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COMPUTING THE HILBERT CLASS FIELD
OF REAL QUADRATIC FIELDS

HENRI COHEN AND XAVIER-FRANÇOIS ROBLOT

Abstract. Using the units appearing in Stark’s conjectures on the values of
L-functions at s = 0, we give a complete algorithm for computing an explicit
generator of the Hilbert class field of a real quadratic field.

Let k be a real quadratic field of discriminant dk, so that k = Q(
√
dk), and let

ω denote an algebraic integer such that the ring of integers of k is Ok := Z+ ωZ.
An important invariant of k is its class group Clk, which is, by class field theory,
associated to an Abelian extension of k, the so-called Hilbert class field, denoted
by Hk. This field is characterized as the maximal Abelian extension of k which is
unramified at all (finite and infinite) places. Its Galois group is isomorphic to the
class group Clk; hence the degree [Hk : k] is the class number hk.

There now exist very satisfactory algorithms to compute the discriminant, the
ring of integers and the class group of a number field, and especially of a quadratic
field (see [3] and [16]). For the computation of the Hilbert class field, however,
there exists an efficient version only for complex quadratic fields, using complex
multiplication (see [18]), and a general method for all number fields, using Kummer
theory, which is not really satisfactory except when the ground field contains enough
roots of unity (see [6], [9] or [15]).

In this paper, we will explore a third way, available for totally real fields, which
uses the units appearing in Stark’s conjectures [21], the so-called Stark units, to
provide an efficient algorithm to compute the Hilbert class field of a real qua-
dratic field. This method relies on the truth of Stark’s conjecture (which is not
yet proved!), but still we can prove independently of the conjecture that the field
obtained is indeed the Hilbert class field and thus forget about the fact that we had
to use this conjecture in the first place.

Of course, the possibility of using Stark units for computing Hilbert or ray class
fields was known from the beginning, and was one of the motivations for Stark’s
conjectures. Stark himself gave many examples. It seems, however, that a complete
algorithm has not appeared in the literature, and it is the purpose of this paper to
give one for the case of real quadratic fields.

In Section 1, we say a few words about how to construct the Hilbert class field
of k when the class number is equal to 2. Here, two methods can be used which are
very efficient in this case: Kummer theory and genus field theory. In Section 2 we
give a special form of Stark’s conjectures, namely the Abelian rank one conjecture
applied to a particular construction. Section 3 is devoted to the description of the
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algorithm, and Section 4 to the verification of the result. Section 5 deals with an
example.

We end the paper with an Appendix giving a table of Hilbert class fields of real
quadratic fields of discriminant less than 2 000.

1. Construction when the class number is equal to 2

We assume in this section that hk = 2. As we already said, in this case there are
two powerful methods to compute Hk, and we quote them without proof.

The first uses Kummer theory, which states that when the ground field contains
the n-roots of unity, every Abelian extension of exponent dividing n can be obtained
by taking n-th roots of elements of the ground field. From this, one easily obtains

Proposition 1.1. Let k be a real quadratic field of class number 2, let v be a real
embedding of k, let η denote the fundamental unit of k such that v(η) > 1, and let
A be a non-principal integral ideal of k. Let α be one of the generators of A2 chosen
so that v(α) > 0. Then Hk = k(

√
θ) for some θ ∈ {η, α, ηα}.

The second method uses genus field theory, which enables one to construct un-
ramified Abelian extensions of k by taking the compositum of k with Abelian ex-
tensions of Q (see [11]).

Proposition 1.2. There exists a divisor d of the discriminant dk with 1 < d < dk
and d ≡ 0, 1(mod 4) such that Hk = k(

√
d).

Hence the determination of Hk in this case boils down to a finite number of easy
tests.

2. A special case of Stark’s conjectures

We now assume only that hk > 1. We keep the same notations, we let v be one
of the real embeddings of k and we denote by ¯ the action of the non-trivial element
of the Galois group of k/Q. We will identify k with its embedded image v(k) into
R. Let K be a quadratic extension of Hk such that K/k is Abelian and v stays real
in this extension but v becomes complex. We identify K with one of its embedded
images in R (so with one of its images w(K), where w is a place above v).

Let f denote the conductor of K/k and G its Galois group. Let Ik(f) denote
the group of fractional ideals coprime with the finite part f0 of this conductor, let
Pk(f) denote the group of principal ideals generated by elements multiplicatively
congruent to 1 modulo f, and let Clk(f) := Ik(f)/Pk(f) be the ray class group
modulo f. The Artin map sends any ideal A ∈ Ik(f) to an element σA of the Galois
group G, the so-called Artin symbol of A. For any element σ ∈ G and any complex
number s with Re(s) > 1, we can thus define a partial zeta function

ζK/k(s, σ) :=
∑
σA=σ

NA−s,

where A runs through the integral ideals of Ik(f) whose Artin symbol is equal to σ.
These functions have a meromorphic continuation to the whole complex plane with
a simple pole at s = 1 and, in our situation, a simple zero at s = 0.

Theorem 2.1. Assume the Abelian rank one Stark conjecture. Then there exists
a unit ε ∈ K such that

σ(ε) = e−2ζ′K/k(0,σ)
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for any σ ∈ G. Furthermore, if we set α := ε + ε−1, we have Hk = k(α) and
|α|w ≤ 2 for any infinite place w of Hk which does not divide v.

We refer to [22] for this conjecture and a more general statement of Stark’s
conjectures, and to [17] for a proof of this result.

In the next section, we will explain how to compute ζ′K/k(0, σ) for σ ∈ G, and
how to find the element α as an algebraic number, if it exists.

3. Description of the algorithm

The first task is to find the field K. An easy way is to construct an element
δ ∈ Ok such that δ > 0 and δ < 0, and to set K := Hk(

√
δ). Another way is to

construct the field K using class field theory. Such a field has conductor Av for an
integral ideal A and corresponds via class field theory to a subgroup of index 2 of
the kernel of the map Clk(f)� Clk where Clk is the usual class group. Indeed, the
kernel of this map corresponds to the Hilbert class field, and thus its subgroups of
index 2 correspond to quadratic extensions of Hk. Hence, we may compute the ray
class group modulo Av, where A runs through the integral ideals A, by increasing
norm, then compute ker(Clk(f)� Clk) and check if it contains a subgroup of index
2 whose conductor is Av.

This last idea is probably the best, since heuristics and numerical evidence show
that the Stark unit tends to grow exponentially like the square root of the norm of
the conductor of K; hence we need to minimize this norm.

Algorithm 3.1. This algorithm computes a modulus f and a subgroup H of Clk(f)
such that f is the conductor of H and the field K corresponding to H by class field
theory is a quadratic extension of Hk where v splits and v becomes complex. This
algorithm uses the tools of [6].

1. Set n← 2.
2. Compute the integral ideals A1, . . . ,Am of norm n. Set c← 1.
3. If c > m then set n← n+ 1 and go back to step 2. Otherwise, set f← Acv.

If f is a conductor then go to step 4, else set c← c+ 1 and go to step 3.
4. Compute the kernel of Clk(f) � Clk and then its subgroups H1, . . . ,Hl of

index 2. Set d← 1.
5. If d > l then set c← c+ 1 and go back to step 3. If f is the conductor of Hd

then return the result (f,Hd) and terminate the algorithm, else set d ← d + 1 and
go to step 5.

Once the field K is chosen, we need to compute the values ζ′K/k(0, σ). For this
purpose, we use Hecke L-functions (see [13] for the more general theory of Artin
L-functions). Let χ be a character of G := Gal(K/k). By composition with the
Artin map, χ can be considered as being defined on the group Ik(f). If s denotes a
complex number with Re(s) > 1, we define

LK/k(s, χ) :=
∏

p unramified

(1 − χ(p)Np−s)−1,

where p runs through the prime ideals of k unramified in K/k. These functions
have meromorphic continuations (even holomorphic if χ is non-trivial) to the whole
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complex plane and are related to the partial zeta functions by the formula

ζK/k(s, σ) =
1

[K : k]

∑
χ∈Ĝ

LK/k(s, χ)χ(σ),(∗)

where the sum is taken over all characters of G.
Let χ be a character of G and let τ denote the non-trivial automorphism of

the quadratic extension K/Hk. If χ(τ) = 1, the functional equation implies that
L′K/k(0, χ) = 0; hence χ will not contribute to the value of ζ′K/k(0, σ) in (∗). Thus
from now on we assume that χ(τ) = −1. We extend χ to all ideals of k by setting
χ(a) = 0 if a is not coprime with the conductor fχ of χ. To each character χ is
associated a canonical L-function defined for s ∈ C with Re(s) > 1 by

L(s, χ) :=
∏
p

(1− χ(p)Np−s)−1,

where the product is taken over all prime ideals of k.

Lemma 3.2. Let χ be a character such that χ(τ) = −1. Then fχ = f. In particular,
LK/k(s, χ) = L(s, χ).

Proof. Let Kχ be the subfield of K fixed by the kernel of χ. By definition the
conductor of Kχ is equal to fχ. It is clear that the conductor of HkKχ is also equal
to fχ, and moreover HkKχ = K since Kχ is not included in Hk; thus fχ = f.

We set

Λ(s, χ) := CsΓ(s/2)Γ
(
s+ 1

2

)
L(s, χ),

where C := π−1
√
dkN f and Γ(z) is the classical gamma function. This function

satisfies the fundamental functional equation

Λ(1− s, χ) = W (χ)Λ(s, χ),

where W (χ) is a complex number of modulus equal to 1, called the Artin root
number.

Theorem 3.3. Let κ > 0 be a real number. For n ≥ 1, let

an(χ) :=
∑
NA=n

χ(A),

where the sum is taken over all integral ideals of norm n, and let N :=
⌈
−C logκ

2

⌉
.

Define the following two quantities:

T (χ) :=
N∑
n=1

an(χ)f1(C/n),

S(χ) :=
N∑
n=1

an(χ)f2(C/n),

with f1(x) := x
2 e
−2/x and f2(x) := Ei(2/x), where Ei(x) =

∫ +∞
x

e−tdt/t is the
exponential integral function. Then

L′(0, χ) = S(χ) +W (χ)T (χ) + κ,

where the error term κ is smaller than κ.
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Proof. Letting s tend to 1 in the functional equation gives

L′(0, χ) =
W (χ)Λ(1, χ)

2
√
π

.

Then a theorem of Friedman [10] tells us that

Λ(1, χ) =
∑
n≥1

[
an(χ)f(C/n, 1) +W (χ)an(χ)f(C/n, 0)

]
,

where the function f is defined by

f(x, s) :=
1

2iπ

∫ σ+i∞

σ−i∞
xz

Γ(z/2)Γ
(
z+1

2

)
z − s dz =

2
√
π

2iπ

∫ σ+i∞

σ−i∞

(
2
x

)−z Γ(z)
z − s dz

for any real number σ such that σ > Re(s). If we differentiate f with respect to
the variable x and use the fact that z/(z − s) = 1 + s/(z − s), we obtain

xf ′(x, s) =
2
√
π

2iπ

∫ σ+i∞

σ−i∞

(
2
x

)−z
Γ(z) dz + sf(x, s).

We solve the differential equation and find that

f(x, s) = xs
∫ +∞

1/x

ts−1F (t) dt,

where

F (t) :=
2
√
π

2iπ

∫ σ+i∞

σ−i∞
(2t)−zΓ(z) dz.

But the theory of Mellin transforms (see for example [20], Chapter 4) tells us that
F (t) = 2

√
πe−2t, and thus f(x, 1) = 2

√
πf1(x) and f(x, 0) = 2

√
πf2(x). Finally,

we compute the number of terms needed for sufficient accuracy by looking at the
asymptotic expansion of the functions f1 and f2.

Thus, we need to compute the following three objects. First, the coefficients
an(χ). Second, the functions f1 and f2 (there of course exist methods to compute
these functions, but here we are interested in efficient methods to compute them
for many consecutive values of n). Third, the values of W (χ).

We compute the coefficients an(χ) by using the multiplicative property

an(χ) = an/pm(χ)apm(χ),

where pm is the largest power of p that divides n.

Algorithm 3.4. Let N be an integer and let χ be a character of G such that
χ(τ) = −1. This algorithm computes the coefficients an(χ) for 1 ≤ n ≤ N using the
sub-algorithm fill-in(φ, p) which distributes the value of apm(χ) according to the
function φ : N \ {0} → C (recall that χ(p) is set equal to zero whenever the prime
ideal p divides the conductor of χ).

1. For n going from 1 ≤ n ≤ N set an(χ)← 1 and set p← 1.
2. Set p ← (least prime > p), and if p > N return the coefficients an(χ) for

1 ≤ n ≤ N and terminate the algorithm.
3a. If p is inert: for m odd set φ(m) = 0, and for m even, set φ(m) = χ(p)m.

Execute fill-in(φ, p) and go to step 2.
3b. If p is ramified: write pOk = p2 and set φ(m) = χ(p)m. Execute fill-in(φ, p)

and go to step 2.
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3c. If p splits: write pOk = pp. if χ(p) 6= χ(p), set

φ(m) =
χ(p)m+1 − χ(p)m+1

χ(p)− χ(p)
,

else set

φ(m) = (m+ 1)χ(p)m.

Execute fill-in(φ, p) and go to step 2.
Sub-algorithm fill-in(φ, p).

1. Set q ← 1 and m← 0.
2. Set q ← qp and m← m+ 1. If q > N then terminate the sub-algorithm else

set c← q and d← 1.
3. If p does not divide d then set ac(χ) = ac(χ)φ(m).
4. Set c← c+ q and d← d+ 1. If c < N then go to step 3, else go to step 2.

We now need to compute the functions f1(C/n) and f2(C/n) for consecutive
values of n. For f1(C/n) = C

2ne
−2n/C , the algorithm is very simple.

Algorithm 3.5. Let A > 0 be a real number and let N ≥ 1 be an integer. This
algorithm computes the values of f1(A/n) for 1 ≤ n ≤ N .

1. Set V ← e−2/A, V1 ← AV/2, U1 ← V1 and n← 2.
2. While n ≤ N , set

Un ← Un−1 · V, Vn ←
Un
n

and n← n+ 1.
3. Return the values Vn for 1 ≤ n ≤ N .

We compute the values of f2(C/n) = Ei(2n/C) in the same spirit, that is to say
by trying to compute the function Ei for only a very few values. For this, we use
the following lemma.

Lemma 3.6. Let A > 0 be a positive constant and define φ(x) := Ei(xA). Then
φ′(x) = − 1

xe
−xA, and more generally for all m ≥ 1 we have the induction formula

φ(m+1)(x) =
−1
x

(
mφ(m)(x) + (−A)m e−xA

)
.

Proof. The first assertion comes from the definition of the exponential integral
function Ei(x) =

∫ +∞
x

e−tdt/t, and the second is easily proved by induction.

If we have computed φ(N) we may obtain φ(N − 1) by using Taylor’s formula:

φ(N − 1) = φ(N)− φ′(N) +
1
2!
φ′′(N)− 1

3!
φ(3)(N) +

1
4!
φ(4)(N)− ...

where the derivatives φ(m)(N) can be computed by the previous lemma. Moreover,
since (−1)m 1

m!φ
(m)(N) is always positive, we need only to sum these terms and

stop as soon as the next term becomes smaller than the required precision.

Algorithm 3.7. Let A > 0 be a positive constant and let N ≥ 1 be an integer. This
algorithm computes the values Ei(nA) for 1 ≤ n ≤ N with the precision κ > 0.

1. Set FN ← Ei(NA), nstop ← d4/Ae and n ← N . Set also e0 ← eA and
e1 ← e−NA.

2. Set Fn−1 ← 0, f0 ← e1, f1 ← −f0/n and m← 1, d← −1, s← Fn.
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3. If |s| > κ then set Fn−1 ← Fn−1 + s, s← df1, f0 ← −Af0,

f1 ← −
1
n

(mf1 + f0) ,

m← m+ 1, d← −d/m and go to step 3.
4. Set n← n− 1, e1 ← e1e0. If n > nstop then go to step 2.
5. For 1 ≤ n ≤ nstop compute Fn ← Ei(nA) directly (see below).
6. Return the values Fn for 1 ≤ n ≤ N and terminate the algorithm.

For small values of n, we compute the exponential integral by standard means
since the Taylor series converges slowly. One can find explicit formulas to compute
the function Ei in [3], Proposition 5.6.12.

Note that this type of method for computing Ei and more generally for confluent
hypergeometric functions has already been studied in detail, in particular with
respect to its numerical stability. See [19, 23, 24].

Finally, we compute the Artin root number W (χ). We will essentially follow the
method given in [8] with a slightly different computational approach. This method
needs to work with the conductor of the character χ, but thanks to lemma 3.2, we
know that this conductor is f = f0v for odd characters.

The following result is a special case of a theorem due to Landau.

Proposition 3.8. Let χ be an odd character of G. Choose an element λ ∈ f0 such
that λ > 0 and the integral ideal g = λf−1

0 is coprime to f0, and choose an element
µ ∈ g such that µ > 0 and the integral ideal h = µg−1 is coprime to f0. Define the
Gauss sum

G(χ) = χ
(√

dkh
)∑

β

e2iπTr(βµ/λ),

where Tr denotes the trace of k/Q and β runs through a complete residue system
of (Ok/f0)× such that β > 0. Then

W (χ) = −i G(χ)√
N f0

.

This yields the following algorithm.

Algorithm 3.9. Let χ be an odd character of G. This algorithm computes the
Artin root number W (χ) attached to this character.

1. Compute an element λ ∈ f0 such that λ > 0 and vp(λ) = vp(f0) for all prime
ideals p dividing f0. Set g← (λ)f−1

0 .
2. Compute two elements µ ∈ g and ν ∈ f0 such that µ > 0 and µ+ ν = 1 (note

that g and f0 are coprime by construction). Set h← (µ)g−1.
3. Let {α1, . . . , αr} be elements of Ok, and let dr | dr−1 | · · · | d1 be positive

integers such that αi > 0, the image α̃i of αi modulo f0 is of order di, the cardinality
of (Ok/f0)× is equal to d1 · · · dr, and

(Ok/f0)× =
r∏
i=1

α̃i
(Z/diZ),

(the set {α̃1, . . . , α̃r} and the matrix whose diagonal entries are the di’s with zeros
elsewhere define a Smith normal form of the finite Abelian group (Ok/f0)×, see [6]).
Let G← 0.
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4. For all tuples (i1, . . . , ir) such that 0 ≤ i1 < d1, . . . , 0 ≤ ir < dr, compute
β ← αi11 . . . αirr and let G← G+ χ(β) e2iπTr(βµ/λ).

5. Let W ← (−i)χ(h
√
dk) G√

N f0
. Output W and terminate the algorithm.

Using these algorithms and Theorem 3.3, we are now able to compute approxi-
mations of L′K/k(0, χ) for all characters χ. Using formula (∗), we then deduce the
values ζ′K/k(0, σ) for all σ, and hence approximations of σ(ε) and of the conjugates
of α over k (see Theorem 2.1).

Algorithm 3.10. Let H be a congruence group of conductor f such that the cor-
responding field K verifies the hypothesis of Section 2, and let κ > 0 be a real
number. This algorithm computes approximations of the conjugates of α over k
with the precision κ.

1. Let χ1, ..., χh be all the characters of Gal(K/k) such that χj(τ) = −1, where
h is the class number of k and τ is the non-trivial automorphism of Gal(K/Hk).
Set C ← π−1

√
dkN f, N ←

⌈
−C logκ

2

⌉
.

2. For all j, compute the coefficients an(χj) using Algorithm 3.4, and the values
f1(C/n) and f2(C/n) using Algorithms 3.5 and 3.7 with the precision κ.

3. Compute the Artin root number W (χj) using Algorithm 3.9, and then deduce
the values of L′(0, χj) by the formula of Theorem 3.3, thus of L′K/k(0, χj) by Lemma
3.2.

4. Let σ1, ..., σh be a system of representatives of the quotient Gal(K/k)/〈τ〉.
Compute the values ζ′K/k(0, σj) using formula (∗) for all j (note that ζ′K/k(0, σjτ) =
−ζ ′K/k(0, σj)), and let zj denote the approximations obtained.

5. Set α̃j ← e−2zj +e2zj for all j, return the approximations α̃j of the conjugates
of α over k, and terminate the algorithm.

Once we know the approximations α̃j , we compute the polynomial

P̃ (X) :=
h∏
j=1

(X − α̃j) = Xh + β̃h−1X
h−1 + · · ·+ β̃0.

If the element α exists, then this polynomial is the approximation of its irreducible
polynomial over k, and thus every coefficient β̃j should be close to an algebraic
integer βj . Theorem 2.1 also provides a bound for the conjugate of βj :

|βj | ≤ 2j
(
h

j

)
.

We use the following algorithm to recover an integer of k given by an approximation
and a bound for its conjugate (recall that bxc, dxe and bxe denote respectively the
floor, the ceiling and the closest integer to x ∈ R).

Algorithm 3.11. Let β̃ be a real number and let κ > 0 and B > 0 be two positive
real numbers. This algorithm finds, if it exists, a β ∈ Ok such that |β̃−β| < κ and
|β| < B.

1. Assume without loss of generality that ω > ω and set ∆ ← ω − ω. Set
b←

⌊
β̃−(B+κ)

∆

⌋
and bmax ← b+ 2

⌈
B+κ

∆

⌉
.

2. If b > bmax then output a message saying that such an integer β does not
exist and terminate the algorithm. Otherwise, set a←

⌊
β̃ − bω

⌉
.
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3. Set β ← a + bω, if |β̃ − β| < κ and |β| < B then return the element β and
terminate the algorithm, else set b← b + 1 and go to step 2.

The correctness of this algorithm follows immediately from the inequalities−κ <
β̃ − a − bω < κ and −B < a + bω < B, which imply the given inequalities on b
and the value of a. Note that it is also possible to use the LLL algorithm for this
computation.

We are now able to give the complete algorithm.

Algorithm 3.12. Let k be a quadratic real number field. Under the hypothesis
of Theorem 2.1, this algorithm computes the irreducible polynomial over k of a
generating element of Hk.

1. Using Algorithm 3.1, find a modulus f and a congruence group H of conductor
f such that the corresponding field K verifies the hypothesis of Section 2.

2. Set κ ← 10−20 · e−d
√
dkN fe.

3. Using Algorithm 3.10, compute approximations α̃i of the conjugates of α over
k with precision κ. Set

P̃ (X)←
h∏
j=1

(X − α̃j).

4. Write P (X) = Xh + β̃h−1X
h−1 + ... + β̃0, where β̃j are real numbers. For

1 ≤ j ≤ h, using Algorithm 3.11 try to find an algebraic integer βj such that
|β̃j − βj | < κ and |βj | ≤ 2j

(
h
j

)
. If it is possible then return the polynomial

Xh + βh−1X
h−1 + ...+ β0

and terminate the algorithm. Otherwise, increase the precision by setting for ex-
ample κ ← κ2, and go back to step 3.

Remark. As we said above, heuristics show that the conjugates of α are mostly of
the size of exp

(√
dkN f

)
; thus the initial precision is chosen so as to obtain twenty

additional digits. However, if this is not enough, we double the precision and redo
the computations. Note that this is not really an algorithm, since if the conjecture
is false it just keeps doubling the precision without stopping.

4. Verification of the result

Let P (X) denote the polynomial given by the above algorithm. Since this algo-
rithm is based on a conjecture, we need to check if a root of this polynomial does
generate the Hilbert class field of k.

First, we verify that the polynomial (whose degree is equal to hk by construction)
is irreducible over k. Then let H̃ be the extension of k generated by any root of
P (X). We verify that the extension H̃/k is unramified at both finite and infinite
places, using the algorithms given in [5].

Once we have proved that the extension H̃/k is of degree hk and unramified,
we still have to prove that it is an Abelian extension. In fact, if hk = 2 or 3,
this follows from the fact that the extension is unramified. (This is obvious for
hk = 2. For hk = 3, assume the extension is not cyclic; then its Galois group is S3

and k has a quadratic extension which is a subfield of the Galois closure of H̃/k
and thus unramified. But this is impossible since it implies that 2 divides hk.) In
the general case, we factor the polynomial P (X) in the field H̃ , and it must have



1238 HENRI COHEN AND XAVIER-FRANÇOIS ROBLOT

only linear factors if H̃/k is Galois. Since every such linear factor corresponds to
a k-automorphism of H̃ , we can check if the extension is Abelian by proving that
they commute with each other.

However, once we have proved that the extension H̃/k is a Galois extension, it
is possible to be more efficient for small values of hk, since there are only a few
possibilities for the Galois group Gal(H̃/k). Another possibility is to use a result
of Bach and Sorenson [1] which gives under GRH an upper bound for the norm of
the prime ideals generating the norm group of an Abelian extension. Indeed, this
result enables one to write an algorithm which, under GRH, does prove that an
extension is Abelian (without having to prove first that it is Galois) and computes
at the same time its norm group (see [17] for details).

We now give an algorithm using the first method described above, which does
not use GRH.

Algorithm 4.1. Let P (X) be a polynomial of degree hk and with coefficients in
Ok. This algorithm proves (or disproves) that a root of P (X) generates the Hilbert
class field of k.

1. Check if P (X) is irreducible over k[X ]. If this is not the case then output
a message saying that P does not generate an extension of degree hk of k and
terminate the algorithm.

2. Let θ be a root of P and let H̃ denote the field k(θ). Compute the minimal
polynomial of θ over Q and check if H̃ is totally real using Sturm’s algorithm (see
[3], Algorithm 4.1.11). If this is not the case then return a message saying that
H̃/k is ramified at the infinite places and terminate the algorithm.

3. Compute the relative discriminant of H̃/k using the algorithm given in [5].
If it is different from Ok, then output a message saying that H̃/k is ramified at
the finite places and terminate the algorithm. Otherwise, if hk = 2 or 3 return a
message saying that H̃ = Hk and terminate the algorithm.

4. Compute the factorization of P (X) in H̃ [X ]. If P does not admit only
linear factors then output a message saying that H̃/k is not a Galois extension and
terminate the algorithm. Otherwise, if hk = 4 or hk is a prime number return a
message saying that H̃ = Hk and terminate the algorithm.

5. Let X − Sj(Y ) ∈ k[X,Y ] be such that

P (X) =
∏

1≤j≤hk

(X − Sj(θ))

is the factorization of P in H̃[X ]. For all 1 ≤ i < j ≤ hk, check if Si(Sj(θ)) =
Sj(Si(θ)). If this is not the case then return a message saying that H̃/k is not an
Abelian extension and terminate the algorithm, otherwise return a message saying
that H̃ = Hk and terminate the algorithm.

5. An example

The algorithm presented in this paper has been implemented as part of the new
version of the PARI/GP [2] package. The quadhilbert function uses complex
multiplication to compute the Hilbert class field of complex quadratic fields, and
the present algorithm for real quadratic fields. The following example was treated
using this implementation.
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Let k be the real quadratic field generated by ω :=
√

438. We then have dk =
1752, Ok = Z+ Zω, and the class group of k is cyclic of order 4.

The field K can be taken to be the ray class field of k modulo pv, where p is one
of the two prime ideals above 11. Note that the extension K/k is cyclic of order 8,
so there is no quadratic extension k′/k such that K = Hkk

′.
If σ denotes a generator of G := Gal(K/k), then τ = σ4. Let ψ be the character

of G such that ψ(σ) = ξ8, where ξ8 is a fixed primitive 8-th root of unity. The
characters χ such that χ(τ) = −1 are then ψ, ψ3, ψ5 and ψ7 (note that ψ = ψ7,
ψ3 = ψ5). With the notations of Theorem 3.3, we compute

S(ψ) ≈ 1.71552623535657 + 0.744643091777554i,
T (ψ) ≈ 14.1665156497187 + 2.51918530947938i,
S(ψ3) ≈ 0.842811390359850 + 1.29326746361755i,
T (ψ3) ≈ 12.8015376467263− 8.44945647020462i,

and S(ψ7) = S(ψ), T (ψ7) = T (ψ), S(ψ5) = S(ψ3), T (ψ5) = T (ψ3).
For the character ψ, we find that W (ψ) = e2iπ/8 and similarly W (ψ3) = −W (ψ),

W (ψ5) = W (ψ3) = −W (ψ) andW (ψ7) = W (ψ). So we compute the corresponding
L-functions, and obtain

ζ′K/k(0, σ) ≈ 7.25654406363900, ζ′K/k(0, σ5) = −ζ′K/k(0, σ),
ζ′K/k(0, σ2) ≈ −0.944193530444349, ζ′K/k(0, σ6) = −ζ′K/k(0, σ2),
ζ′K/k(0, σ3) ≈ 2.94813989197904, ζ′K/k(0, σ7) = −ζ′K/k(0, σ3),
ζ′K/k(0, σ4) ≈ 1.92921444495667, ζ′K/k(0,1) = −ζ′K/k(0, σ4).

We then compute the values of the conjugates of α over k, and we form its irreducible
polynomial

X4 − 2009298.2915480506125X3 + 839444123.58478759370X2

− 40221955871.313705629X+ 234161017552.69584759

which, using Algorithm 3.11, is seen to be very close to the polynomial

X4 + (−48004
√

438− 1004649)X3 + (20055096
√

438 + 419722059)X2

+ (−960939696
√

438− 20110977936)X + (5594323104
√

438 + 117080508780).

A relative reduction process gives the following simpler polynomial defining the
same field extension:

X4 + 2X3 + (
√

438− 25)X2 + (−
√

438 + 22)X + (−3
√

438 + 63).

We now have to check the result: we prove that this polynomial is irreducible over
k and that the extension H̃ that it defines is unramified at both finite and infinite
places. Moreover, this polynomial factors completely over H̃ ; hence the relative
extension H̃/k is Galois. Since its degree is equal to 4, this implies that it is
Abelian, and since it is unramified this implies that H̃ is actually the Hilbert class
field of k.
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Finally, since k/Q is a cyclic extension, it is possible to find a field L of degree 4
such that k ∩L = Q and kL = Hk (see [7]). In fact, any subfield L of Hk of degree
hk over Q and disjoint from k will work. In order to find such a field, one can use
the algorithm for subfield computation given in [12], or use the method explained
in [4], which gives only some subfields. In our example, we find that such a field is
generated by a root of

X4 − 2X3 − 5X2 + 6X + 3.

Appendix. Tables of Hilbert class fields

For each of the 607 real quadratic field k of discriminant less than 2 000, we give
a polynomial defining a field Lk over Q such that the Hilbert class field of k is the
compositum of k and Lk. For the sake of completeness, we recall the list of the 319
fields k with class number equal to 1, for which trivially Lk = Q.

Discriminant of the fields with hk = 1
5 8 12 13 17 21 24 28 29 33 37
41 44 53 56 57 61 69 73 76 77 88
89 92 93 97 101 109 113 124 129 133 137
141 149 152 157 161 172 173 177 181 184 188
193 197 201 209 213 217 233 236 237 241 248
249 253 268 269 277 281 284 293 301 309 313
317 329 332 337 341 344 349 353 373 376 381
389 393 397 409 412 413 417 421 428 433 437
449 453 457 461 472 489 497 501 508 509 517
521 524 536 537 541 553 556 557 569 573 581
589 593 597 601 604 613 617 632 633 641 649
652 653 661 664 668 669 673 677 681 701 709
713 716 717 721 737 749 753 757 764 769 773
781 789 796 797 809 813 821 824 829 844 849
853 856 857 869 877 881 889 893 908 913 917
921 929 933 937 941 953 956 973 977 989 997
1004 1013 1021 1033 1041 1048 1049 1052 1057 1061 1069
1077 1081 1084 1097 1109 1112 1117 1121 1132 1133 1137
1141 1149 1153 1169 1177 1181 1193 1201 1208 1213 1217
1228 1237 1244 1249 1253 1273 1277 1289 1293 1301 1317
1321 1324 1329 1333 1336 1337 1349 1357 1361 1381 1388
1389 1397 1401 1409 1432 1433 1437 1441 1453 1457 1461
1468 1473 1477 1481 1493 1497 1501 1516 1528 1529 1532
1541 1549 1553 1561 1569 1577 1589 1592 1597 1609 1613
1621 1633 1637 1657 1661 1669 1673 1676 1688 1689 1693
1697 1709 1713 1721 1724 1733 1741 1753 1757 1777 1784
1789 1793 1797 1801 1816 1817 1821 1829 1837 1841 1852
1857 1861 1868 1873 1877 1889 1893 1909 1912 1913 1916
1933 1941 1948 1949 1964 1969 1973 1977 1981 1993 1997

There are 194 fields with class number 2. We give a table for each possible value
of the discriminant dLk of Lk.
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First, there are 70 real quadratic fields k of discriminant less than 2 000 with
class number 2 and such that Lk = Q(

√
5).

Discriminant of the fields k such that hk = 2 and dLk = 5
40 60 65 85 105 120 140 165 185 205
220 265 280 285 305 345 365 380 385 440
460 465 485 545 565 620 645 665 685 705
745 760 805 860 865 885 920 965 1005 1065
1085 1165 1180 1185 1205 1240 1245 1265 1285 1340
1385 1405 1420 1465 1505 1545 1565 1580 1585 1605
1645 1660 1685 1720 1865 1880 1905 1945 1965 1985

There are 34 real quadratic fields k of discriminant less than 2 000 with class
number 2 and such that Lk = Q(

√
2).

Discriminant of the fields k such that hk = 2 and dLk = 8
104 136 168 232 264 296 424 456 488 552 584 616
712 744 776 808 872 1032 1064 1128 1192 1256 1416 1448
1544 1576 1608 1672 1704 1832 1864 1896 1928 1992

There are 14 real quadratic fields k of discriminant less than 2 000 with class
number 2 and such that Lk = Q(

√
3).

Discriminant of the fields k such that hk = 2 and dLk = 12
156 204 348 444 492 636 732
1068 1212 1308 1356 1644 1788 1884

There are 26 real quadratic fields k of discriminant less than 2 000 with class
number 2 and such that Lk = Q(

√
13).

Discriminant of the fields k such that hk = 2 and dLk = 13
221 273 312 364 377 429 481 533 572
728 741 949 988 1001 1144 1157 1196 1209
1261 1417 1469 1612 1729 1781 1833 1976

There are 21 real quadratic fields k of discriminant less than 2 000 with class
number 2 and such that Lk = Q(

√
17).

Discriminant of the fields k such that hk = 2 and dLk = 17
357 408 476 493 561 629 748 952 969 1037 1173
1241 1309 1496 1513 1564 1581 1649 1717 1853 1921

There remains 29 fields k with class number 2 and such that the discriminant dLk
is larger than 17. We give them in a single table containing first the discriminant
of k, and then the discriminant of dLk , ordered by increasing value of dLk .

Discriminant and dLk for the fields k such that hk = 2 and dLk > 17
609 21 861 21 1113 21 1281 21 1533 21 1869 21
696 24 888 24 984 24 1272 24 1464 24 812 28
1036 28 1148 28 1484 28 957 29 1073 29 1189 29
1276 29 1537 29 1624 29 1653 29 1769 29 1353 33
1749 33 1517 37 1628 37 1961 37 1804 41

There are 24 real quadratic fields with class number equal to 3 and discriminant
less than 2 000. In the following table, we give their discriminants together with a
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polynomial defining the field Lk.

Discriminants of the fields K such that hK = 3 and polynomials for LK
229 X3 − 4X − 1 257 X3 −X2 − 4X + 3
316 X3 −X2 − 4X + 2 321 X3 −X2 − 4X + 1
469 X3 −X2 − 5X + 4 473 X3 − 5X − 1
568 X3 −X2 − 6X − 2 733 X3 −X2 − 7X + 8
761 X3 −X2 − 6X − 1 892 X3 −X2 − 8X + 10
993 X3 −X2 − 6X + 3 1016 X3 −X2 − 6X + 2
1101 X3 −X2 − 9X + 12 1229 X3 −X2 − 7X + 6
1257 X3 −X2 − 8X + 9 1304 X3 − 11X − 2
1373 X3 − 8X − 5 1436 X3 − 11X − 12
1489 X3 −X2 − 10X − 7 1509 X3 −X2 − 7X + 4
1772 X3 −X2 − 12X + 8 1901 X3 −X2 − 9X − 4
1929 X3 −X2 − 10X + 13 1957 X3 −X2 − 9X + 10

There are 41 real quadratic fields with class number equal to 4 and discriminant
less than 2 000. In the following table, we give their discriminants together with a
polynomial defining the field Lk.

Discriminants of the fields K such that hK = 4 and polynomials for LK
145 X4 −X3 − 3X2 +X + 1 328 X4 − 2X3 − 3X2 + 2X + 1
445 X4 −X3 − 5X2 + 2X + 4 505 X4 − 2X3 − 4X2 + 5X + 5
520 X4 − 6X2 + 4 680 X4 − 6X2 + 4
689 X4 −X3 − 5X2 +X + 1 777 X4 − 2X3 − 4X2 + 5X + 1
780 X4 − 2X3 − 7X2 + 8X + 1 793 X4 −X3 − 6X2 + 8X − 1
840 X4 − 6X2 + 4 876 X4 − 7X2 − 6X + 1
897 X4 − 2X3 − 4X2 + 5X + 3 901 X4 − 2X3 − 4X2 + 5X + 2
905 X4 −X3 − 7X2 + 3X + 9 924 X4 − 5X2 + 1
1020 X4 − 2X3 − 7X2 + 8X + 1 1045 X4 −X3 − 8X2 +X + 11
1096 X4 − 2X3 − 5X2 + 6X + 7 1105 X4 − 9X2 + 4
1145 X4 −X3 − 8X2 + 6X + 11 1160 X4 − 6X2 + 4
1164 X4 − 2X3 − 7X2 + 8X + 4 1221 X4 −X3 − 10X2 +X + 1
1288 X4 − 2X3 − 7X2 + 8X + 8 1292 X4 −X3 − 11X2 + 12X + 8
1313 X4 −X3 − 8X2 − 4X + 3 1320 X4 − 6X2 + 4
1365 X4 − 9X2 + 4 1480 X4 − 6X2 + 4
1560 X4 − 9X2 + 4 1640 X4 − 6X2 + 4
1677 X4 −X3 − 7X2 + 2X + 4 1736 X4 − 2X3 − 7X2 + 6X + 9
1740 X4 − 2X3 − 7X2 + 8X + 1 1745 X4 −X3 − 10X2 + 2X + 19
1752 X4 − 2X3 − 5X2 + 6X + 3 1820 X4 − 9X2 + 4
1848 X4 − 10X2 + 4 1885 X4 − 9X2 + 4
1932 X4 − 5X2 + 1

Finally, there are 29 real quadratic fields with class number ranging from 5 to 11
and discriminant less than 2 000. In the following table, we give their discriminants
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together with a polynomial defining the field Lk.

Discriminants of the fields K such that hK ≥ 5 and polynomials for LK
401 X5 −X4 − 5X3 + 4X2 + 3X − 1
577 X7 − 2X6 − 7X5 + 10X4 + 13X3 − 10X2 −X + 1
697 X6 − 3X5 − 3X4 + 11X3 −X2 − 5X + 1
785 X6 −X5 − 8X4 + 6X3 + 16X2 − 10X − 5
817 X5 −X4 − 6X3 + 5X2 + 3X − 1
904 X8 − 2X7 − 9X6 + 10X5 + 22X4 − 14X3 − 15X2 + 2X + 1
940 X6 − 3X5 − 5X4 + 14X3 + 9X2 − 15X − 5
985 X6 − 3X5 − 4X4 + 13X3 + 3X2 − 10X + 1
1009 X7 −X6 − 9X5 + 2X4 + 21X3 +X2 − 13X − 1
1093 X5 − 8X3 − 3X2 + 10X + 4
1129 X9 − 3X8 − 10X7 + 38X6 + 5X5 − 107X4 + 58X3 + 78X2

−60X − 1
1297 X11 − 5X10 − 4X9 + 54X8 − 53X7 − 127X6 + 208X5 + 69X4

−222X3 + 29X2 + 56X − 5
1345 X6 − 3X5 − 8X4 + 16X3 + 24X2 − 5
1384 X6 − 2X5 − 7X4 + 14X3 + 3X2 − 12X + 4
1393 X5 −X4 − 7X3 + 6X2 + 3X − 1
1429 X5 −X4 − 13X3 + 23X2 + 9X − 23
1596 X8 − 2X7 − 13X6 + 16X5 + 43X4 − 10X3 − 34X2 − 4X + 4
1601 X7 − 2X6 − 14X5 + 34X4 + 4X3 − 38X2 + 7X + 1
1641 X5 −X4 − 10X3 +X2 + 21X + 9
1705 X8 −X7 − 14X6 + 9X5 + 62X4 − 23X3 − 84X2 + 20X − 1
1708 X6 − 3X5 − 8X4 + 21X3 − 6X2 − 5X + 1
1756 X5 − 2X4 − 10X3 + 14X2 + 21X − 16
1761 X7 − 2X6 − 14X5 + 14X4 + 50X3 − 22X2 − 51X − 3
1765 X6 − 3X5 − 6X4 + 17X3 + 5X2 − 14X + 4
1768 X8 − 4X7 − 6X6 + 32X5 − 5X4 − 48X3 + 14X2 + 16X − 4
1785 X8 − 2X7 − 13X6 + 17X5 + 48X4 − 23X3 − 33X2 + 3X + 1
1897 X5 −X4 − 13X3 + 8X2 + 27X + 1
1937 X6 − 10X4 + 25X2 − 13
1996 X5 − 9X3 − 4X2 + 10X + 4

These computations were done on a Pentium Pro 200 with 256 Mb of RAM. The
total computation time (including class group computations, computations of the
generating element, reduction of the result and computation of the field Lk) took
about 21 minutes. Note that actually the last two steps (reduction and computation
of the field Lk) represented more than 70% of the whole computation time.

All these fields have of course been verified using Algorithm 4.1.
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Construction des Corps de Classes de Rayon, Thesis, Université Bordeaux I (1997)
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