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VORONOI’S ALGORITHM
IN PURELY CUBIC CONGRUENCE FUNCTION FIELDS

OF UNIT RANK 1

R. SCHEIDLER AND A. STEIN

Abstract. The first part of this paper classifies all purely cubic function
fields over a finite field of characteristic not equal to 3. In the remainder,
we describe a method for computing the fundamental unit and regulator of
a purely cubic congruence function field of unit rank 1 and characteristic at
least 5. The technique is based on Voronoi’s algorithm for generating a chain of
successive minima in a multiplicative cubic lattice, which is used for calculating
the fundamental unit and regulator of a purely cubic number field.

1. Introduction

In 1896, Voronoi [17] presented his algorithm for computing a system of funda-
mental units of a cubic number field. His technique, described in terms of binary
forms, was later restated in the language of multiplicative lattices — we use the term
fractional ideal — by Delone and Faddeev [7]. The method is based on computing
chains of successive minima in the maximal order O of the field K. An implemen-
tation in purely cubic fields was given by Williams et al. [20], and improvements
based on Shanks’ idea of the infrastructure of the set of reduced principal integral
ideals in K [13] were given in [21] and [19]. In the case of a real quadratic number
field, Voronoi’s method reduces to the well-known continued fraction algorithm for
quadratic irrationalities given in [22] and [19]. Buchmann [1] generalized Voronoi’s
ideas to arbitrary number fields of unit rank 1 and 2. He extended his ideas to
number fields of any rank [3, 4] and subsequently incorporated the infrastructure
concept in [6] and [5].

In a real algebraic number field K of unit rank one (i.e. a real quadratic field or
a complex cubic field), a chain of successive minima in O is generated by starting
with θ1 = 1 and computing adjacent minima θ1 < θ2 < θ3 < · · · in O. Here
θn+1 = µnθn, where µn is the minimum adjacent to 1 in the reduced fractional
principal ideal an = (1/θn) (n ∈ N). Since the number of reduced fractional ideals
in K is at most O(

√
∆), where ∆ is the discriminant of K (see [1]), and is thus

finite, one must obtain a reduced fractional ideal an+1 so that an+1 = a1 = O after
at most O(

√
∆) steps, in which case θn+1 = ε is the fundamental unit of K. Thus,

at the heart of Voronoi’s algorithm lies the problem of computing the minimum
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adjacent to 1 in a reduced fractional ideal. Specific implementations describing
how to accomplish this, together with numerical examples, were given for the real
quadratic case in [22], the purely cubic case in [20], and the totally complex quartic
case in [2].

Stein [14], see also [15], adjusted the continued fraction algorithm of [22] to com-
pute the fundamental unit and regulator of a real quadratic congruence function
field. He discovered that the reduced principal integral ideals of such fields also
obey Shanks’ infrastructure concept. This successful adaptation of number field
algebra and arithmetic to function fields motivated the authors to design and im-
plement a version of Voronoi’s algorithm for purely cubic congruence function fields
of characteristic at least 5. Fittingly, our work began in 1996, the centennial year
of the publication of Voronoi’s original work. Improvements similar to those given
in [21] incorporating an analogous infrastructure can likely be added and will be
investigated in the future.

We should point out that Mang [10] was the first to compute systems of funda-
mental units of purely cubic congruence function fields of both unit rank 1 and 2.
His technique is based on the Pohst-Zassenhaus method used for number fields [11,
Chapter 5]. First, a succession of elements of decreasing norm in the maximal order
is generated until a set of independent units is found whose cardinality is equal to
the unit rank. Then the fundamental units are computed by essentially “extracting
roots” from the independent units. By Mang’s own admission, his technique is slow
and is infeasible for even modest degrees and sizes of the constant field. An example
over the ground field F5 with a generating polynomial of degree 6 that took 273
seconds of CPU time on a Siemens mainframe using Mang’s method required only
0.04 seconds on a Silicon Graphics Challenge workstation with our algorithm.

In adapting the ideas of [20] to purely cubic congruence function fields, we en-
countered many similarities between the number field and the function field situa-
tions. However, there are also significant differences between the two settings. In
the function field setting, the role of the absolute value is taken on by a discrete (i.e.
non-archimedian) valuation which frequently does not satisfy the inequalities and
bounds used in the number field case. In addition, many of the number field results
are derived from geometric concepts, such as Minkowski’s lattice point theorem or
facts about the minimum of a certain binary quadratic form over the rational in-
tegers. In function fields, this geometry is lost, and the corresponding results need
to be derived arithmetically. We will identify further differences between the two
environments throughout the paper. In short, while many of our conclusions are
similar to results in the number field framework, the way by which we arrive at
these facts is largely new and quite different from the derivations in [21] and [19].

2. Classification of purely cubic congruence function fields

A general introduction to congruence function fields can be found in [8]. The
purely cubic case is discussed in [10], see also p. 196 of [16]. The identities involving
the unit group, regulator, and the ideal and divisor class numbers are given in [12]
and [18].

Let k = Fq be a finite field of order q whose characteristic is not 3 and let K be
a cubic extension of the rational function field over k in one variable. If t ∈ K is
transcendental over k, we denote by k(t) the rational function field and by k[t] the
ring of polynomials over k in the variable t. K is a purely cubic congruence function
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field over the field of constants k if there exists a polynomial D = D(t) ∈ k[t] which
is not a cube in k[t] such that K = k(t, ρ), where ρ ∈ K and ρ3 = D, i.e. ρ is a
zero in K of the polynomial F (t, y) = y3−D(t) ∈ k[t, y]. Henceforth, we assume D
to be cubefree in k[t] and write D = GH2, where G,H ∈ k[t] are relatively prime
and squarefree; then G and H are unique up to a constant factor. The algebraic
closure O = k[t] of k[t] in K is a k[t]-module of rank 3 with a (t-)integral basis
{1, ρ = 3

√
GH2, ω = ρ2/H = 3

√
G2H}. Its unit group O∗ is the (t-)unit group of

K. O∗ = k∗ × E , where E is either trivial or the product of finitely many infinite
cyclic groups. In the latter case, an independent set of generators of E is a system
of fundamental (t-)units and the rank of E is the (t-)unit rank of K. The units in
k∗ are the trivial units.

Let p∞ be the infinite place of k(t) corresponding to the negative degree valuation
ν∞ on k(t). Then the completion k(t)p∞ of k(t) with respect to p∞ is the field
k((1/t)) of Puiseux series

∑∞
i=m ai/t

i (m ∈ Z, ai ∈ k for i ≥ m) over k. Denote by
r the number of distinct extensions of the valuation ν∞ onto K. Then r is equal to
the number of irreducible factors of F (t, y) = y3 −D in k((1/t))[y], and the unit
rank of K is r − 1.

Let D be the divisor group of K over k, D0 the subgroup of D of divisors of
degree 0, and P ≤ D0 the group of principal divisors of K|k. The divisor class
group (of degree 0) of K|k is the factor group C0 = D0/P ; its order h = #C0 is the
divisor class number of K. In analogy to D and D0, denote by U the subgroup of
D generated by the infinite places (with respect to t) of K and by U0 the subgroup
of divisors in U of degree 0. Then E is isomorphic to P ∩ U0. The (t-)regulator of
K is the index R = [U0 : P ∩ U0]. If I is the group of fractional (t-)ideals of K
and H the subgroup of fractional principal (t-)ideals of K, then the (t-)ideal class
group of K is C = I/H; its order h′ = #C is the (t-)ideal class number of K. Both
h and h′ are finite and are related through the identity

h =
R

f
h′,(2.1)

where f is the greatest common divisor of the degrees of all the infinite places of
K.

Let g denote the genus of K and let deg(D) and sgn(D) denote the degree and
the leading coefficient of D, respectively. The following theorem classifies all purely
cubic congruence function fields. Note that k = Fq contains a primitive cube root
of unity if and only if q ≡ 1(mod 3).

Theorem 2.1 (Classification of Purely Cubic Congruence Function Fields). Let
K = k(t, ρ) be a purely cubic congruence function field over a finite field k of charac-
teristic 6= 3, where ρ3 = D = GH2 ∈ k[t] with G, H squarefree and gcd(G,H) = 1.

1. Suppose deg(D) 6≡ 0(mod 3). Then p∞ is totally ramified in K and F (t, y)
is irreducible over k((1/t)), so ρ 6∈ k((1/t)). Hence r = 1, O∗ = k∗, R = 1,
and h = h′. Also g = deg(GH)− 1.

2. Suppose deg(D) ≡ 0(mod 3). Then p∞ is unramified in K and g = deg(GH)
−2. There are two cases:
(a) Suppose sgn(D) is not a cube in k. Then p∞ is inert in K and F (t, y)

is irreducible over K, so again ρ 6∈ k((1/t)), r = 1, O∗ = k∗, R = 1, and
h = h′/3.

(b) Suppose sgn(D) is a cube in k. Then ρ ∈ k((1/t)) and the unit group is
nontrivial. Here, we have two further subcases:
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(i) If q ≡ −1(mod 3), then p∞ = P1P2 in K with fP1 = 1 and fP2 = 2,
where fP1 and fP2 are the degrees of the places P1 and P2, respec-
tively. F (t, y) splits over k((1/t)) as

F (t, y) = (y − ρ)(y2 + ρy + ρ2),

where y2 + ρy + ρ2 is irreducible over k((1/t)). Here, r = 2, O∗ =
k∗ × 〈ε〉 with a fundamental unit ε ∈ O∗, R = |ν2(ε)| = |ν1(ε)|/2,
and h = Rh′, where ν1 and ν2 are the normalized valuations on K
corresponding to the places P1 and P2, respectively.

(ii) If q ≡ 1(mod 3), then p∞ = P1P2P3 in K, where fP1 = fP2 =
fP3 = 1. F (t, y) splits over k((1/t)) as

F (t, y) = (y − ρ)(y − uρ)(y − u2ρ),

where u ∈ k is a primitive cube root of unity. Hence r = 3, O∗ =
k∗ × 〈ε1, ε2〉 with fundamental unit ε1, ε2 ∈ O∗,

R =
∣∣∣∣det

(
ν1(ε1) ν2(ε1)
ν1(ε2) ν2(ε2)

)∣∣∣∣,
and h = Rh′, where ν1 and ν2 are the normalized valuations on K
corresponding to the places P1 and P2, respectively. In addition, this
is the only case where K is a normal extension of k(t) whose Galois
group is cyclic of order 3.

Proof. Let d = gcd(3, deg(D)). Then by [16, Proposition VI.3.1, p. 196], g =
deg(GH) − 1 − (d − 1)/2, so g = deg(GH) − 1 if deg(D) 6≡ 0(mod 3) and g =
deg(GH)− 2 if deg(D) ≡ 0(mod 3).

We have p∞ = P
e1
1 P

e2
2 . . .Per

r where
∑r
i=1 eifi = [K : k(t)] = 3 and fi is the

degree of the place Pi for i = 1, 2, . . . , r. Then f = gcd(f1, f2, . . . , fr). By the
same theorem in [16] cited above, all infinite places have the same ramification
index e = 3/d. Thus, if deg(D) 6≡ 0(mod 3), then e = 3, so r = 1, and p∞ = P3 in
K, where the degree of P is fP = 1. Hence O∗ = k∗. Since U0 is trivial, R = 1.
Since f = 1, by (2.1) h = h′.

Suppose now that deg(D) ≡ 0(mod 3). Then e = 1, so p∞ is unramified. In
this case, we obtain the unit rank from [10, Theorem 3.6, p. 77]. If sgn(D) is not
a cube in k, then again r = 1. Thus, p∞ = P in K, where fP = 3, so, as before,
O∗ = k∗, U0 is trivial, and R = 1. Since f = 3, by (2.1) h = h′/3.

Now assume that sgn(D) is a cube in k. If q ≡ −1(mod 3), then k does not
contain a primitive cube root of unity, so r = 2 [10]. Hence p∞ = P1P2 with
respective degrees f1 = 1, f2 = 2. Then U = 〈P1,P2〉 and

U0 = 〈Pα1
1 P

α2
2 | α1, α2 ∈ Z, α1 + 2α2 = 0〉 = 〈P−2

1 P2〉.
Also P ∩ U0 = 〈(ε)〉, where (ε) is the principal divisor corresponding to the fun-
damental unit ε. Denoting by fε the degree of the divisor (ε), we have 0 = fε =
ν1(ε) + 2ν2(ε), so (ε) = (P−2

1 P2)ν2(ε). Thus, R = |ν2(ε)| = |ν1(ε)|/2, and since
f = 1, by (2.1) h = Rh′.

If q ≡ 1(mod 3), then k contains primitive cube roots of unity, so K is a Kummer
extension of k(t) of degree 3 and is hence normal with Galois group Z/3Z. In this
case, [10] yields r = 3, so p∞ = P1P2P3 with respective degrees f1 = f2 = f3 = 1.
Then U = 〈P1,P2,P3〉, U0 = 〈Pα1

1 P
α2
2 P

α3
3 | α1, α2, α3 ∈ Z, α1 + α2 + α3 =

0〉 = 〈P1P
−1
3 P2P

−1
3 〉. Also P ∩ U0 = 〈(ε1), (ε2)〉. If we again denote the degree of
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(εi) by fεi , then for i = 1, 2 we have 0 = fεi = ν1(εi) + ν2(εi) + ν3(εi), so for the
principal divisors (ε1) and (ε2) corresponding to the two fundamental units ε1 and
ε2, respectively, (εi) = (P1P

−1
3 )ν1(εi)(P2P

−1
3 )ν2(εi). Thus,

R =
∣∣∣∣det

(
ν1(ε1) ν2(ε2)
ν1(ε2) ν2(ε2)

)∣∣∣∣,
and since f = 1, by (2.1) h = Rh′.

Note that this classification differs from that of purely cubic number fields in
that purely cubic number fields are complex cubic fields and thus always have unit
rank 1.

Henceforth, we assume the unit rank 1 case as described in part 2 (b) (i) in
the theorem above, i.e. deg(D) is divisible by 3, sgn(D) is a cube in k∗, and
q ≡ −1(mod 3), so q is an odd power of a prime p ≡ −1(mod 3). Let ι be a
primitive cube root of unity in some algebraic closure of k, so ι2 + ι + 1 = 0 and
ι3 = 1. Then K(ι) is a quadratic extension of K whose nontrivial K-automorphism
is “complex conjugation” − : K(ι) → K(ι) via ι = ι−1. K(ι) = k(ι, t, ρ) is a
cyclic extension of k(ι, t) of degree 3 for which we fix the k(ι, t)-automorphism
′ : K(ι) → K(ι) via ρ′ = ιρ. Write γ′′ for (γ′)′ (γ ∈ K(ι)). Note that α′ = α′′

for α ∈ K. For α ∈ K, the norm of α (over k(t)) is N(α) = αα′α′′. We have
N(α) ∈ k(t), and if α ∈ O, then N(α) ∈ k[t]. Also, α ∈ O is a unit if and only if
N(α) ∈ k∗.

As before, let ν1 and ν2 be the two normalized valuations on K correspond-
ing to the two infinite places P1 and P2 of K, respectively. Since fP1 = 1, the
completion KP1 of K with respect to P1 is isomorphic to k(t)p∞ = k((1/t)). For
α =

∑∞
i=m ai/t

i ∈ k((1/t)) (m ∈ Z, ai ∈ k for i ≥ m, am 6= 0), we define

deg(α) = −m = −ν1(α),

|α| = q−m = qdeg(α),

sgn(α) = am,

bαc =
0∑

i=m

ai
ti
.

We also set deg(0) = −∞ and b0c = 0. Note that bαc ∈ k[t] and |α− bαc| < 1.
Since the only fundamental units (up to multiples by trivial units) are ε and ε−1,

we may assume without loss of generality that deg(ε) > 0. Then for the regulator
we have R = deg(ε)/2.

The valuation ν1 on k((1/t)) has a unique extension to k((1/t))(ι) (which we will
also denote by ν1) defined as follows: for φ ∈ k((1/t))(ι), we have ν1(φ) = ν1(φφ)/2.
Then we can define

deg(φ) =
1
2

deg(φφ),

|φ| =
√
|φφ| = q

1
2 deg(φφ) = qdeg(φ).

3. Ideals

We summarize without proof some basics about ideals; the terminology, notation,
and proofs are completely analogous to those for number fields.
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A subset a of O is an integral (O-)ideal if for all α, β ∈ a and θ ∈ O we have
α + β ∈ a and θα ∈ a. A subset a of K is a fractional (O-)ideal if there exists a
nonzero d ∈ k[t] such that da is an integral ideal of O. If α1, α2, . . . , αl ∈ K, then
the set a = {θ1α1 +θ2α2 + . . .+αlθl | θi ∈ O for 1 ≤ i ≤ l} is a fractional ideal with
generators α1, α2, . . . , αl; write a = (α1, α2, . . . , αl). If α1, α2, . . . , αl ∈ O, then a

is an integral ideal. A fractional or integral ideal a is principal if a = (α) has one
generator.

Henceforth, we assume all ideals (fractional and integral) to be nonzero, i.e.
the term “ideal” will be synonymous with “nonzero ideal”. Then a multiplication
is defined on the set of fractional ideals as follows. If a = (α1, α2, . . . , αr) and
b = (β1, β2, . . . , βs) are fractional ideals, then the fractional ideal ab is defined to
be the fractional ideal generated by αiβj (1 ≤ i ≤ r, 1 ≤ j ≤ s). For integral ideals
a, b, we say that a divides b if there exists an (integral) ideal c such that ac = b.
We write a | b. Then a | b if and only if b ⊆ a. An ideal a is primitive if it has no
nontrivial polynomial divisors, that is, if f ∈ k[t], f 6= 0 with (f) | a, then f ∈ k∗.

Proposition 3.1. Every integral ideal of O is a k[t]-module of rank 3. Specifically,
every integral ideal a has a k[t]-basis of the form {l, µ, ν} where

l ∈ k[t] is monic,
µ = m0 +m1ρ,(3.1)
ν = n0 + n1ρ+ n2ω,

with m0,m1, n0, n1, n2 ∈ k[t] and m1n2 6= 0.

Here, l is unique and is the monic polynomial of minimal degree in a; write
l = L(a). Every polynomial in a ∩ k[t] is a multiple of L(a).

Corollary 3.2. Every fractional ideal of O is a k[t]-module of rank 3. More specif-
ically, every fractional ideal a of O that contains 1 has a k[t]-basis of the form
{1, µ, ν} where

µ = (m0 +m1ρ)/d,
ν = (n0 + n1ρ+ n2ω)/d,(3.2)

with m0,m1, n0, n1, n2, d ∈ k[t] and dm1n2 6= 0. If gcd(m0, m1, n0, n1, n2, d) = 1,
then da is a primitive integral ideal with L(da) = sgn(d)−1d.

If {λ, µ, ν} is a k[t]-basis of a fractional or integral ideal a ofO, write a = [λ, µ, ν].

Proposition 3.3. Let a = [λ1, µ1, ν1], b = [λ2, µ2, ν2] be fractional or integral
ideals. Then a = b if and only if there exists T ∈ Gl3(k[t]) (i.e. det(T ) ∈ k∗) such
that  λ1

µ1

ν1

 = T

 λ2

µ2

ν2

 .

The (t-)norm of a fractional ideal a = [λ, µ, ν] is N(a) = sgn(det(T ))−1 det(T ) ∈
k(t)∗, where T ∈ Gl3(k(t)) is such that λ

µ
ν

 = T

 1
ρ
ω

 .
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By Proposition 3.3, N(a) is independent of the choice of bases for a and O. If a is
a fractional ideal of O that contains 1 with a basis {1, µ, ν} as given in (3.2), then

N(a) = a
m1n2

d2
for some a ∈ k∗.(3.3)

The norm of an integral ideal a is N(a) = L(a)3N((1/L(a))a) ∈ k[t]. If a =
[L(a), µ, ν] where µ and ν are as in (3.1), then N(a) = aL(a)n1m2 for some a ∈ k∗.
We have N(ab) = N(a)N(b) for any fractional or integral ideals a, b of O. The
absolute norm of a fractional or integral ideal a is |N(a)| = qdeg(N(a)).

Proposition 3.4. If a is an integral ideal, then L(a) | N(a). If a is primitive, then
N(a) | L(a)2.

The (t-)discriminant of a fractional or integral ideal a = [λ, µ, ν] is the quantity

∆(a) = det

 λ λ′ λ′′

µ µ′ µ′′

ν ν′ ν′′

2

∈
{
k(t) if a is a fractional ideal,
k[t] if a is an integral ideal.

By Proposition 3.3, ∆(a) is independent of the choice of k[t]-basis of a. The dis-
criminant of O = [1, ρ, ω] is ∆ = −27G2H2. We have

∆(a) = a2N(a)2∆ for some a ∈ k∗.(3.4)

4. Minima and reduced ideals

If a is a fractional ideal and α ∈ a, α 6= 0, then α is a minimum in a if for β ∈ a

with β 6= 0, |β| ≤ |α| and |β′| ≤ |α′| imply β ∈ k∗α, i.e. β and α differ only by
a factor that is a trivial unit. a is reduced if 1 ∈ a and 1 is a minimum in a. An
integral ideal a is reduced if the fractional ideal (1/L(a))a is reduced, i.e. if and
only if L(a) is a minimum in a. We show that reduced ideals exist and establish
certain properties.

Theorem 4.1. O is reduced.

Proof. Let α ∈ O, α 6= 0, with |α| ≤ 1 and |α′| ≤ 1. Then |α′α′′| = |α′|2 ≤ 1, so
|N(α)| ≤ 1. Since N(α) ∈ k[t] and N(α) 6= 0, we must have |N(α)| = 1, so α is a
unit. Also |α| = |α′| = 1, so α is a trivial unit, i.e. α ∈ k∗.

Proposition 4.2. Let a be a fractional ideal of O and let θ be a minimum in a.
Then ηθ is a minimum in a for every unit η ∈ O∗.
Proof. Let η ∈ O∗. Clearly, ηθ ∈ a. Let α ∈ a be nonzero with |α| ≤ |ηθ| and
|α′| ≤ |η′θ′|. Set β = αη−1; then β ∈ a, β 6= 0, |β| ≤ |θ|, and |β′| ≤ |θ′|. Since θ is
a minimum in a, we have β ∈ k∗θ, hence α ∈ k∗ηθ.
Corollary 4.3. Every unit in O is a minimum in O.

Lemma 4.4. Let a be a reduced fractional ideal and let α = a + bρ + cω ∈ a

(a, b, c ∈ k(t)). If |a|, |bρ|, |cω| ≤ 1, then b = c = 0 and α = a ∈ k.

Proof. |α| ≤ max{|a|, |bρ|, |cω|} ≤ 1, and similarly

|α′|2 = |α′α′′| = |a2 − bcρω + c2ω2 − abρ+ b2ρ2 − acω| ≤ 1.

Since 1 is a minimum in a, α ∈ k.

Theorem 4.5. If a is a reduced fractional ideal, then |∆(a)| > 1, i.e. |N(a)| >
1/|
√

∆|.
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Proof. Let {1, µ, ν} be a basis of a as given in (3.2). By first subtracting a suitable
k[t]-multiple of µ from ν and then subtracting suitable polynomials in k[t] from
µ and ν, we may assume that |n1| < |m1| and |m0|, |n0| < |d|. Since µ is not
constant, by Lemma 4.4, |m1ρ| > |d|. From (3.3), we obtain |N(a)| = |m1n2|/|d|2,
so by (3.4), |

√
∆(a)| = |m1n2

√
∆|/|d|2 = |m1n2ρω|/|d|2.

Case 1. |n2ω| > |d|. Then |
√

∆(a)| > 1, and the theorem is proved.

Case 2. |n2ω| ≤ |d|. Then by Lemma 4.4 |n1ρ| > |d|. Assume that |∆(a)| ≤ 1.
Then

1 <
∣∣∣n1ρ

d

∣∣∣ < ∣∣∣m1ρ

d

∣∣∣ =

∣∣∣∣∣d
√

∆(a)
n2ω

∣∣∣∣∣ ≤
∣∣∣∣ d

n2ω

∣∣∣∣ .(4.1)

Let ∣∣∣∣m1

n1

∣∣∣∣ = qm,
∣∣∣m1ρ

d

∣∣∣ = qn,
∣∣∣n2ω

d

∣∣∣ = q−l,(4.2)

where m,n, l ∈ N. We claim that

0 < m < n ≤ l.(4.3)

To see this, note that |n1| < |m1| implies 0 < m. Since |n1ρ|/|d| > 1, we have
|m1ρ|/|d| = |m1n1ρ|/|n1d| > |m1|/|n1|, so m < n. Finally, from (4.1), we obtain
|m1ρ|/|d| ≤ |d|/|n2ω|, so n ≤ l.

Let n1/m1 =
∑∞

i=1 rit
−i (ri ∈ k for i ∈ N, rm 6= 0, ri = 0 for i < m). Set

R =


rl+1 rl rl−1 · · · rl−n+1

rl+2 rl+1 rl · · · rl−n+2

rl+3 rl+2 rl+1 · · · rl−n+3

...
...

...
...

rl+n rl+n−1 rl+n−2 · · · rl

 ∈Matn×(n+1)(k)

and let (c−l, c−l+1, c−l+2, . . . , c−l+n)t ∈ kn+1 be a nonzero solution of

R


x0

x1

...
xn

 =


0
0
...
0

 .

Set c = c−lt
l + c−l+1t

l−1 + · · ·+ c−l+nt
l−n. By (4.3), c ∈ k[t].

Now let (n1/m1)c =
∑∞

i=m−l sit
−i (si ∈ k for i ≥ m− l, sm−l 6= 0). Then

s1

s2

s3

...
sn

 =


rl+1 rl rl−1 · · · rl−n+1

rl+2 rl+1 rl · · · rl−n+2

rl+3 rl+2 rl+1 · · · rl−n+3

...
...

...
...

rl+n rl+n−1 rl+n−2 · · · rl




c−l
c−l+1

c−l+2

...
c−l+n

 =


0
0
0
...
0

 ,

so

n1

m1
c =

0∑
i=m−l

sit
−i +

∞∑
i=n+1

sit
−i.(4.4)
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Set b = −b(n1/m1)cc = −s−l+mtl−m − s−l+m−1t
l−m−1 − · · · − s0. Then by (4.3),

b ∈ k[t], and by (4.4) ∣∣∣∣ n1

m1
c+ b

∣∣∣∣ < q−n.(4.5)

Finally, set a = −b(bm0 + cn0)/dc ∈ k[t] and let α = a+ bµ+ cν ∈ a. Then

α =
1
d

((da+ bm0 + cn0) + (bm1 + cn1)ρ+ cn2ω)

and from (4.2) and (4.5)∣∣∣∣da+ bm0 + cn0

d

∣∣∣∣ =
∣∣∣∣bm0 + cn0

d
−
⌊
bm0 + cn0

d

⌋∣∣∣∣ < 1,∣∣∣∣ (bm1 + cn1)ρ
d

∣∣∣∣ =
∣∣∣∣b+

n1

m1
c

∣∣∣∣ ∣∣∣m1ρ

d

∣∣∣ < q−nqn = 1,∣∣∣cn2ω

d

∣∣∣ ≤ qlq−l = 1,

where the last inequality uses deg(c) = l. By Lemma 4.4, α ∈ k. So in particular
c = 0, contradicting (c−l, c−l+1, . . . , c−l+n) 6= (0, 0, . . . , 0). Hence the assumption
that |∆(a)| ≤ 1 is false. |N(a)| > 1/|

√
∆| follows from (3.4).

Corollary 4.6. If a is a reduced integral ideal, then |L(a)| < |
√

∆| and |N(a)| <
|∆|.
Proof. Since a is reduced, b = (1/L(a))a is reduced, so by Proposition 3.4 and
Theorem 4.5, |L(a)|2 ≥ |N(a)| = |L(a)|3|N(b)| > |L(a)|3/|

√
∆|, so |L(a)| < |

√
∆|

and, again by Proposition 3.4, |N(a)| ≤ |L(a)|2 < |∆|.
Corollary 4.7. If a is a reduced fractional ideal and α ∈ a is nonzero, then
|N(α)| > 1/|∆|.
Proof. Let d ∈ k[t] be of minimal degree so that b = da is an integral ideal. Then
dα ∈ b, so (dα)(d2α′α′′) = N(dα) = d3N(α) ∈ b. Hence L(b) = d | d3N(α), so
|N(α)| ≥ 1/|d|2 = 1/|L(b)|2 > 1/|∆| by Corollary 4.6.

5. Adjacent minima

Let a be a fractional ideal and let θ ∈ a be a minimum in a. An element φ ∈ a

is a minimum adjacent to θ in a if
(M1) φ is a minimum in a,
(M2) |θ| < |φ|,
(M3) for no α ∈ a do we have |θ| < |α| < |φ| and |α′| < |θ′|.

Note that conditions (M1) and (M2) imply |φ′| < |θ′|, as |θ′| ≤ |φ′| would yield
θ ∈ k∗φ by (M1) and hence |θ| = |φ|, contradicting (M2).

In the number field setting, the existence of adjacent minima is easily seen. Sim-
ply expand the cylinder of elements (x, y, z) ∈ R3 with |x| ≤ |θ| and y2 +z2 ≤ |θ′θ′′|
in the x direction until the next point φ ∈ a is encountered. Minkowski’s lattice
point theorem guarantees the existence of such an element φ provided the volume
of the cylinder is sufficiently large. In our function fields, we need to establish the
existence of adjacent minima analytically.

Theorem 5.1. Let a be a fractional ideal and let θ ∈ a be a minimum in a. Then
a minimum φ adjacent to θ in a exists and is unique up to a trivial unit factor.
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Proof. Consider the set H(θ) = {α ∈ a | |α| > |θ| and |α′| < |θ′|}. Then H(θ)
is nonempty, as εθ ∈ H(θ). The set {deg(α) | α ∈ H(θ)} is a nonempty subset
of Z, and is bounded below by deg(θ). By the Well-Ordering Principle, it has
a smallest element, so there exists α ∈ H(θ) with |α| minimal. Then the set
{deg(N(α)) | α ∈ H(θ), |α| is minimal} is also a nonempty subset of Z, and is
bounded below by − deg(∆) by Corollary 4.7. So it has a smallest element as well.
Let φ ∈ H(θ) be such that |φ| is minimal and N(φ) is such a smallest element.
Then

a) |φ| > |θ| and |φ′| < |θ′|,
b) if α ∈ a with |α| > |θ| and |α′| < |θ′|, then |α| ≥ |φ|,
c) if α ∈ a with |α| = |φ| and |α′| < |θ′|, then |α′| ≥ |φ′|.

Condition a) holds because φ ∈ H(θ). Property b) follows from the minimality of
|φ|. To see c), suppose |α| = |φ| and |α′| < |θ′|. Then by a), |α| > |θ|, so α ∈ H(θ).
By minimality of |N(φ)|, |N(α)| ≥ |N(φ)|, so with |α| = |φ|, we obtain |α′| ≥ |φ′|.

Now conditions (M2) and (M3) for adjacent minima follow from properties a)
and b), respectively, so we only need to show that φ is a minimum in a. Let α ∈ a,
α 6= 0 with |α| ≤ |φ| and |α′| ≤ |φ′|. By a), |α′| < |θ′|. Suppose |α| ≤ |θ|; then
α ∈ k∗θ as θ is a minimum in a. But then |θ′| = |α′| < |θ′|. So |α| > |θ|. By
b), |α| ≥ |φ|, so |α| = |φ|. Hence by c), |α′| ≥ |φ′|, so |α′| = |φ′|. Thus we have
|α| = |φ| and |α′| = |φ′|.

Let β = α− (sgn(α)/sgn(φ))φ; then β ∈ a, |β| < |φ| and |β′| ≤ max{|α′|, |φ′|} <
|θ′|. Suppose β 6= 0; then by (M3), |β| ≤ |θ|, so β ∈ k∗θ. But then |θ′| = |β′| < |θ′|.
So we must have β = 0, and thus α ∈ k∗φ. Therefore, φ is a minimum in a.

To see that φ is unique up to a factor in k∗, let φ1, φ2 be two minima in a

adjacent to θ. Then both φ1 and φ2 are minima in a by (M1), and |θ| < |φ1|, |φ2|
by (M2). Suppose |φ1| < |φ2|; then by (M3), |φ′1| ≥ |θ′|, so since φ1 is a minimum in
a, θ ∈ k∗φ1. But then |θ| = |φ1| > |θ|. Similarly we can rule out |φ1| > |φ2|. Hence
|φ1| = |φ2|. Assume without loss of generality that |φ′1| ≤ |φ′2|; then φ1 ∈ k∗φ2.

We will henceforth speak of the minimum adjacent to an element in a fractional
ideal, keeping in mind that it is only unique up to a trivial unit factor.

Let a be a fractional ideal and let θ = θ1 be a minimum in a. A sequence (θn)n∈N
of elements in a where θn+1 is the minimum adjacent to θn in a (n ∈ N) is a chain
of successive minima in a. Note that by (M2), |θn| < |θn+1|, and thus by (M1),
|θ′n| > |θ′n+1| for n ∈ N.

Proposition 5.2. Let a be a reduced fractional ideal, θ a minimum in a, and a∗ =
(1/θ)a. Then a∗ is reduced.

Proof. Let α ∈ a∗, α 6= 0, |α| ≤ 1 and |α′| ≤ 1. Then β = θα ∈ a, β 6= 0, |β| ≤ |θ|
and |β′| ≤ |θ′|, so β ∈ k∗θ. Hence α = β/θ ∈ k∗.

Proposition 5.3. Let a be a reduced fractional ideal, θ a minimum in a, a∗ =
(1/θ)a, so a∗ is reduced by Proposition 5.2. Let θ∗ be the minimum adjacent to 1
in a∗. Then θθ∗ is the minimum adjacent to θ in a.

Proof. For brevity, set φ = θθ∗. Clearly φ ∈ θa∗ = a. To show (M1), let α ∈ a,
α 6= 0 with |α| ≤ |φ| and |α′| ≤ |φ′|. Let β = α/θ; then β ∈ (1/θ)a = a∗,
β 6= 0, |β| ≤ |θ∗| and |β′| ≤ |(θ∗)′|. Since θ∗ is a minimum in a∗, β ∈ k∗θ∗, so
α = βθ ∈ k∗φ. So φ is a minimum in a. Now since |θ∗| > 1, |φ| > |θ|, so (M2)
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holds. Finally, suppose there exists α ∈ a with |θ| < |α| < |φ| and |α′| < |θ′|. Then
β = α/θ ∈ a∗, β 6= 0, 1 < |β| < |θ∗| and |β′| < 1, contradicting (M3) for the
minimum θ∗ adjacent to 1 in a∗. So (M3) is also satisfied.

6. Outline of the algorithm

The basic idea for our algorithm is the same as in the unit rank 1 case of number
fields. Start with a reduced fractional ideal a = a1, for example a1 = O, and define
a sequence of reduced fractional ideals an and elements θn ∈ a (n ∈ N) as follows.
Let µn be the minimum adjacent to 1 in an and set an+1 = (1/µn)an. Then an+1

is reduced by Proposition 5.2. If we set

θ1 = 1, θn =
n−1∏
i=1

µi for n ≥ 2,(6.1)

then an = (1/θn)a. Since θn+1 = µnθn, θn+1 is the minimum adjacent to θn in a

by Proposition 5.3. Thus we have a chain

θ1 = 1, θ2, θ3, . . .(6.2)

of successive minima in a. The following proposition shows that the chain (6.2) in
fact contains all the minima in a of nonnegative degree.

Proposition 6.1. Let a be a reduced fractional ideal and let θ be a minimum in a

with |θ| ≥ 1. Then there exist n ∈ N and a ∈ k∗ such that θ = aθn.

Proof. The sequence (|θn|)n∈N is strictly increasing and unbounded. Hence there
exists n ∈ N with |θn| ≤ |θ| < |θn+1|. If |θ′n| ≤ |θ′|, then θn ∈ k∗θ and our claim
is proved. If |θ′| < |θ′n|, then |θn| ≤ |θ| < |θn+1| and |θ′| < |θ′n| imply |θn| = |θ| by
(M3), so θ ∈ k∗θn by (M1).

Corollary 6.2. |N(θ)| < |
√

∆| for every minimum θ ∈ O with |θ| ≥ 1.

Proof. If a1 = O, then we have |N(θn)| = 1/|N(an)| for all n ∈ N, and the corollary
follows from the previous proposition and Theorem 4.5.

In particular, the fundamental unit ε must appear in the sequence (6.2) by
Corollary 4.3. More exactly, since ε is the unit of smallest positive degree, the first
index n > 1 such that N(θn) ∈ k∗ satisfies θn ∈ k∗ε. If l ∈ N is minimal such that
θl+1 ∈ k∗ε (l ∈ N), then al+1 = a1, µl+1 = µ1 (possibly up to a constant factor),
and in fact µml+i = µi for m, i ∈ N (again, possibly up to a trivial unit factor).
Hence the sequence (6.2) is equal to

1, θ2, . . . , θl, ε, εθ2, . . . , εθl, ε
2, ε2θ2, . . . , ε

3, . . .

and contains all nonnegative powers of ε. We call l the period of ε (or of K).
Thus, to find ε, we need to compute a sequence of elements (µn)n∈N where

a1 = O, an+1 = (1/µn)an, and µn is the minimum adjacent to 1 in an (n ∈ N).
We terminate as soon as N(θl+1) ∈ k∗, where θl+1 is defined as in (6.1), at which
point ε = θl+1 and R = deg(θl+1)/2. Hence the key portion of our algorithm is a
method for generating the minimum µ adjacent to 1 in a reduced fractional a. This
is accomplished by applying a sequence of suitable unimodular transformations to
the pair (φ, ψ), where {1, φ, ψ} is a k[t]-basis of a, until a basis {1, µ, ν} is obtained
such that µ is our desired minimum. We call a basis that contains µ a reduced basis
of a. Details on how to compute a reduced basis are given in section 7.
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Before we present our unit and regulator algorithms, we give a simpler condition
that determines exactly when N(θn) ∈ k∗ and avoids computing norms.

Proposition 6.3. Let a = (1/θ) = [1, µ, ν], where θ is an element of the chain
(6.2) and µ = (m0+m1ρ+m2ω)/d, ν = (n0+n1ρ+n2ω)/d with m0,m1,m2, n0, n1, n2, d ∈
k[t] and gcd(m0,m1,m2, n0, n1, n2, d) = 1. Then N(θ) ∈ k∗ if and only if d ∈ k∗.

Proof. Since N(a) = sgn(N(θ))/N(θ), we have N(θ) ∈ k∗ if and only if N(a) = 1,
which is the case if and only if a = O, or equivalently µ, ν ∈ O. But because of the
gcd condition, µ and ν are in O if and only if d ∈ k∗.

We are now ready to present our algorithm for computing the fundamental unit
of K. In each iteration, we have a basis {1, µn = (m0 + m1ρ + m2ω)/d, νn =
(n0 + n1ρ + n2ω)/d} of our current fractional ideal an = (1/θn), where θn =
(e0 + e1ρ + e2ω)/f (mi, ni, d, ei, f ∈ k[t] for i = 0, 1, 2). This basis is replaced by
a reduced basis (also called {1, µn, νn}). Then θn is updated to θn+1 = µnθn, and
since an+1 = (1/µn)an, µn and νn are replaced by µn+1 = 1/µn = µ′nµ

′′
n/N(µn)

and νn+1 = νn/µn = νnµn+1, respectively. Initially, θ1 = 1, µ1 = ρ, and ν1 = ω.
Using Proposition 6.3, we terminate the algorithm as soon as we encounter a basis
denominator d that is a constant.

Algorithm 6.4 (Fundamental unit algorithm).
Input: The polynomials G,H, where D = GH2.
Output: e0, e1, e2 ∈ k[t], where ε = e0 + e1ρ+ ε2ω is the fundamental unit of K.
Algorithm:
1. Set e0 = f = 1, e1 = e2 = 0; m0 = m2 = n0 = n1 = 0, m1 = n2 = d = 1.
2. Repeat

(a) { Reduce the basis }
Use Algorithm 7.1 below to replace m0,m1,m2, n0, n1, n2, d by the coeffi-
cients of a reduced basis.

(b) { Update θn }
(i) Replace

e0

e1

e2

f

 by


e0m0 + (e1m2 + e2m1)GH
e0m1 + e1m0 + e2m2G
e0m2 + e1m1H + e2m0

df

 .

(ii) Compute g = gcd(e0, e1, e2, f). For i = 0, 1, 2, replace ei by ei/g and
f by f/g.

(c) { Update µ and ν }
(i) Set

a0 = m2
0 −m1m2GH,

a1 = m2
2G−m0m1,

a2 = m2
1H −m0m2,

b = m3
0 +m3

1GH
2 +m3

2G
2H − 3m0m1m2GH.

(ii) Replace  m0

m1

m2

 by

 a0d
a1d
a2d

 .
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(iii) Replace n0

n1

n2

 by

 a0n0 + (a1n2 + a2n1)GH
a0n1 + a1n0 + a2n2G
a0n2 + a1n1H + a2n0

 .

(iv) Replace d by b.
(v) Compute h = gcd(m0,m1,m2, n0, n1, n2, d). For i = 0, 1, 2, replace

mi by mi/h, ni by ni/h and d by d/h.
until d ∈ k∗.

Since the computation of ε requires l reduction steps, where l is the period of ε,
it is desirable to have an upper bound on l. In general, l can be quite large.

Theorem 6.5. For the period l of ε, we have l ≤ 2R = deg(ε) = O(qdeg ∆/2−2).

Proof. For n ∈ N, let δn = deg(θn) ∈ N0. Since δ1 = 0 and δn strictly increases
with n, a simple induction argument shows δn ≥ n − 1. Hence l ≤ deg(θl+1) =
deg(ε) = 2R. From the Hasse-Weil Theorem (see [16, Theorem V.1.15, p. 166, and
Theorem V.2.1 , p. 169]), we can infer that (

√
q − 1)2g ≤ h ≤ (

√
q + 1)2g. Hence,

using (2.1) and the identity g = deg(
√

∆) − 2 for the genus g of K (see Theorem
2.1), we obtain R ≤ (

√
q + 1)deg(∆)−4 = O(qdeg(∆)/2−2).

Corollary 6.6. |ε| = O(qq
deg(∆)/2−2

).

Corollary 6.6 shows that the coefficients e0, e1, e2 of ε can be so huge that it
might be infeasible to compute or even simply write down the fundamental unit for
large values of |∆|. For this situation, we modify Algorithm 6.4 to compute only the
regulatorR of K. We show in the next section that if µ = (m0+m1ρ+m2ω)/d is the
minimum adjacent to 1 in some reduced fractional ideal, then deg(µ) = deg(m0/d)
(see Lemma 7.4), so we only need to add deg(m0) − deg(d) in each iteration to
update the regulator. After step 2 of the algorithm below, the degree of ε is stored
in R, so we need to divide by 2 in step 3.

Algorithm 6.7 (Regulator algorithm).
Input: The polynomials G,H, where D = GH2.
Output: The regulator R of K.
Algorithm:
1. Set R = 0; m0 = m2 = n0 = n1 = 0, m1 = n2 = d = 1.
2. Repeat

(a) Use Algorithm 7.1 below to replace m0,m1,m2, n0, n1, n2, d by the coeffi-
cients of a reduced basis.

(b) Replace R by R+ deg(m0)− deg(d).
(c) (i) Set

a0 = m2
0 −m1m2GH,

a1 = m2
2G−m0m1,

a2 = m2
1H −m0m2,

b = m3
0 +m3

1GH
2 +m3

2G
2H − 3m0m1m2GH.

(ii) Replace  m0

m1

m2

 by

 a0d
a1d
a2d

 .
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(iii) Replace n0

n1

n2

 by

 a0n0 + (a1n2 + a2n1)GH
a0n1 + a1n0 + a2n2G
a0n2 + a1n1H + a2n0

 .

(iv) Replace d by b.
(v) Compute h = gcd(m0,m1,m2, n0, n1, n2, d). For i = 0, 1, 2, replace

mi by mi/h, ni by ni/h and d by d/h.
until d ∈ k∗.

3. Replace R by R/2.

7. Computation of a minimum adjacent to 1

The above discussion shows that the task of finding ε (or R) reduces to the
problem of computing a reduced basis of a reduced fractional ideal a. In particular,
we need to be able to generate the minimum adjacent to 1 in a. Before we illustrate
how to do this, we require several somewhat technical definitions. Here, we let
ourselves be guided by the terminology and techniques in [20]. As mentioned before,
in the number field case, these concepts are geometrically motivated. While they
lose their geometric significance in the function field case, they can nevertheless be
used to accomplish our goal.

Henceforth, we exclude the characteristic 2 case, that is, we require k to be a
finite field of characteristic at least 5. Let α = a+ bρ+ cω ∈ K with a, b, c ∈ k(t).
We define the quantities

ξα = bρ+ cω = α− a,
ηα = bρ− cω =

1
2ι+ 1

(α′ − α′′),
ζα = 2a− bρ− cω = α′ + α′′,

(7.1)

where we recall that ι is a primitive cube root of unity. Then ξfα+gβ = fξα + gξβ,
ηfα+gβ = fηα + gηβ, ζfα+gβ = fζα + gζβ for any α, β ∈ K and f, g ∈ k(t). Simple
calculations show

α =
1
2

(3ξα + ζα), α′α′′ =
1
4

(3η2
α + ζ2

α).(7.2)

and if a = [1, µ, ν] is a fractional ideal, then

det
(
ξµ ηµ
ξν ην

)
= ξµην − ξνηµ = −2

√
∆(a),(7.3)

so this determinant is independent of the choice of basis of a.
We now give the algorithm that on input of a basis of some reduced fractional

ideal produces a reduced basis of that same ideal.

Algorithm 7.1 (Reduction algorithm).
Input: µ̃, ν̃, where {1, µ̃, ν̃} is a basis of some reduced fractional ideal a.
Output: µ, ν, where {1, µ, ν} is a basis of a such that |ζµ| < 1, |ζν | < 1, |ξµ| >

|ξν |, |ηµ| < 1 ≤ |ην |.
Algorithm:
1. Set µ = µ̃, ν = ν̃.
2. If |ξµ| < |ξν | or if |ξµ| = |ξν | and, replace(

µ
ν

)
by

(
0 1
−1 0

)(
µ
ν

)
.
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3. If |ηµ| ≥ |ην |
(a) while bξµ/ξνc = bηµ/ηνc, replace(

µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
.

(b) Replace (
µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
.

(c) If |ηµ| = |ην |, replace(
µ
ν

)
by

(
1 −a
0 1

)(
µ
ν

)
.

where a = sgn(ηµ)sgn(ην)−1 ∈ k∗.
4. (a) While |ην | < 1, replace(

µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
.

(b) While |ηµ| ≥ 1, replace(
µ
ν

)
by

(
bην/ηµc −1

1 0

)(
µ
ν

)
.

5. If |ζµ| ≥ 1, replace µ by µ− (1/2)bζµc.
If |ζν | ≥ 1, replace ν by ν − (1/2)bζνc.

Proposition 7.2. Algorithm 7.1 terminates and produces the output specified
above.

Proof. It is easy to see that all transformations of µ and ν in steps 2, 3 and 4
maintain a basis {1, µ, ν} of a, because the basis transformation matrices all have
determinant 1.

We claim that after step 3, we have

|ξµ| > |ξν |, |ηµ| < |ην |.(7.4)

This can be seen as follows. Since step 2 replaces µ by ν and ν by −µ, we have
|ξµ| > |ξν | or |ξµ| = |ξν | and |ηµ| ≥ |ην | after step 2. If at the beginning of step
3, |ηµ| < |ην |, then from the previous step |ξµ| > |ξν |, so conditions (7.4) hold and
step 3 is skipped.

Assume now that |ηµ| ≥ |ην |, so step 3 is entered. Consider step 3 (a) and set
α = ν and β = bξµ/ξνcν − µ, so α and β are obtained by applying the linear
transformation of step 3 (a) to µ and ν. Then

|ξβ | =
∣∣∣∣⌊ξµξν

⌋
ξν − ξµ

∣∣∣∣ < |ξν | = |ξα|,

|ηβ | =
∣∣∣∣⌊ηµην

⌋
ην − ηµ

∣∣∣∣ < |ην | = |ηα|.

Hence, |ξν | and |ην | strictly decrease in each iteration, so the loop must terminate
at the latest before |ξνην | ≤ 1, for otherwise by (7.3)

|
√

∆(a)| = |ξνην ||ηµ/ην − ξµ/ξν | < |ξνην | ≤ 1,
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contradicting Theorem 4.5. After step 3 (b), we have |ξβ | < |ξν | = |ξα| and

|ηβ | =
∣∣∣∣(⌊ξµξν

⌋
−
⌊
ηµ
ην

⌋)
ην +

(⌊
ηµ
ην

⌋
ην − ηµ

)∣∣∣∣ ≥ |ην | = |ηα|,
because |bξµ/ξνc − bηµ/ηνc| ≥ 1 and |bηµ/ηνcην − ηµ| < |ην |. Finally, observe
that in step 3 (c), a = bηµ/ηνc. If we set α = µ − aν and β = ν, then as before
|ηα| < |ηβ |, and since |ξµ| > |ξν |, we have |ξα| = |ξµ − aξν | = |ξµ| > |ξν | = |ξβ |. So
step 3 achieves the inequalities (7.4) above.

In step 4, we ensure that |ηµ| < 1 ≤ |ην |. From (7.4), it is clear that at most one
of the while loops in step 4 is entered. Consider first the case |ην | < 1, i.e. case 4
(a). Set α = ν and β = bξµ/ξνcν − µ. Then

|ξβ | < |ξν | = |ξα|, |ηβ | =
∣∣∣∣⌊ξµξν

⌋
ην − ηµ

∣∣∣∣ > |ην | = |ηα|, |ηα| = |ην | < 1,

so inequalities (7.4) and the condition |ηµ| < 1 are maintained throughout the loop.
Furthermore, |ην | strictly increases in each iteration, so the while loop will terminate
with the desired basis. In step 4 (b), if we set β = µ and α = bην/ηµcµ− ν, then

|ηα| < |ηµ| = |ηβ |, |ξα| =
∣∣∣∣⌊ηνηµ

⌋
ξµ − ξν

∣∣∣∣ > |ξµ| = |ξβ |, |ηβ | = |ηµ| ≥ 1,

so again (7.4) and the condition |ην | ≥ 1 are maintained throughout the loop. In
addition, |ηµ| strictly decreases in each iteration, so in this case the while loop also
terminates with the desired basis.

Finally, step 5 achieves |ζµ|, |ζν | < 1 while preserving the inequalities obtained
in the first 4 steps. To see this, let α = µ − (1/2)bζµc; then by (7.1) |ζα| =
|ζµ − 1

2ζbζµc| = |ζµ − bζµc| < 1. Similarly for ν.

We proceed to prove that the basis of Algorithm 7.1 is indeed a reduced basis,

Lemma 7.3. Let α ∈ K. Then |α′| < 1 if and only if |ηα| < 1 and |ζα| < 1.

Proof. If |ηα| < 1 and |ζα| < 1, then from (7.2) |α′|2 ≤ max{|ηα|2, |ζα|2} < 1.
Conversely, if |α′| < 1, then |ζα| = |α′ + α′′| ≤ |α′| < 1, and from (7.2) |ηα|2 =
|4α′α′′ − ζ2

α| < 1.

Lemma 7.4. Let α = a + bρ + cω ∈ K with |α| > 1 and |α′| < 1. Then |α| =
|ξα| = |a| = |bρ| = |cω|.

Proof. By Lemma 7.3, we have |ηα| < 1 and |ζα| < 1. From |α| > 1 and |ζα| =
|3a− α| < 1, it follows that |α| = |a|. The inequality |ζα| = |2a − ξα| < 1 implies
|ξα| = |a| > 1. Finally, from |ξα| > 1 and |ηα| < 1, we obtain |bρ| = |cω| = |ξα|.

Theorem 7.5. Let {1, µ, ν} be a basis of a reduced fractional ideal a such that
|ζµ| < 1, |ζν | < 1, |ξµ| > |ξν |, |ηµ| < 1 ≤ |ην |. Then µ is the minimum adjacent to
1 in a, so {1, µ, ν} is a reduced basis of a.

Proof. Let θ be the minimum adjacent to 1 in a, θ = l+mµ+nν with l,m, n ∈ k[t].
We wish to show that l = n = 0 and m ∈ k∗. Since |θ′| < 1, we have |ζθ| < 1 and
|ηθ| < 1 by Lemma 7.3. By the same lemma, |µ′| < 1, as |ζµ| < 1 and |ηµ| < 1.
Then |µ| > 1, as otherwise µ ∈ k. Hence |µ| ≥ |θ|, since otherwise 1 < |µ| < |θ| and
|µ′| < 1, contradicting (M3) for θ.

If n = 0, then m 6= 0 as θ 6∈ k[t], so |m| > |n| and |mξµ| > |nξν |. If n 6= 0, then
1 > |ηθ| = |mηµ + nην | with |nην | ≥ 1 implies |mηµ| = |nην |. Thus, |n| ≤ |nην | =
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|mηµ| < |m|, so |m| > |n| and |mξµ| > |nξν | as well. It follows from Lemma 7.4
that

|θ| = |ξθ| = |mξµ + nξν | = |mξµ| = |mµ| ≥ |mθ|,
so |m| ≤ 1. Thus, 1 ≥ |m| > |n|, so n = 0 and m ∈ k∗.

Now 1 > |ζθ| = |ζl+mµ| = |2l + ζµ|, so since |ζµ| < 1, |l| < 1, so l = 0 and
θ = mµ ∈ k∗µ.

The coefficients of the basis generated by Algorithm 7.1 are small:

Theorem 7.6. Let a be a reduced fractional ideal and let {1, µ, ν} be the basis of a

produced by Algorithm 7.1. Let µ = (m0 +m1ρ+m2ω)/d, ν = (n0 + n1ρ+ n2ω)/d
with m0,m1,m2, n0, n1, n2, d ∈ k[t] and gcd(m0,m1,m2, n0, n1, n2, d) = 1. Then
|d| < |dµ| = |m0| = |m1ρ| = |m2ω| ≤ |

√
∆| and |n0|, |n1ρ|, |n2ω| < |

√
∆|, so

|m1| ≤ |ω|, |n1| < |ω|, |m2| ≤ |ρ|, and |n2| < |ρ|.

Proof. From Lemma 7.4, |d| < |dµ| = |dξµ| = |m0| = |m1ρ| = |m2ω|. Now by
Corollary 3.2, da is a reduced integral ideal with L(da) = sgn(d)−1d. By Proposition
3.4, d3N(a) = N(da) | d2, so |dN(a)| ≤ 1. From (3.4) and (7.3), we obtain

|
√

∆| ≥ |dN(a)
√

∆| = |d
√

∆(a)| = |d(ξµην − ξνηµ)| ≥ |dξµ|,
as |ξµ| > |ξν | and |ηµ| < 1 ≤ |ην |.

Since |ξµ| > |ξν |, we have |
√

∆| ≥ |m1ρ+m2ω| > |n1ρ+ n2ω|. Also, |
√

∆(a)| =
|ξµην | > |ην |, so |

√
∆| ≥ |d

√
∆(a)| > |dην | = |n1ρ − n2ω|. Hence |n1ρ|, |n2ω| <

|
√

∆|. Finally, |ζν | < 1 implies |2n0 − n1ρ− n2ω| < |d| < |
√

∆|, so |n0| < |
√

∆|.
The rest of the inequalities follow from the identity ρω =

√
∆.

8. Implementation

Our algorithm was implemented using the computer algebra system SIMATH
developed by the research group of Professor H. G. Zimmer at the Universität des
Saarlandes in Saarbrücken, Germany. All our computations were done on a Silicon
Graphics Challenge workstation. Since much of our method required manipulation
of Puiseux series, it was necessary to write routines for arithmetic of power series.
For this purpose, we had to use truncated series as approximations for our Puiseux
series, in analogy to using rational approximations when computing with real num-
bers. However, in contrast to Voronoi’s algorithm in number fields, we were able to
establish conditions to check throughout the algorithm whether our approximations
were sufficiently accurate and increase the accuracy if necessary.

Define an approximation α̂n of precision n ∈ N0 to an element α =
∑∞

i=m ai/t
i ∈

k((1/t)) to be α̂n =
∑n
i=m ai/t

i. Then |α − α̂n| < q−n. An approximation to α of
degree 0 is simply the principal part bαc of α. We used the method for extracting
cube roots as described in [9] and implemented by Mang in [10] to compute ap-
proximations ρ̂ and ω̂ of precision δ of the basis elements ρ and ω, respectively, at
the beginning of each unit or regulator computation. Here, δ = deg(∆) turned out
to be always sufficient. Examples show that reducing the value of δ to deg(∆)/2 or
even deg(∆)/4 often still produced correct results, but computation times improved
only marginally with smaller precision.

Since the polynomials and series approximations in our algorithm generally had
few zero coefficients, they were given in dense representation; that is, as a list start-
ing with the degree of the polynomial or the series, followed by the coefficients in
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order of decreasing degree of monomial. The main difficulty in our implementation
was the computation of the principal parts of quotients as required in steps 3 – 5 of
Algorithm 7.1. Here, an approximation ξ̂µ of ξµ = (m1ρ+m2ω)/d was represented
as a pair (αµ, d) where αµ = m1ρ̂δ+m2ω̂δ; similarly for ξν , ηµ, and ην . To compute
a quotient, bξµ/ξνc for example, we performed “division with remainder” on the
quantities αµ and αν = n1ρ̂δ + n2ω̂δ. It is easy to check whether this gives the
correct result:

Lemma 8.1. Let α, β ∈ k((1/t)), β 6= 0. Let α̂m be an approximation of α of
precision m and let β̂n be an approximation of β of precision n. If m ≥ − deg(β)
and n ≥ deg(α) − 2 deg(β), then bα/βc = bα̂m/β̂nc.

Now let M = m1 if |m1| ≥ |m2| and M = m2 otherwise, so

|M | = max{|m1|, |m2|}.
Similarly, set N = n1 if |n1| ≥ |n2| and N = n2 otherwise. Also, let m = δ +
deg(d) − deg(M) and n = δ + deg(d)− deg(N). Then

|ξµ − ξ̂µ| =
∣∣∣∣m1(ρ− ρ̂) +m2(ω − ω̂)

d

∣∣∣∣ < |M ||d| q−δ = q−m,

so ξ̂µ is an approximation of ξµ of precision m. Similarly, we obtain |ξν− ξ̂ν | < q−n.
Lemma 8.1 guarantees that bξµ/ξνc = bξ̂µ/ξ̂νc, provided

|ξν | ≥ q−m and
∣∣∣∣ξµξ2
ν

∣∣∣∣ ≤ qn.
A simple calculation shows that these conditions can be made independent of the
denominator d and are equivalent to

|αν | ≥
|M |
qδ

and
∣∣∣∣αµα2

ν

∣∣∣∣ ≤ qδ

|N | .(8.1)

Now let µi and νi be the values of µ and ν after the i-th iteration of step 3 (a) of
Algorithm 7.1. Then

ξµi
ξνi

=
(⌊

ξµi−1

ξνi−1

⌋
−
ξµi−1

ξνi−1

)−1

(i ∈ N),

so ξµi/ξνi is the i-th partial quotient of the continued fraction expansion of ξµ0/ξν0 .
Our computations indicate that these partial quotients satisfy a ”Gauss-Kuz′min
law for Puiseux series”; that is, they almost always have small degree, and frequently
the degree is 0. We never encountered a partial quotient whose degree exceeded
g − 1, where g is the genus of the field.

To simplify conditions (8.1), suppose that |αµ/αν | = |ξµ/ξν | = qs, where s ∈ N0

is small. Then (8.1) is equivalent to

|n1ρ+ n2ω| ≥ max{|M |, qs|N |}q−δ.(8.2)

Our computations show that the absolute values of the coefficients m1, m2, n1,
and n2 are almost always significantly smaller that the theoretical bound of |∆|3/2
obtained from the formulas in step 2 (c) of Algorithm 6.4 together with Theorem
7.6; in fact, their degrees were always less than g. Since |m1n2−m2n1| = |d2N(a)| =
|N(da)/d| < |∆|/|d| by Corollary 4.6, we expect that |M | and qs|N | are usually of
roughly the same size and not too large. This was once again confirmed by our
computations, which always yielded deg(M) = s + deg(N) < 2g = δ − 4. It is a
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simple matter to check in each iteration of step 3 (b) of the reduction algorithm
whether (8.2) holds, and we found that the inequality was always satisfied. Similar
inequalities can be derived and arguments made for the other quotients occurring
in Algorithm 7.1.

Note that it is possible to reduce the division with remainder of two truncated
series to a division of a truncated series by just a polynomial by using formulas
such as

ξµ
ξν

=
A−Bην

C
,

where

A = m1n
2
1H +m2n

2
2G, B = m1n2 −m2n1, C = n3

1H + n3
2G.

Then bξµ/ξνc = b(A−Bη̂ν)/Cc, with an approximation η̂ν of precision deg(B) to ην ,
provided |n1|, |n2| < |C|, which we always found to be the case. Similar formulas,
involving different values of A and C, but using the same B value, hold for the
other quotients. Note that N(da) = dB/sgn(dB), so B is independent of the basis
and need only be computed once per reduction. Furthermore, |B| < |∆|/|d| ≤ |∆|
by Corollary 4.6. We performed computations with both explicit division with
remainder and the above formulas, and the division with remainder version of the
algorithm turned out to be about 20 percent faster.

In step 5 of Algorithm 6.4, we approximate ζµ = 2m0/d+ ξµ by

ζ̂µ = (2m0 + αµ)/d.

Then the principal part bζµc of ζµ can be computed as simply b(2m0 − αµ)/dc.
This will always produce the correct polynomial, as

|ζµ − (2m0 + αµ)/d| ≤ max{|m1|, |m2|}/|d| · q−δ < 1,

since |d| ≥ 1 and at this point |m1|, |m2| < |
√

∆| by Theorem 7.6. Similarly for ζν .

9. Numerical examples

All our examples were done over prime fields k = Fp, where p is a prime with
p ≡ −1(mod 3), and used monic polynomials G and H . Among many examples,
we recomputed all of Mang’s examples of unit rank 1 in [10]. Not surprisingly, we
found that our regulator algorithm was significantly faster than our unit algorithm,
due to the time-consuming polynomial arithmetic involved in updating θn in step
2 (b) of each iteration of Algorithm 6.4.

The largest unit we computed was the fundamental unit ε of K = F17( 3
√
GH2)

where G = t + 4 and H = t4 + t3 + 11t2 + 5t + 12. Here ε = e0 + e1ρ + e2ω,
where deg(e0) = 1554, deg(e1) = 1551, and deg(e2) = 1552, so by Lemma 7.4,
|ε| = 171554, a number of 3109 decimal digits. The period of ε is 775. It took just
under 15 CPU minutes to compute ε.

For the examples given in Table 1, we randomly generated monic polynomials
G,H ∈ Fp[t] so that deg(GH2) ≡ 0(mod 3), G and H are both squarefree, and
gcd(G,H) = 1. Each row of the table specifies the prime p, the polynomials G and
H , the period l of the fundamental unit ε of K = Fp(t, 3

√
GH2), the regulator R of

K, and the CPU time required to compute R.
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Table 1. Regulator Computations

p G H l R Time

5 t+ 4 t7 + t6 + t5 + 4t4 +
2t3 + t2 + t+ 1

6387 6655 38.52 sec

5 t2 + t t5+4t4+t3+2t2+4 743 770 3.80 sec
5 t2 + 4t+ 2 t8 +t7 +3t5 +3t4 +

3t3 + 2t2 + t+ 2
57105 59501 8 min 13 sec

5 t3 + t2 + 4t+ 1 t3 + 2t2 + 3t+ 1 347 361 1.54 sec
5 t4 + 3t3 + t2 + 2 t+ 4 36 38 0.09 sec
5 t4+t3+2t2+3t+3 t4 + t2 + 2t+ 3 2834 2950 17.31 sec
5 t5 +t4 +3t3 +2t2 +

2t+ 4
t5+t4+4t3+4t2+3 251783 262322 37 min 9 sec

11 t+ 2 t4+7t3+9t2+9t+9 479 484 1.53 sec
11 t+ 4 t7+4t6+2t5+9t3+

t2 + 4t+ 10
189893 191487 22 min 58 sec

11 t2 + 9t+ 8 t2 + 5 21 22 0.05 sec
11 t3 + 4t2 + 7t+ 8 t3 + 2t2 + t+ 1 855 870 3.97 sec
11 t4 + 10t2 + 2t+ 6 t4+2t3+10t2+6t+

6
122619 123718 15 min 7 sec

11 t5 +2t4+8t3 +t2 +
t+ 2

t2 + 4t+ 8 61702 62204 8 min 45 sec

17 t+ 1 t4 + 15t3 + 16t2 +
16t+ 11

587 588 2.29 sec

17 t2 + 9t+ 15 t2 + 3t+ 3 45 46 0.11 sec
17 t3 + 9t2 + 12t+ 2 t3 + 5t2 + 3t+ 5 31987 32077 2 min 40 sec
17 t4 + 15t3 + 12t2 +

14t+ 6
t+ 3 892 894 3.38 sec

17 t5 + 3t4 + 13t3 +
15t2 + 7t+ 13

t2 + 6t+ 3 562601 564510 58 min 3 sec

23 t+ 3 t4 + 3t3 + 17t+ 13 1145 1146 4.20 sec
23 t2 + 22t+ 13 t2 + 17t+ 22 93 94 0.25 sec
23 t3 + 5t+ 2 t3 + 22t2 + 2t+ 2 102347 102553 8 min 42 sec
23 t4 + 22t3 + 16t2 +

4t+ 4
t+ 7 4251 4256 16.50 sec

23 t5 + 15t4 + 16t3 +
16t2 + 4t+ 16

t2 + 21t+ 10 744378 745808 1 h 21 min

29 t2 + 24t+ 14 t2 + 17t+ 13 298 299 0.77 sec
29 t3 +24t2 +12t+24 t3 + 16t2 + 10t+ 1 80008 80103 7 min 3 sec
29 t4+22t3+17t2+12 t+ 5 8508 8520 33.62 sec
29 t5 + 27t4 + 13t3 +

10t2 + 23t+ 3
t2 + 4t+ 17 1483564 1485310 2 h 44 min
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Table 1. (Continued)

p G H l R Time

41 t2 + 23t+ 26 t2 + 12t+ 4 291 292 0.77 sec
41 t4 + 15t3 + 4t2 +

37t+ 14
t+ 28 24238 24248 1 min 37 sec

41 t3 + 30t2 + 35t+ 9 t3 +29t2 +15t+38 961413 962005 1 h 25 min

71 t2 + 19t+ 63 t2 + 29t+ 66 550 551 1.50 sec
71 t4+9t3+9t2+3t+

20
t+ 56 41058 41064 2 min 49 sec

71 t3 + 30t2 + 37t+ 2 t3 +13t2 +66t+34 1408409 1408658 2 h 7 min

89 t2 + 8t+ 56 t2 + 22t+ 67 1317 1318 3.87 sec
89 t4 + 23t3 + 50t2 +

67t+ 35
t+ 79 116511 116520 8 min 1 sec

107 t2 + 58t+ 74 t2 + 54t+ 86 3862 3863 11.98 sec

197 t2 + 27t+ 125 t2 + 65t+ 158 6525 6526 20.20 sec

401 t2 + 51t+ 400 t2 + 71t+ 59 26925 26926 1 min 24 sec

797 t2 + 526t+ 353 t2 + 765t+ 687 70680 70681 3 min 42 sec

983 t2 + 15t+ 279 t2 + 740t+ 864 107574 107575 5 min 33 sec

We point out that for small genus and large field of constants, knowledge of the
regulator sometimes uniquely determines the divisor class number h of the field, or
at least narrows h down to only a few possible values. By (2.1), h is a multiple of
R. We also have the inequality (

√
q − 1)2g ≤ h ≤ (

√
q + 1)2g, already used in the

proof of Theorem 6.5. Usually, there are only a few multiples of R that fall within
these bounds. For example, the last five examples in Table 1 each permit only
three possible values for h. We plan to investigate the computation of a suitable
approximation of h by means of truncated Euler products in a forthcoming paper.
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