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BOUNDARY ELEMENT MONOTONE ITERATION SCHEME
FOR SEMILINEAR ELLIPTIC

PARTIAL DIFFERENTIAL EQUATIONS,
PART II: QUASIMONOTONE ITERATION

FOR COUPLED 2× 2 SYSTEMS

GOONG CHEN, YUANHUA DENG, WEI-MING NI, AND JIANXIN ZHOU

Abstract. Numerical solutions of 2× 2 semilinear systems of elliptic bound-
ary value problems, whose nonlinearities are of quasimonotone nondecreasing,
quasimonotone nonincreasing, or mixed quasimonotone types, are computed.
At each step of the (quasi) monotone iteration, the solution is represented
by a simple-layer potential plus a domain integral; the simple-layer density is
then discretized by boundary elements. Because of the various combinations
of Dirichlet, Neumann and Robin boundary conditions, there is an associated
2×2 matrix problem, the norm of which must be estimated. From the analysis
of such 2×2 matrices, we formulate conditions which guarantee the monotone
iteration a strict contraction staying within the close range of a given pair of
subsolution and supersolution. Thereafter, boundary element error analysis
can be carried out in a similar way as for the discretized problem. A concrete
example of a monotone dissipative system on a 2D annular domain is also
computed and illustrated.

1. Introduction

In an earlier paper [5], we have studied the boundary element method and mono-
tone iteration scheme for semilinear elliptic boundary value problems with a single
scalar governing equation. Tight error estimates were obtained for problems whose
nonlinearity satisfies an assumption [H ]. Numerical solutions for several concrete
examples on a circular domain were computed, showing that they agree with the
theoretical properties of stable solutions. In this paper, we extend our previous
work to cover 2×2 systems of coupled semilinear elliptic boundary value problems.

Systems of coupled nonlinear elliptic equations arise frequently in applications.
Solutions of such systems may be regarded as steady states of certain reaction-
diffusion systems or problems in mathematical biology. For nonlinear problems,
we face the ever present difficulties associated with existence/nonexistence, unique-
ness/multiplicity and stability/instability of solutions. Since the nonlinearity is now
further coupled and may appear somewhat arbitrary, the treatment is naturally
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expected to be more complex and challenging than the case of a single scalar semi-
linear elliptic equation and, thus, many more problems remain open [9]. Though
inasmuch as the mathematical intractability for coupled semilinear elliptic systems
is more severe, it is fortunate that a satisfactory method for finding stable solu-
tions for a certain class of such systems has been developed. This class consists
of coupled systems whose nonlinearities are of the quasimonotone nondecreasing,
quasimonotone nonincreasing, or mixed quasimonotone types. The method is a
generalization of the monotone iteration scheme that we employed in Part I [5]. A
good reference can be found in Pao [11]. Since the method is constructive, it can
be discretized and implemented numerically by the established methods of finite
difference, finite element and boundary element. Obviously, researchers in science
and engineering have computed many examples of coupled semilinear elliptic (or
parabolic) systems arising from applications, with or without the knowledge that
the quasimonotone iteration scheme can be incorporated in their algorithms. In
Pao [10], e.g., a finite difference-monotone iteration method is used to solve some
coupled elliptic systems numerically. Nevertheless, we have not yet seen any global
error analysis results in the literature. In particular, when the boundary element
method (BEM) is used, rates of convergence with respect to the discretization pa-
rameter have never been analyzed for coupled elliptic systems, to the best of our
knowledge. The crux of this paper, therefore, is to carry out the boundary element
numerical analysis and computation for coupled semilinear elliptic systems using
the quasimonotone iteration scheme.

A coupled semilinear elliptic system of boundary value problems may be likened
to a 2×2 system of nonlinear matrix equations in an infinite dimensional space. The
major contribution of this paper virtually is to exploit this 2×2 matrix structure of
the PDE system, and formalize it to an infinite-dimensional setting. This is carried
out in §2 and §4. A critical assumption, [H2

2×2], is stated, which is a generalization of
our assumption [H ] in [5]. This [H2

2×2] condition is directly verifiable and provides
the basis of the local contraction argument in the permissible range of (quasi)
monotone iteration. Once [H2

2×2] is well formulated, the rest of the error estimation
procedures are pretty much the same as in [5]. We state the error estimates for the
Galerkin boundary-element iterates unh(x) in the Hr(Ω), 0 ≤ r < 2, Sobolev space
norms in §3. The discussion in §3 will be concise, however, because as we have just
said, the arguments are similar to [5]. In §5, we provide a concrete example of a
mixed quasimonotone 2× 2 elliptic system for computation and discussion.

2. Monotone iteration scheme for nonlinearities

of quasimonotone nonincreasing, quasimonotone nondecreasing,

and mixed quasimonotone types

Let Ω be a simply connected bounded domain in RN , N = 2 or 3, with a smooth
boundary ∂Ω. (In much of the analysis, ∂Ω being C2-continuous suffices.) We
consider a coupled 2× 2 system of semilinear elliptic partial differential equations
of the form

∆ui(x) = fi(x, u1(x), u2(x)), x ∈ Ω,(2.1)
(S)

Biui(x) = gi(x), x ∈ ∂Ω,(2.2)
i = 1, 2,
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where Bi, i = 1, 2, are linear boundary operators given by

Biui = ui (Dirichlet type)(2.3)

or

Biui =
∂ui
∂n

+ α(·)ui, α(x) ≥ 0 on ∂Ω, α ∈ C∞(∂Ω),

(Neumann or Robin types)
(2.4)

and fi ∈ C∞(Ω× R× R), gi ∈ C∞(∂Ω), for i = 1, 2.
Throughout the paper, for Σ = Ω or ∂Ω, we use ‖u‖s,Σ to denote the norm of a

scalar function u in the Sobolev space Hs(Σ), and use ‖(u1, u2)‖s,Σ to denote the
norm of a vector-valued function (u1, u2) in the product Sobolev space Hs(Σ) ×
Hs(Σ):

‖(u1, u2)‖2s,Σ ≡ ‖u1‖2s,Σ + ‖u2‖2s,Σ.(2.5)

It is well understood that the monotone iteration scheme for scalar semilinear
elliptic boundary value problems has been generalized to system (S); see Pao [11],
for example. For (S), the construction of monotone iterates depends on the so-
called quasimonotone properties of the reaction functions f1 and f2 in (S). Let
J = [a1, b1] × [a2, b2] ⊂ R2, for some ai, bi, i = 1, 2, satisfying ai < bi. A vector-
valued function (f1(x, u1, u2), f2(x, u1, u2)) is called quasimonotone nonincreasing
in (x, u1, u2) ∈ Ω× J , if

∂f1

∂u2
(x, u1, u2) ≤ 0,

∂f2

∂u1
(x, u1, u2) ≤ 0, (x, u1, u2) ∈ Ω× J ;(2.6)

quasimonotone nondecreasing in (x, u1, u2) ∈ Ω× J , if

∂f1

∂u2
(x, u1, u2) ≥ 0,

∂f2

∂u1
(x, u1, u2) ≥ 0, (x, u1, u2) ∈ Ω× J ;(2.7)

and mixed quasimonotone in (x, u1, u2) ∈ Ω× J , if

∂f1

∂u2
(x, u1, u2) ≥ 0,

∂f2

∂u1
(x, u1, u2) ≤ 0, (x, u1, u2) ∈ Ω× J.(2.8)

A pair of vector-valued functions (u1, u2) and (ū1, ū2) with ui, ūi ∈ C(Ω) ∩C2(Ω),
i = 1, 2, are called ordered subsolution and supersolution, respectively, if they satisfy
ui ≤ ūi, i = 1, 2, and

Biui − gi ≤ 0, Biūi − gi ≥ 0, on ∂Ω, i = 1, 2,(2.9)

plus
(i) for quasimonotone nonincreasing (f1, f2),{

∆u1 − f1(x, u1, u2) ≥ 0, ∆u2 − f2(x, u1, u2) ≥ 0,
∆ū1 − f1(x, ū1, ū2) ≤ 0, ∆ū2 − f2(x, ū, ū2) ≤ 0;(2.10)

(ii) for quasimonotone nondecreasing (f1, f2),{
∆u1 − f1(x, u1, ū2) ≥ 0, ∆u2 − f2(x, ū1, u2) ≥ 0,
∆ū1 − f1(x, ū1, u2) ≤ 0, ∆ū2 − f2(x, u1, ū2) ≤ 0;(2.11)

(iii) for mixed quasimonotone (f1, f2),{
∆u1 − f1(x, u1, ū2) ≥ 0, ∆u2 − f2(x, u1, u2) ≥ 0,
∆ū1 − f1(x, ū1, u2) ≤ 0, ∆ū2 − f2(x, ū1, ū2) ≤ 0.(2.12)
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Henceforth, we assume that λi, i = 1, 2, are chosen sufficiently large such that

(i)
∂fi(x, u1, u2)

∂ui
≤ λi, ∀(x, u1, u2) ∈ Ω× J, i = 1, 2; λi ≥ 0;

[H1
2×2]

(ii) the spectra of the operators (λi −∆, Bi), i = 1, 2,
entirely lie on the open right half plane.

Let

λ∗i = the smallest eigenvalue of the operator (−∆, Bi), i = 1, 2.(2.13)

Then obviously λ∗i ≥ 0, i = 1, 2;
λ∗i = 0 iff Bi corresponds to the homogeneous
Neumann boundary condition.

(2.14)

From [H1
2×2](i) and (ii), we see that the following iteration scheme is well-defined:

for any initial state (u(0)
1 , u

(0)
2 ) with u

(0)
i ∈ C(Ω) ∩C2(Ω), i = 1, 2,

(λi −∆)u(n+1)
i = Fi,λi(x, u

(n)
1 , u

(n)
2 ), in Ω,

Biu
(n+1)
i = gi, on ∂Ω,

i = 1, 2, and n = 0, 1, 2, . . . ,
(2.15)

where

Fi,λi(x, u1, u2) ≡ λiui − fi(x, u1, u2), i = 1, 2.(2.16)

The convergence of the scheme (2.15) and the monotonicity properties of the
iterates depend on the choice of the initial state (u(0)

1 , u
(0)
2 ), which in turn depends

on the quasimonotone type of (f1, f2). Let us proceed according to the recipe given
in [11, §8.4]:

(i) For quasimonotone nonincreasing (f1, f2) in Ω× J , let

(u(0)
1 , u

(0)
2 ) = (u1, u2) (resp. (ū1, ū2)).(2.17)

We denote by (u(n)
1 , u

(n)
2 ) (resp. (ū(n)

1 , ū
(n)
2 )), n = 1, 2, . . . , the corresponding

iterates from (2.15).
(ii) For quasimonotone nondecreasing (f1, f2) in Ω× J , let

(u(0)
1 , u

(0)
2 ) = (ū1, u2) (resp. (u1, ū2)).(2.18)

We denote by (ū(n)
1 , u

(n)
2 ) (resp. (u(n)

1 , ū
(n)
2 )), n = 1, 2, . . . , the corresponding

iterates.
(iii) For mixed quasimonotone (f1, f2) in Ω × J , the initial state is chosen as
in (2.17), but the iteration procedure (2.15) is modified to

(λ1 −∆)u(n+1)
1 = F1,λ1 (·, u(n)

1 , ū
(n)
2 )

(λ2 −∆)u(n+1)
2 = F2,λ2 (·, u(n)

1 , u
(n)
2 )

}
on Ω,

Biu
(n+1)
i = gi on ∂Ω, i = 1, 2; n = 0, 1, 2, . . . ,

(2.19)


(λ1 −∆)ū(n+1)

1 = F1,λ1(·, ū(n)
1 , u

(n)
2 )

(λ2 −∆)ū(n+1)
2 = F2,λ2(·, ū(n)

1 , ū
(n)
2 )

}
on Ω,

Biū
(n+1)
i = gi on ∂Ω, i = 1, 2; n = 0, 1, 2, . . . .

(2.20)
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Following [11, (4.7), p. 403], we define the sector

〈u, ū〉 = {(u1, u2) | ui ∈ C(Ω), ui ≤ ui ≤ ūi, i = 1, 2}.(2.21)

We now have the following convergence theorem.

Theorem 2.1. For each type of monotonicity, the sequences u(n)
i , ū

(n)
i , described

in (2.15)–(2.20) satisfy the monotone property

u
(n)
i ≤ u(n+1)

i ≤ ū(n+1)
i ≤ ū(n)

i on Ω, i = 1, 2, n = 0, 1, 2, . . . ,

and there exist functions u(∞)
i and ū

(∞)
i , i = 1, 2, satisfying u

(∞)
i ≤ ū

(∞)
i on Ω

such that u(n)
i and ū(n)

i converge monotonically to u(∞)
i and ū

(∞)
i , respectively, for

i = 1, 2. We have

(i) if (f1, f2) is quasimonotone nonincreasing, then (u(∞)
1 , u

(∞)
2 ) and (ū(∞)

1 ,

ū
(∞)
2 ) are solutions of (S);

(ii) if (f1, f2) is quasimonotone nondecreasing, then (u(∞)
1 , ū

(∞)
2 ) and (ū(∞)

1 ,

u
(∞)
2 ) are solutions of (S);

(iii) if (f1, f2) is mixed quasimonotone and satisfies

max
{
∂fi(x, u1, u2)

∂ui
| (x, u1, u2) ∈ Ω× 〈u, ū〉

}
< λ∗i(2.22)

for either i = 1 or i = 2, then (u(∞)
1 , u

(∞)
2 ) and (ū(∞)

1 , ū
(∞)
2 ) are solutions of

(S).
Moreover, any solution (u1, u2) in 〈u, ū〉 satisfies u(∞)

i ≤ ui ≤ ū
(∞)
i on Ω

for i = 1, 2.

Proof. See Pao [11, pp. 403–409].

It is easy to see that if all the data in (S), namely, ∂Ω, fi, gi, i = 1, 2, are
C∞-smooth, then the limits of monotone convergence u(∞)

i and ū
(∞)
i , i = 1, 2,

have regularity C∞(Ω) because the pairs (u(∞)
1 , u

(∞)
2 ), (ū(∞)

1 , ū
(∞)
2 ), (u(∞)

1 , ū
(∞)
2 ),

or (ū(∞)
1 , u

(∞)
2 ) are classical solutions of (S) for the respective quasimonotone types.

With the existence of an ordered subsolution and supersolution, by Theorem 2.1,
any iterate (u(n)

1 , u
(n)
2 ), (u(n)

1 , ū
(n)
2 ), (ū(n)

1 , u
(n)
2 ) and (ū(n)

1 , ū
(n)
2 ) will lie in 〈u, ū〉.

Thus we may replace the product interval J = [a1, b1]× [a2, b2] with 〈u, ū〉 through-
out all of the preceding discussions.

We now need to introduce the following notations. Given any sufficiently smooth
function f(x, u1, u2) of three variables (x, u1, u2), we define two associated functions
D1f and D2f of five variables (x, u1, u2, v1, v2) by

(D1f)(x, u1, u2, v1, v2)

=


1

2(u1 − v1) [f(x, u1, u2)− f(x, v1, u2)

+ f(x, u1, v2)− f(x, v1, v2)], if u1 6= v1,

1
2

[
∂f(x, u1, u2)

∂u1
+ ∂f(x, u1, v2)

∂u1

]
, if u1 = v1;

(2.23)
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(D2f)(x, u1, u2, v1, v2)

=


1

2(u2 − v2) [f(x, u1, u2)− f(x, u1, v2)

+ f(x, v1, u2)− f(x, v1, v2)], if u2 6= v2,

1
2

[
∂f(x, u1, u2)

∂u2
+ ∂f(x, v1, v2)

∂u2

]
, if u2 = v2.

(2.24)

Then D1f and D2f are continuous functions of the five variables (x, u1, u2, v1, v2),
and we have

f(x, u1, u2)− f(x, v1, v2) = (D1f)(x, u1, u2, v1, v2) · (u1 − v1)
+(D2f)(x, u1, u2, v1, v2) · (u2 − v2).(2.25)

Although convergence is guaranteed in Theorem 2.1, the rates are not known in
general. However, in practical implementation, the success or failure of computation
hinges crucially on the existence of a quantifiable rate of convergence—the faster,
the more desirable. In order to obtain such explicit rates of convergence, as in
[5], some additional assumption is required. We now formulate a condition that is
sufficient to guarantee an algebraically fast rate of convergence. It is a generalization
of assumption [H ] in our earlier study of the scalar semilinear elliptic equation. It
is based upon estimations in §4 for a 2 × 2 linear matrix problem in R2, but now
generalized to an infinite dimensional setting. From the arguments that follow in
§4, the reader may agree that the assumption is rather “generically tight”:

min[λ∗1 +D1f1(x, u1, u2, v1, v2)] > 0,

min[λ∗2 +D2f2(x, u1, u2, v1, v2)] > 0,
[H2

2×2]

for x ∈ Ω, (u1, u2) ∈ 〈u, ū〉, (v1, v2) ∈ 〈u, ū〉. �

Theorem 2.2. Let the semilinear system (S) be quasimonotone nonincreasing,
quasimonotone nondecreasing, or mixed quasimonotone with pairs of ordered sub-
solutions (u1, u2) and (ū1, ū2). Let assumptions [Hi

2×2] hold for i = 1, 2, let the
iteration be performed as in (2.15)–(2.20) for some λ̄ = (λ̄1, λ̄2), λ̄1 ≥ 0, λ̄2 ≥ 0,
satisfying [H1

2×2], and let

u
(n)
i ≡ u(n)

i (resp. u(n)
i ≡ ū(n)

i ), i = 1, 2; n = 0, 1, 2, . . . ,

and

u
(∞)
i ≡ u(∞)

i (resp. u(∞)
i ≡ ū(∞)

i ), i = 1, 2,

where u
(∞)
i and ū

(∞)
i , i = 1, 2, are promised by Theorem 2.1. Denote e

(m)
i =

u
(m)
i − u(∞)

i , i = 1, 2. Then there exist a λ̄ and a θλ̄, 0 < θλ̄ < 1, such that

‖(e(n)
1 , e

(n)
2 )‖0,Ω ≤ θnλ̄‖e

(0)
1 , e

(0)
2 )‖0,Ω, n = 1, 2, . . . .(2.26)

Proof. Denote

u(n)(x) = (u(n)
1 (x), u(n)

2 (x)), u(∞)(x) = (u(∞)
1 (x), u(∞)

2 (x)).

By Theorem 2.1, the u(∞)
i , i = 1, 2, satisfy{

λ̄iu
(∞)
i −∆u(∞)

i = Fi,λ̄i (·, u(∞)), i = 1, 2, on Ω,
Biu

(∞)
i = gi, i = 1, 2, on ∂Ω.

(2.27)
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Consider first the quasimonotone nonincreasing and quasimonotone nondecreasing
cases. Then (2.15) holds with λi = λ̄i. Subtracting (2.27) from (2.15), we get

(λ̄i −∆)e(n+1)
i = λ̄ie

(n)
i − [fi(·, u(n))− fi(·, u(∞))], on Ω,(2.28)

Bie
(n+1)
i = 0, on ∂Ω,(2.29)

i = 1, 2.

Multiplying (2.28) by e(n+1)
i and integrating by parts, we obtain

−
∫
∂Ω

∂e
(n+1)
i

∂n
e

(n+1)
i dσ +

∫
Ω

|∇e(n+1)
i |2dx+ λ̄i

∫
Ω

|e(n+1)
i |2dx =

∫
Ω

H
(n)
i e

(n+1)
i dx,

(2.30)

where

H
(n)
i ≡ λ̄ie(n)

i − [fi(·, u(n))− fi(·, u(∞))].

Depending on whether Bie
(n+1)
i = 0 represents the homogeneous Dirichlet, Neu-

mann or Robin boundary condition,

e
(n+1)
i ≡ 0,

∂

∂n
e

(n+1)
i ≡ 0,

∂

∂n
e

(n+1)
i + αi(·)e(n+1)

i ≡ 0 on ∂Ω,(2.31)

we have, respectively,

λ∗i = inf
v∈H1

0 (Ω)

∫
Ω

|∇v|2dx

‖v‖20,Ω
, λ∗i = 0,

λ∗i = inf
v∈H1(Ω)

 ∫
∂Ω

α|v|2dσ +
∫
Ω

|∇v|2dx

/‖v‖20,Ω.
(2.32)

From (2.28)–(2.32), we obtain

(λ∗i + λ̄i)
∫
Ω

|e(n+1)
i |2dx ≤

∫
Ω

H
(n)
i e

(n+1)
i dx, i = 1, 2.(2.33)

By (2.25), we have

H
(n)
i = [λ̄i −Difi(x, u(n)(x), u(∞)(x))] e(n)

i (x) −Dîfi(x, u(n)(x), u(∞)(x)) e(n)

î
(x),

(2.34)

for

(i, î) = (1, 2), (2, 1).(2.35)

From (2.33) and (2.34), we get
∫
Ω

|e(n+1)
i |2dx ≤

∫
Ω

[
λ̄i −Difi
λ̄i + λ∗i

e
(n)
i e

(n+1)
i − Dîfi

λ̄i + λ∗i
e

(n)

î
e

(n+1)
i

]
dx,

for (i, î) as in (2.35), and (Difi,Dîfi) as in (2.34).

(2.36)

Note that the above step is analogous to (4.12) and (4.13) given below in §4, but
here we have an infinite dimensional setting. We may now rewrite (2.36) in matrix
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form: ∫
Ω

|e(n+1)|2dx ≤
∫
Ω

[e(n+1)
1 e

(n+1)
2 ]A

[
e

(n)
1

e
(n)
2

]
dx,(2.37)

where

A = A(λ̄1, λ̄2, x, u
(n)(x), u(∞)(x)]

≡


λ̄1 −D1f1(x, u(n)(x), u(∞)(x))

λ̄1 + λ∗1
−D2f1(x, u(n)(x), u(∞)(x))

λ̄1 + λ∗1

−D1f2(x, u(n)(x), u(∞)(x))
λ̄2 + λ∗2

λ̄2 −D2f2(x, u(n)(x), u(∞)(x))
λ̄2 + λ∗2

 .
We can now apply Theorem 4.2 and (4.12)–(4.14) in §4 to get (cf. (4.2) for the
norm of a 2× 2 matrix in R2)

‖A(·)‖R2

≤ 1
2

{[(
λ̄1 −D1f1(·)
λ̄1 + λ∗1

+
λ̄2 −D2f2(·)
λ̄2 + λ∗2

)2

+
(
−D2f1(·)
λ̄1 + λ∗1

+
D1f2(·)
λ̄2 + λ∗2

)2
]1/2

+

[(
λ̄1 −D1f1(·)
λ̄1 + λ∗1

− λ̄2 −D2f2(·)
λ̄2 + λ∗2

)2

+
(
D2f1(·)
λ̄1 + λ∗1

− D1f2(·)
λ̄2 + λ∗2

)2
]1/2}

.

(2.38)

Note that (2.38) is exactly in the same form as (4.14) under the correspondence

λ1 ↔ λ̄1, λ2 ↔ λ̄2, a↔ D1f1(·), b↔ D1f2(·), c↔ D2f1(·), d↔ D2f2(·).

Therefore, by applying Theorem 4.3, we see that by [H2
2×2], we can find some

λ̄1 > 0, λ̄2 > 0, sufficiently large, such that

‖A(λ̄1, λ̄2, x, u1, u2, v1, v2)‖ ≤ θλ̄ < 1, ∀x ∈ Ω, ∀(u1, u2), (v1, v2) ∈ 〈u, ū〉.

From (2.37), we get ∫
Ω

|e(n+1)|2dx ≤ θλ̄‖e(n+1)‖0,Ω‖e(n)‖0,Ω,

and so

‖e(n+1)‖0,Ω ≤ θλ̄‖e(n)‖0,Ω, n = 0, 1, 2, . . . .(2.39)

Therefore (2.26) is obtained.

By the intermediate value theorem and the continuity of ∂fi/∂ui, i = 1, 2, we easily
see from (2.23) that [H2

2×2] is equivalent to

[H2
2×2] : min

[
λ∗1 +

∂f1(x, u1, u2)
∂u1

]
> 0, min

[
λ∗2 +

∂f2(x, u1, u2)
∂u2

]
> 0,

for x ∈ Ω, (u1, u2) ∈ 〈u− δ, ū + δ〉, for some small δ > 0.
(2.40)

By Remark 4.6 in §4, we see that, generically, [H2
2×2] is about the tightest we can

get in order for (2.26) to hold for some θλ̄, 0 < θλ̄ < 1.



BOUNDARY ELEMENT MONOTONE ITERATION SCHEME, PART II 637

3. Error analysis for a Galerkin boundary element

monotone iteration scheme

We now introduce a Galerkin boundary element scheme for computing (2.15),
(2.19) or (2.20), and analyze the errors. Let E(x−y;λ) be the fundamental solution
of the Helmholtz operator ∆− λ satisfying

(∆− λ)E(x − y;λ) = −δ(x− y), λ > 0, x, y ∈ RN .

As in Part I [5], denote the volume potential by Ṽλ:

(Ṽλφ)(x) =
∫
Ω

E(x− y;λ)φ(y)dy, x ∈ Ω,

and the simple-layer potential by S̃λ:

(S̃λη)(x) =
∫
∂Ω

E(x− y;λ)η(y)dσy , x ∈ Ω.

Also, let Sλ and Vλ be, respectively, the trace of S̃λ and Ṽλ:

Sλη ≡ (S̃λη)|∂Ω, Vλφ ≡ (Vλφ)|∂Ω.

The normal derivative of the volume potential is denoted by

(V ′λφ)(x) =
∫
Ω

∂E(x− y;λ)
∂nx

φ(y)dy, x ∈ ∂Ω.

In addition, we define the boundary operator Kλ:

(Kλη)(x) =
∫
∂Ω

∂E(x− y;λ)
∂nx

η(y)dσy , x ∈ ∂Ω.

The regularity properties of these integral operators are summarized below.

Theorem 3.1. Let λ > 0. Then
(i) Ṽλ maps continuously from Hs(Ω) into Hs+2(Ω), ∀s ≥ −1;
(ii) Vλ maps continuously from Hs(Ω) into Hs+ 3

2 (∂Ω), ∀s ≥ −1;
(iii) V ′λ maps continuously from Hs(Ω) into Hs+ 1

2 (∂Ω), ∀s ≥ −1;
(iv) S̃λ maps continuously from Hs(∂Ω) into Hs+ 3

2 (Ω), ∀s ∈ R;
(v) Sλ maps isomorphically from Hs(∂Ω) onto Hs+1(∂Ω), and is positive defi-

nite, ∀s ∈ R; Sλ is a strongly elliptic pseudodifferential operator of order −1;
(vi) Kλ maps continuously from Hs(∂Ω) into{

Hs+1(∂Ω), ∀s ∈ R, if N ≥ 3,
C∞(∂Ω), ∀s ∈ R, if N = 2.

Furthermore, 1
2I +Kλ maps Hs(∂Ω) onto Hs(∂Ω) isomorphically for every s ∈ R

such that 1
2I+Kλ =

(
∂
∂n S̃λ

)∣∣
∂Ω

, and 1
2I+Kλ is a strongly elliptic pseudodifferential

operator of order 0.
(vii) For α(·) given as in (2.4), the operator

Tλ ≡ 1
2I +Kλ + α(·)Sλ(3.1)

is a strongly elliptic pseudodifferential operator of order 0 mapping isomorphically
from Hs(∂Ω) onto Hs(∂Ω) ∀s ∈ R. �
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Return to the iteration (2.15)–(2.20). In the two boundary conditions Biui = gi
for i = 1, 2, we have several different possible combinations for (B1, B2), say, for
example, (Dirichlet, Dirichlet), (Dirichlet, Neumann) or (Dirichlet, Robin) type.
In the subsequent error analysis, the arguments for the Neumann type boundary
condition are identical to those for the Robin type. Therefore, for definiteness, let
us treat the most representative case, (B1, B2) = (Dirichlet, Robin), i.e.,

B1u1 ≡ u1|∂Ω = g1; B2u2 =
(
∂u2

∂n
+ α(·)u

) ∣∣∣
∂Ω

= g2 (cf. (2.4)).(3.2)

Noting from Part I [5] that the indirect formulation is more advantageous, we
continue to adopt it here by using the ansatz [5, (3.8)], that the solution is a sum of
a simple-layer potential plus a volume (Newtonian) potential (which is often called
a domain integral):

u
(n+1)
i (x) = (S̃λiη

(n+1)
i )(x) − (ṼλiFi,λi (·, u

(n)
1 , u

(n)
2 ))(x)

=
∫
∂Ω

E(x− y;λi)η
(n+1)
i (y)dσy

−
∫
Ω

E(x− y;λi)Fi,λi (y, u
(n)
1 (y), u(n)

2 (y))dy,

x ∈ Ω, i = 1, 2,

(3.3)

where η(n+1)
i , i = 1, 2, are the unknown simple layer densities to be solved, on ∂Ω

only. Applying the boundary conditions in (2.2) to (3.3), we get the following two
boundary integral equations for the determination of η(n+1)

i , i = 1, 2:

Sλ1η
(n+1)
1 = g1 + Vλ1F

(n)
1,λ1

,(3.4)  on ∂Ω,

Tλ2η
(n+1)
2 = g2 + (V ′λ2

+ αVλ2)F (n)
2,λ2

(3.5)

where

F
(n)
i,λi
≡ Fi,λi (·, u

(n)
1 , u

(n)
2 )).(3.6)

Lemma 3.2. Let gi ∈ C∞(∂Ω) and F
(n)
i,λi
∈ C∞(Ω) for i = 1, 2 in (2.2) and

(3.6). Then there exist unique η
(n+1)
1 , η(n+1)

2 ∈ C∞(∂Ω) which are, respectively,
the solution of the BIEs (3.4) and (3.5).

Proof. The BIE (3.4) is solvable with a unique solution η(n+1)
1 because the property

(v) in Theorem 3.1.
The BIE (3.5) is also solvable with a unique solution η(n+1)

2 because of property
(vii) in Theorem 3.1.

The following theorem is a generalization and combination of [5, Theorem 3.1
and Corollary 3.3]. The indicated antimonotone property is useful and has also
been confirmed numerically.

Theorem 3.3. Let the assumptions of Theorem 2.1 hold, including [H1
2×2] but

not [H2
2×2]. Let the boundary conditions be given as (3.2), and let η(n+1)

1
, η̄

(n+1)
1 ,

η(n+1)
2

, η̄
(n+1)
2 be the simple layer densities in (3.4) and (3.5) corresponding, re-

spectively, to u
(n+1)
1 , ū

(n+1)
1 , u(n+1)

2 , ū
(n+2)
2 in the quasimonotone iteration. Then
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we have the antimonotone property

η(n)
i
≥ η(n+1)

i
≥ η̄(n+1)

i ≥ η̄(n)
i on ∂Ω, i = 1, 2, n = 0, 1, 2, . . . .

Consequently, η(n)
i

and η̄(n)
i , converge monotonically and respectively, to some η(∞)

i

and η̄(∞)
i , naturally corresponding to u

(∞)
i , ū

(∞)
i , respectively, for i = 1, 2 in Theo-

rem 2.1.

Proof. The boundary operator Sλ1 in (3.4) is the same simple-layer boundary op-
erator as in [5, (3.12)], so we can apply [5, Theorem 3.1] directly. The boundary
operator Tλ2 in (3.5) corresponds to the Robin boundary B2 in (3.2), and therefore,
we need to establish an analogue of [5, Theorem 3.1] for the operator Tλ2 based
upon the representation (3.3). Let us go to the proof of [5, Theorem 3.1, pp. 951–
955]; we need only modify certain segments therein. First, inherit all the work
there, except that in [5, (3.25)2 and (3.26)2], we change the homogeneous Dirich-
let boundary conditions to the homogeneous Robin conditions. But note that [5,
(3.33)2] remains unchanged. Then the rest of all the arguments in [5, pp. 954–955]
remain the same, except that at [5, line 13, p. 955], we now write instead

∂

∂n
[w+(x)− w−(x)] + α(x)[w+(x)− w−(x)] =

∂

∂n
[w+(x) − w−(x)]

= · · · · · · (same as in [5, lines 14–18, p. 955])

= η1(x)− η2(x) ≥ 0.

Therefore the proof is complete.

Throughout the discussions in the rest of this section, without further mention,
we have assumed [Hi

2×2], i = 1, 2.
For later use, we define, for given λ = (λ1, λ2),

Mλ = max{[(λ1 −D1f1(x, u1, u2, v1, v2))2 + (D2f1(x, u1, u2, v1, v2)2]1/2,

[(λ2 −D2f2(x, u1, u2, v1, v2))2 + (D1f2(x, u1, u2, v1, v2))2]1/2}(3.7)

x ∈ Ω; (u1, u2), (v1, v2) ∈ 〈u− δ, ū + δ〉.

As in Part I [5], let Sh, 0 < h ≤ h0, be a 1-parameter family of finite-dimensional
boundary element approximation spaces that form an (`,m)-system S`,mh , with `,
m ∈ Z+ ≡ {0, 1, 2, . . .}, ` ≥ m + 1, on ∂Ω, in the sense of Babuška and Aziz [3].
The Galerkin boundary element scheme to solve (3.4) and (3.5) is:

(i) Initialization: Set u(0)
i,h(x) = ui(x) or ūi(x), i = 1, 2, according to whether

the semilinear system is quasimonotone nonincreasing, nondecreasing, or
mixed, and according to (2.15)–(2.20).
(ii) Choose λi ≥ 0, i = 1, 2, satisfying [H1

2×2] and [H2
2×2].

(iii) For each n = 0, 1, 2, . . . , and h, 0 < h ≤ h0, find η
(n+1)
i,h ∈ Sh such that

〈Sλ1η
(n+1)
1,h , φh〉 = 〈g1 + Vλ1F

(n)
1,λ1,h

, φh〉
〈Tλ2η

(n+1)
2,h , φh〉 = 〈g2 + (V ′λ2

+ αVλ2 )F (n)
2,λ2,h

, φh〉

}
∀φh ∈ Sh,(3.8)

where 〈 , 〉 signifies the L2(∂Ω) inner product, and

F
(n)
i,λi,h

≡ Fi,λi(·, u
(n)
1,h, u

(n)
2,h).
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(iv) Define

u
(n+1)
i,h (x) = (S̃λiη

(n+1)
i,h )(x) − (ṼλiF

(n)
i,λi,h

)(x), x ∈ Ω, n = 0, 1, 2, . . . .(3.9)

Note that the two equations in (3.8) can be computed separately. Let us state
the main theorem of error estimates.

Theorem 3.4. Let {Sh | 0 < h ≤ h0} be a family of (`,m)-systems on ∂Ω with
` ≥ 2, m ≥ 1, and let N = 2 or 3. Assume [Hi

2×2], i = 1, 2. Then there exist
K1 > 0, K2 > 0 (the same as in (E4) and (E5) below), ρλ, 0 < ρλ < 1, and a
small h̄0 > 0 satisfying (3.21) such that for any r, 0 ≤ r < 2, we have

‖(u(n)
1,h − u

(∞)
1 , u

(n)
2,h − u

(∞)
2 )‖r,Ω

≤ K1h
2−r‖(u(∞)

1 , u
(∞)
2 )‖2,Ω +K2ρ

n
λ‖(e

(0)
1 , e

(0)
2 )‖0,Ω,

(3.10)

for all n = 1, 2, . . . , 0 < h ≤ h̄0. Therefore (u(n)
1,h, u

(n)
2,h) converges to (u(∞)

1 , u
(∞)
2 )

as n → ∞ and h ↓ 0. Also, for − 3
2 ≤ s < 1

2 , there are constants K3,s > 0 and
K4,s > 0 such that

‖(η(n)
1,h − η

(∞)
1 , η

(n)
2,h − η

(∞)
2 )‖s,∂Ω

≤ K3,sh
1
2−s‖(u(∞)

1 , u
(∞)
2 )‖2,Ω +K4,sρ

n
λ‖(e

(0)
1 , e

(0)
2 )‖2,Ω,

(3.11)

for all n = 1, 2, . . . , 0 < h ≤ h̄0.
In particular, if N = 2 and if {Sh | 0 < h ≤ h0} is a family of Sdh spaces of

smoothest splines of degree d ≥ 0 with respect to a quasiuniform mesh on ∂Ω, then
(3.10) holds for 0 ≤ r < 2, and (3.11) holds for −(d+ 2) ≤ s < 1/2.

Proof. See (E1)–(E6) below and [5, Theorems 4.10 and 4.12].

We will be concise in deriving error estimates, since much of the procedure is
similar to the work in [5]. The estimation is done through a string of comparisons.
Note that

(I) The exact simple-layer densities (η(n+1)
1 , η

(n+1)
2 ) for the iterative solution

(u(n+1)
1 , u

(n+1)
2 ) (cf. (2.15)) satisfy the BIEs (3.4) and (3.5).

(II) The Galerkin boundary element approximation

(η(n+1)
1,h , η

(n+1)
2,h )

for (η(n+1)
1 , η

(n+1)
2 ) satisfies (3.8).

(III) The numerical solution

(u(n+1)
1,h , u

(n+1)
2,h )

approximating (u(n+1)
1 , u

(n+1)
2 ) at each step of the iteration is defined from

(η(n+1)
1,h , η

(n+1)
2,h ) through (3.9). The errors are defined to be

e
(n+1)
i,h = u

(n+1)
i,h − u(n+1)

i , i = 1, 2; n = 0, 1, 2, . . . ;(3.12)

(IV) An intermediate simple-layer density pair (ζ(n+1)
1,h , ζ

(n+1)
2,h ) on ∂Ω for the

comparison purpose is defined to be the unique solutions of the BIEs{
Sλ1ζ

(n+1)
1,h = g1 − Vλ1F

(n)
1,λ1,h

,

Tλ2ζ
(n+1)
2,h = g2 − (V ′λ2

+ αVλ2)F (n)
2,λ2,h

,
on ∂Ω, n = 0, 1, 2, . . . ,

(as guaranteed in the same way by Lemma 3.2);
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(V) An intermediate solution pair (w(n+1)
1,h , w

(n+1)
2,h ) on Ω for the comparison

purpose is defined by

(3.13) w
(n+1)
i,h (x) = (S̃λiζ

(n+1)
i,h )(x) − (ṼλiF

(n)
i,λi,h

)(x),

x ∈ Ω, i = 1, 2; n = 0, 1, 2, . . . .

It is obvious that w(n+1)
i,h , i = 1, 2, satisfy
(λi −∆)w(n+1)

i,h = F
(n)
i,λi,h

on Ω,
Biw

(n+1)
i,h = gi on ∂Ω,

i = 1, 2;n = 0, 1, 2, . . . .
(3.14)

(VI) The limit of (u(n+1)
1 , u

(n+1)
2 ) as n → ∞ is (u(∞)

1 , u
(∞)
2 ), as guaranteed

by Theorem 2.1. Note that (u∞1 , u
∞
2 ) = (u(∞)

1 , u
(∞)
2 ), or (ū(∞)

1 , ū
(∞)
2 ), or

(u(∞)
1 , ū

(∞)
2 ), or (ū(∞)

1 , u
(∞)
2 ) according to Theorem 2.1. The pair (u(∞)

1 , u
(∞)
2 )

is an exact solution of (S). Corresponding to (u(∞)
1 , u

(∞)
2 ), we have simple-

layer densities (η(∞)
1 , η

(∞)
2 ) which are solutions of the BIEs{

Sλ1η
(∞)
1 = g1 + Vλ1F1,λ1(·, u(∞)

1 , u
(∞)
2 )

Tλ2η
(∞)
2 = g2 + (V ′λ2

+ αVλ2 )F2,λ2 (·, u(∞)
1 , u

(∞)
2 )

on ∂Ω.

The initial error (e(0)
1 , e

(0)
2 ) is defined to be

e
(0)
i = u

(0)
i − u

(∞)
i .(3.15)

The glossary of error estimates can now be stated sequentially as follows:

(3.16) (E1) ‖η(n+1)
i,h − ζ(n+1)

i,h ‖t,∂Ω ≤ Ci,s,tht−s‖ζ(n+1)
i,h ‖s,∂Ω,

i = 1, 2; n = 0, 1, 2, . . . ,

where Ci,s,t, i = 1, 2, are positive constants independent of n and h, and

2ω − ` ≤ t ≤ s ≤ `, t ≤ m, −` ≤ ω ≤ m, −m ≤ ω ≤ t,

with

ω ≡
{
− 1

2 , i = 1,
0, i = 2.

Proof. Cf. [5, Lemma 4.2 and §6], Hsiao and Wendland [6, Cor. 2.1] and Ruot-
salainen and Saranen [12, Cor. 3].

(E2) Let N = 2 or 3, and

ε0(N) =
{

0, N = 2,
an arbitrarily small positive number, 0 < ε0(3) < 1/2, N = 3.

(3.17)
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Then for ` ≥ 2,m ≥ 1, and some sufficiently small h0, there are positive constants
K0 and Kε0(N) such that

‖η(n+1)
i,h − ζ(n+1)

i,h ‖ε0(N),∂Ω

≤ Kε0(N)h
1
2−ε0(N) · [‖u(∞)

i ‖2,Ω +Mλθ
n
λ‖(e

(0)
1 , e

(0)
2 )‖0,Ω

+ ‖F (n)
i,λi,h

− F (n)
i,λi
‖0,Ω],

‖η(n+1)
i,h − ζ(n+1)

i,h ‖− 3
2 ,∂Ω

≤ K0h
2[‖u(∞)

i ‖2,Ω +Mλθ
n
λ‖(e

(0)
1 , e

(0)
2 )‖0,Ω

+ ‖F (n)
i,λi,h

− F (n)
i,λi
‖0,Ω],

(3.18)

for i = 1, 2, n = 0, 1, 2, . . . , 0 < h ≤ h0.

Proof. Cf. [5, Lemma 4.3 and §6].

(E3) Let N = 2 or 3. For ε0(N) given by (3.17) and for β with{
0 < β < 1/2, if N = 2,
β = ε0(3), if N = 3,

(3.19)

there exist positive constants K ′0 and K ′ε0(N) such that

‖u(n+1)
i,h − w(n+1)

i,h ‖C0,β(Ω) ≤ K ′ε0(N)h
1
2−ε0(N)[‖u(∞)

i ‖2,Ω +Mλθ
n
λ‖(e

(0)
1 , e

(0)
2 )‖0,Ω

+‖F (n)
i,λi,h

− F (n)
i,λi
‖0,Ω],

‖u(n+1)
i,h − w(n+1)

i,h ‖0,Ω ≤ K ′0h
2[‖u(∞)

i ‖2,Ω +Mλθ
n
λ‖(e

(0)
1 , e

(0)
2 )‖0,Ω

+‖F (n)
i,λi,h

− F (n)
i,λi
‖0,Ω],

for i = 1, 2, n = 0, 1, 2, . . . , 0 < h ≤ h0, where K ′ε0(N) may grow unbounded as
ε0(3) ↓ 0 when N = 3.

Proof. Cf. [5, Lemma 4.5].

(E4) Let N = 2 or 3, and let β satisfy (3.19). Then

‖w(n+1)
i,h − u(n+1)

i ‖C0,β(Ω) ≤ K1‖F (n)
i,λi,h

− F (n)
i,λi
‖0,Ω,

‖w(n+1)
i,h − u(n+1)

i ‖0,Ω ≤ 1
λi + λ∗i

‖F (n)
i,λi,h

− F (n)
i,λi
‖0,Ω

for some K1 > 0 independent of n, h and β, and for i = 1, 2, n = 0, 1, 2, . . . , 0 <
h ≤ h0.

Proof. Cf. [5, Lemmas 4.6 and 4.7].
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(E5) Let N = 2 or 3, and let β be related to ε0(N) through (3.19). If we have
(u(n)

1,h(x), u(n)
2,h(x)) ∈ 〈u− δ, ū + δ〉 for all x ∈ Ω, then

‖e(n+1)
i,h ‖C0,β(Ω)

≤ K ′ε0(N)h
1
2−ε0(N)[‖(u(∞)

1 , u
(∞)
2 )‖2,Ω +Mλθ

n
λ‖(e

(0)
1 , e

(0)
2 )‖0,Ω]

+ (K ′1Mλ +K ′ε0(N)h
1
2−ε0(N))‖(e(n)

1,h, e
(n)
2,h)‖0,Ω,

‖(e(n+1)
1,h , e

(n+1)
2,h )‖0,Ω

≤ K2h
2[‖(u(∞)

1 , u
(∞)
2 )‖2,Ω +Mλθ

n
λ‖(e

(0)
1 , e

(0)
2 )‖0,Ω]

+ (θλ +K ′0Mλh
2)‖(e(n)

1,h, e
(n)
2,h)‖0,Ω,

(3.20)

for i = 1, 2, 0 < h ≤ h0, for some K ′1 > 0,K2 > 0 independent of n and h.

Proof. Cf. [5, Cor. 4.8].

(E6) Let N = 2 or 3. Choose h̄0 > 0 so small that

0 < θλ + K2Mλh̄
2
0 ≤ ρλ < 1,(3.21)

for some ρλ = ρλ1,λ2 , 0 < ρλ < 1. Then

(u(n)
1,h(x), u(n)

2,h(x)) ∈ 〈u− δ, ū + δ〉, ∀x ∈ Ω,(3.22)

i = 1, 2, n = 1, 2, . . . , 0 < h ≤ h̄0,

and there exist Kε0(N) > 0,K0 > 0 such that

‖e(n+1)
i,h ‖C0,β(Ω) ≤ Kε0(N)h

1
2−ε0(N)[‖(u(∞)

1 , u
(∞)
2 )‖2,Ω + ρn+1

λ h2‖(e(0)
1 , e

(0)
2 )‖0,Ω],

‖(e(n+1)
1,h , e

(n+1)
2,h )‖0,Ω ≤ K0h

2[‖(u(∞)
1 , u

(∞)
2 )‖2,Ω + ρn+1

λ h2‖(e(0)
1 , e

(0)
2 )‖0,Ω],

for n = 0, 1, 2, . . . , 0 < h ≤ h̄0.

Proof. A direct consequence of (3.21), (3.22) and (E5).

4. Comparison of eigenvalues and `2-norms of 2× 2 matrices

We now provide the rudiments of 2 × 2 matrices which form the basis in the
formulation of the critical condition [H2

2×2] in §2.
Let

A =
[
a b
c d

]
(4.1)

be a real 2× 2 constant matrix. Then the `2-norm of A is defined by

‖A‖ = sup
x∈R2

x 6=0

|Ax|
|x| , |x| =

√
x2

1 + x2
2.(4.2)

The next theorem gives an explicit characterization of ‖A‖ in terms of its entries
a, b, c, d.

Theorem 4.1. Let A be given as in (4.1). Then

‖A‖ =
1
2

[√
(a+ d)2 + (b− c)2 +

√
(a− d)2 + (b+ c)2

]
.(4.3)
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Proof. It is well known that (see, e.g., [13, p. 766])

‖A‖ = max{√µ1,
√
µ2}, where µ1, µ2 = eigenvalues of ATA.(4.4)

Since

ATA =
[
a2 + c2 ab+ cd
ab+ cd b2 + d2

]
,

we get the characteristic polynomial of ATA:

µ2 − (a2 + b2 + c2 + d2)µ+ [(a2 + c2)(b2 + d2)− (ab + cd)2] = 0.

Therefore

µ1, µ2 =
1
2

{
(a2 + b2 + c2 + d2)

±
√

(a2 + b2 + c2 + d2)2 − 4[(a2 + c2)(b2 + d2)− (ab + cd)2]
}

=
1
4

[√
(a+ d)2 + (b− c)2 ±

√
(a− d)2 + (b+ c)2

]2
,

from which we obtain

max {√µ1,
√
µ2} =

1
2

[
√

(a+ d)2 + (b− c)2 +
√

(a− d)2 + (b+ d)2].

By (4.4), we have proved (4.3).

Theorem 4.2. Let

D =
[
η1 0
0 η2

]
, ηi > 0, i = 1, 2,(4.5)

be a diagonal matrix, and let x, y ∈ R2 satisfy

Dx = Ay, A given by (4.1).(4.6)

Then

|x| ≤ θ|y|,(4.7)

where

θ ≡ 1
2

[√( a
η1

+
d

η2

)2

+
( b
η1
− c

η2

)2

+

√( a
η1
− d

η2

)2

+
( b
η1

+
c

η2

)2
]
.

Proof. From (4.6), we get

x = D−1Ay =
[
a/η1 b/η1

c/η2 d/η2

]
y ≡ Ãy.(4.8)

Applying Theorem 4.1 to Ã, we get (4.7).

We now consider a special form of the relation (4.6), where

D =
[
λ1 + λ∗1 0

0 λ2 + λ∗2

]
,(4.9)

A =
[
λ1 − a −b
−c λ2 − d

]
,(4.10)

where
λ∗1 ≥ 0, λ∗2 ≥ 0; a, b, c, d ∈ R; λ∗1, λ

∗
2, a, b, c and d are given;

λ1 ≥ 0, λ2 ≥ 0; λ1 + λ∗1 > 0, λ2 + λ∗2 > 0.

}
(4.11)
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Let x, y ∈ R2 satisfy

Dx = Ay.(4.12)

Then by Theorem 4.2, we get

|x| ≤ ‖D−1A‖ |y| ≡ θλ|y|,(4.13)

where

θλ =
1
2


[(

λ1 − a
λ1 + λ∗1

+
λ2 − d
λ2 + λ∗2

)2

+
(
− b

λ1 + λ∗1
+

c

λ2 + λ∗2

)2
]1/2

+

[(
λ1 − a
λ1 + λ∗1

− λ2 − d
λ2 + λ∗2

)2

+
(

b

λ1 + λ∗1
+

c

λ2 + λ∗2

)2
]1/2

 .

(4.14)

We want to investigate whether there exist any λ1 ≥ 0, λ2 ≥ 0, such that 0 < θλ <
1, so that (4.13) becomes a contraction.

Theorem 4.3. Assume that (4.9)–(4.12) hold. If

λ∗1 + a > 0, λ∗2 + d > 0,(4.15)

then there exist some λ1 > 0, λ2 > 0, sufficiently large, such that 0 < θλ < 1, and
(4.13) is a strict contraction.

Proof. Write θλ in (4.14) into the following form:

θλ =
1
2

{
[(α+ δ)2 + (−β + γ)2]1/2 + [(α− δ)2 + (β + γ)2]1/2

}
,

where

α =
λ1 − a
λ1 + λ∗1

, δ =
λ2 − d
λ2 + λ∗2

, β =
b

λ1 + λ∗1
, γ =

c

λ2 + λ∗2
.(4.16)

Note that β and γ can be made arbitrarily small by taking λ1 and λ2 large. There-
fore for large λ1 > 0 and λ2 > 0, we have θλ < 1 if and only if

1
2

{
[(α+ δ)2]1/2 + [(α− δ)2]1/2

}
< 1,

i.e.,
1
2

[|α+ δ|+ |α− δ|] < 1.

But for λ1 > 0 and λ2 > 0 sufficiently large, α and δ are positive, and

1
2

[|α+ δ|+ |α− δ|] =

{
α if α ≥ δ,
δ if α < δ.

Hence for large λ1 and λ2, if both α < 1 and δ < 1, then θλ < 1. But from (4.16)
α < 1 and δ < 1 mean that

λ1 − a
λ1 + λ∗1

< 1,
λ2 − d
λ2 + λ∗2

< 1,

which hold if and only if

λ∗1 + a > 0 and λ∗2 + d > 0.

We now consider the converse of Theorem 4.3.
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Theorem 4.4. Assume that (4.9)–(4.11) hold. If

λ∗1 + a < 0, λ∗2 + d < 0,(4.17)

then

θλ ≡ ‖D−1A‖ > 1.

Proof. From (4.17), we get

−a > λ∗1, −d > λ∗2.

Therefore, for λ1 ≥ 0, λ2 ≥ 0,

λ1 − a
λ1 + λ∗1

> 1,
λ2 − d
λ2 + λ∗2

> 1.

From (4.14), we easily see that θλ > 1.

Is it still possible to have 0 < θλ < 1 if (λ∗1 + a)(λ∗2 + d) ≤ 0? The answer is also
negative, as given by the following.

Theorem 4.5. Assume (4.9)–(4.11), and

(λ∗1 + a)(λ∗2 + d) ≤ 0.(4.18)

Then

θλ ≡ ‖D−1A‖ ≥ 1.

Proof. Condition (4.18) implies one of the following four possibilities:

(i) λ∗1 + a = 0;
(ii) λ∗2 + d = 0;
(iii) λ∗1 + a < 0, λ∗2 + d > 0;
(iv) λ∗1 + a > 0, λ∗2 + d < 0.

Cases (i) and (ii) are similar, as are (iii) and (iv). Here we only prove (iii). From
λ∗1 + a < 0, utilizing the facts that λ1 ≥ 0, λ∗1 ≥ 0 and λ1 + λ∗1 > 0, we have

λ1 − a
λ1 + λ∗1

> 1.

From (4.14), we get

θλ ≥
1
2

{∣∣∣∣ λ1 − a
λ1 + λ∗1

+
λ2 − d
λ2 + λ∗2

∣∣∣∣+
∣∣∣∣ λ1 − a
λ1 + λ∗1

− λ2 − d
λ2 + λ∗2

∣∣∣∣} > 1.

Remark 4.6. Theorems 4.3–4.5 show that (4.15) is a necessary and sufficient con-
dition for 0 < θλ < 1. It is also interesting to note that the strict contraction
property (4.13) does not depend on the off-diagonal entries −b and −c in the ma-
trix A in (4.10). Since our critical condition [H2

2×2] in §2 was formulated on the
basis of (4.15), we see that the strict contraction property (2.26) in Theorem 2.2
is independent of the “off-diagonal nonlinearities” in ∂f1/∂u2 and ∂f2/∂u1, for f1

and f2 given in (2.1).



BOUNDARY ELEMENT MONOTONE ITERATION SCHEME, PART II 647

5. Numerical Example

We construct an annular domain Ω as shown in Figure 5.1, wherein ∂Ω consists
of an exterior bounding circle C1 and an interior nonconcentric bounding circle
C2. C1 and C2 in Figure 5.1 are discretized uniformly into, respectively, 96 and
48 panels which are piecewise constant boundary elements, as indicated in Figure
5.1. Thus, what we have is an S1,0

h (∂Ω)-system, which is also an Sdh-system (d =
0) of smoothest splines of degree 0 with a quasiuniform mesh. So Theorem 3.4
is applicable. For the volume potential (i.e., the domain integral) in (3.3), the
numerical integration is achieved by placing 1620 Gaussian quadrature points on
Ω, which are rather evenly distributed on Ω. Note that Ω is a nonconvex, non-
starshaped, doubly connected domain. The algorithmic flowchart is nearly the
same as that in [5, §7]. The computer programs on semilinear 2 × 2 system were
first tested with synthetic data, and produced numerical solutions of high accuracy
with strong trends of convergence.

We include a simple numerical example below.

Figure 5.1. The domain Ω for Example 5.1; it is bounded by an
exterior circle C1 and an interior circle C2. C1 and C2 are uni-
formly discretized, respectively, into 96 and 48 piecewise constant
boundary elements.
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Example 5.1. A nonlinear monotone dissipative operator system that is
mixed quasimonotone. Consider

∆u1(x) = 3[3u3
1(x) + 2u2(x)] + 15

4 on Ω,
∆u2(x) = 3[−2u1(x) + 3u3

2(x)]− 6 on Ω,
u1(x) = u2(x) = 0 on ∂Ω.

(5.1)

Then {
f1(x, u1, u2) = f1(u1, u2) = 3(3u3

1 + 2u2) + 15
4 ,

f2(x, u1, u2) = f2(u1, u2) = 3(−2u1 + 3u3
2)− 6,

(5.2)

satisfy
∂f1

∂u2
= 6 > 0,

∂f2

∂u1
= −6 < 0.

Therefore (5.1) is mixed quasimonotone.

Define a nonlinear operator

N
([

u1

u2

])
=
[

∆u1 − 3(3u3
1 + 2u2)

∆u2 − 3(−2u1 + 3u3
2)

]
.(5.3)

Then 〈
N
([

u1

u2

])
−N

([
v1

v2

])
,

[
u1

u2

]
−
[
v1

v2

]〉
= −

2∑
i=1

∫
Ω

[|∇(ui − vi)|2 + 9(u3
i − v3

i )(ui − vi)]dx ≤ 0,(5.4)

for ui, vi ∈ H2
0 (Ω). Therefore N is a monotone dissipative operator, and (5.1)

admits a unique solution pair (u1, u2) [7].
It is straightforward to check that

(u1, ū1) = (−1, 0), (u2, ū2) = (0, (2
3 )

1
3 )

form ordered pairs of constant subsolutions and supersolutions for u1 and u2, re-
spectively. Also, since

∂f1

∂u1
= 27u2

1 ≥ 0,
∂f2

∂u2
= 27u2

2 ≥ 0,(5.5)

we see that (2.40), and consequently [H2
2×2], is trivially satisfied because λ∗1 >

0. Although condition (2.22) in Theorem 2.1 is violated , still, according to the
monotone dissipative property of N stated after (5.1), it is not hard to modify the
proof in [11, p. 409] to establish that the quasimonotone iterations (2.19) and (2.20)
converge to the unique solution. Since [H1

2×2] is also easily verifiable, Theorem 3.4
holds with d = 0, and 0 ≤ r < 2.

As with [5], the Galerkin approximation (3.10) is replaced by a point collocation
scheme: (Sλη

(n+1)
j,h )(xi) = gj(xi) + (VλF

(n)
1,λ,h)(xi), j = 1, 2,

xi are the midpoints of the piecewise constant boundary elements,
for 1 ≤ i ≤M , for some M,

(5.6)

where only (3.8)1 is used because the boundary conditions for both u1 and u2 are
Dirichlet. We choose λ(= λ1 = λ2) =(5.4)2. Actually, any small to moderate size
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positive λ will work. The point collocation scheme (5.6) should have the same type
of accuracy as the Galerkin scheme (3.8), according to Arnold and Wendland [2].

The error estimate (3.11) contains two parameters, h and n. We verify its con-
vergence rates by the computer as follows:

(i) Fix n = 2. Vary h by doubling the number of meshes as follows:

h0 : 48 (on C1) + 24 (on C2);
h1 : 96 (on C1) + 48 (on C2);
h2 : 192 (on C1) + 96 (on C2);
h3 : 384 (on C1) + 192 (on C2).

(5.7)

We then compute the logarithmic relative error

ln ‖(η(2)
1,hj
− η(2)

1,hj−1
, η

(2)
2,hj
− η(2)

2,hj−1
)‖0,∂Ω, j = 1, 2, 3,

and plot them against lnhj . We obtain a line in Figure 5.2, whose slope is measured
to be 0.496. This is totally consistent with the rate O(h

1
2 ) (setting s = 0 in (3.11))

given in Theorem 3.4.
(ii) Fix h = h2; see (5.7). We compute the logarithmic relative errors

ln ‖(η(n)
1,h2
− η(n−1)

1,h2
, η

(n)
2,h2
− η(n−1)

2,h2
)‖0,∂Ω, n = 2, 3, 4, 5, 6,

and plot them against n, yielding Figure 5.3. Again we have found that these five
points lie neatly on a line, with a slope equal to −0.39. This is totally consistent
with the rate O(ρnλ) in (3.11). In fact, it also tells that

ln ρλ ≈ −0.39, i.e., ρλ ≈ 0.677.

Finally, using h = h3, see (5.7), and iterating 21 times, we obtain the approxi-
mate profiles of u(∞)

1 and u(∞)
2 given, respectively, in Figures 5.4 and 5.5.

For this example, any negative constant u(0)
1 , −1 < u

(0)
1 < 0, can be used as an

initial iterate for u1(·), and any positive constant constant u(0)
2 , 0 < u

(0)
2 < (2

3 )
1
3 ,

can be used as an initial iterate for u2(·).
Many other examples, such as the steady state Lotka-Volterra system of predator-

prey model in Pao [11, Ch. 8] and the population migration pattern as studied in
Matano and Mimma [8], in principle can also be computed by quasimonotone it-
erations. However, we have not yet obtained totally satisfactory numerical results.
The primary reason for this is due to the difficulty in choosing the specific upper
and lower solutions associated with such problems (unlike Example 5.1, where such
choices as constants can be easily made). Some further numerical experiments and
improvements are needed.
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Figure 5.2. The relative convergence rate of
ln ‖(η(2)

1,h − η
(2)
1,0.5h, η

(2)
2,h − η

(2)
2,0.5h)‖L2(∂Ω)

for Example 5.1, plotted against lnh. The slope of the line, 0.496,
is close to the theoretical estimate 0.5, i.e., O(h

1
2 ).

Figure 5.3. The relative convergence rate of
ln ‖(η(n)

1,h − η
(n+1)
1,h , η

(n)
2,h − η

(n+1)
2,h )‖L2(∂Ω)

for Example 5.1, plotted against n with h being fixed. The points
lie neatly on a line, consistent with the theoretical estimate O(ρnλ).
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Figure 5.4. The profile of u1 for Example 5.1.

Figure 5.5. The profile of u2 for Example 5.1.
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