ λ0.
Recall that the trapezoidal rule has the error bound (1.11). Therefore, recalling
that ν = 1 + i and σ(y) = 2τ−1 log(1/y), we have

ε(t;λ) ≤ e−γt

8N2

∫ 1

0

|f ′′(y)| dy,

where, from (1.9) and (1.6),

f(y) = 2(πτ)−1y−1+1/α Im(νe−iσ(y)tw(γ + νσ(y)), with w(z) = (λ− z)−1.

To bound the integral, we write, using −σ(y)t = log y/α,

f(y) = 2(πτ)−1 Im(νF (y)), where F (y) = y−1+ν/αW (y), W (y) = w(γ + νσ(y)),

and find that

F ′′(y) = y−3+ν/α
(
(−1 +

ν

α
)(−2 +

ν

α
)W (y) + 2(−1 +

ν

α
)yW ′(y) + y2W ′′(y)

)
.
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Initially we assume t > τ , corresponding to α < 1/2. In this case

|F ′′(y)| ≤ Cy−3+1/α
(
α−2|W (y)|+ α−1y|W ′(y)|+ y2|W ′′(y)|

)
.(2.6)

Because σ′(y) = −2(τy)−1, we have

W ′(y) = −2ν(τy)−1w′(γ + νσ(y)),

W ′′(y) = 4ν2(τy)−2w′′(γ + νσ(y)) + 2ντ−1y−2w′(γ + νσ(y)),

so that, because |w(j)(γ + νσ)| ≤ C(σ + 1)−1−j for σ ≥ 0, λ ≥ λ0 > γ ≥ 0, j =
0, 1, 2,

|W (y)| ≤ C(σ(y) + 1)−1, y|W ′(y)| ≤ Cτ−1(σ(y) + 1)−2,

y2|W ′′(y)| ≤ C
(
τ−2(σ(y) + 1)−3 + τ−1(σ(y) + 1)−2

)
.

Using also αt = 1
2τ , it follows that

|f ′′(y)| ≤ Cτ−1|F ′′(y)|
≤ Cy−3+1/ατ−1

(
α−2(σ(y) + 1)−1

+ α−1τ−1(σ(y) + 1)−2 + τ−2(σ(y) + 1)−3
)

(2.7)

≤ Cy−3+1/ατ−3
(
t2(σ(y) + 1)−1 + (σ(y) + 1)−2

)
,

where in the last step we used the geometric-arithmetic mean inequality to bound
the middle term in the large parentheses by the other two, and then bounded
(σ + 1)−3 by (σ + 1)−2. Hence∫ 1

0

|f ′′(y)| dy ≤ Cτ−3(t2J1 + J2),(2.8)

where, since y = e−ασt and αt = 1
2τ ,

Jj =
∫ 1

0

y−3+1/α(σ(y) + 1)−j dy =
τ

2

∫ ∞

0

e−(t−τ)σ(σ + 1)−j dσ, j = 1, 2.

As in (2.4) we see that

J1 ≤ Cτ
( 1
1 + t− τ

+ log+

1
t− τ

)
(2.9)

and, by a simpler argument, J2 ≤ Cτ/(1 + t− τ), so that altogether∫ 1

0

|f ′′(y)| dy ≤ Cτ−2
( 1 + t2

1 + t− τ
+ t2 log+

1
t− τ

)
.

This completes the proof for t > τ .
For t ≤ τ , i.e., for α ≥ 1/2, we see that the integral of |f ′′(y)| fails to converge

at 0. For 1/2 ≤ α < 1 we see that f(y) vanishes at y = 0, as a result of which we
can take the point of view that the trapezoidal rule for the integral of f is used just
on the interval [y1, 1], with an error of 1

2N
−1 in the weight at y1 = N−1, while on

the interval [0, y1] the integral is approximated by zero. This leads to replacing the
bound (1.11) by a new bound,

|TNf − If | ≤ 1
8N2

∫ 1

y1

|f ′′(y)| dy +
1

2N
|f(y1)|+

∫ y1

0

|f(y)| dy.
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The same bound can also be used for α ≥ 1 because we are ignoring the singularity
at y = 0 in the approximate integration in (1.9). This time we get, instead of (2.6),

|F ′′(y)| ≤ Cy−3+1/α(|W (y)|+ y|W ′(y)|+ y2|W ′′(y)|),
and hence the analogue of (2.8) for the interval (y1, 1) is∫ 1

y1

|f ′′(y)| dy ≤ Cτ−3(τ2J1N + J2N ), JjN =
∫ 1

y1

y−3+1/α(σ(y) + 1)−j dy,

or, recalling that σ1 = σ(y1) = 2τ−1 logN , and setting δ = τ − t,

JjN =
τ

2

∫ σ1

0

eδσ

(σ + 1)j
dσ =

τ

2
N2−2t/τ

∫ σ1

0

e−δ(σ1−σ)

(σ + 1)j
dσ,

where we used eδσ1 = N2−2t/τ . For j = 2 we have∫ σ1

0

e−δ(σ1−σ)

(σ + 1)j
dσ ≤

∫ ∞

0

1
(σ + 1)2

dσ = 1.

For j = 1 and t = τ ,

J1N =
τ

2

∫ σ1

0

dσ

σ + 1
=
τ

2
log(σ1 + 1) ≤ Cτ(log logN + log+

1
τ
).

To complete the proof for t = τ , we note that since w(γ+νσ) is bounded for σ ≥ 0,
we have |f(y)| ≤ Cτ−1y and hence

1
2N

|f(y1)|+
∫ y1

0

|f(y)| dy ≤ C
1
N2

1
τ
≤ C

1
N2

1 + τ2

τ2
.

For j = 1 and t < τ we find first for 1/δ ≥ σ1 that∫ σ1

0

e−δ(σ1−σ)

(σ + 1)j
dσ ≤

∫ 1/δ

0

d σ

σ + 1
= log(δ−1 + 1);

for 1/δ < σ1 we have to add the term∫ σ1

1/δ

e−δ(σ1−σ)

σ + 1
dσ ≤ δ

∫ σ1

1/δ

e−δ(σ1−σ) dσ ≤ 1.

Thus ∫ 1

y1

|f ′′(y)| dy ≤ CN2−2t/τ (
1
τ2

+ 1 + log+

1
τ − t

).

Since |f(y)| ≤ Cτ−1y−1+1/α(σ(y) + 1)−1 we also have

1
2N

|f(y1)|+
∫ y1

0

|f(y)| dy ≤ CN−2t/τ (
1
τ

+ 1 + log+

1
t
),

where for the second term we used

2
τ

∫ y1

0

y−1+1/α

σ(y) + 1
dy =

∫ ∞

σ1

e−σt

σ + 1
dσ = e−σ1t

∫ ∞

0

e−xt

x+ σ1 + 1
dx

≤ N−2t/τ

∫ ∞

0

e−xt

x+ 1
dx ≤ CN−2t/τ (1 + log+

1
t
),

with the last step following from (2.4). Collecting the estimates, the desired result
for α > 1/2, or t < τ , follows.
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We remark that if instead of U(t) we use the modified approximate solution
Uε(t) introduced after the proof of Proposition 2.1, then the error bound takes the
simpler form

‖Uε(t)− u(t)‖ ≤ Ce−γt‖Aεu0‖


1
N2

1 + t2

τ2
, t ≥ τ,

1
N2t/τ

1 + τ2

τ2
, t ≤ τ.

In fact, for t ≥ τ, we have instead of (2.7)

|f ′′(y)| ≤ Cy−3+1/ατ−3(t2 + 1)(σ(y) + 1)−1−ε

and hence (cf. (2.8) and (2.9))∫ 1

0

|f ′′(y)| dy ≤ Cτ−2(t2 + 1)
∫ ∞

0

e−σ(t−τ)(σ + 1)−1−ε dσ ≤ Cετ
−2(t2 + 1).

The estimate for t ≤ τ is derived similarly.
Let us now comment on our above choice of the slope 1 in Γ = Γγ . In fact,

choosing instead Γγ,s = {z = γ + σ ± isσ; 0 ≤ σ < ∞}, it is easy to see that the
bounds for ‖w(j)(z)‖ have to be multiplied by (1 + 1/s)j+1. On the other hand,
from the proof of Theorem 2.2 we see that the factors ν = 1 + i in front of f(y)
and in W ′ and W ′′ should now be replaced by νs = 1 + is. The total change in the
error bound in Theorem 2.2 would be a factor (s+1/s)3, and we therefore see that
s should be chosen neither too large nor too small. A natural choice is s = 1.

We remark that the error estimate of Theorem 2.2 holds not only for the trape-
zoidal rule but also for any other composite rule on the uniform partition yj , j =
0, . . . , N , which is exact for linear functions. In particular, it holds for the Simpson
rule, but with less than optimal accuracy.

Before turning to the full treatment of Simpson’s rule, we pause to exhibit some
numerical values of the quadrature errors εN = εN (t;λ) = |Q(t;λ) − e−λt|, which
illustrate the behavior of our time discretization method based on the trapezoidal
rule. Table 1 shows these errors εN for τ = 1, λ = 1, and γ = 0, with N = 20, 40, 80
and 160, and Table 2 the corresponding errors when τ = 1, λ = 1, γ = 0.75. Here
ρN = log2(εN/2/εN ) is the local convergence rate.

We observe that the predicted O(N−2) asymptotic convergence rate for t > τ = 1
is very clear in the tables. For values of t smaller than τ the accuracy and the order
of convergence deteriorate, broadly in line with the predictions of Theorem 2.2, but
oscillations in the error prevent a clear determination of orders of convergence. We
also note that the errors at t ≈ τ are smaller for γ = 0 than for γ = 0.75, but
that the situation is reversed for large values of t, which is consistent with the error
bounds of Theorem 2.2.

In Table 3 we show the effect of varying τ , by repeating the calculation now
with τ = 1

2 , γ = 0. We see, on the one hand, that the O(N−2) convergence rate
now persists, as it should, for τ > 1

2 . On the other hand the absolute errors for
1 ≤ τ < 2 are larger than we observed in Table 1. Again this is broadly in line with
the predictions of the theorem, given the appearance of the τ−2 terms in the error
bounds. The results in these tables and this discussion motivate our suggestion
that the results for a fixed value of τ be used only for a limited range of t values,
such as τ ≤ t ≤ 2τ for the case γ = 0.

We now turn to the case when the time discretization is accomplished by Simp-
son’s rule. We first remark that the stability result of Proposition 2.1 remains valid
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Table 1. Time discretization errors for trapezoidal rule with τ =
1, λ = 1, γ = 0.

t ε20 ε40 ρ40 ε80 ρ80 ε160 ρ160

0.2 0.253E-01 0.128E-01 0.98 0.543E-02 1.24 0.130E-02 2.06
0.4 0.197E-02 0.173E-02 0.19 0.950E-03 0.86 0.371E-03 1.36
0.6 0.172E-03 0.897E-04 0.94 0.964E-04 -0.10 0.443E-04 1.12
0.8 0.365E-03 0.993E-04 1.88 0.154E-04 2.69 0.552E-06 4.80
1.0 0.150E-03 0.266E-04 2.50 0.685E-05 1.96 0.225E-05 1.60
1.2 0.151E-04 0.611E-05 1.30 0.195E-05 1.64 0.422E-06 2.21
1.4 0.806E-04 0.195E-04 2.05 0.500E-05 1.96 0.125E-05 2.00
1.6 0.185E-03 0.465E-04 1.99 0.116E-04 2.00 0.290E-05 2.00
1.8 0.292E-03 0.730E-04 2.00 0.182E-04 2.00 0.456E-05 2.00
2.0 0.398E-03 0.995E-04 2.00 0.249E-04 2.00 0.622E-05 2.00
3.0 0.929E-03 0.232E-03 2.00 0.580E-04 2.00 0.145E-04 2.00
4.0 0.146E-02 0.365E-03 2.00 0.912E-04 2.00 0.228E-04 2.00
5.0 0.199E-02 0.498E-03 2.00 0.124E-03 2.00 0.311E-04 2.00
6.0 0.253E-02 0.630E-03 2.00 0.158E-03 2.00 0.394E-04 2.00

Table 2. Time discretization errors for trapezoidal rule with τ =
1, λ = 1, γ = 0.75.

t ε20 ε40 ρ40 ε80 ρ80 ε160 ρ160

0.2 0.282E-01 0.127E-01 1.15 0.524E-02 1.28 0.139E-02 1.92
0.4 0.438E-02 0.219E-03 4.32 0.327E-03 -0.58 0.185E-03 0.82
0.6 0.456E-02 0.123E-02 1.89 0.353E-03 1.80 0.101E-03 1.80
0.8 0.404E-02 0.102E-02 1.98 0.252E-03 2.03 0.611E-04 2.04
1.0 0.323E-02 0.811E-03 2.00 0.203E-03 2.00 0.510E-04 1.99
1.2 0.260E-02 0.657E-03 1.98 0.165E-03 2.00 0.411E-04 2.00
1.4 0.209E-02 0.529E-03 1.99 0.132E-03 2.00 0.331E-04 2.00
1.6 0.168E-02 0.423E-03 1.99 0.106E-03 2.00 0.265E-04 2.00
1.8 0.133E-02 0.337E-03 1.99 0.842E-04 2.00 0.211E-04 2.00
2.0 0.105E-02 0.266E-03 1.99 0.666E-04 2.00 0.166E-04 2.00
3.0 0.275E-03 0.698E-04 1.98 0.175E-04 2.00 0.437E-05 2.00
4.0 0.246E-04 0.655E-05 1.91 0.165E-05 1.99 0.412E-06 2.00
5.0 0.382E-04 0.938E-05 2.02 0.234E-05 2.00 0.585E-06 2.00
6.0 0.416E-04 0.103E-04 2.01 0.258E-05 2.00 0.645E-06 2.00

in this situation, since the points σj are still defined by (1.12) and the weights
ωj(t) are now bounded by 4

3 times those in (1.13). For the error we now have the
following estimate.

Theorem 2.3. Let τ > 0, and assume that the eigenvalues of A are bounded below
by λ0, and that 0 ≤ γ < λ0. Assume that the quadrature approximation U(t) is
obtained by applying Simpson’s rule (1.14) (with the y0 term omitted) to the integral
(1.5), where g(t;σ) is defined by (1.6) and α is chosen so that αt = τ/4. Then there
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Table 3. Time discretization errors for trapezoidal rule with τ =
1/2, λ = 1, γ = 0.

t ε20 ε40 ρ40 ε80 ρ80 ε160 ρ160

0.2 0.301E-03 0.129E-02 -2.09 0.838E-03 0.62 0.347E-03 1.27
0.4 0.166E-02 0.424E-03 1.97 0.969E-04 2.13 0.210E-04 2.21
0.6 0.110E-02 0.278E-03 1.99 0.699E-04 1.99 0.174E-04 2.01
0.8 0.689E-03 0.172E-03 2.00 0.431E-04 2.00 0.108E-04 2.00
1.0 0.263E-03 0.662E-04 1.99 0.166E-04 2.00 0.414E-05 2.00
1.2 0.161E-03 0.399E-04 2.01 0.996E-05 2.00 0.249E-05 2.00
1.4 0.585E-03 0.146E-03 2.00 0.365E-04 2.00 0.912E-05 2.00
1.6 0.101E-02 0.252E-03 2.00 0.630E-04 2.00 0.158E-04 2.00
1.8 0.143E-02 0.358E-03 2.00 0.895E-04 2.00 0.224E-04 2.00
2.0 0.186E-02 0.464E-03 2.00 0.116E-03 2.00 0.290E-04 2.00

exists C = C(λ0 − γ) > 0, such that

‖U(t)− u(t)‖ ≤ C‖u0‖e−γt



1
N4

( 1 + t4

τ4(1 + t− τ)
+
t4

τ4
log+

1
t− τ

)
, t > τ,

1
N4

(
log logN +

1
τ4

+ log+

1
τ

)
, N ≥ 3, t = τ,

1
N4t/τ

(1 + τ4

τ4
+ log+

1
τ − t

+ log+

1
t

)
, 0 < t < τ.

Proof. With f(u) and F (u) as earlier, we have this time

ε(t;λ) ≤ Ce−γt

N4

∫ 1

0

|f (iv)(y)| dy.

For t > τ , or α < 1/4, (2.6) is replaced by

|F (iv)(y)| ≤ Cy−5+1/α
4∑

j=0

αj−4yj |W (j)(y)|.

Here

yj|W (j)(y)| ≤ C
∑
l≤j

τ−l|w(l)(γ + νσ(y))| ≤ C
∑
l≤j

τ−l(σ(y) + 1)−l−1, for j ≤ 4,

so that

|F (iv)(y)| ≤ Cy−5+1/ατ−4(t4(σ(y) + 1)−1 + (σ(y) + 1)−2).

We conclude that, with

Jj =
∫ 1

0

y−5+1/α(σ(y) + 1)−j dy, j = 1, 2,

we have ∫ 1

0

|f (iv)(y)| dy ≤ Cτ−5(t4J1 + J2),

and the argument is completed as before.
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Table 4. Time discretization errors for Simpson’s rule with τ =
1, λ = 1, γ = 0.

t ε20 ε40 ρ40 ε80 ρ80 ε160 ρ160

0.2 0.278E-02 0.161E-02 0.78 0.688E-03 1.23 0.183E-03 1.91
0.4 0.233E-03 0.131E-04 4.15 0.120E-04 0.13 0.436E-05 1.45
0.6 0.983E-05 0.334E-05 1.56 0.619E-06 2.43 0.822E-07 2.91
0.8 0.330E-04 0.390E-07 9.73 0.481E-07 -0.30 0.566E-08 3.09
1.0 0.222E-04 0.469E-06 5.56 0.329E-07 3.83 0.226E-08 3.87
1.2 0.208E-04 0.389E-06 5.74 0.341E-07 3.51 0.204E-08 4.06
1.4 0.184E-04 0.438E-06 5.40 0.344E-07 3.67 0.211E-08 4.03
1.6 0.176E-04 0.511E-06 5.11 0.379E-07 3.76 0.233E-08 4.02
1.8 0.177E-04 0.626E-06 4.83 0.440E-07 3.83 0.271E-08 4.02
2.0 0.187E-04 0.779E-06 4.59 0.527E-07 3.89 0.327E-08 4.01

For t ≤ τ , corresponding to α ≥ 1
4 , we use instead of (1.15) the estimate

|SNf − If | ≤ C

N4

∫ 1

y2

|f (iv)(y)| dy +
4

3N
|f(y1)|+ 1

3N
|f(y2)|+

∫ 2
N

0

|f(y)| dy,

which is the appropriate bound for Simpson’s rule for the interval [y2, 1], together
with estimation by zero in the interval [0, y2]. The remainder of the proof follows
in the same manner as in Theorem 2.2.

We complete this section by presenting in Table 4 the analogue for Simpson’s
rule of Table 1. Thus Table 4 shows the quadrature error εN = |Qτ (t;λ)−e−λt| for
τ = 1, λ = 1, and γ = 0, with N = 20, 40, 80, and 160, for Simpson’s rule. For t > τ
the predicted O(N−4) accuracy is clearly seen, and the errors are correspondingly
small, while for t < τ the reduced rate of convergence is particularly clear.

It should be emphasized that in the present method Simpson’s rule with a given
value of N requires exactly the same computational effort as the trapezoidal rule.
A comparison between Tables 1 and 4 will convince the reader that Simpson’s
rule is superior. The numerical results in Table 4 also suggest that in practical
calculations, such as the finite-element calculations of the next section, a value of,
say, N = 40 in Simpson’s rule should be more than adequate in most cases.

3. Application to the finite element method

We now consider the application of our quadrature based methods to the “par-
abolic” equation in the piecewise linear space Vh which has been obtained by
discretization in the space of the initial-boundary value problem (1.16), i.e., the
semidiscrete problem (1.18). With our earlier definitions, this may be written

uh,t +Ahuh = 0, for t > 0, with uh(0) = Phu0.

As explained in the introduction, our fully discrete approximation Uh(t) ∈ Vh is
then obtained by the application of one of our quadrature methods to the integral
(1.5), where now g(t;σ) in (1.6) is replaced by gh(t;σ), defined in terms of the
finite element approximation wh(z) from (1.17) of the solution w(z) of the elliptic
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equation in (1.4), so that

Uh(t) = Q(t;Ah)Phu0 =
N∑

j=1

ωj(t)gh(t;σj), gh(t;σ) =
1
π

Im
(
νe−iσtwh(γ + νσ)

)
.

The error Uh − u may be handled by splitting it as

Uh(t)− u(t) = (Uh(t)− uh(t)) + (uh(t)− u(t)).(3.1)

If the trapezoidal rule is used for the time discretization, then we may apply The-
orem 2.2 to the first part of the error, because the smallest eigenvalue λh,1 of Ah is
bounded below by the smallest eigenvalue λ1 of A. Hence, since ‖Phu0‖ ≤ ‖u0‖, the
first part of the error in (3.1) is bounded in norm by the error bound in Theorem
2.2. The second part of the error in (3.1) is bounded by (cf. [10])

‖uh(t)− u(t)‖ ≤ Ch2t−1e−γt‖u0‖, for t > 0,

or, more generally, also for smoother initial data, by

‖uh(t)− u(t)‖ ≤ Ch2t−1+εe−γt‖Aεu0‖, for t > 0, 0 ≤ ε ≤ 1;

together these estimates yield complete error estimates for our method. We remark
that for smooth initial data the error in the spatially semidiscrete equation is thus
O(h2), uniformly down to t = 0, but that the O(N−2) error bound in the quadrature
method based on the trapezoidal rule holds only for t > τ , even when initial data
are smooth.

Similarly, for the case of Simpson’s rule the error bound for ‖Uh(t) − uh(t)‖ is
exactly as in Theorem 2.3, and the total error for t > τ is O(N−4 + h2).

We now give some illustrations, beginning with the spatially one-dimensional
problem

ut = uxx, in [0, π], with u(0, t) = u(π, t) = 0, for t > 0,

u(x, 0) = u0(x), in [0, π].
(3.2)

In Tables 5, 6, and 7 we exhibit errors εN,M in the numerical results for the initial
function u0(x) = (5π/2)−1/2(sinx + 2 sin 2x) (with ‖u0‖ = 1) for, respectively, the
trapezoidal rule, Simpson’s rule, and, for comparison, the Crank-Nicolson method.
In all cases the spatial discretization uses piecewise linear approximations on regular
meshes, with h = π/M, and N is chosen as 20, 40, 80, and 160 for both the trape-
zoidal rule and the Crank-Nicolson method (with time step 1/N), and as 10, 20, and
40 for Simpson’s rule. In Tables 5 and 6 we choose τ = 1 and γ = 0, and show results
only for τ ≤ t ≤ 2τ , which is the recommended way of using the method, and for the
Crank-Nicolson method we restrict ourselves to t = 1 and t = 2. In Tables 5 and 7,
ρN,M = log2(εN/2,M/2/εN,M), and in Table 6, ρN,M = log2(εN/2,M/4/εN,M). The
results again show the expected O(N−2+h2) = O(N−2+M−2) order of convergence
for the trapezoidal and Crank-Nicolson cases and O(N−4 + h2) = O(N−4 +M−2))
for Simpson’s rule. Note that the higher order of the discretization in Simpson’s
rule compared with the Crank-Nicolson method allows us to obtain accuracy of
order 10−6 in the interval [1, 2] with a much coarser time discretization.

As our next illustration, we consider again the spatially one-dimensional problem
(3.2), now with the nonsmooth initial function u0(x) = (π/2)−1/2 for π

4 ≤ x ≤ 3π
4 ,

and u0(x) = 0 for other x in [0, π] (again with ‖u0‖ = 1). The analogues of Tables
5, 6, and 7 above are exhibited in Tables 8, 9, and 10. Since the Crank-Nicolson
method is known not to deal well with nonsmooth data, we exhibit also the result
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Table 5. Trapezoidal rule errors for 1D heat equation with τ =
1, γ = 0.

t ε20,50 ε40,100 ρ40,100 ε80,200 ρ80,200 ε160,400 ρ160,400

1.0 0.129E-03 0.262E-04 2.29 0.667E-05 1.98 0.201E-05 1.73
1.2 0.796E-04 0.192E-04 2.05 0.481E-05 1.99 0.121E-05 1.99
1.4 0.849E-04 0.210E-04 2.02 0.537E-05 1.97 0.134E-05 2.00
1.6 0.123E-03 0.311E-04 1.98 0.775E-05 2.00 0.194E-05 2.00
1.8 0.172E-03 0.430E-04 2.00 0.107E-04 2.00 0.268E-05 2.00
2.0 0.223E-03 0.557E-04 2.00 0.139E-04 2.00 0.348E-05 2.00

Table 6. Simpson’s rule errors for 1D heat equation with τ =
1, γ = 0.

t ε10,25 ε20,100 ρ20,100 ε40,400 ρ40,400

1.0 0.216E-02 0.320E-04 6.08 0.184E-05 4.12
1.2 0.173E-02 0.265E-04 6.02 0.131E-05 4.34
1.4 0.136E-02 0.226E-04 5.91 0.113E-05 4.32
1.6 0.107E-02 0.208E-04 5.69 0.105E-05 4.30
1.8 0.836E-03 0.197E-04 5.41 0.103E-05 4.26
2.0 0.643E-03 0.192E-04 5.07 0.103E-05 4.21

Table 7. Crank-Nicolson errors for 1D heat equation.

t ε20,50 ε40,100 ρ40,100 ε80,200 ρ80,200 ε160,400 ρ160,400

1.0 0.975E-03 0.245E-03 2.00 0.612E-04 2.00 0.153E-04 2.00
2.0 0.145E-03 0.363E-04 2.00 0.908E-05 2.00 0.227E-05 2.00

Table 8. As in Table 5 with nonsmooth initial data.

t ε20,50 ε40,100 ρ40,100 ε80,200 ρ80,200 ε160,400 ρ160,400

1.0 0.139E-03 0.298E-04 2.22 0.754E-05 1.99 0.215E-05 1.81
1.2 0.709E-04 0.191E-04 1.89 0.499E-05 1.94 0.122E-05 2.04
1.4 0.261E-04 0.697E-05 1.90 0.171E-05 2.03 0.427E-06 2.00
1.6 0.454E-04 0.113E-04 2.01 0.281E-05 2.00 0.701E-06 2.00
1.8 0.101E-03 0.251E-04 2.01 0.627E-05 2.00 0.157E-05 2.00
2.0 0.159E-03 0.395E-04 2.01 0.988E-05 2.00 0.247E-05 2.00

obtained by the modification of using the backward Euler method for the first two
time steps, which smooths the initial data (cf. [10]). As expected, the results in
Tables 8 and 9 show the same behavior for nonsmooth as for smooth initial data.
For the nonsmooth initial data the Simpson’s rule results in Table 9 with N = 40
compare very favorably with even the modified Crank-Nicolson results with 160
time steps.
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Table 9. As in Table 6 with nonsmooth initial data.

t ε10,25 ε20,100 ρ20,100 ε40,400 ρ40,400

1.0 0.204E-02 0.274E-04 6.22 0.127E-05 4.43
1.2 0.164E-02 0.262E-04 5.97 0.119E-05 4.46
1.4 0.129E-02 0.242E-04 5.74 0.116E-05 4.38
1.6 0.100E-02 0.227E-04 5.47 0.113E-05 4.33
1.8 0.776E-03 0.216E-04 5.16 0.111E-05 4.28
2.0 0.586E-03 0.209E-04 4.81 0.111E-05 4.23

Table 10. Crank-Nicolson 1D errors, without and with backward
Euler smoothing.

t ε20,50 ε40,100 ρ40,100 ε80,200 ρ80,200 ε160,400 ρ160,400

1.0 0.504E-01 0.263E-01 0.94 0.186E-01 0.50 0.132E-01 0.50
2.0 0.367E-01 0.168E-01 1.12 0.119E-01 0.50 0.843E-02 0.50
1.0 0.158E-02 0.402E-03 1.97 0.102E-03 1.98 0.256E-04 1.99
2.0 0.499E-03 0.128E-03 1.96 0.325E-04 1.98 0.818E-05 1.99

Table 11. Simpson’s rule errors for 2D heat equation, with τ =
1, γ = 0.

t ε16,25 ε32,100 ρ32,100

1.0 0.335E-03 0.209E-04 4.00
1.2 0.269E-03 0.166E-04 4.02
1.4 0.212E-03 0.131E-04 4.02
1.6 0.165E-03 0.102E-04 4.02
1.8 0.129E-03 0.804E-05 4.00
2.0 0.103E-03 0.644E-05 4.00

Finally, we consider the spatially two-dimensional problem version of the bound-
ary value problem for the heat equation, with Ω = [0, π]× [0, π],

ut = ∆u, in Ω, u(x, y, t) = 0, for (x, y) ∈ ∂Ω, t > 0,

u(x, y, 0) = u0(x, y), in Ω,

with (non-smooth) initial data u0(x, y) = χ[ π
5 , 4π

5 ]×[ π
5 , 4π

5 ](x, y). The finite element
space for the spatial approximation is obtained by dividing Ω into M ×M identical
rectangles (h = π/M), and using piecewise bilinear elements on this mesh. For the
time discretization we adopt Simpson’s rule and choose τ and γ to have the values
1 and 0, respectively.

In Table 11 we present the resulting L2(Ω) errors for N = 32 and M = 100, and
also (to allow us to check the predicted O(h2 +N−4) rate of convergence) N = 16
and M = 25. Evidently the rate of convergence and the absolute errors in the time
interval [τ, 2τ ] are both highly acceptable.

To give substance to the claim that this is a parallel method, the results in Table
11 were obtained (using the Yale Sparse Matrix Package [4], an efficient version of
Gaussian elimination, with double complex arithmetic) on a 16-processor IBM SP2,
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Table 12. Computing time and speedup ratio for 2D heat equation.

Problem Size P 1 2 4 8 16
N = 32 T 81.3 40.5 20.7 10.6 5.6
M = 50 ρ 2.00 1.95 1.95 1.89
N = 32 T 942 471 236 119 61
M = 100 ρ 2.00 2.00 1.98 1.94

whose main architectural feature is that it has 16 essentially identical processors,
with no shared memory. The main part of the computation is of course the solution
of the elliptic finite-element problem (1.17), for z = zj = γ + νσj , j = 1, . . . , N .
The N such problems were first solved one after another on a single processor; then
for comparison distributed between 2 processors, so that each processor had to solve
only half the number of elliptic problems; then distributed over 4 processors, and
so on. The total computer clock times (including overheads) required with 1, 2, 4,
8, and 16 processors are reported in Table 12 for N = 32 and M = 100, as well
as M = 50 for comparison. In Table 12 the labels P, T , and ρ denote the num-
ber of processors, the total computer clock time in seconds, and the speedup ratio
T (P/2)/T (P ), respectively. When the size of the finite element problem changes
from M = 50 to 100 the speedup ratios become closer to two, reflecting the tru-
ism that the bigger the size of the distributed problems, the more effective the
parallelization. Since the total time for the largest problem continues to decrease
roughly in proportion to the number of processors for P up to 16, the paralleliza-
tion has been successful, and indeed could profitably employ many more processors
than the 16 currently available to us. A parallel implementation with more than
16 processors would be expected to be even more beneficial for parabolic problems
in three space dimensions.
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