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COMPUTING THE HILBERT CLASS FIELD
OF REAL QUADRATIC FIELDS

HENRI COHEN AND XAVIER-FRANCOIS ROBLOT

ABSTRACT. Using the units appearing in Stark’s conjectures on the values of
L-functions at s = 0, we give a complete algorithm for computing an explicit
generator of the Hilbert class field of a real quadratic field.

Let k be a real quadratic field of discriminant dy,, so that k = Q(v/dy), and let
w denote an algebraic integer such that the ring of integers of k is Oy, := Z + wZ.
An important invariant of k is its class group Clj, which is, by class field theory,
associated to an Abelian extension of k, the so-called Hilbert class field, denoted
by Hj. This field is characterized as the maximal Abelian extension of k which is
unramified at all (finite and infinite) places. Its Galois group is isomorphic to the
class group Cly; hence the degree [Hy, : k| is the class number hy.

There now exist very satisfactory algorithms to compute the discriminant, the
ring of integers and the class group of a number field, and especially of a quadratic
field (see [3] and [16]). For the computation of the Hilbert class field, however,
there exists an efficient version only for complex quadratic fields, using complex
multiplication (see [1§]), and a general method for all number fields, using Kummer
theory, which is not really satisfactory except when the ground field contains enough
roots of unity (see [6], [9] or [15]).

In this paper, we will explore a third way, available for totally real fields, which
uses the units appearing in Stark’s conjectures [21]], the so-called Stark units, to
provide an efficient algorithm to compute the Hilbert class field of a real qua-
dratic field. This method relies on the truth of Stark’s conjecture (which is not
yet proved!), but still we can prove independently of the conjecture that the field
obtained is indeed the Hilbert class field and thus forget about the fact that we had
to use this conjecture in the first place.

Of course, the possibility of using Stark units for computing Hilbert or ray class
fields was known from the beginning, and was one of the motivations for Stark’s
conjectures. Stark himself gave many examples. It seems, however, that a complete
algorithm has not appeared in the literature, and it is the purpose of this paper to
give one for the case of real quadratic fields.

In Section [, we say a few words about how to construct the Hilbert class field
of k when the class number is equal to 2. Here, two methods can be used which are
very efficient in this case: Kummer theory and genus field theory. In Section Pl we
give a special form of Stark’s conjectures, namely the Abelian rank one conjecture
applied to a particular construction. Section [3is devoted to the description of the
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algorithm, and Section M to the verification of the result. Section B deals with an
example.

We end the paper with an Appendix giving a table of Hilbert class fields of real
quadratic fields of discriminant less than 2 000.

1. CONSTRUCTION WHEN THE CLASS NUMBER IS EQUAL TO 2

We assume in this section that hy = 2. As we already said, in this case there are
two powerful methods to compute Hy, and we quote them without proof.

The first uses Kummer theory, which states that when the ground field contains
the n-roots of unity, every Abelian extension of exponent dividing n can be obtained
by taking n-th roots of elements of the ground field. From this, one easily obtains

Proposition 1.1. Let k be a real quadratic field of class number 2, let v be a real
embedding of k, let n denote the fundamental unit of k such that v(n) > 1, and let
2A be a non-principal integral ideal of k. Let o be one of the generators of A% chosen
s0 that v(a) > 0. Then Hy = k(v/8) for some 6 € {n, o, na}.

The second method uses genus field theory, which enables one to construct un-
ramified Abelian extensions of k£ by taking the compositum of £ with Abelian ex-
tensions of Q (see [11]).

Proposition 1.2. There exists a divisor d of the discriminant dy with 1 < d < dj,
and d = 0,1(mod4) such that Hy = k(\/d).

Hence the determination of Hy in this case boils down to a finite number of easy
tests.

2. A SPECIAL CASE OF STARK’S CONJECTURES

We now assume only that hg > 1. We keep the same notations, we let v be one
of the real embeddings of k and we denote by ~ the action of the non-trivial element
of the Galois group of k/Q. We will identify k& with its embedded image v(k) into
R. Let K be a quadratic extension of Hy such that K/k is Abelian and v stays real
in this extension but v becomes complex. We identify K with one of its embedded
images in R (so with one of its images w(K), where w is a place above v).

Let f denote the conductor of K/k and G its Galois group. Let I;(f) denote
the group of fractional ideals coprime with the finite part fo of this conductor, let
Py (f) denote the group of principal ideals generated by elements multiplicatively
congruent to 1 modulo f, and let Clx(f) := I(f)/Px(f) be the ray class group
modulo f. The Artin map sends any ideal 2 € I (f) to an element oy of the Galois
group G, the so-called Artin symbol of 2. For any element o € G and any complex
number s with Re(s) > 1, we can thus define a partial zeta function

Cipnls,0) = > NUA?,
og=0
where 2 runs through the integral ideals of I (f) whose Artin symbol is equal to o.

These functions have a meromorphic continuation to the whole complex plane with
a simple pole at s = 1 and, in our situation, a simple zero at s = 0.

Theorem 2.1. Assume the Abelian rank one Stark conjecture. Then there exists
a unit € € K such that

o(e) = e~ 2k /k(0,0)
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for any o € G. Furthermore, if we set o := ¢ + ¢~ ', we have Hy = k(a) and
lal,, <2 for any infinite place w of Hy, which does not divide v.

We refer to [22] for this conjecture and a more general statement of Stark’s
conjectures, and to [I7] for a proof of this result.

In the next section, we will explain how to compute C}(/k((), o) for o € G, and
how to find the element « as an algebraic number, if it exists.

3. DESCRIPTION OF THE ALGORITHM

The first task is to find the field K. An easy way is to construct an element
§ € O such that § > 0 and § < 0, and to set K := Hk(\/g) Another way is to
construct the field K using class field theory. Such a field has conductor 2o for an
integral ideal 2 and corresponds wvia class field theory to a subgroup of index 2 of
the kernel of the map Cli(f) - Clj where Clj, is the usual class group. Indeed, the
kernel of this map corresponds to the Hilbert class field, and thus its subgroups of
index 2 correspond to quadratic extensions of Hy. Hence, we may compute the ray
class group modulo Av, where 2 runs through the integral ideals 2, by increasing
norm, then compute ker(Cly(f) — Clj) and check if it contains a subgroup of index
2 whose conductor is v.

This last idea is probably the best, since heuristics and numerical evidence show
that the Stark unit tends to grow exponentially like the square root of the norm of
the conductor of K; hence we need to minimize this norm.

Algorithm 3.1. This algorithm computes a modulus f and a subgroup H of Cly(f)
such that § is the conductor of H and the field K corresponding to 'H by class field
theory is a quadratic extension of Hy where v splits and v becomes complex. This
algorithm uses the tools of [6].

1. Setn « 2.

2. Compute the integral ideals Ay, ... , A of norm n. Set ¢ — 1.

3. If c > m then set n <— n+ 1 and go back to step 2. Otherwise, set f «— A .
If § is a conductor then go to step 4, else set ¢ +— c+ 1 and go to step 3.

4. Compute the kernel of Cli(f) — Cly, and then its subgroups Hi,...,H; of
index 2. Set d «— 1.

5. If d > 1 then set ¢ — c+ 1 and go back to step 8. If | is the conductor of Hq
then return the result (f,Hq) and terminate the algorithm, else set d — d+ 1 and
go to step 5.

Once the field K is chosen, we need to compute the values (j /k (0,0). For this
purpose, we use Hecke L-functions (see [L3] for the more general theory of Artin
L-functions). Let x be a character of G := Gal(K/k). By composition with the
Artin map, x can be considered as being defined on the group Ix(f). If s denotes a
complex number with Re(s) > 1, we define

Lp(s,x) = [ (O =xe)Np™),

p unramified

where p runs through the prime ideals of k unramified in K/k. These functions
have meromorphic continuations (even holomorphic if x is non-trivial) to the whole
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complex plane and are related to the partial zeta functions by the formula

(*) Cr/k(s,0) = [K A EE;LK/k s, X)X (),

where the sum is taken over all characters of G.

Let x be a character of G and let 7 denote the non-trivial automorphism of
the quadratic extension K/Hj. If x(7) = 1, the functional equation implies that
L’K/k(O7 X) = 0; hence x will not contribute to the value of g‘;{/k(o, o) in (). Thus
from now on we assume that y(7) = —1. We extend x to all ideals of k& by setting
x(a) = 0 if a is not coprime with the conductor f, of x. To each character x is
associated a canonical L-function defined for s € C with Re(s) > 1 by

L(s,x) = [ (1 = x(0)Np~*) 7",

p
where the product is taken over all prime ideals of k.

Lemma 3.2. Let x be a character such that x(1) = —1. Then f, = f. In particular,
LK/k(Sa X) = L(Sa X)

Proof. Let K, be the subfield of K fixed by the kernel of x. By definition the
conductor of K, is equal to f,. It is clear that the conductor of Hj K, is also equal
to fy, and moreover Hp K, = K since K, is not included in Hy; thus f, = f. |

We set
Mo =TG5/ (“5 ) Do)

where C' := 77 1/dpNF and T'(z) is the classical gamma function. This function
satisfies the fundamental functional equation

A(]' -5, X) = W(X)A(&Y)a

where W(x) is a complex number of modulus equal to 1, called the Artin root
number.

Theorem 3.3. Let »x > 0 be a real number. Forn > 1, let
an(x) = Y x(2),
NA=n

where the sum is taken over all integral ideals of norm n, and let N := {76‘—1‘2“—”—‘

Define the following two quantities:

X)f1(C/n),

X) f2(C/n),

with fi(z) == 2e~/* and fo(z) := Ei(Z/x), where Bi(x) = f;oo e~tdt/t is the
exponential integral function. Then

L'(0,x) = S(x) + WO)T(x) + &,

where the error term k is smaller than ».
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Proof. Letting s tend to 1 in the functional equation gives
WAL X)
2y '
Then a theorem of Friedman [10] tells us that
ALY = D [an (S (C/n, 1) + W()an(0).£(C/n,0)]

n>1

LI(OaX) =

where the function f is defined by

Fas) e i/aﬂ‘oo xzwdz N otico <2>—z r(z) .

2T )y _ioo z—8 27T Jyioo \ZT zZ—8

for any real number o such that o > Re(s). If we differentiate f with respect to
the variable z and use the fact that z/(z —s) = 1+ s/(z — s), we obtain

2\/% o+ico (2

xf'(z,8) = 5im —> I'(z)dz + sf(z,s).

We solve the differential equation and find that

+oo
flz,s) = xs/ t57LE(t) dt,
1/x

X

o—1i00

where

o+i00
Fit) = 2T (20)T(2) d=.
2im o—100
But the theory of Mellin transforms (see for example [20], Chapter 4) tells us that
F(t) = 2y/me~ 2!, and thus f(x,1) = 2y/7fi(z) and f(z,0) = 2¢/7f2(z). Finally,
we compute the number of terms needed for sufficient accuracy by looking at the
asymptotic expansion of the functions f; and fs. O

Thus, we need to compute the following three objects. First, the coefficients
an(x). Second, the functions f; and fo (there of course exist methods to compute
these functions, but here we are interested in efficient methods to compute them
for many consecutive values of n). Third, the values of W (x).

We compute the coefficients a,,(x) by using the multiplicative property

an(X) = Qpn/pm (X)ap"" (X)a

where p™ is the largest power of p that divides n.

Algorithm 3.4. Let N be an integer and let x be a character of G such that
x(7) = —1. This algorithm computes the coefficients a,(x) for 1 <n < N using the
sub-algorithm fill-in(¢,p) which distributes the value of apm(X) according to the
function ¢ : N\ {0} — C (recall that x(p) is set equal to zero whenever the prime
ideal p divides the conductor of x).

1. For n going from 1 <n < N set a,(x) < 1 and set p « 1.

2. Set p « (least prime > p), and if p > N return the coefficients a,(x) for
1 <n < N and terminate the algorithm.

3a. If p is inert: for m odd set ¢(m) = 0, and for m even, set ¢p(m) = x(p)™.
Ezecute fill-in(¢,p) and go to step 2.

3b. If p is ramified: write pOy, = p? and set p(m) = x(p)™. Ezecute fill-in(¢,p)
and go to step 2.
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else set

p(m) = (m +1)x(p)™.

Ezecute fill-in(¢p,p) and go to step 2.
Sub-algorithm fill-in(¢,p).

1. Set g +— 1 and m < 0.

2. Set q«— qp and m — m + 1. If ¢ > N then terminate the sub-algorithm else
set c+— q and d — 1.

3. If p does not diwvide d then set a.(x) = ac(x)p(m).

4. Setc—c+qandd«—d+1. If c < N then go to step 3, else go to step 2.

We now need to compute the functions fi1(C/n) and fo(C/n) for consecutive
values of n. For f1(C/n) = %6_2"/0, the algorithm is very simple.

Algorithm 3.5. Let A > 0 be a real number and let N > 1 be an integer. This
algorithm computes the values of f1(A/n) for 1 <n < N.

1. Set V — e 2/A V) «— AV/2,U; «— Vi and n « 2.

2. Whilen < N, set

Un
U,—Up_1-V, Vn<—7
andn «—n+1.
3. Return the values V,, for 1 <n < N.

We compute the values of fo(C/n) = Ei(2n/C) in the same spirit, that is to say
by trying to compute the function Ei for only a very few values. For this, we use
the following lemma.

Lemma 3.6. Let A > 0 be a positive constant and define ¢(x) := Ei(xA). Then
#'(z) = —Le=*4, and more generally for all m > 1 we have the induction formula

$ D (@) = % (mol™ (@) + (~A)" e )

x
Proof. The first assertion comes from the definition of the exponential integral
function Ei(x) = f;oo e~tdt/t, and the second is easily proved by induction. O

If we have computed ¢(IN) we may obtain ¢(N — 1) by using Taylor’s formula:
1 1 1
H(N = 1) = 6(N) = ¢/(N) + 5;¢"(N) = 50 (N) + 160 (N) — ..

where the derivatives ¢(™) (N) can be computed by the previous lemma. Moreover,
since (—1)m%¢(m)(N) is always positive, we need only to sum these terms and
stop as soon as the next term becomes smaller than the required precision.

Algorithm 3.7. Let A > 0 be a positive constant and let N > 1 be an integer. This
algorithm computes the values Ei(nA) for 1 <n < N with the precision » > 0.
1. Set Fy « FEi(NA), nswop < [4/A] and n «— N. Set also eg «— e? and
—-NA
€1 < € .
2. Set F_1 <0, fo—e1, fi——fo/nandm—1,d— —1, s — F,.
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3. If |s| > s then set Fj,_1 «— F,_1+ s, s — df1, fo — —Afo,

fim = (mfi+ o).

m—m+1,d— —d/m and go to step 3.
4. Setn—n—1, e < eieg. If n > ngop then go to step 2.
5. For 1 <n < ngop compute F,, — Ei(nA) directly (see below).
6. Return the values F,, for 1 <n < N and terminate the algorithm.

For small values of n, we compute the exponential integral by standard means
since the Taylor series converges slowly. One can find explicit formulas to compute
the function E7 in [3], Proposition 5.6.12.

Note that this type of method for computing Fi and more generally for confluent
hypergeometric functions has already been studied in detail, in particular with
respect to its numerical stability. See [19] 23] [24].

Finally, we compute the Artin root number W(x). We will essentially follow the
method given in [§] with a slightly different computational approach. This method
needs to work with the conductor of the character y, but thanks to lemma [3.2] we
know that this conductor is f = o for odd characters.

The following result is a special case of a theorem due to Landau.

Proposition 3.8. Let x be an odd character of G. Choose an element \ € fo such
that X > 0 and the integral ideal g = /\fal is coprime to fo, and choose an element
1 € g such that & > 0 and the integral ideal b = pg™' is coprime to §o. Define the
Gauss sum

G(x) = x (\/d—kb> z:einTr(ﬁu/)\)7
B

where Tr denotes the trace of k/Q and B runs through a complete residue system
of (O /fo)* such that 8 > 0. Then

This yields the following algorithm.

Algorithm 3.9. Let x be an odd character of G. This algorithm computes the
Artin root number W(x) attached to this character.

1. Compute an element \ € fo such that X > 0 and vy(\) = vp(fo) for all prime
ideals p dividing fo. Set g «— (\)fy .

2. Compute two elements i € g and v € fo such that @ > 0 and p+v =1 (note
that g and fo are coprime by construction). Set b «— (u)g=?t.

3. Let {a1,...,a.} be elements of Ok, and let d, | dr—1 | --- | d1 be positive
integers such that a; > 0, the image &; of a; modulo g is of order d;, the cardinality
of (Ok/f0)* is equal to dy ---d,, and

(On/fo)* = [[ &7,
=1

(the set {aq,...,ar} and the matriz whose diagonal entries are the d;’s with zeros
elsewhere define a Smith normal form of the finite Abelian group (O /fo)™, see [d] ).
Let G 0.
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4. For all tuples (i1,...,ir) such that 0 < iy < di,...,0 < i, < d,, compute
B—al ... o and let G «— G + x(3) 27 Tr(Br/A)
5. Let W — (=) x(hv/dk) ﬁ Output W and terminate the algorithm.

Using these algorithms and Theorem B.3, we are now able to compute approxi-
mations of L', /k(O7 x) for all characters x. Using formula (x), we then deduce the
values (}; / (0,0) for all o, and hence approximations of o(¢) and of the conjugates
of a over k (see Theorem 2.T)).

Algorithm 3.10. Let H be a congruence group of conductor § such that the cor-
responding field K verifies the hypothesis of Section [d, and let > > 0 be a real
number. This algorithm computes approzimations of the conjugates of a over k
with the precision .

1. Let x1, ..., xn be all the characters of Gal(K/k) such that x;(T) = —1, where
h is the class number of k and T is the non-trivial automorphism of Gal(K/Hy).
Set C e m AN, N [ =08 ],

2. For all j, compute the coefficients an(x;) using Algorithm [5Z), and the values
f1(C/n) and f2(C/n) using Algorithms[30 and [37 with the precision .

3. Compute the Artin root number W (x;) using Algorithm [3.9, and then deduce
the values of L'(0, x;) by the formula of Theorem[3.3, thus of L’K/k(O, X;) by Lemma
z2

4. Let o1,...,0n be a system of representatives of the quotient Gal(K/k)/(T).
Compute the values g;(/k(o, o0;) using formula (x) for all j (note that C}(/k 0,0,7) =
—g;(/k(o, 0j)), and let z; denote the approzimations obtained.

5. Set aij « e 2% +e%i for all j, return the approzimations &; of the conjugates
of a over k, and terminate the algorithm.

Once we know the approximations &;, we compute the polynomial

h
PX) = (X = @) = X" 4 B X4t i,
j=1
If the element « exists, then this polynomial is the approximation of its irreducible
polynomial over k, and thus every coefficient 3; should be close to an algebraic
integer ;. Theorem 2] also provides a bound for the conjugate of (3;:

_ h
%3 <2]<j>'

We use the following algorithm to recover an integer of k given by an approximation
and a bound for its conjugate (recall that |z], [2] and |z] denote respectively the
floor, the ceiling and the closest integer to x € R).

Algorithm 3.11. Let 5 be a real number and let 3¢ > 0 and B > 0 be two positive
@al numbers. This algorithm finds, if it exists, a B € O such that |3 — 5] < 3 and
Bl < B.

1. Assume without loss of generality that w > @ and set A «— w —w. Set
b | BB and by — b+ 2 [BE=].

2. If b > bnax then output a message saying that such an integer 3 does not

exist and terminate the algorithm. Otherwise, set a «— V;— bw—‘,
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3. Set f— a+ bw, if |B— B| < s and |G| < B then return the element 3 and
terminate the algorithm, else set b «<— b+ 1 and go to step 2.

The correctness of this algorithm follows immediately from the inequalities — s <
B —a—bw < »x and —B < a + bw < B, which imply the given inequalities on b
and the value of a. Note that it is also possible to use the LLL algorithm for this
computation.

We are now able to give the complete algorithm.

Algorithm 3.12. Let k be a quadratic real number field. Under the hypothesis
of Theorem [2_1] this algorithm computes the irreducible polynomial over k of a
generating element of Hy.

1. Using Algorithm[31], find a modulus f and a congruence group H of conductor
f such that the corresponding field K wverifies the hypothesis of Section 2.

2. Set s — 10720 . ¢~ [VINT],

3. Using Algorithm[ZI0, compute approzimations &; of the conjugates of o over
k with precision ». Set

h
P(X) — H(X - a;).

4. Write P(X) = X" + Br_1 X1 + ..+ By, where Bj are real numbers. For
1 < 7 < h, using Algorithm [311 try to find an algebraic integer [3; such that
18; — Bj] < 3 and |B;] < 27 (?) If it is possible then return the polynomial

Xh + 5h,1Xh_1 + ...+ 0o

and terminate the algorithm. Otherwise, increase the precision by setting for ex-
ample 3 — 3%, and go back to step 3.

Remark. As we said above, heuristics show that the conjugates of o are mostly of
the size of exp (\/dk N f); thus the initial precision is chosen so as to obtain twenty
additional digits. However, if this is not enough, we double the precision and redo
the computations. Note that this is not really an algorithm, since if the conjecture
is false it just keeps doubling the precision without stopping.

4. VERIFICATION OF THE RESULT

Let P(X) denote the polynomial given by the above algorithm. Since this algo-
rithm is based on a conjecture, we need to check if a root of this polynomial does
generate the Hilbert class field of k.

First, we verify that the polynomial (whose degree is equal to hy by construction)
is irreducible over k. Then let H be the extension of k generated by any root of
P(X). We verify that the extension H/k is unramified at both finite and infinite
places, using the algorithms given in [5].

Once we have proved that the extension H /k is of degree hj and unramified,
we still have to prove that it is an Abelian extension. In fact, if Ay = 2 or 3,
this follows from the fact that the extension is unramified. (This is obvious for
hr = 2. For hj, = 3, assume the extension is not cyclic; then its Galois group is S3
and k has a quadratic extension which is a subfield of the Galois closure of H /k
and thus unramified. But this is impossible since it implies that 2 divides hy.) In
the general case, we factor the polynomial P(X) in the field H, and it must have
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only linear factors if H /k is Galois. Since every such linear factor corresponds to
a k-automorphism of H , we can check if the extension is Abelian by proving that
they commute with each other.

However, once we have proved that the extension H /k is a Galois extension, it
is possible to be more efficient for small values of hy, since there are only a few
possibilities for the Galois group Gal(H /k). Another possibility is to use a result
of Bach and Sorenson [1] which gives under GRH an upper bound for the norm of
the prime ideals generating the norm group of an Abelian extension. Indeed, this
result enables one to write an algorithm which, under GRH, does prove that an
extension is Abelian (without having to prove first that it is Galois) and computes
at the same time its norm group (see [I7] for details).

We now give an algorithm using the first method described above, which does
not use GRH.

Algorithm 4.1. Let P(X) be a polynomial of degree hy and with coefficients in
Ok. This algorithm proves (or disproves) that a root of P(X) generates the Hilbert
class field of k.

1. Check if P(X) is irreducible over k[X]. If this is not the case then output
a message saying that P does not generate an extension of degree hi of k and
terminate the algorithm.

2. Let 0 be a root of P and let H denote the field k(6). Compute the minimal
polynomial of 6 over Q and check zfﬁ is totally real using Sturm’s algorithm (see
[B], Algorithm 4.1.11). If this is not the case then return a message saying that
ﬁ/k is ramified at the infinite places and terminate the algorithm.

3. Compute the relative discriminant of H/k using the algorithm given in [5].
If it is different from Oy, then output a message saying that ﬁ/k is ramified at
the finite places and terminate the algorithm. Otherwise, if hy = 2 or 3 return a
message saying that H= Hj. and terminate the algorithm.

4. Compute the factorization of P(X) in ﬁ[X] If P does not admit only
linear factors then output a message saying that ﬁ/k is not a Galois extension and
terminate the algorithm. Otherwise, if hy = 4 or hy is a prime number return a

message saying that H = Hy, and terminate the algorithm.
5. Let X — S5;(Y) € k[X,Y] be such that

PX)= J] (X-s5;0)

1<j<hi

is the factorization of P in H[X]. For all 1 < i < j < hy, check if S;(S;(0)) =
S;(S;:(8)). If this is not the case then return a message saying that H/k is not an
Abelian extension and terminate the algorithm, otherwise return a message saying
that H = Hy, and terminate the algorithm.

5. AN EXAMPLE

The algorithm presented in this paper has been implemented as part of the new
version of the PARI/GP [2] package. The quadhilbert function uses complex
multiplication to compute the Hilbert class field of complex quadratic fields, and
the present algorithm for real quadratic fields. The following example was treated
using this implementation.
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Let k be the real quadratic field generated by w := 1/438. We then have dj, =
1752, O = Z + Zw, and the class group of k is cyclic of order 4.

The field K can be taken to be the ray class field of £ modulo pv, where p is one
of the two prime ideals above 11. Note that the extension K/k is cyclic of order 8,
so there is no quadratic extension k’/k such that K = Hyk'.

If o denotes a generator of G := Gal(K/k), then T = o*. Let ¢ be the character
of G such that (o) = &s, where & is a fixed primitive 8-th root of unity. The
characters x such that x(7) = —1 are then v, 13, ¥° and %7 (note that 1 = 7,
P = ¥®). With the notations of Theorem B3] we compute

S() =~ 1.71552623535657 + 0.7446430917775544,
T(y) =~ 14.1665156497187 4 2.519185309479384,
S(y3) =~ 0.842811390359850 + 1.293267463617554,
T(?) ~ 12.8015376467263 — 8.44945647020462i,

and S(¥7) = S(y), T(Y7) = T(¥), S(W°) = S(43), T(¥°) = T(?).
For the character ¥, we find that W (1)) = ¢*7/8 and similarly W (¢%) = =W (),

W (%) = W (%) = =W (¢) and W (3)

L-functions, and obtain

W (). So we compute the corresponding

Chpp(0,0) &~ 7.25654406363900, g(/k(o,a) = —Chpl0,0),
Chopp(0,0%) & —0.944193530444349, Cpe /(0,09 = —Cj . (0,0?),
Chope(0,0%) ~  2.94813989197904, g;(/k(o,a) = —Cheyl0,0%),
Chopp(0,0%) & 1.92921444495667, () (0,1) = —C(0,0%).

We then compute the values of the conjugates of « over k, and we form its irreducible
polynomial

X4 —2009298.2915480506125 X 3 4- 839444123.58478759370 X
—40221955871.313705629.X 4 234161017552.69584759

which, using Algorithm B-11] is seen to be very close to the polynomial

X* 4 (—48004v/438 — 1004649) X > + (20055096v/438 + 419722059) X 2
+ (—9609396961/438 — 20110977936) X + (5594323104+/438 4 117080508780).

A relative reduction process gives the following simpler polynomial defining the
same field extension:

X 42X + (V438 — 25) X% + (—V438 + 22) X + (—3V/438 + 63).

We now have to check the result: we prove that this polynomial is irreducible over
k and that the extension H that it defines is unramified at both finite and infinite
places. Moreover, this polynomial factors completely over H ; hence the relative
extension H /k is Galois. Since its degree is equal to 4, this implies that it is

Abelian, and since it is unramified this implies that His actually the Hilbert class
field of k.
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Finally, since k/Q is a cyclic extension, it is possible to find a field L of degree 4
such that kN L = Q and kL = Hy, (see [7]). In fact, any subfield L of Hj of degree
hi over Q and disjoint from k will work. In order to find such a field, one can use
the algorithm for subfield computation given in [I2], or use the method explained
in [4], which gives only some subfields. In our example, we find that such a field is
generated by a root of

X*—2X3-5X%24+6X +3.

APPENDIX. TABLES OF HILBERT CLASS FIELDS

For each of the 607 real quadratic field k of discriminant less than 2 000, we give
a polynomial defining a field Ly over Q such that the Hilbert class field of k is the
compositum of k and L. For the sake of completeness, we recall the list of the 319
fields k& with class number equal to 1, for which trivially Ly = Q.

Discriminant of the fields with hy =1

5 8 12 13 17 21 24 28 29 33 37

41 44 53 56 57 61 69 73 76 77 88

89 92 93 97 101 | 109 | 113 | 124 | 129 | 133 | 137
141 | 149 | 152 | 157 | 161 | 172 | 173 | 177 | 181 | 184 | 188
193 | 197 | 201 | 209 | 213 | 217 | 233 | 236 | 237 | 241 | 248
249 | 253 | 268 | 269 | 277 | 281 | 284 | 293 | 301 | 309 | 313
317 | 329 | 332 | 337 | 341 | 344 | 349 | 353 | 373 | 376 | 381
389 | 393 | 397 | 409 | 412 | 413 | 417 | 421 | 428 | 433 | 437
449 | 453 | 457 | 461 | 472 | 489 | 497 | 501 | 508 | 509 | 517
521 | 524 | 536 | 537 | 541 | 553 | 556 | 557 | 569 | 573 | 581
589 | 593 | 597 | 601 | 604 | 613 | 617 | 632 | 633 | 641 | 649
652 | 653 | 661 | 664 | 668 | 669 | 673 | 677 | 681 | 701 | 709
713 | 716 | 717 | 721 | 737 | 749 | 753 | 75T | 764 | 769 | 773
781 | 789 | 796 | 797 | 809 | 813 | 821 | 824 | 829 | 844 | 849
853 | 856 | 857 | 869 | 877 | 881 | 889 | 893 | 908 | 913 | 917
921 | 929 | 933 | 937 | 941 | 953 | 956 | 973 | 977 | 989 | 997
1004 | 1013 | 1021 | 1033 | 1041 | 1048 | 1049 | 1052 | 1057 | 1061 | 1069
1077 | 1081 | 1084 | 1097 | 1109 | 1112 | 1117 | 1121 | 1132 | 1133 | 1137
1141 | 1149 | 1153 | 1169 | 1177 | 1181 | 1193 | 1201 | 1208 | 1213 | 1217
1228 | 1237 | 1244 | 1249 | 1253 | 1273 | 1277 | 1289 | 1293 | 1301 | 1317
1321 | 1324 | 1329 | 1333 | 1336 | 1337 | 1349 | 1357 | 1361 | 1381 | 1388
1389 | 1397 | 1401 | 1409 | 1432 | 1433 | 1437 | 1441 | 1453 | 1457 | 1461
1468 | 1473 | 1477 | 1481 | 1493 | 1497 | 1501 | 1516 | 1528 | 1529 | 1532
1541 | 1549 | 1553 | 1561 | 1569 | 1577 | 1589 | 1592 | 1597 | 1609 | 1613
1621 | 1633 | 1637 | 1657 | 1661 | 1669 | 1673 | 1676 | 1688 | 1689 | 1693
1697 | 1709 | 1713 | 1721 | 1724 | 1733 | 1741 | 1753 | 1757 | 1777 | 1784
1789 | 1793 | 1797 | 1801 | 1816 | 1817 | 1821 | 1829 | 1837 | 1841 | 1852
1857 | 1861 | 1868 | 1873 | 1877 | 1889 | 1893 | 1909 | 1912 | 1913 | 1916
1933 | 1941 | 1948 | 1949 | 1964 | 1969 | 1973 | 1977 | 1981 | 1993 | 1997

There are 194 fields with class number 2. We give a table for each possible value
of the discriminant dy, of Ly.
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First, there are 70 real quadratic fields k of discriminant less than 2000 with
class number 2 and such that Lj, = Q(v/5).

Discriminant of the fields & such that hy =2 and d,, =5
40 60 65 85 105 | 120 | 140 | 165 | 185 | 205
220 | 265 | 280 | 285 | 305 | 345 | 365 | 380 | 385 | 440
460 | 465 | 485 | 545 | 565 | 620 | 645 | 665 | 685 | 705
745 | 760 | 805 | 860 | 865 | 885 | 920 | 965 | 1005 | 1065
1085 | 1165 | 1180 | 1185 | 1205 | 1240 | 1245 | 1265 | 1285 | 1340
1385 | 1405 | 1420 | 1465 | 1505 | 1545 | 1565 | 1580 | 1585 | 1605
1645 | 1660 | 1685 | 1720 | 1865 | 1880 | 1905 | 1945 | 1965 | 1985

There are 34 real quadratic fields k of discriminant less than 2000 with class
number 2 and such that Lj, = Q(v/2).

Discriminant of the fields k£ such that hy =2 and dy,, =8
104 | 136 | 168 | 232 | 264 | 296 | 424 | 456 | 488 | 552 | 584 | 616
712 | 744 | 776 | 808 | 872 | 1032 | 1064 | 1128 | 1192 | 1256 | 1416 | 1448
1544 | 1576 | 1608 | 1672 | 1704 | 1832 | 1864 | 1896 | 1928 | 1992

There are 14 real quadratic fields k& of discriminant less than 2000 with class
number 2 and such that Lj, = Q(v/3).

Discriminant of the fields &k such that hy = 2 and dr, = 12
156 204 348 444 492 636 732
1068 1212 1308 | 1356 | 1644 1788 1884

There are 26 real quadratic fields k of discriminant less than 2000 with class
number 2 and such that Ly = Q(v/13).

Discriminant of the fields & such that Ay =2 and dr, = 13
221 | 273 | 312 | 364 | 377 | 429 | 481 | 533 | 572
728 | 741 | 949 | 988 | 1001 | 1144 | 1157 | 1196 | 1209
1261 | 1417 | 1469 | 1612 | 1729 | 1781 | 1833 | 1976

There are 21 real quadratic fields k& of discriminant less than 2000 with class
number 2 and such that L = Q(v/17).

Discriminant of the fields k such that hy = 2 and dz,, = 17
357 | 408 | 476 | 493 | 561 | 629 | 748 | 952 | 969 | 1037 | 1173
1241 | 1309 | 1496 | 1513 | 1564 | 1581 | 1649 | 1717 | 1853 | 1921

There remains 29 fields k£ with class number 2 and such that the discriminant dy,,
is larger than 17. We give them in a single table containing first the discriminant
of k, and then the discriminant of dy, , ordered by increasing value of dr,, .

Discriminant and dy,, for the fields k such that hy =2 and dr, > 17
609 | 21| 861 |21 | 1113 |21 | 1281 |21 || 1533 | 21 || 1869 | 21
696 | 24 || 888 |24 || 984 |24 || 1272 | 24 || 1464 | 24 || 812 | 28
1036 | 28 || 1148 | 28 || 1484 | 28 || 957 |29 || 1073 | 29 || 1189 | 29
1276 | 29 || 1537 | 29 || 1624 | 29 || 1653 | 29 || 1769 | 29 || 1353 | 33
1749 | 33 || 1517 | 37 || 1628 | 37 || 1961 | 37 || 1804 | 41

There are 24 real quadratic fields with class number equal to 3 and discriminant
less than 2000. In the following table, we give their discriminants together with a
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polynomial defining the field Ly.

Discriminants of the fields K such that hx = 3 and polynomials for Ly
229 | X3 —4X —1 257 | X3 —-X?—-4X+3
316 | X3 —X2-4X+2 321 | X?P—X?2-4X+1
469 | X3 —X2-5X+4 473 | X3 -5X -1

568 | X3 —X?2-6X -2 733 | X3 -X2-7X+8
761 | X3 -X?2-6X-1 892 | X3 -X2-8X+10
993 | X3 —-X2-6X+3 1016 | X3 — X2 —-6X+2
1101 | X% — X2 —-9X 412 1229 | X3 - X2-7X+6
1257 | X®—X2_-8X+9 1304 | X3 —11X —2

1373 | X3 -8X -5 1436 | X3 —11X — 12
1489 | X3 - X2 -10X -7 1509 | X3 —-X2-7X+4
1772 | X3 - X2 -12X +8 1901 | X3 —X2-9X —4
19290 | X% — X2 - 10X + 13 1957 | X3 —-X2-9X+10

There are 41 real quadratic fields with class number equal to 4 and discriminant
less than 2000. In the following table, we give their discriminants together with a
polynomial defining the field Ly.

Discriminants of the fields K such that hx = 4 and polynomials for Ly
145 [ XT - X3 -3XZ2+ X +1 328 [ XT—2X3—-3X2+2X +1
445 | X*— X3 —5X24+2X +4 || 505 | X*—2X3 —4X?24+5X+5
520 | X*—6X2+4 680 | X*—6X2%2+4

689 | X4— X3 _5X24+X+1 7T | X4 —2X3 —4X2 45X +1
780 | X4 —2X3 —7X24+8X+1| 793 | X*—X3-6X%24+8X -1
840 | X4 —6X2+4 876 | X*—7X%2-6X +1

897 | X4 —2X3 —4X24+5X+3 || 901 | X*—2X3 —4X24+5X +2
905 | X*— X3 —7X24+3X+9 || 924 | X*—5X2+1

1020 | X* —2X3 —7X2 48X +1 | 1045 | X* — X3 —8X2 4+ X +11
1096 | X+ —2X3 —5X24+6X +7 | 1105 | X* —9X2+4

1145 | X* — X3 —8X2 46X +11 || 1160 | X* —6X2%2+4

1164 | X* —2X3 —7X24+8X +4 || 1221 | X* - X3 —10X2+ X +1
1288 | X4 —2X3 —7X24+8X +8 | 1292 | X* — X3 —11X2+ 12X +38
1313 | X4 — X3 —-8X2—-4X+3 || 1320 X*—6X2+4

1365 | X4+ —9X2+4+4 1480 | X4 —6X2%2+4

1560 | X4 —9X2 44 1640 | X4 —6X2%2+4

1677 | X4 — X3 —7X242X +4 || 1736 | X* —2X3—7X24+6X +9
1740 | X* —2X3 —7X2 48X +1 || 1745 | X* — X3 —10X%2 +2X + 19
1752 | X* —2X3 —5X24+6X +3 | 1820 | X*—9X2+4

1848 | X4 —10X2%2+4 1885 | X4+ —-9X2+4

1932 | X*—5X2+1

Finally, there are 29 real quadratic fields with class number ranging from 5 to 11
and discriminant less than 2 000. In the following table, we give their discriminants
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together with a polynomial defining the field L.

Discriminants of the fields K such that hx > 5 and polynomials for Ly
401 [ X5 —XT—5X3+4X%2+3X —1

577 | X7 —2X% —7X%+10X%4+13X°% - 10X%2 - X +1

697 | X6 —3X% —3X4+11X3-X2-5X +1

785 | X0 — X% —8X44+6X3+16X2—-10X —5

817 | X° — X* —6X3+5X2+3X -1

904 | X8 —2X7—9X6 4 10X°+22X* —14X3 —15X2 42X +1

940 | X% —3X°% —5X*+14X%+9X%2 - 15X -5

985 | X6 —3X° —4X44+13X34+3X2-10X +1

1009 | X7 — X6 —9X54+2X4 421 X3+ X2 -13X -1

1093 | X° —8X3 —3X2+ 10X +4

1129 | X9 —3X® — 10X7 +38X6 4+ 5X° — 107X* + 58X 3 + 78X?

—60X —1
1297 | X1 —5X10 —4X9 4+ 54X8 — 53X7 — 127X6 4+ 208 X5 + 69.X*
—222X3 +29X2 +56X —5

1345 | X6 —3X5 —8X4+16X°%+24X2% -5

1384 | X6 —2X° —7X* 4+ 14X3 +3X%2 - 12X +4

1393 | X° — X* —7X34+6X%2+3X —1

1429 | X° — X4 —13X34+23X24+9X —23

1596 | X8 —2X7 —13X6 4 16X° 4+ 43X* —10X3 —34X% —4X + 4
1601 | X7 —2X6 —14X5 4+ 34X* +4X3 -38X2+7X +1

1641 | X° — X4 —10X34+ X2 +21X +9

1705 | X8 — X7 — 14X 4+ 9X5+62X* —23X3 —84X?+20X — 1
1708 | X6 —3X5 —8X*4+21X%3 —6X2-5X +1

1756 | X° —2X* —10X3 +14X%2+21X — 16

1761 | X7 —2X6 —14X5 4+ 14X+ +50X3 —22X2 51X — 3

1765 | X6 —3X°% —6X*4+17X%+5X%2 - 14X +4

1768 | X8 —4X7 —6X6+32X° —5X* —48X3 +14X%2 4+ 16X — 4
1785 | X8 —2X7T — 13X6 +17X° 4 48X* — 23X3 —33X2+3X + 1
1897 | X° — X% —13X34+8X2 427X +1

1937 | X6 —10X*+25X2 - 13

1996 | X5 —9X3 —4X24+10X + 4

These computations were done on a Pentium Pro 200 with 256 Mb of RAM. The
total computation time (including class group computations, computations of the
generating element, reduction of the result and computation of the field Lj) took
about 21 minutes. Note that actually the last two steps (reduction and computation
of the field L) represented more than 70% of the whole computation time.

All these fields have of course been verified using Algorithm 1]
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