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CONVERGENCE RATES
TO THE DISCRETE TRAVELLING WAVE

FOR RELAXATION SCHEMES

HAILIANG LIU

Abstract. This paper is concerned with the asymptotic convergence of nu-
merical solutions toward discrete travelling waves for a class of relaxation nu-
merical schemes, approximating the scalar conservation law. It is shown that
if the initial perturbations possess some algebraic decay in space, then the nu-
merical solutions converge to the discrete travelling wave at a corresponding
algebraic rate in time, provided the sums of the initial perturbations for the
u-component equal zero. A polynomially weighted l2 norm on the perturba-
tion of the discrete travelling wave and a technical energy method are applied
to obtain the asymptotic convergence rate.

1. Introduction

We shall investigate here the convergence rates to the stationary discrete travel-
ling wave for a class of relaxation numerical schemes of the type introduced by Jin
and Xin [7] as well as Aregba-Driollet and Natalini [1] to approximate the scalar
conservation law

ut + f(u)x = 0(1.1)

when the relaxation time is small.
The relaxation numerical schemes we consider take the form

un+1
j − unj + λ

2 (vnj+1 − vnj−1)− µ
2 (unj+1 − 2unj + unj−1) = 0,

vn+1
j − vnj + aλ

2 (unj+1 − unj−1)− µ
2 (vnj+1 − 2vnj + vnj−1) = −κ(vn+1

j − f(un+1
j )).

(1.2)

The discrete solution (un, vn) := (unj , v
n
j )j∈Z is a numerical approximation of the

point values (u, v)(xj , tn) on the grid given by xj = j∆x and tn = n∆t, with
∆x = r and ∆t = h being the spatial and the temporal mesh lengths. Further, we
assume that the mesh ratio λ = ∆t

∆x satisfies the Courant-Friedrichs-Lewy (CFL)
condition

µ :=
√
aλ < 1.(1.3)
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The relaxation scheme (1.2) with κ = ∆t/ε > 0 was introduced in [7] as an approx-
imation to the system

ut + vx = 0, x ∈ R, t > 0,

vt + aux = − 1
ε (v − f(u)),

(1.4)

which approximates scalar conservation laws (1.1) when the relaxation rate ε > 0
is small. For rigorous justification of such a kind of zero relaxation limit we refer
to Chen, Levermore and Liu [2], Liu [14] and Natalini [22], etc., for 2× 2 systems.
One of the main advantages of the system (1.4) is its form of local relaxation
structure and linearity in convection which makes it possible to solve this system
quite easily by underresolved stable numerical discretization using neither Riemann
solvers spatially nor nonlinear systems of algebraic equations solvers temporally [7].

In (1.4), the constant a > 0 is assumed to satisfy the subcharacteristic condition
introduced by Liu [14]:

−
√
a < f ′(u) <

√
a for all u under consideration.(1.5)

To see that (1.4) is a good approximation of (1.1), application of the Chapman-
Enskog expansion to (1.4) implies

ut + f(u)x = ε[(a2 − f ′(u)2)ux]x.(1.6)

The Cauchy problem for (1.6) is well-posed if (1.5) holds.
Throughout this paper it is assumed that the flux function f is smooth and

convex, i.e.,

f ′′(u) > 0, for all u under consideration.(1.7)

Our interest here will be on the discrete traveling wave solution of (1.2) propa-
gating at subcharacteristic speed s = 0 in the sense that

−
√
a < s <

√
a.(1.8)

If (un, vn) = (Uj , Vj)j∈Z is a travelling wave solution to (1.2) connecting constant
states (u±, v±) = (U±∞, V±∞), we must have

v± = f(u±),

since the only constant state solutions of (1.2) are equilibrium states which are on
the equilibrium curve v = f(u) in the state space (u, v).

Under the CFL condition (1.3) and the subcharacteristic condition (1.5), related
to an admissible stationary shock denoted by (u−, u+, 0) for the equation (1.1), the
scheme (1.2) admits a unique stationary discrete travelling wave (Uj , Vj)j∈Z
with Uj taking on a given value u∗ ∈ ]u+, u−[ at j = 0, i.e., it satisfies the conditions

(Vj+1 − Vj−1)−
√
a(Uj+1 − 2Uj + Uj−1) = 0,

(Uj+1 − Uj)− 1√
a
(Vj+1 − 2Vj + Vj−1) = − 2κ

aλ(Vj − f(Uj)), j ∈ Z,

limj→±∞(Uj , Vj) = (u±, f(u±)),

Uj|j=0 = u∗.

(1.9)

The existence of such discrete solutions and further properties, see Proposition 2.1,
were proved by Liu, Wang and Yang [17]. Moreover, by using the energy method
the authors in [17] were able to show that these stationary discrete travelling waves
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are nonlinearly stable with respect to initial perturbations, provided the total mass
of the perturbation is zero.

The main goal of this paper is to improve the nonlinear stability results in [17]
by establishing the time convergence rates to a stationary discrete travelling wave
(Uj , Vj)j∈Z. To the author’s knowledge, this seems the first time-asymptotic con-
vergence rate for a difference scheme applied to a relaxation system of conservation
laws. The result is based on an observation in Liu, Woo and Yang [19] that the
perturbation of travelling waves that initially decay in space with some algebraic
rate yields a corresponding decay rate in time; see also Zingano [27]. This obser-
vation suggests that we should use L2-based weighted norms on the initial pertur-
bations to investigate the algebraic decay. This strategy was initiated in a paper
by Kawashima and Matsumura [8] for the scalar viscous conservation law. Using
this approach, a time decay result in the context of numerical scheme was obtained
by Liu and Wang [13]. In the present paper the algebraic decay in space will be
encoded through the use of an algebraic discrete weight analogous to [13]. The
result then states that the perturbation will decay algebraically in time.

Now we state the main theorem in this paper.

Theorem 1.1. Assume that the CFL condition (1.3), the subcharacteristic condi-
tion (1.5), and (1.7) hold. Let (Uj, Vj)j∈Z be a stationary discrete travelling wave
defined by (1.9) connecting (u+, f(u+)) to (u−, f(u−)). Assume that∑

j∈Z
(u0
j − Uj) = 0(1.10)

and, for some α > 0,∑
j∈Z

[
(1 + j2)

α
2 +1|u0

j − Uj |2 + (1 + j2)
α
2 |v0

j − Vj |2
]
≤ δ(1.11)

for some positive constant δ. Then the unique global solution (unj , v
n
j )j∈Z to the

relaxation scheme (1.2) with the initial data (u0
j , v

0
j )j∈Z tends in the maximum

norm to the discrete travelling wave (Uj , Vj)j∈Z at the rate

sup
j
|(unj , vnj )− (Uj , Vj)| ≤ C(1 + nh)−α/2

√
δ, n ≥ 0,(1.12)

provided λ is suitably small, κ ∈ R+.

A few remarks are in order concerning the theorem and its proof.

Remark 1. Although we only present the results for implicit scheme in the theorem
and its proof, however, it should be clear from our analysis and the nonlinear
stability analysis in [17] that the corresponding result holds for the explicit scheme
in the form

un+1
j − unj + λ

2 (vnj+1 − vnj−1)− µ
2 (unj+1 − 2unj + unj−1) = 0,

vn+1
j − vnj + aλ

2 (unj+1 − unj−1)− µ
2 (vnj+1 − 2vnj + vnj−1) = −κ(vnj − f(unj )),

under some technical restriction on κ (for stability result, 0 < κ ≤ 1 in [17]).

Remark 2. Our result shows that there is a relationship between the spatial decay
assumed of the initial perturbation and the rate of decay in time. In this sense the
theorem exhibits the transformation of spatial decay into temporal decay.
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Remark 3. In the theorem and its proof we just use the fact that κ > 0. If we take
κ = exp(∆t/ε) − 1 instead, then (1.2) will reduce to a relaxation scheme studied
in the paper of Aregba-Driollet and Natalini [1]. They considered a fractional-
step scheme, where the homogeneous (linear) part is treated by some monotone
scheme and then the source term is solved exactly thanks to its particular structure.
Therefore the asymptotic convergence rates presented in Theorem 1.1 still hold true
for a first order relaxation scheme in [1].

It is well known that in general the initial value problem of (1.1) develops dis-
continuities in a finite time which present difficulties for numerical computation of
solutions to (1.1). Discrete shock profiles of the numerical schemes for (1.1) epito-
mize the propagation of solutions and structure properties of shocks in numerical
solutions. In recent years existence and stability of discrete shocks has been an
interesting subject of study. The existence of a discrete shock was first studied by
Jennings [6] for a monotone scheme. For a first order system, Majda and Ralston
[21] used a center manifold theory and proved the existence of a discrete shock; see
also Michelson [20]. The asymptotic stability for scalar equations was studied by
Jennings [6], Tadmor [25], Smyrlis [24], Engquist and Yu [3], Liu and Wang [11],
[12], and other authors. For a first order system, Liu and Yu [15] recently showed
both the existence and stability of a discrete shock when the relative discrete shock
speed is a diophantine number. For a modified Lax-Friedrichs scheme Liu and Xin
[9], [10] proved the stability of discrete shocks. For a general initial perturbation,
Ying [26] obtained a stability result for the Lax-Friedrichs scheme. For the exis-
tence and stability of the discrete travelling wave for some relaxing schemes, see
[17], [18]. Existence and stability of discrete shocks are essential for error analysis
of a difference scheme approximating (1.1); see [6], [9], [3] and [4]. These and our
other references also quote and describe further earlier work.

The rest of the paper is outlined as follows. In Section 2 we recall the existence
and stability of the stationary discrete travelling wave, then reformulate the original
problem and restate the main theorem. In Section 3 the basic time decay estimates
are proved by using a weighted energy analysis. The proofs of some intermediate
technical energy estimates summarized in Lemma 3.4 are relegated to Section 4,
from which the restriction on λ is clarified. Finally, the main theorem is proved
in Section 5. Some computations in grouping of terms for constructing the energy
function are carried out in the Appendix. Grouping terms in this way yields a
simpler energy function than that in [17]. Actually our proof here reduces to a
slightly simplified version of the stability proof in [17] after replacing the weight by
1 in this novel energy expression.

We end this section by presenting the following definitions of discrete norms to
be used in subsequent analysis.

First let us define the weighted l2-norm. Suppose that {Kj > 0, j ∈ Z} is any
discrete weight function. For any infinite dimensional vector u ≡ (uj)j∈Z, we define

|u|K =

∑
j

|uj|2Kj


1
2

.

We denote the corresponding space by

l2K = {u |u|K <∞}.
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When for r = ∆x specifically Kj = 〈jr〉α = (1 + (jr)2)
α
2 for some α ≥ 0, we write

l2K = l2α with norm | · |K = | · |α.
If α = 0, | · |α becomes the regular l2 norm ‖ ·‖ = | · |0. We will denote the difference
of a discrete function (uj)j∈Z in space by

∆u := (uj+1 − uj)j∈Z.

2. Discrete travelling wave and main theorems

Let (Uj , Vj)j∈Z be a stationary discrete travelling wave connecting (u±, f(u±))
for the relaxation scheme (1.2). For the existence of (Uj , Vj)j∈Z a necessary and
sufficient condition is Rankine-Hugonoit relation

f(u−) = f(u+)(2.1)

combined with Lax’s shock condition

f ′(u+) < 0 < f ′(u−)(2.2)

when the propagation speed s = 0. Due to the convexity of the flux function f , the
shock condition (2.2) is equivalent to

u+ < u−.

Further, it was shown in [17] that (Uj)j∈Z, the u-component of the discrete travelling
wave (Uj , Vj)j∈Z, is the stationary discrete shock profile of a monotone conservative
difference scheme which becomes as ε→ 0,

un+1
j = unj −

1
2

(f(unj+1)− f(unj−1)) +
µ

2
(unj+1 − 2unj + unj−1).(2.3)

The scheme (2.3) is a first order monotone difference scheme for the scalar conser-
vation laws (1.1). This yields the monotonicity of (Uj)j∈Z, which is crucial in our
stability analysis.

Proposition 2.1 ([17]). Under the Rankine-Hugonoit condition (2.1), Lax’s shock
condition (2.2) and the subcharacteristic condition (1.5), for each given u∗ ∈
]u+, u−[, there exists a unique stationary discrete travelling wave (Uj , Vj)j∈Z for
the scheme (1.2), i.e., (Uj , Vj)j∈Z satisfy (1.9). Moreover,

Uj+1 < Uj for any j ∈ Z.
Let (unj , v

n
j )j∈Z,n∈N be the numerical solution of (1.2) corresponding to a slight

perturbation of the wave profile (Uj , Vj)j∈Z, i.e.,

(u0
j , v

0
j ) = (Uj , Vj) + (ũj , ṽj)

with (ũ±∞, ṽ±∞) = (0, 0) and (U±∞, V±∞) = (u±, f(u±)). After assuming∑
j∈Z

(u0
j − Uj) = 0,(2.4)

we have ∑
j∈Z

(unj − Uj) = 0

indicated by the conservation form of the first equation in scheme (1.2). Then we
can expect to show that

(unj , v
n
j )→ (Uj , Vj) as n→∞.(2.5)
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Denote

ū0
j :=

j∑
i=−∞

(u0
i − Ui), v̄0

j := v0
j − Vj .(2.6)

When ‖ū0‖+‖v̄0‖ is small, the authors in [17] could derive energy estimates related
to (2.5), leading to the following result.

Theorem 2.2 ([17]). Let (Uj , Vj)j∈Z be a discrete stationary travelling wave of the
relaxation scheme (1.2). If ‖ū0‖+‖v̄0‖ is suitably small, then there exists a unique
global solution, (unj , v

n
j )j∈Z, to the scheme (1.2) with initial value (u0

j , v
0
j )j∈Z such

that

lim
n→∞

∑
j

(|unj − Uj |2 + |vnj − Vj |2) = 0

provided λ is suitably small, and κ ∈ R+.

Also, experience suggests that, in the case of discrete shock profiles, perturba-
tions might decay quite fast as n → ∞, provided they are sufficiently localized in
space. Our main result in Theorem 1.1 shows that this is indeed the case; and
Theorem 1.1 can be obtained from the following theorem.

Theorem 2.3 (Convergence Rate). Let (unj , v
n
j )j∈Z be a solution obtained in The-

orem 2.2, and (ū0
j , v̄

0
j )j∈Z ∈ l2α for some α > 0. If |ū0|α + |v̄0|α is suitably small,

then

sup
j
|(unj − Uj , vnj − Vj)| ≤ C(1 + nh)−

α
2 (|ū0|α + |v̄0|α)

for all n ∈ N0.

Theorem 1.1 is a direct consequence of Theorem 2.3 if we note that the condition
(1.11) in Theorem 1.1 implies that (ū0

j , v̄
0
j )j∈Z ∈ l2α (whose proof requires a discrete

version of a weighted Poincaré inequality and is omitted here; for details, see [5]).
In order to prove Theorem 2.3, we reformulate the scheme (1.2) by formally

introducing

ūnj :=
j∑

k=−∞
(ujk − Uk), v̄nj := vnj − Vj .(2.7)

It will be shown below that the summation always gives a finite value.
Now, both (unj , v

n
j )j∈Z and (Uj , Vj)j∈Z satisfy (1.2); by taking the difference of

the two systems of the scheme and summing the first equation with respect to j
over (−∞, j), we obtain, after linearizing the resulting system around the wave
profile (Uj, Vj)j∈Z,

ūn+1
j − ūnj + λ

2 (v̄nj+1 + v̄nj )− µ
2 (ūnj+1 − 2ūnj + ūnj−1) = 0,

v̄n+1
j − v̄nj + aλ

2 (ūnj+1 − ūnj − ūnj−1 + ūnj−2)− µ
2 (v̄nj+1 − 2v̄nj + v̄nj−1)

= −κ[v̄n+1
j − Λj(ūn+1

j − ūn+1
j−1 )− θn+1

j ],

(2.8)

θn+1
j = f(un+1

j )− f(Uj)− f ′(Uj)(un+1
j − Uj)

=
1
2
f ′′
(
ηun+1

j + (1− η)Uj)(un+1
j − Uj

)2
, 0 < η < 1,

(2.9)
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Λj = f ′(Uj),(2.10)

ūnj − ūnj−1 = unj − Uj .(2.11)

Set

Lnj := −λ
2

(v̄nj+1 + v̄nj ).(2.12)

This by the first equation of (2.8) yields

Lnj = ūn+1
j − ūnj −

µ

2
(ūnj+1 − 2ūnj + ūnj−1).(2.13)

For simplicity of presentation, we introduce

wnj = ūnj+1 − ūnj−1, w̄nj = ūnj+1 − ūnj .(2.14)

Further summing both sides of the second equaion of (2.8) with index j and j + 1,
then multiplying by −λ2 , we get

L(ūnj ) := Ln+1
j − Lnj − µ

2(κ+1) (Lnj+1 − 2Lnj + Lnj−1)− µ2

4(κ+1) (wnj+1 − wnj−1)

+ κ
κ+1L

n
j + κλΛj

2(κ+1) w̄
n+1
j−1 + κλΛj+1

2(κ+1) w̄
n+1
j

= κ
(κ+1)e

n+1
j ,

(2.15)

where

en+1
j = −λ

2
(θn+1
j + θn+1

j+1 ), µ =
√
aλ.(2.16)

The corresponding initial data for the reformulated scheme (2.15) are

ūnj |n=0 = ū0
j , Lnj |n=0 = L0

j := −λ
2

(v̄0
j+1 + v̄0

j ).(2.17)

We observe from (2.9) that the right hand side κ
(κ+1)e

n+1
j in (2.15) involves only high

powers of terms which we expect to be small and have little effect in the subsequent
energy analysis for small perturbations. As shown in [17], the most important prop-
erties for the stability of the discrete travelling wave are its compressity, expressed
by the inequality

Λj > Λj+1, j ∈ Z,(2.18)

which is implied by the convexity of f and the monotonicity of Uj in j; as well as
the fact that the wave travels at subcharacteristic speed, see (1.8). In fact, under
the assumptions in Theorem 2.2, the authors in [17] were able to derive the energy
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estimate

(2.19) sup
0≤i≤n

∑
j

{
4(Lij)

2 +
k2

(k + 1)2
(ūij)

2 +
kµ

(k + 1)2
(ω̄ij)

2 +
2µ2

k + 1
(ωij)

2

}

+
n∑
i=0

∑
j

{
kµ2

(k + 1)2
(ωij)

2 + 2(Λj − Λj+1)
k2λ

(k + 1)2
(ui+1
j )2 +

kµ2

(k + 1)2
(ω̄ij+1 − ω̄ij)2

+
k2

2(k + 1)2
(ω̄ij)

2 +
k2

(k + 1)2
(ūi+1
j − ūij)2 +

4
(k + 1)

(Lij+1 − Lij)2

+
µ3

(k + 1)
(ωij+1 − ωij)2 +

k

k + 1
(Lij)

2

}
≤ C(‖ū0‖2 + ‖v̄0‖2),

provided we take ‖ū0‖+‖v̄0‖ sufficiently small (see [17] for the detailed derivation).
Let us point out that (2.19) implies the stability result in Theorem 2.2, but, due to
the fact that

Λj − Λj+1 → 0 as j → ±∞,

no decay rate can be directly inferred from (2.19). This will be done by a different,
though related, analysis.

We now restate Theorem 2.3 in terms of (ūnj , L
n
j )j∈Z as follows.

Theorem 2.4. Under the assumptions of Theorem 2.3, there exists a positive con-
stant ε1 such that if |ū0|α + |L0|α ≤ ε1, then the Cauchy problem (2.15), (2.17) has
a unique global solution (ūnj , L

n
j )j∈Z such that

(2.20) (1 + nh)α
[
‖ūn‖2 + ‖Ln‖2

]
+ (1 + nh)−p

∑
i<n

(1 + ih)α+p

·
[
‖Li‖2 + µ‖∆Li‖2 + µ‖∆ūi‖2

]
≤ C

[
|ū0|2α + |L0|2α

]
for any p > 0.

It is easy to get the unique solution (ūnj , L
n
j )j∈Z from the scheme (2.15) for some

n > 0. Our effort henceforth is concentrated on establishing the basic time decay
estimate (2.20) which is carried out in Sections 3-4. The proof of Theorem 2.3
based on Theorem 2.4, is given at the final Section 5.

3. Time decay analysis

In this section, we investigate the time decay estimates for (Lnj , ū
n
j )j∈Z generated

by the reformulated scheme (2.15) with initial data (2.17). First we present the basic
reasoning behind the argument. Let us rewrite the scheme (2.15) as

L1(ūnj ) + L2(ūnj ) =
κ

κ+ 1
en+1
j ,(3.1)

where

L1(ūnj ) := Ln+1
j − Lnj −

µ

2(κ+ 1)
(Lnj+1 − 2Lnj + Lnj−1)− µ2

4(κ+ 1)
(wnj+1 − wnj−1),

L2(ūnj ) :=
κ

κ+ 1
Lnj +

κλ

2(κ+ 1)
[Λjw̄n+1

j−1 + Λj+1w̄
n+1
j ].
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Because of the subcharacteristic speed of the wave profile, the dynamics for the
perturbations is expected to be mainly governed by the first order approximation
scheme

L2(ūnj ) = 0

with propagation speed (Λj)j∈Z. Since a discrete shock profile (Uj)j∈Z is strictly
decreasing in j ∈ Z, see Proposition 2.1, and f(u) is convex, there exists a unique
j0 ∈ Z such that Uj0 ≤ ū < Uj0−1, with ū ∈ ]u+, u−[ uniquely determined by
f ′(ū) = f(u+)−f(u−)

u+−u− = 0. Again by the convexity of f and Λj = f ′(Uj), we have

Λj0 ≤ 0 < Λj0−1, Λj < Λj−1, j ∈ Z.(3.2)

Experience suggests that at large times most of the information for solutions of
(3.1) come from points j away from j0 on the initial line. Thus we can consider
a decay factor nγ |j − j0|β in deriving our time decay estimates. Without loss of
generality, we may assume j0 = 0. We introduce for r = ∆x and h = ∆t the
abbreviations

Pj := 〈jr〉β and Hj := (1 + nh)γ ,

where β ∈ ]0, α] and γ are positive constants at our disposal. To avoid the singu-
larities we choose a time-dependent discrete weight function of the form

Kn
j = HnPj , j ∈ Z,

which will be used to characterize the decay rate.
In fact, the above choice of j0 and the convexity of f give us a lower bound for

Aj = λ(ΛjPj − Λj+1Pj+1)

with Λj = f ′(Uj) satisfying (3.2) and Pj = 〈jr〉β , β ∈ [0, α]. This lower bound on
Aj plays a crucial role in our later argument and is summarized in the following
lemma.

Lemma 3.1. For any β ∈ [0, α], there exists a positive constant c0 independent of
β such that

Aj ≥ c0β〈jr〉β−1h(3.3)

for any j ∈ Z, provided λ is suitably small.

Proof. The proof can be done by an analysis similar to [13]. We omit the details.

To handle the weighted terms, we further state some basic estimates on the
weights Pj = 〈jr〉β = (1 + (jr)2)β/2 and Hn = (1 + nh)γ .

Lemma 3.2. (i) For any j ∈ Z and β ∈ [0, α], there exist constants θ ∈ ]0, 1[ and
cr > 0, Cr > 0 such that

θ−1Pj ≥ Pj+1 ≥ θPj ,
crβr〈jr〉β−1 ≤ |Pj+1 − Pj | ≤ Crβr〈jr〉β−1.

(ii) For any n ∈ N0 and γ > 0,

Hn < Hn+1 ≤ (1 + h)γHn,

Hn+1 −Hn ≤ γ(1 + h)γ(1 + nh)γ−1h.

Proof. The proof of (i) can be found in [16]; and (ii) can be easily verified by using
the Taylor expression.
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Armed with Lemmas 3.1 and 3.2, we turn to establish the basic time decay
estimate. Set

N(n, α) := sup
0≤i≤n

[|ūi|2α + |Li|2α], N(n) := N(n, 0),(3.4)

where | · |α denotes the norm in the weighted l2α space.
In what follows, we always assume that N(n1) is small for any given n1 > 0.

This assumption will be verified by an a priori estimate in subsequent sections,
if the initial perturbation N(0, α) is sufficiently small. To derive such an a priori
estimate, we need the following inequalities:

sup
0≤i≤n

sup
j
|ūij | ≤

√
N(n),

sup
0≤i≤n

sup
j
|Lij| ≤

√
N(n),

sup
0≤i≤n

sup
j
|(w̄ij , wij)| ≤ 2

√
N(n).

(3.5)

In order to shorten notation, we introduce

G(i, β) := |ūi|2β + |Li|2β, i ∈ N0,(3.6)

which satisfies G(0, β) = N(0, β) and

G(i, β) ≤ N(n, β), for i ≤ n.(3.7)

We will solve the Cauchy problem (2.15), (2.17) in 0 < n ≤ n1 for a given n1 > 0.
The most important step of the whole analysis is to establish the following estimate.

Lemma 3.3. Let (ūnj , L
n
j )j∈Z be a solution of (2.15) for n ≤ n1. Assume that

N(n1) and λ are suitably small. Then for any β ∈ [0, α] there exists a positive
constant C independent of n1 such that for all n ≤ n1 and

|Γi|2β = |Li|2β + κ|ūi+1 − ūi|2β + µ|∆ūi|2β + µ|∆Li|2β , i ∈ N0,

the following estimate holds :

(3.8) (1 + nh)γG(n, β) + β
∑
i<n

(1 + ih)γG(i, β − 1)h+
∑
i<n

(1 + ih)γ |Γi|2β

≤ C
{
G(0, β) + γ

∑
i<n

(1 + ih)γ−1G(i, β)h

+β
∑
i<n

(1 + ih)γ
[
‖∆ūi‖2 + ‖∆Li‖2

]
h

}
.

Proof. The proof consists of three steps: grouping of terms, energy estimates, and
concluding the proof.
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Step 1. Grouping of terms. Multiplying (3.1) by 2LnjK
n
j and summing the result

over j ∈ Z for 0 < n ≤ n1 gives∑
j

2LnjK
n
j (Ln+1

j − Lnj )− µ

κ+ 1

∑
j

LnjK
n
j (Lnj+1 − 2Lnj + Lnj−1)

− µ2

2(κ+ 1)

∑
j

LnjK
n
j (wnj+1 − wnj−1) +

2κ
κ+ 1

∑
j

Kn
j (Lnj )2(3.9)

+
κλ

κ+ 1

∑
j

Kn
j L

n
j (Λjw̄n+1

j−1 + Λj+1w̄
n+1
j ) =

∑
j

2κ
κ+ 1

LnjK
n
j e

n+1
j .

After a few summations by parts, we obtain∑
j

{
(Ln+1

j )2Kn+1
j − (Lnj )2Kn

j − (Kn+1
j −Kn

j )(Ln+1
j )2 − (Ln+1

j − Lnj )2Kn
j

+
µ

κ+ 1
[
Kn
j (Lnj+1 − Lnj )2 + (Kn

j+1 −Kn
j )Lnj+1(Lnj+1 − Lnj )

]
+

µ2

2(κ+ 1)
[
(Kn

j+1 −Kn
j−1)Lnj+1w

n
j +Kn

j−1w
n
j (Lnj+1 − Lnj−1)

]
+

κ

κ+ 1

[
2Kn

j (Lnj )2 +Anj (Lnj )2 + λΛj+1K
n
j+1(Lnj+1 + Lnj )

·
(

(1− µ)w̄nj +
µ

2
(w̄nj+1 + w̄nj−1)

)
− λ(Kn

j+1 −Kn
j )Λj+1L

n
j w̄

n+1
j

]}
=

2κ
κ+ 1

∑
j

Kn
j L

n
j e
n+1
j ,

(3.10)

where

Anj = λ(Kn
j Λj −Kn

j+1Λj+1) = AjH
n.

In fact, two typical terms involved in leading to (3.10) can be given as follows.
Using the indentity

(Ln+1
j )2 − (Lnj )2 = 2Lnj (Ln+1

j − Lnj ) + (Ln+1
j − Lnj )2

in 2
∑
j K

n
j L

n
j (Ln+1

j − Lnj ), we arrive at∑
j

Kn
j

[
(Ln+1

j )2 − (Ln+1
j − Lnj )2 − (Lnj )2

]
=
∑
j

(Ln+1
j )2Kn+1

j −
∑
j

(Lnj )2Kn
j −

∑
j

(Ln+1
j − Lnj )2Kn

j

−
∑
j

(Ln+1
j )2(Kn+1

j −Kn
j ).

Using the relation

w̄n+1
j = Lnj+1 − Lnj + w̄nj +

µ

2
(w̄nj+1 − 2w̄nj + w̄nj−1)
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in the last term of the right side of (3.9), one obtains

κλ

κ+ 1

∑
j

Λj+1(Lnj+1K
n
j+1 + LnjK

n
j )w̄n+1

j

=
κλ

κ+ 1

∑
j

Λj+1

[
(Lnj+1 + Lnj )Kn

j+1 − Lnj (Kn
j+1 −Kn

j )
]

·
[
Lnj+1 − Lnj + w̄nj +

µ

2
(w̄nj+1 − 2w̄nj + w̄nj−1)

]
=

κ

κ+ 1

∑
j

Anj (Lnj )2 +
κλ

κ+ 1

∑
j

Λj+1K
n
j+1(Lnj+1 + Lnj )

·
[
w̄nj +

µ

2
(w̄nj+1 − 2w̄nj + w̄nj−1)

]
− κλ

κ+ 1

∑
j

Λj+1(Kn
j+1 −Kn

j )Lnj w̄
n+1
j .

To make (3.10) useful in constructing the weighted energy function G(n, β), we
have to combine it with some additional terms. To this end, we multiply (3.1) by
2Kn

j ū
n+1
j and sum the result over j ∈ Z for 0 ≤ n ≤ n1, which gives, after a few

computations (carried out in the Appendix),

∑
j

[
2(Kn+1

j Ln+1
j ūn+1

j −Kn
j L

n
j ū

n
j )− 2(Kn+1

j −Kn
j )Ln+1

j ūn+1
j

− 2Kn
j (ūn+1

j − ūnj )Lnj
]

+
µ

κ+ 1

∑
j

[
Kn
j (Lnj+1 − Lnj )2 + (Kn

j+1 −Kn
j )(Lnj+1 − Lnj )(Lnj+1 + ūnj+1)

+Kn
j w̄

n
j (Lnj+1 − Lnj )

]
− µ2

2(κ+ 1)

∑
j

(w̄nj − w̄nj−1)(Lnj+1 − 2Lnj + Lnj )

+
µ2

2(κ+ 1)

∑
j

[
Kn
j−1w

n
j (Lnj+1 − Lnj−1) + (Kn

j+1 −Kn
j−1)wnj (Lnj+1 + ūnj+1)

+Kn
j (wnj+1)2 − µ

2
Kn
j (w̄nj − w̄nj−1)(wnj+1 − wnj−1)

]
+

κ

κ+ 1

∑
j

[
Kn+1
j (ūn+1

j )2 −Kn
j (ūnj )2 − (Kn+1

j −Kn
j )(ūn+1

j )2

+Kn
j (ūn+1

j − ūnj )2
]

+
κµ

κ+ 1

∑
j

[
Kn
j (w̄nj )2 −Kn

j (ūn+1
j − ūnj )(w̄nj − w̄nj−1) + (Kn

j+1 −Kn
j )ūnj+1w̄

n
j

]
+

κ

κ+ 1

∑
j

[
Anj (ūn+1

j )2 − λΛj+1(Kn
j+1 −Kn

j )ūn+1
j w̄n+1

j

]
=
∑
j

2κ
κ+ 1

Kn
j ū

n+1
j en+1

j

(3.11)
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with Anj = (1 + nh)γAj . We perform (3.10) + (3.11) × τ with a positive number
τ (determined later on) and suitably group the terms in the result to obtain the
following inequality:

Hn+1E(n+ 1)−HnE(n) + L1(n) + L2(n) ≤
3∑
i=1

Ri(n).(3.12)

The individual expressions are, using Kn
j = (1 + nh)γ〈jr〉β = HnPj ,

E(n) :=
∑
j

[
(Lnj )2 + 2τūnj L

n
j +

κτ

κ+ 1
(ūnj )2

]
Pj ,

L1(n) :=
κ

κ+ 1
(1 + nh)γ

∑
j

Aj

[
(Lnj )2 + τ(ūn+1

j )2
]
,

L2(n) : =
κ

κ+ 1
(1 + nh)γ

[
2|Ln|2β + τ |ūn+1 − ūn|2β + µτ |∆ūn|2β

]
+

µ

κ+ 1
(1 + nh)γ

(1 + τ)|∆Ln|2β +
τµ

2

∑
j

Pj(w̄nj+1)2

 ,
R1(n) := [Hn+1 −Hn]E(n+ 1),

R2(n) := Hn
∑
j

Pj

[
(Ln+1

j − Lnj )2 + 2τ(ūn+1
j − ūnj )Lnj

+
κµτ

κ+ 1
(ūn+1
j − ūnj )(w̄nj − w̄nj−1)− µτ

κ+ 1
w̄nj (Lnj+1 − Lnj )

+
κµ

κ+ 1
Λj√
a

(Lnj + Lnj−1)
[
(1− µ)wnj−1 +

µ

2
(w̄nj + w̄nj−2)

]
− (1 + τ)µ2

2(κ+ 1)
wnj+1(Lnj+2 − Lnj )

+
τµ2

2(κ+ 1)
(w̄nj − w̄nj−1)(Lnj+1 − 2Lnj + Lnj−1)

+
τµ3

4(κ+ 1)
(w̄nj − w̄nj−1)(wnj+1 − wnj−1)

]
+

2κ
κ+ 1

Hn
∑
j

Pj(Lnj + τūn+1
j )en+1

j ,

R3(n) :=
µ

κ+ 1
Hn

∑
j

|Pj+1 − Pj |
{
|Lnj+1 − Lnj |

[
(1 + τ)|Lnj+1|+ τ |ūnj+1|

]
+

(1 + τ)
2
|µ(Lnj+1w

n
j + Lnj+2w

n
j+1)|+ τµ

2
|(ūnj+1w

n
j + ūnj+2w

n
j+1)|

}
+

κµ

κ+ 1
Hn

∑
j

|Pj+1 − Pj |
[
τ |ūnj+1w̄

n
j |+ |

Λj+1√
a

(Lnj + τūn+1
j )w̄n+1

j |
]
.

Step 2. Energy estimates. In order to get the desired estimate, one has to bound
the above grouped terms Li(n), i = 1, 2, and Ri(n), i = 1, 2, 3, respectively. This
is done in Lemma 3.4, which will be proved in Section 4.
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Lemma 3.4. Assume that λ and N(n1) are suitably small. Then for any 0 < n ≤
n1 and β ∈ [0, α], there exist positive constants C, c1 and 0 < σ < 1, independent
of n, such that

(i) L1(n) ≥ c1β(1 + nh)γG(n, β − 1)h,

(ii) R1(n) ≤ Cγ(1 + nh)γ−1G(n, β)h,

(iii) R2(n) < L2(n),

(iv) R2(n) +R3(n)
≤ σL2(n) + (1 + nh)γ

{
Cβ[‖∆ūn‖2 + ‖∆Ln‖2]h+ c1

2 βG(n, β − 1)h
}
.

Based on these estimates, we continue the proof of Lemma 3.3.

Step 3. Concluding the proof. From (3.12) and Lemma 3.4, we find that

Hn+1E(n+ 1)−HnE(n) +
c1
2
βHnG(n, β − 1)h+ (1− σ)L2(n)

≤ C
[
β(1 + nh)γ

(
‖∆ūn‖2 + ‖∆Ln‖2

)
h+ γh(1 + nh)γ−1G(n, β)

]
.

(3.13)

Taking τ = κ
4(κ+1) , we have

E(n) ∼ G(n, β)

and

L2(n) ≥ τ

κ+ 1
min{κ, 1}(1 + nh)γ |Γn|2β ,

with

|Γn|2β = |Ln|2β + κ|ūn+1 − ūn|2β + µ|∆ūn|2β + µ|∆Ln|2β.
Noting the above facts and summing (3.13) in n from 0 to n− 1, we at once obtain
(3.8). This proves the desired result in Lemma 3.3.

Equipped with the basic estimate in Lemma 3.3, we are in a good position to
proceed. First, taking β = γ = 0 in (3.8), we immediately get

Lemma 3.5. There exists a positive constant C, independent of n1, such that for
n ∈ [0, n1]

G(n, 0) +
∑
i<n

‖Γi‖2 ≤ CG(0, 0)(3.14)

provided N(n1) and λ are suitably small.

Applying induction to (3.8) in β and γ, we have

Lemma 3.6. Let γ ∈ [0, α] be an integer. Then, for any n ≤ n1,

(1 + nh)γG(n, α − γ) + (α− γ)
∑
i<n

(1 + ih)γG(i, α− γ − 1)h+
∑
i<n

(1 + ih)γ |Γi|2α−γ

≤ CG(0, α).

(3.15)

Consequently, if α = [α], then for any γ ≤ α we have

(1 + nh)γG(n, 0) +
∑
i<n

(1 + nh)γ‖Γi‖2 ≤ CG(0, α)(3.16)

for any n ≤ n1.
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Proof. Step 1. We take 0 ≤ α < 1. Letting β = α and γ = 0 in (3.8), we have

G(n, α) + α
∑
i<n

G(i, α− 1)h+
∑
i<n

|Γi|2α

≤ C
[
G(0, α) + α

∑
i<n

[‖∆ūi‖2 + ‖∆Li‖2]h
]
.

(3.17)

The second term on the right hand side is bounded by C
∑
i<n ‖Γi‖2, which together

with Lemma 3.5 leads to

G(n, α) + α
∑
i<n

G(i, α− 1)h+
∑
i<n

|Γi|2α ≤ C[G(0, α) +G(0, 0)].

Combining this with G(0, 0) ≤ G(0, α) gives (3.15) with γ = 0. Therefore Lemma
3.6 is proved for 0 ≤ α < 1.

Step 2. We take 1 ≤ α < 2. First, letting β = 0, γ = 1 in (3.8), we have

(1 + nh)G(n, 0) +
∑
i<n

(1 + ih)|Γi|20 ≤ C{G(0, 0) +
∑
i<n

G(i, 0)h},

and by combining this with (3.15) (γ = 0) we obtain (3.16) with γ = 1, where we
have used the inequality

∑
i<nG(i, 0)h ≤

∑
i<n ‖Γi‖2 ≤ CG(0, 0). Then, letting

β = α− 1 and γ = 1 in (3.8), we have

(1+nh)G(n, α− 1) +
∑
i<n

(1 + ih)
[
(α− 1)G(i, α−1− 1)h+ |Γi|2α−1

]
≤C
{
G(0, α− 1) +

∑
i<n

G(i, α− 1)h+ (α − 1)
∑
i<n

(1 + ih)
[
‖∆ūi‖2 + ‖∆Li‖2

]}
,

which, together with (3.16) with γ = 1 and (3.15) (γ = 0), yields (3.15) with
γ = 1, where we have used the fact that ‖∆ūi‖2 + ‖∆Li‖2 is bounded by C‖Γi‖2.
Therefore the proof is completed for α < 2.

Proceeding in this way, i.e., taking successively in (3.8) β = α−m, γ = m, and
then β = 0 γ = m + 1, for m = 0, 1, · · · , [α] − 1, we can get the desired estimate
(3.15) for any α ≥ 0. This completes the proof of Lemma 3.6.

From Lemma 3.6, if α is an integer, then

(1 + nh)αG(n, 0) +
∑
i<n

(1 + ih)α‖Γi‖2 ≤ CG(0, α),(3.18)

which obviously implies (2.20).
We show a sharper estimate when α in not an integer. Taking β = 0 in (3.8)

gives

(1 + nh)γG(n, 0) +
∑
i<n

(1 + ih)γ‖Γi‖2 ≤ C{G(0, 0) + γ
∑
i<n

(1 + ih)γ−1G(i, 0)h}.
(3.19)

Taking also γ = [α] in (3.15), i.e.,

(3.20) (1 + nh)[α]G(n, α− [α]) + (α − [α])
∑
i<n

(1 + ih)[α]G(i, α−[α]−1)h

+
∑
i<n

(1 + ih)[α]|Γi|2α−[α] ≤ CG(0, α),

we get an estimate for the final term in (3.19).
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Introducing the notation |gi|2α := G(i, α) for simplicity of presentation, we have∑
i<n

(1 + ih)γ−1G(i, 0)h =
∑
i<n

(1 + ih)γ−1|gi|20h

=
∑
i<n

(1 + ih)γ−1
∑
j∈Z
〈jr〉(α−[α])([α]+1−α)−(α−[α])([α]+1−α)(|gij |2)[α]+1−α+(α−[α])h

≤
∑
i<n

(1+ih)γ−1

∑
j∈Z
〈jr〉α−[α]|gij |2

[α]+1−α∑
j∈Z
〈jr〉−([α]+1−α)|gij |2

α−[α]

h

=
∑
i<n

(1 + ih)−([α]+1−γ)
(

(1+ih)[α]G(i, α− [α])
)[α]+1−α

·
(

(1+ih)[α]G(i, α− [α]− 1)
)α−[α]

,

where we have used the Hölder inequality∑
ab ≤ (

∑
ap)1/p(

∑
bp
′
)1/p′ ,

1
p

+
1
p′

= 1.

Here p = 1
[α]+1−α and p′ = 1

α−[α] and G(i, α− [α]) = |gi|2α−[α].
Further, again using the Hölder inequality and (3.20), one obtains

∑
i<n

(1 + ih)γ−1G(i, 0)h

≤ CG(0, α)[α]+1−α
∑
i<n

(1 + ih)−([α]+1−γ)
(

(1 + ih)[α]G(i, α− [α]− 1)
)α−[α]

h

≤ CG(0, α)[α]+1−α

(∑
i<n

(1+ih)−
[α]+1−γ
[α]+1−αh

)[α]+1−α

·
(∑
i<n

(1+ih)[α]G(i, α− [α]− 1)h

)α−[α]

≤ CG(0, α)

(∑
i<n

(1+ih)−
[α]+1−γ
[α]+1−αh

)[α]+1−α

.

(3.21)

Now take γ = α+p for any p > 0, as was done in [23] for scalar viscous conservation
law. Then it is easy to find that∑

i<n

(1+ih)−
[α]+1−γ
[α]+1−αh ≤ C(1 + nh)

p
[α]+1−α .(3.22)

Applying (3.21), (3.22) into (3.19) leads to the following estimate.

Lemma 3.7. For any p > 0 and n ≤ n1,

(1 + nh)α+pG(n, 0) +
∑
i<n

(1 + ih)α+p‖Γi‖2 ≤ CG(0, α)(1 + nh)p.(3.23)

Combining the above estimates yields the following uniform time decay estimate.
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Proposition 3.8. If λ and N(n1) are suitably small, then

(1 + nh)αN(n, 0) + (1 + nh)−p
∑
i<n

(1 + ih)α+p‖Γi‖2 ≤ CN(0, α)(3.24)

for any n ≤ n1 and p > 0.

4. Energy estimate

Now we justify the estimates in Lemma 3.4. Hereafter we fix

τ =
κ

4(κ+ 1)

and denote by C a generic positive constant, which arises from using the Young
inequality and Lemma 3.2 (i) in various circumstances, and also depends on a and
f ′(u) for the u under consideration.

To prove (i), we claim that there exists a positive constant c̃ such that

|Ln|2β + |ūn+1|2β ≥ c̃G(n, β), for any β ∈ [0, α].(4.1)

This estimate together with the estimate on Aj in (3.3) yields

L1(n) ≥ κ
κ+1τH

n
∑
j

Aj(|Lnj |2 + |ūn+1
j |2)

≥ c0κτ
κ+1 βH

n(|Ln|2β−1 + |ūn+1|2β−1)h

≥ c̃c0κτ
κ+1 βH

nG(n, β − 1)h,

which proves the desired estimate (i) with c1 = c̃c0κτ
κ+1 .

Finally, in order to conclude the proof of (i), we need to prove (4.1). Using the
identity

ūn+1
j = Lnj + (1− µ)ūnj +

µ

2
(ūnj+1 + ūnj−1),(4.2)

and the Young inequality, one obtains

(Lnj )2 + (ūn+1
j )2 ≥ (2 − δ1 − δ2)(Lnj )2 + (1− µ)2(1− 1

δ1
− 1

δ3
)(ūnj )2

−µ
2

4 (δ3 + 1
δ2

)(ūnj+1 + ūnj+1)2

≥ 1
4 (Lnj )2 + 1

6 (1− µ)2(ūnj )2 − 5µ2[(ūnj+1)2 + (ūnj+1)2],

where we have chosen δ1 = 3/2, δ2 = 1/4 and δ3 = 6 for definiteness.
Using the smallness of λ and Lemma 3.2, we have

|Ln|2β + |ūn+1|2β ≥ c̃G(n, β)

with c̃ < 1
6 (1 − µ)2. This concludes the proof of (4.1).

Concerning (ii), the factor γ(1+nh)γ−1h comes from the estimate of Hn+1−Hn

in Lemma 3.2 (ii). It remains to show that

E(n+ 1) ≤ CG(n, β), β ∈ [0, α].(4.3)

Using Lemma 3.2 (i) and (4.2), one gets

|ūn+1|2β ≤ C
[
|Ln|2β + |ūn|2β

]
.(4.4)
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By (2.15) one may write

Ln+1
j =

(1− µ)
κ+ 1

Lnj +
µ

2(κ+ 1)
(Lnj+1 + Lnj−1) +

µ2

4(κ+ 1)
(wnj+1 − wnj−1)

− κµ

2(κ+ 1)

[
Λj√
a
w̄n+1
j−1 +

Λj+1√
a
w̄n+1
j

]
+

κ

κ+ 1
en+1
j .

(4.5)

Note that (2.16) with (2.9) and (3.5) yields

|en+1
j | ≤ C

√
N(n+ 1)µ

[
|w̄n+1
j |+ |w̄n+1

j−1 |
]
.(4.6)

Thus, using |∆ūn+1|2β ≤ C|ūn+1|2β and (4.4), we have

|Ln+1|2β =
∑
j

〈jr〉β |Ln+1
j |2

≤ C
[
|Ln|2β + |∆ūn+1|2β + |∆ūn|2β

]
≤ C

[
|Ln|2β + |ūn|2β

]
.

(4.7)

Combining (4.4), (4.7) and the expression for E(n + 1) gives (4.3), which proves
(ii).

Next we estimate R2(n) :=
∑7

i=1 R2i(n) ·Hn.
We will frequently use the Young inequality and the definitions of wnj and w̄nj in

(2.14). Thus, using (4.5), (4.6) and Lemma 3.2 (i), one gets

R21 = |Ln+1 − Ln|2β

=
∑
j

Pj

[
µ2

4(κ+ 1)
(wnj+1 − wnj−1) +

κµ

2(κ+ 1)
(Lnj+1 − 2Lnj + Lnj−1)

− κ

κ+ 1
Lnj −

κλΛj
2(κ+ 1)

w̄n+1
j−1 −

κλΛj+1

2(κ+ 1)
w̄n+1
j +

κ

κ+ 1
en+1
j

]2

≤ 5κ
4(κ+ 1)

∑
j

Pj |Lnj |2

+
Cκ

κ+ 1

µ2
∑
j

Pj(Lnj+1 − Lnj )2 + µ2
∑
j

Pj(w̄n+1
j )2 + µ2

∑
j

Pj(w̄n+1
j )4


+

µ4

(κ+ 1)2

∑
j

Pj(w̄nj )2.

Noting that supj |ūnj |2 ≤ N(n), supj |w̄nj |2 ≤ 2N(n), and

w̄n+1
j = Lnj+1 − Lnj + w̄nj +

µ

2
(w̄nj+1 − 2w̄nj + w̄nj−1),

we may find a constant C such that

R21 ≤
5κ

4(κ+ 1)
|Ln|2β +

Cκ

κ+ 1
µ2
[
|∆Ln|2β + |∆ūn|2β

]
+

Cµ4

κ+ 1

∑
j

Pj(w̄nj+1)2.(4.8)

Here and after in the simplifying process the terms in higher orders of µ (< 1) are,
if necessary, absorbed into the terms in lower orders.
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Using

ūn+1
j − ūnj = Lnj +

µ

2
(w̄nj − w̄nj−1),

one bounds R22:

|R22| =

∣∣∣∣∣∣2τ
∑
j

PjL
n
j (ūn+1

j − ūnj )

∣∣∣∣∣∣
=

∣∣∣∣∣∣2τ
∑
j

Pj(Lnj )2 + τµ
∑
j

PjL
n
j (w̄nj − w̄nj−1)

∣∣∣∣∣∣
≤ τ(2 + Cµ)|Ln|2β +

κµτ

4(κ+ 1)
|∆ūn|2β .

Using the Young inequality, we estimate R23 as follows:

|R23| ≤

∣∣∣∣∣∣ κµτκ+ 1

∑
j

Pj(w̄nj − w̄nj−1)(ūn+1
j − ūnj )

∣∣∣∣∣∣+

∣∣∣∣∣∣− µτ

κ+ 1

∑
j

Pjw̄
n
j (Lnj+1 − Lnj )

∣∣∣∣∣∣
≤ κ

κ+ 1

[τ
2
|ūn+1 − ūn|2β + Cτµ2|∆ūn|2β

]
+

µ

κ+ 1

[
1
2
|∆Ln|2β +

τ2

2
|∆ūn|2β

]
.

The subcharacteristic condition (1.5) implies |Λj/
√
a| ≤ 1, so

|R24| =

∣∣∣∣∣∣ κµ

κ+ 1

∑
j

Pj
Λj√
a

(Lnj + Lnj−1)
[
(1− µ)w̄nj−1 + µ

w̄nj + w̄nj−2

2

]∣∣∣∣∣∣
≤ κ

κ+ 1

µ∑
j

Pj |Lnj + Lnj−1|
∣∣∣(1 − µ)w̄nj−1 +

µ

2
(w̄nj + w̄nj−2)

∣∣∣


≤ Cκ

κ+ 1

[
µ1/2|Ln|2β + µ3/2|∆ūn|2β

]
,

where C may depend on θ, and we use Lemma 3.2 (i) for combining terms of the
same weighted order.

Similarly, we have

|R25| =
µ2

2(κ+ 1)

∣∣∣∣∣∣
∑
j

Pj
[
−(1 + τ)wnj+1(Lnj+2 − Lnj )

+τ |(w̄nj − w̄nj−1)(Lnj+1 − 2Lnj + Lnj−1)
]∣∣

≤ Cµ

κ+ 1

µ1/2|∆Ln|2β + µ3/2
∑
j

Pj(wnj+1)2


and

|R26| =
τµ3

4(κ+ 1)

∑
j

Pj |w̄nj − w̄nj−1||wnj+1 − wnj−1| ≤
Cτµ3

κ+ 1

∑
j

Pj(w̄nj+1)2.
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Finally, using (2.16) and supj |ūn+1
j |2 ≤ N(n+ 1), supj |L̄nj |2 ≤ N(n) one obtains

|R27| =

∣∣∣∣∣∣2 κ

κ+ 1

∑
j

(Lnj + τūn+1
j )en+1

j

∣∣∣∣∣∣
≤ Cκµ

κ+ 1

∑
j

Pj(|Lnj |+ τ |ūn+1
j |)

(
|w̄n+1
j |2 + |w̄n+1

j−1 |2
)

≤ Cκµ

κ+ 1

[
(
√
N(n) +

√
N(n+ 1))|w̄n+1|2β

]
≤ Cκµ

κ+ 1

√
N(n+ 1)

[
|∆Ln|2β + |∆ūn|2β

]
.

Combining the above estimates, we derive that, for any n < n1,

|R2(n)| ≤ κ

κ+ 1
Hn

[(
5
4

+
2 + Cµ

4
+ Cµ1/2

)
|Ln|2β +

τ

2
|ūn+1 − ūn|2β

]
+

κ

κ+ 1
Hn

(
cµ2 +

µτ

4
+ cτµ2 +

τµ

8(κ+ 1)
+ Cµ

√
N(n+ 1)

)
|∆ūn|2β

+
µ

κ+ 1

[
1
2

+ Cκµ+ Cµ1/2 + Cκ
√
N(n+ 1)

]
|∆Ln|2β

+
µ

κ+ 1
Hn

(
Cµ3 + Cµ3/2 + Cτµ2

)∑
j

Pj |w̄nj+1|2,

which, for a suitably small µ, allows us to get the desired estimate (iii). Moreover,
we may find a suitable constant σ ∈]0, 1[ such that

R2(n) +
2κ

5(κ+ 1)
µ2τ |∆ūn|2β +

2κ
5(κ+ 1)

µ2(1 + τ)|∆Ln|2β ≤ σL2(n).(4.9)

Now we turn to (iv). Here we have to carefully separate suitable terms which
will be absorbed by L1(n) or L2(n). Set

R3(n) := Hn ·
3∑
i=1

R3i(n).

Using the estimates in Lemma 3.2(i) and taking

ε̄ =
(κ+ 1)c1
6
√
aCr

min
j∈Z

{
〈(j + 1)r〉β−1

〈jr〉β−1

}
, β ∈ [0, α],

we get

R31(n) =
µ

κ+ 1

∑
j

|Pj+1 − Pj |
[
|Lnj+1 − Lnj |

(
(1 + τ)|Lnj+1|+ τ |ūnj+1|

)]
≤ µ

κ+ 1
Crβr

∑
j

〈jr〉β−1

[
ε̄
(
|Lnj+1|2+ |ūnj+1|2

)
+

(1 + τ)2 + τ2

4ε̄
|Lnj+1−Lnj |2

]

≤ 1
6
c1βh

(
|Ln|2β−1 + |ūn|2β−1

)
+ Cε̄βh

∑
j

〈jr〉β−1|Lnj+1 − Lnj |2,
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Furthermore,

Cε̄βh
∑
j

〈jr〉β−1|Lnj+1 − Lnj |2

=
∑
|j|≥J1

Cε̄βh

〈jr〉 〈jr〉
β |Lnj+1 − Lnj |2+ Cε̄βh

∑
|j|≤J1

〈jr〉β−1|Lnj+1 − Lnj |2

≤ κµ2(1 + τ)
5(κ+ 1)

|∆Ln|2β + βCJ1‖∆Ln‖2h

for some large J1 > 0.
With a similar argument we arrive at

R32(n) =
µ2(1 + τ)
2(κ+ 1)

∑
j

|Pj+1 − Pj ||(Lnj+1w
n
j + Lnj+2w

n
j+1)|

+
τκµ

κ+ 1

∑
j

|Pj+1 − Pj‖ūnj+1w̄
n
j |

+
µ2τ

2(κ+ 1)

∑
j

|Pj+1 − Pj ||(ūnj+1w
n
j + ūnj+2w

n
j+1)|

≤ 1
6
c1βh

(
|Ln|2β−1 + |ūn|2β−1

)
+

κµτ

5(κ+ 1)
µ|∆ūn|2β + βCJ2‖∆ūn‖2h

for some J2 > 0.
Finally we treat the term R33(n). In fact, if we use the two indentities

ūn+1
j = Lnj + ūnj +

µ

2
(w̄nj − w̄nj−1)

and

w̄n+1
j = Lnj+1 − Lnj + w̄nj +

µ

2
(w̄nj+1 − 2w̄nj + w̄nj−1),

R33(n) can be estimated by using the estimates of R31(n) and R32(n) given above.
Thus we have

R33(n) ≤ κµ

κ+ 1

∑
j

|Pj+1 − Pj |
(
|Lnj + τūn+1

j ‖w̄n+1
j |

)
≤ 1

6
c1βh

(
|Ln|2β−1 + |ūn|2β−1

)
+

κµτ

5(κ+ 1)
µ|∆ūn|2β

+
κµ2(1 + τ)
5(κ+ 1)

|∆Ln|2β + βCJ3

(
‖∆ūn‖2 + ‖∆Ln‖2

)
h

with some large J3 > 0. Taking J = max{J1, J2, J3} and CJ = (CJ1 +CJ2 +CJ3),
we have

R3(n)≤ 1
2
c1βh

(
|Ln|2β−1+|ūn|2β−1

)
+

2κ
5(κ+ 1)

µ2τ |∆ūn|2β

+
2κ

5(κ+ 1)
µ2(1 + τ)|∆Ln|2β+βCJ

(
‖∆ūn‖2+‖∆Ln‖2

)
h.

(4.10)

Combining (4.9), (4.10) and the expression for L2(n), we immediately obtain (iv).
This completes the proof of Lemma 3.4.
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5. Convergence rates

Now we are in a position to prove our main results.

Proof of Theorem 2.4. In fact, if the initial weighted norm |ū0
j |α + |L0

j |α is small
enough, i.e., N(0, α) is small enough, then (3.24) is true a little longer and hence
forever. This is a form of continuous induction which is given fully in many places
(we omit it here).

The smallness of N(n, 0) used in proving Lemma 3.4 can be ensured by (3.24).
Noting the definition of G(n, α), we now immediately get Theorem 2.4.

Proof of Theorem 2.3. It remains to establish the convergence rates in Theorem
2.3. From (2.20) we have∑

i<n

(1 + ih)α+p‖Γi‖2 ≤ C(1 + nh)pN(0, α), for any n ∈ N.

This implies that

sup
i≤n
‖Γi‖ ≤ C(1 + nh)−

α
2
√
N(0, α),(5.1)

where

‖Γi‖2 = ‖Li‖2 + κ‖ūi+1 − ūi‖2 + µ‖∆ūi‖2 + µ‖∆Li‖2.
Note that by (2.11)

|unj − Uj| = |ūnj − ūnj−1| ≤ ‖∆ūn‖,

which together with (5.1) yields

sup
j
|unj − Uj | ≤ C‖Γn‖ ≤ C(1 + nh)−

α
2

[
|ū0
j |α + |L0

j |α
]
.(5.2)

Now it remains to estimate the maximum norm of v̄nj = vnj −Vj . It follows from
the second equation of (2.8) and (2.9)-(2.12) that

(1 + κ)v̄n+1
j

= (1− 2µ)v̄nj +
µ

2
(v̄nj+1 + 2v̄nj + v̄nj−1)− aλ

2
(w̄nj − w̄nj−2) + κΛjw̄n+1

j−1 + κθn+1
j

= (1− 2µ)v̄nj −
√
a(Lnj + Lnj−1)− aλ

2
(w̄nj − w̄nj−2) + κΛjw̄n+1

j−1 + Cκ(w̄n+1
j−1 )2,

that is,

v̄n+1
j =

1− 2µ
1 + κ

v̄nj −
√
a

1 + κ
(Lnj + Lnj−1)− aλ

2(κ+ 1)
(w̄nj − w̄nj−2)

+
κΛj
κ+ 1

w̄n+1
j−1 +

Cκ

κ+ 1
(w̄n+1

j−1 )2,

where 0 < 1−2µ
1+κ < 1 for 0 < µ < 1

2 . Using the Young inequality, we have∑
j

(v̄n+1
j )2 ≤ ν

∑
j

(v̄nj )2 + C
∑
j

[
(Lnj )2 + (w̄nj )2 + |ūn+1

j − ūnj |2
]

≤ ν‖v̄n‖2 + C‖Γn‖2,(5.3)
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where

ν = (
1− 2µ
1 + κ

)2 + (
1− 2µ
1 + κ

)M < 1

for M suitably large, and C is a positive constant of order (1−2µ
1+κ )−M and depends

on N(0, α).
Define

T (n) = (1 + nh)α+p‖v̄n‖2.

It follows from (5.3) that

T (n+ 1) ≤ ν1T (n) + C(1 + nh)α+p‖Γn‖2,(5.4)

where

ν1 = sup
n>0

ν

(
1 + (n+ 1)h

1 + nh

)α+p

< 1

for suitably small h, and µ < 1.
Summing both sides of the inequality (5.4) over n from 0 to n− 1 and using the

estimate (2.20) yields

T (n) ≤ T (0)− (1− ν1)
∑
i<n

T (i) + C
∑
i<n

(1 + ih)α+p‖Γi‖2

≤ ‖v̄0‖2 + C(1 + nh)pN(0, α).

Noting that ‖v̄0‖2 ≤ |v̄0|2α and N(0, α) ≤ C[|ū0|2α + |v̄0|2α], one has

(1 + nh)α+p‖v̄n‖2 ≤ C(1 + nh)p[|ū0|α + |v̄0|α]2.

This estimate implies that

sup
j
|v̄nj | ≤ ‖v̄n‖ ≤ C(1 + nh)−

α
2 [|ū0|α + |v̄0|α].(5.5)

Combining (5.2) and (5.5) completes the proof of Theorem 2.3.

Appendix

We want here to compute the terms in
∑

j 2Kn
j ū

n+1
j L(ūnj ) to obtain (3.11). By

the definition of L,

∑
j

2Kn
j ū

n+1
j L(ūnj ) =

6∑
i=1

Ji

=
∑
j

2Kn
j ū

n+1
j (Ln+1

j − Lnj )− µ

κ+ 1

∑
j

Kn
j ū

n+1
j (Lnj+1 − 2Lnj + Lnj−1)

− µ2

2(κ+ 1)

∑
j

Kn
j ū

n+1
j (wnj+1 − wnj−1) +

∑
j

2
κ

κ+ 1
ūn+1
j Kn

j (ūn+1
j − ūnj )

− µ
∑
j

κ

κ+ 1
ūn+1
j Kn

j (w̄nj − w̄nj−1) + λ
∑
j

κ

κ+ 1
ūn+1
j Kn

j (Λjw̄n+1
j−1 + Λj+1w̄

n+1
j ).

(A.1)
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We now estimate each term Ji for i = 1, · · · , 6 in (A.1). We rewrite the first term
as

J1 =
∑
j

2(Kn+1
j ūn+1

j Ln+1
j −Kn

j ū
n
j L

n
j )

− 2
∑
j

(Kn+1
j −Kn

j )ūn+1
j Ln+1

j − 2
∑
j

Kn
j (ūn+1

j − ūnj )Lnj .

Using the identity ūn+1
j = Lnj + ūnj + µ

2 (w̄nj − w̄nj−1) for the second term, we get

J2 = − µ

κ+ 1

∑
j

Kn
j

[
Lnj + ūnj +

µ

2
(w̄nj − w̄nj−1)

]
(Lnj+1 − 2Lnj + Lnj−1)

=
µ

κ+ 1

∑
j

[
Kn
j (Lnj+1 − Lnj )2 + (Kn

j+1 −Kn
j )(Lnj+1 − Lnj )Lnj+1

]
+

µ

κ+ 1

∑
j

(Kn
j+1 −Kn

j )ūnj+1(Lnj+1 − Lnj )

+
µ

κ+ 1

∑
j

Kn
j (ūnj+1 − ūnj )(Lnj+1 − Lnj )

− µ2

2(κ+ 1)

∑
j

Kn
j (w̄nj − w̄nj−1)(Lnj+1 − 2Lnj + Lnj−1).

Similarly, for the third term we have

J3 = − µ2

2(κ+ 1)

∑
j

Kn
j

[
Lnj + ūnj +

µ

2
(w̄nj − w̄nj−1)

]
(wnj+1 − wnj−1)

=
µ2

2(κ+ 1)

∑
j

[
Kn
j−1w

n
j (Lnj+1 − Lnj−1) + (Kn

j+1 −Kn
j−1)wnj L

n
j+1

]
+

µ2

2(κ+ 1)

∑
j

[
(Kn

j+1 −Kn
j−1)ūnj+1w

n
j +Kn

j (wnj+1)2
]

− µ3

4(κ+ 1)

∑
j

(w̄nj − w̄nj−1)(wnj+1 − wnj−1)Kn
j

and the fourth is rewritten as

J4 =
κ

κ+ 1

∑
j

[Kn+1
j (ūn+1

j )2 −Kn
j (ūnj )2

− (Kn+1
j −Kn

j )(ūn+1
j )2 +Kn

j (ūn+1
j − ūnj )2].
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Using summation by parts for the last two terms, we obtain

J5 = − κµ

κ+ 1

∑
j

ūn+1
j Kn

j (w̄nj − w̄nj−1)

= − κµ

κ+ 1

∑
j

(ūn+1
j − unj )Kn

j (w̄nj − w̄nj−1) +
κµ

κ+ 1

∑
j

(Kn
j+1ū

n
j+1 −Kn

j ū
n
j )w̄nj

= − κµ

κ+ 1

∑
j

Kn
j (ūn+1

j − unj )(w̄nj − w̄nj−1) +
κµ

κ+ 1

∑
j

Kn
j (w̄nj )2

+
κµ

κ+ 1

∑
j

(Kn
j+1 −Kn

j )ūnj+1w̄
n
j

and

J6 =
κλ

κ+ 1

∑
j

Kn
j ū

n+1
j (Λjw̄n+1

j−1 + Λj+1w̄
n+1
j )

=
κλ

κ+ 1

∑
j

Λj+1(Kn
j+1ū

n+1
j+1 +Kn

j ū
n+1
j )w̄n+1

j

=
κ

κ+ 1

∑
j

Anj (ūn+1
j )2 − κλ

κ+ 1

∑
j

Λj+1(Kn
j+1 −Kn

j )ūn+1
j w̄n+1

j

with

Anj = λ(ΛjKn
j − Λj+1K

n
j ) = (1 + nh)γAj .

Inserting the new terms for Ji with i = 1, · · · , 6 into (A.1), we immediately get
(3.11).
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