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UZAWA TYPE ALGORITHMS
FOR NONSYMMETRIC SADDLE POINT PROBLEMS

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND APOSTOL T. VASSILEV

Abstract. In this paper, we consider iterative algorithms of Uzawa type for
solving linear nonsymmetric saddle point problems. Specifically, we consider
systems, written as usual in block form, where the upper left block is an
invertible linear operator with positive definite symmetric part. Such saddle
point problems arise, for example, in certain finite element and finite difference
discretizations of Navier–Stokes equations, Oseen equations, and mixed finite
element discretization of second order convection-diffusion problems. We con-
sider two algorithms, each of which utilizes a preconditioner for the operator
in the upper left block. Convergence results for the algorithms are established
in appropriate norms. The convergence of one of the algorithms is shown as-
suming only that the preconditioner is spectrally equivalent to the inverse of
the symmetric part of the operator. The other algorithm is shown to converge
provided that the preconditioner is a sufficiently accurate approximation of
the inverse of the upper left block. Applications to the solution of steady-state
Navier–Stokes equations are discussed, and, finally, the results of numerical
experiments involving the algorithms are presented.

1. Introduction

This paper provides an analysis for Uzawa type methods applied to the solution
of linear nonsymmetric saddle point systems. Such systems arise in certain dis-
cretizations of Navier–Stokes equations and mixed discretizations of second order
elliptic problems with convective terms (cf. [9], [11], [14], [17]). The theory in this
paper is an extension of that for symmetric saddle point problems developed in [4].

Let H1 and H2 be finite dimensional Hilbert spaces with inner products which we
shall denote by (·, ·). There is no ambiguity even though we use the same notation
for the inner products on both of these spaces, since the particular inner product
will be identified by the type of functions appearing. We consider the system(

A BT

B 0

)(
X
Y

)
=
(
F
G

)
,(1.1)
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where F ∈ H1 and G ∈ H2 are given and X ∈ H1 and Y ∈ H2 are the unknowns.
Here A : H1 7→ H1 is assumed to be a linear, nonsymmetric operator. AT : H1 7→
H1 is the adjoint of A with respect to the (·, ·)–inner product. In addition, the
linear map B takes H1 into H2 and its adjoint, BT , takes H2 into H1.

In general, (1.1) may not be solvable unless additional conditions on the operators
A and B and the spaces H1 and H2 are imposed. Throughout this paper we assume
that A has a positive definite symmetric part. Under this assumption, (1.1) is
solvable if and only if the reduced problem

BA−1BTY = BA−1F −G(1.2)

is solvable. In the case of a symmetric and positive definite operator A, the
Ladyzhenskaya–Babuška–Brezzi (LBB) condition (cf. [5]) is a necessary and suf-
ficient condition for solvability of this problem. As we shall see, the solvability
of (1.1) in the nonsymmetric case is guaranteed provided that the LBB condition
holds for the symmetric part of A.

The papers [7], [15] propose solving BA−1BT by a preconditioned iteration.
One common problem with these approaches is that the evaluation of the action of
the operator A−1 is required in each step of the iteration. For many applications,
this operation is expensive and is also implemented as an iteration. The Uzawa
method [1] is a particular implementation of a linear iterative method for solving
(1.2). It is an exact algorithm in the sense that the action of A−1 is required for
the implementation. An alternative method which solves (1.1) by preconditioned
iteration was proposed in [8]. Their preconditioner also requires the evaluation of
A−1 at each step of the iteration.

The Uzawa type methods studied here replace the exact inverse of A by an
“approximate” evaluation of A−1 or a preconditioner for its symmetric part. Such
algorithms are defined in Sections 3 and 4. In this paper we distinguish two types of
algorithms: (i) a linear one-step method, where the action of the inverse is replaced
by a linear preconditioner such as one sweep of a multigrid procedure; (ii) a mul-
tistep method, where a sufficiently accurate approximation to A−1 is provided by
some iterative method, e.g., preconditioned GMRES [16] or preconditioned Lanczos
[12].

The Uzawa type algorithms applied to nonsymmetric problems are of interest
because they are simple, efficient, and have minimal computer memory require-
ments. They can be applied to the solution of difficult practical problems such as
the Navier–Stokes equation. In addition, an exact Uzawa algorithm implemented
as a double iteration can be easily modified to be an algorithm of the type studied
here.

The paper is organized as follows. In Section 2 we establish sufficient conditions
for solvability of the abstract saddle point problem and analyze an exact Uzawa
algorithm for solving it. In Section 3 we define and analyze a linear one-step
Uzawa type algorithm. Next, a multistep inexact method is defined and analyzed
in Section 4. Section 5 provides applications of the algorithms from Section 3 and
Section 4 to the solution of indefinite systems of linear equations arising in finite
element approximations of the steady-state Navier-Stokes equations. Finally, the
results of numerical computations involving the algorithms are given in Section 6.
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2. Analysis of the exact method

In this section we establish sufficient conditions for solvability of (1.2) and an-
alyze the exact Uzawa algorithm for the computation of its solution. The analysis
of this method and, in particular, the result of Theorem 2.2 below is important for
the analysis of the algorithms defined in the subsequent sections.

The symmetric part As of the operator A is defined by

As =
1
2

(A + AT ).(2.1)

In the remainder of this paper a subscript s will be used to denote the symmetric
part of various operators, defined as in (2.1). We assume that As is positive definite
and satisfies

(AX,Y ) ≤ α(AsX,X)1/2(AsY, Y )1/2, for all X,Y ∈ H1,(2.2)

for some number α. Clearly, α ≥ 1. Moreover, since As is positive definite, such an
α always exists. In many applications involving the numerical solution of partial
differential equations, the constant α can be chosen independently of the mesh
parameter.

In addition, the Ladyzhenskaya–Babuška–Brezzi condition is assumed to hold
for the pair of spaces H1 and H2, i.e.

sup
U∈H1

(V,BU)2

(AsU,U)
≥ c0‖V ‖2, for all V ∈ H2 ,(2.3)

for some positive number c0. Here ‖ · ‖ denotes the norm in the space H2 (or H1)
corresponding to the inner product (·, ·).

As is well known, the condition (2.3) is sufficient to guarantee solvability of (1.1)
when A is symmetric. We will see that it also suffices in the case of nonsymmetric
A. To this end, we prove the following lemma.

Lemma 2.1. Suppose that A is an invertible linear operator with positive definite
symmetric part As that satisfies (2.2). Then (A−1)s is positive definite and satisfies

((A−1)sW,W ) ≤ ((As)−1W,W ) ≤ α2((A−1)sW,W ), for all W ∈ H1.(2.4)

Proof. Clearly,

((As)−1W,W ) = sup
U∈H1

(W,U)2

(AsU,U)
= sup

U∈H1

((A−1)TW,AU)2

(AsU,U)

≤ α2 sup
U∈H1

‖(A−1)TW‖2As
‖U‖2As

‖U‖2As

= α2‖(A−1)TW‖2As

= α2((A−1)sW,W ).

(2.5)

Here ‖·‖2As
= (As·, ·). In the above inequalities we have used the Schwarz inequality,

(2.2), and the fact that

(AsU,U) = (AU,U), for all U ∈ H1.(2.6)

On the other hand,

((A−1)sU,U) = (A−1U,U) = (A1/2
s A−1U, (As)−1/2U)

≤ ‖A−1U‖As‖U‖(As)−1 = (A−1U,U)1/2‖U‖(As)−1 .
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Therefore,

((A−1)sU,U) ≤ ((As)−1U,U).(2.7)

This completes the proof of the lemma.

It is now clear that Lemma 2.1 and (2.3) guarantee solvability of (1.2). Indeed,

(BA−1BTV, V ) = ((A−1)sBTV,BTV )

≥ α−2((As)−1BTV,BTV ) ≥ α−2c0‖V ‖2.

Thus, we have proved the following theorem.

Theorem 2.1. Suppose that the linear operator A is invertible and that (2.3)
holds. Then the reduced problem (1.2), or equivalently (1.1), is solvable.

Next, we turn to the analysis of the exact Uzawa algorithm applied to the solution
of (1.2). The preconditioned variant of the exact Uzawa algorithm (cf. [1, 4]) is
defined as follows.

Algorithm 2.1 (Preconditioned exact Uzawa). For X0 ∈ H1 and Y0 ∈ H2 given,
the sequence {(Xi, Yi)} is defined, for i = 0, 1, 2, . . . , by

Xi+1 = Xi + A−1
(
F − (AXi + BTYi)

)
,

Yi+1 = Yi + τQ−1
B (BXi+1 −G).

Here the preconditioner QB : H2 7→ H2 is a symmetric positive definite linear
operator satisfying

γ(QBW,W ) ≤ (B(As)−1BTW,W )≤ (QBW,W ), for all W ∈ H2,(2.8)

for some γ in the interval (0, 1], and τ is a positive parameter. Notice that this
condition implies appropriate scaling of QB. In many applications effective precon-
ditioners that satisfy (2.8) with γ bounded away from zero are known.

Let

EXi = X −Xi(2.9a)

and

EYi = Y − Yi(2.9b)

be the iteration errors generated by the above method. Note that

EYi+1 = (I− τQ−1
B BA−1BT )EYi .

Therefore, the convergence of Algorithm 2.1 is governed by the properties of the
operator I− τQ−1

B BA−1BT summarized in the following theorem.

Theorem 2.2. Suppose that A is invertible with positive definite symmetric part
As which satisfies (2.2). Suppose also that (2.3) holds. In addition, let QB be a
symmetric and positive definite operator satisfying (2.8). If τ is a positive parameter
with τ ≤ γ

α2
, then

‖(I− τQ−1
B BA−1BT )U‖2QB

≤
(

1− γ

α2
τ
)
‖U‖2QB

, for all U ∈ H2.(2.10)
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Remark 2.1. If A = AT , then τ may be taken equal to one and (2.8) implies (cf.
[4]) that

‖(I−Q−1
B BA−1BT )U‖2QB

≤ (1− γ)2‖U‖2QB
.

Hence, Theorem 2.2 is not optimal in the limit when α→ 1.

Proof of Theorem 2.2. The proof is based on Lemma 2.1. Let L = BA−1BT .
Then, by (2.8) and Lemma 2.1,

γ‖V ‖2QB
≤ ((As)−1BTV,BTV )

≤ α2(LV, V ).
(2.11)

In addition,using (2.4),

(A−1v, w) = ((As)1/2A−1v, (As)−1/2w)

≤ (A−1v, v)1/2((As)−1w,w)1/2

≤ ((As)−1v, v)1/2((As)−1w,w)1/2.

(2.12)

Taking v = BTV and w = BTW above gives

(LV,W ) ≤ ‖V ‖QB‖W‖QB .(2.13)

Next,

‖(I− τQ−1
B L)V ‖2QB

= ‖V ‖2QB
− 2τ(LV, V ) + τ2(LV,Q−1

B LV ).(2.14)

By (2.12) and (2.11), the last term in the right hand side of (2.14) is estimated by

(LV,Q−1
B LV ) ≤ ‖V ‖QB‖Q−1

B LV ‖QB

= ‖V ‖QB (LV,Q−1
B LV )1/2.

(2.15)

Using (2.11) and (2.15) in (2.14) yields

‖(I− τQ−1
B L)V ‖2QB

≤
(

1− 2τγ
α2

+ τ2

)
‖V ‖2QB

.

This concludes the proof of the theorem.

3. Analysis of the linear one-step method

In this section we define and analyze a linear one-step Uzawa type algorithm
applied to (1.1). This section contains the main result of the paper. We show that,
under the minimal assumptions needed to guarantee solvability (cf. Section 2),
appropriately scaled linear preconditioners (cf. (2.8) and (3.1) below) lead to an
efficient and simple method for solving (1.1).

The exact inverse of A is replaced by a preconditioner for the symmetric part
of A. Let A0 : H1 7→ H1 be a linear, symmetric, positive definite operator that
satisfies

(A0V, V ) ≤ (AsV, V ) ≤ β(A0V, V ), for all V ∈ H1,(3.1)

for some β ≥ 1.

Remark 3.1. The inequalities (2.8) and (3.1) respectively imply scaling of QB and
A0. In practice, the proper scaling these operators can be achieved using even
crude estimates for the largest eigenvalues of Ã−1

0 As and Q̃−1
B B(As)−1BT , where

Ã0 and Q̃B are unscaled preconditioners. Usually, a few iterations of the power
method are enough for obtaining such estimates.
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The linear Uzawa type algorithm is defined as follows.

Algorithm 3.1 (Linear one-step method). For X0 ∈ H1 and Y0 ∈ H2 given, the
sequence {(Xi, Yi)} is defined, for i = 0, 1, 2, . . . , by

Xi+1 = Xi + δA−1
0

(
F − (AXi + BTYi)

)
,

Yi+1 = Yi + τQ−1
B (BXi+1 −G).

Here δ and τ are positive parameters.
We will assume that δ < 1/β. It then follows from (3.1) that A0−δAs is positive

definite. The following theorem is the main result of this paper.

Theorem 3.1. Suppose that A has a positive definite symmetric part, As, satisfy-
ing (2.2). Suppose also that QB and A0 are symmetric positive definite operators
satisfying (2.8) and (3.1). Then Algorithm 3.1 converges if 0 < δ ≤ (3α2β2)−1

and 0 < τ ≤ (4β)−1. Moreover, if (X,Y ) is the solution of (1.1) and (Xi, Yi) is
the approximation defined by Algorithm 3.1, then the iteration errors EXi and EYi
defined in (2.9) satisfy

{δ−1‖EXi ‖2A0−δAs
+ τ−1‖EYi ‖2QB

}1/2 ≤ ρ̄i
{
δ−1‖EX0 ‖2A0−δAs

+ τ−1‖EY0 ‖2QB

}1/2

(3.2)

for any i ≥ 1. Here

ρ̄ =
δ/2− δτγ +

√
(δ/2− δτγ)2 + 4(1− δ/2)

2
.

Remark 3.2. Convergence of Algorithm 3.1 follows from (3.2). Indeed, a simple
algebraic manipulation using the fact that τγ ≤ 1/4 gives

ρ̄ ≡ δ/2− δτγ +
√

(δ/2− δτγ)2 + 4(1− δ/2)
2

< 1− δτγ

2
.

The quantity on the right hand side is clearly less than one.

Remark 3.3. The use of a symmetric preconditioner in Algorithm 3.1 results in a
fundamental change in the convergence properties. For example, if we take τ = γ

α2

in Algorithm 2.1, then Theorem 2.2 gives the reduction of 1−γ2/α4. In contrast, if
we set δ = (3α2β2)−1 and τ = (4β)−1, then Theorem 3.1 gives a convergence rate
which is bounded by

1− γ

24α2β3
.

This behaves significantly better in applications involving large α.

In order to analyze Algorithm 3.1 we reformulate it in terms of the iteration
errors defined in (2.9). It is easy to see that EXi and EYi satisfy the following
equations:

EXi+1 = EXi − δA−1
0

(
AEXi + BTEYi )

)
,

EYi+1 =
(
I− δτQ−1

B BA−1
0 BT

)
EYi + τQ−1

B B(I− δA−1
0 A)EXi .

For convenience, these equations can be written in matrix form as(
EXi+1

EYi+1

)
=

 (I− δA−1
0 A) −δA−1

0 BT

τQ−1
B B(I− δA−1

0 A) (I− τδQ−1
B BA−1

0 BT )

(EXi
EYi

)
.(3.3)
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Straightforward manipulations of (3.3) give

NEi+1 =MEi,(3.4)

where

Ei =
(
EXi
EYi

)
,

N =
(
δ−1(A0 − δAT ) 0

0 τ−1QB

)
,

and

M =

δ−1(A0 − δAT )A−1
0 (A0 − δA) −(A0 − δAT )A−1

0 BT

BA−1
0 (A0 − δA) (τ−1QB − δBA−1

0 BT )

 .

It is clear that we can study the convergence of Algorithm 3.1 by investigating
the properties of the linear operators M and N . We shall reduce this problem to
estimation of the spectral radius of related symmetric operators.

Let M1 be the symmetric matrix defined by

M1 = JM,

where

J =
(
−I 0
0 I

)
.

Our next lemma reduces the proof of the theorem to the estimation of the eigen-
values of the generalized eigenvalue problem

λNsψ =M1ψ.(3.5)

Since δ is less than 1/β, Ns is positive definite and the above problem is well defined.
Because Ns and M1 are symmetric, the eigenvalues λ are real.

Lemma 3.1. The iteration error Ei satisfies

(NsEi+1, Ei+1)1/2 ≤ ρ̄(NsEi, Ei)1/2,

where ρ̄ = maxi |λi|, with {λi} the eigenvalues of (3.5).

Proof. Let {(λi, ψi)} be the eigenpairs for (3.5). Since Ns is positive definite, {ψi}
spans the space H1 ×H2. We may choose the eigenvectors so that

(Nsψi, ψj) = δij ,

where δij denotes the Kronecker delta. Now any vectors v and w in H1 ×H2 can
be represented as v =

∑
i

viψi and w =
∑
i

wiψi. Thus,

(M1v,w) =
∑
ij

viwj(M1ψi, ψj) =
∑
i

viwiλi

≤ ρ̄
(∑

i

v2
i

)1/2(∑
i

w2
i

)1/2

= ρ̄‖v‖Ns‖w‖Ns .

(3.6)
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Since J 2 is the identity operator we have that M = JM1. Therefore, using (3.4)
we see that

(NsEi+1, Ei+1) = (MEi, Ei+1) = (M1Ei,JEi+1)

≤ ρ̄‖Ei‖Ns‖JEi+1‖Ns = ρ̄‖Ei‖Ns‖Ei+1‖Ns .
The lemma immediately follows.

Our proof of Theorem 3.1 will require another lemma. We need to provide some
control on the convergence of the related linear iteration

Ui+1 = Ui + δA−1
0 (W −AUi)(3.7)

to the solution U of

AU = W.

Lemma 3.2. Let A0 satisfy (3.1) and δ be a positive number with δ < 1/β. Then

‖(I− δA−1
0 A)V ‖2A0

≤ δ̄ ((A0 − δAs)V, V ) , for all V ∈ H1,(3.8)

where

δ̄ = 1− δ +
α2β2δ2

1− δβ .

Remark 3.4. If, in addition

δ <
1

α2β2 + β
,(3.9)

so that
α2β2δ

1− δβ < 1,

then δ̄ is less than one.

Proof of Lemma 3.2. By (3.1),

(1− δβ)(A0V, V ) ≤ ((A0 − δAs)V, V ), for all V ∈ H1.

Hence, by (2.2) and (3.1),

(AV,W ) ≤ α(AsV, V )1/2(AsW,W )1/2

≤ αβ

(1 − δβ)1/2
(A0V, V )1/2((A0 − δAs)W,W )1/2.

(3.10)

On the other hand,

‖(I− δA−1
0 A)V ‖2A0

= ‖V ‖2A0
− 2δ(AV, V ) + δ2(A−1

0 AV,AV )

= ((A0 − δAs)V, V )− δ(AV, V ) + δ2(A−1
0 AV,AV ).

(3.11)

In view of (3.1), we have

(AV, V ) ≥ (A0V, V ) ≥ ((A0 − δAs)V, V ).(3.12)

Also, (3.10) implies that

(A−1
0 AV,AV ) ≤ αβ

(1− δβ)1/2
(A−1

0 AV,AV )1/2((A0 − δAs)V, V )1/2.
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Thus,

(A−1
0 AV,AV ) ≤ α2β2

1− δβ ((A0 − δAs)V, V ).(3.13)

Using (3.12) and (3.13) in (3.11) yields (3.8).

Proof of Theorem 3.1. Let δ and τ satisfy the hypotheses of the theorem. Because
of Lemma 3.1 it suffices to bound the eigenvalues of (3.5). We begin with the
negative eigenvalues. Let (χ, ξ) be an eigenvector in H1 × H2 with eigenvalue
λ < 0. Then multiplying the first equation of (3.5) by A0(A0 − δAT )−1 gives

λδ−1A0(A0 − δAT )−1(A0 − δAs)χ = −δ−1(A0 − δA)χ+ BT ξ.(3.14)

The second equation of (3.5) is

λτ−1QBξ = BA−1
0 (A0 − δA)χ+ (τ−1QB − δBA−1

0 BT )ξ.(3.15)

Applying δBA−1
0 to (3.14) and adding it to (3.15), we obtain

(1− λ)τ−1QBξ = λB(A0 − δAT )−1(A0 − δAs)χ.(3.16)

Eliminating ξ between (3.14) and (3.16), we find that

− 1
λ

(A0 − δA)χ+
δτ

1− λBTQB
−1B(A0 − δAT )−1(A0 − δAs)χ

= A0(A0 − δAT )−1(A0 − δAs)χ.

Taking the inner product with (A0 − δAT )−1(A0 − δAs)χ yields

− 1
λ

((A0 − δAs)χ, χ) +
δτ

1− λ‖B(A0 − δAT )−1(A0 − δAs)χ‖2Q−1
B

= ‖(A0 − δAT )−1(A0 − δAs)χ‖2A0
.

(3.17)

For convenience, the last equation can be abbreviated as

T1 + T2 = T3.

In order to bound T2 we note that for any φ ∈ H1,

(Q−1
B Bφ,Bφ) = sup

ζ∈H2

(φ,BT ζ)2

(QBζ, ζ)
= sup

ζ∈H2

((As)1/2φ, (As)−1/2BT ζ)2

(QBζ, ζ)

≤ sup
ζ∈H2

(Asφ, φ)(B(As)−1BT ζ, ζ)
(QBζ, ζ)

≤ (Asφ, φ).

(3.18)

For the last inequality above we used (2.8). Therefore,

T2 ≤
δτ

1− λ‖(A0 − δAT )−1(A0 − δAs)χ‖2As
≤ βδτ

1− λT3.

Using this in (3.17) gives(
1− δτβ

1− λ

)
T3 ≤ −

1
λ

((A0 − δAs)χ, χ).(3.19)

By Lemma 3.2, for any φ ∈ H1, we have(
(A0 − δAT )A−1

0 (A0 − δA)φ, φ
)
≤ δ̄((A0 − δAs)φ, φ),(3.20)



676 J. H. BRAMBLE, J. E. PASCIAK, AND A. T. VASSILEV

which is equivalent to

((A0 − δAs)−1φ, φ) ≤ δ̄((A0 − δA)−1A0(A0 − δAT )−1φ, φ)(3.21)

for any φ ∈ H1. Taking φ = (A0 − δAs)χ in (3.21), we obtain

T3 ≥
1
δ̄

((A0 − δAs)χ, χ).

Combining this with (3.19) and using the fact that λ < 0 gives

− 1
λ

((A0 − δAs)χ, χ) ≥ 1
δ̄

(
1− δτβ

1− λ

)
((A0 − δAs)χ, χ)

≥ 1− δτβ
δ̄

((A0 − δAs)χ, χ).
(3.22)

Now if χ were equal to zero then (3.14) would imply that BT ξ = 0, but (3.15),
in turn, would imply that ξ = 0. Hence, since (χ, ξ) is an eigenvector, χ 6= 0 and
therefore ((A0 − δAs)χ, χ) 6= 0. Thus, from (3.22),

−λ ≤ δ̄

1− δτβ .(3.23)

Applying straightforward manipulations, we get

δ̄ = 1− δ +
α2β2δ2

1− δβ ≤ 1− δ
(

1− 1/3
1− 1/3

)
= 1− δ

2
(3.24)

and
1

1− δτβ ≤
1

1− δ/4 .(3.25)

Using (3.24) and (3.25) in (3.23) gives

−λ ≤ 1− δ/2
1− δ/4 ≤ 1− δ

4
,(3.26)

which provides a bound for the negative part of the spectrum.
Next we obtain a bound for the positive eigenvalues of (3.5). To this end we

factorM1 as

M1 = DTM2D,
where

D =

(
θ−1/2(A0)−1/2(A0 − δA) 0

0 I

)
,

M2 =

 −δ−1θI θ1/2(A0)−1/2BT

θ1/2B(A0)−1/2 τ−1QB − δBA−1
0 BT

 ,

and θ = 1− δ/2. The largest eigenvalue of (3.5) is given by

Λ = sup
w∈H1×H2

(M1w,w)
(Nsw,w)

= sup
w∈H1×H2

(M2Dw,Dw)
(Nsw,w)

.

In order to obtain an upper bound for Λ, we first note that by (3.20) and (3.24) it
follows that

θ−1‖A−1/2
0 (A0 − δA)χ‖2 ≤ ((A0 − δAs)χ, χ),(3.27)
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and thus

θ−1δ−1‖A−1/2
0 (A0 − δA)χ‖2 + τ−1‖ξ‖2QB

≤
(
Ns
(
χ
ξ

)
,

(
χ
ξ

))
.(3.28)

Thus, it suffices to show that for any vector (φ, ζ) ∈ H1 ×H2,(
M2D

(
φ
ζ

)
,D
(
φ
ζ

))
≤ ρ̄

[
(δθ)−1‖A0

−1/2(A0 − δA)φ‖2 + τ−1‖ζ‖2QB

]
= ρ̄

((
δ−1I 0

0 τ−1QB

)
D
(
φ
ζ

)
,D
(
φ
ζ

))
.

(3.29)

Then ρ̄ will be an upper bound for Λ. To this end let L = B(A0)−1/2. Now M2

may be written as

M2 =
(
−δ−1θI θ1/2LT

θ1/2L τ−1QB − δLLT

)
.

The proof of (3.29) is now reduced to estimating the largest eigenvalue, λ, with
eigenvector (χ, ξ) satisfying

−θδ−1χ+ θ1/2LT ξ = λδ−1χ(3.30)

and

θ1/2Lχ+ (τ−1QB − δLLT )ξ = λτ−1QBξ.(3.31)

Solving for χ in (3.30), we get

χ = δ(λ+ θ)−1θ1/2LT ξ.

Substituting this in (3.31) yields

(1− λ)(λ + θ)QBξ = δτλLLT ξ.

Hence

(1 − λ)(λ+ θ)(QBξ, ξ) = δτλ(LT ξ,LT ξ).(3.32)

Now ξ cannot be zero, since if it were, then (3.30) would imply that either χ = 0
or λ = −θ ≤ 0. Hence, since λ is a positive eigenvalue, it follows that ξ 6= 0. In
addition, by (3.1) and (2.8),

(LT ξ,LT ξ) = (A−1
0 BT ξ,BT ξ) ≥ ((As)−1BT ξ,BT ξ)

≥ γ(QBξ, ξ).

Using this in (3.32) gives

(1 − λ)(λ + θ) ≥ δτλγ,
or equivalently

λ2 − λ(1− θ − δτγ)− θ ≤ 0.

From here we obtain that

λ ≤ 1− θ − δτγ +
√

((1− θ)− δτγ)2 + 4θ
2

=
δ/2− δτγ +

√
(δ/2− δτγ)2 + 4(1− δ/2)

2
.

(3.33)
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Finally, elementary inequalities imply that

1− δ

4
≤ δ/2− δτγ +

√
(δ/2− δτγ)2 + 4(1− δ/2)

2
,

which concludes the proof of the theorem.

4. Analysis of the multistep inexact algorithm

In this section we define and analyze an inexact Uzawa algorithm obtained by
replacing A−1 with a sufficiently accurate approximation. Such an algorithm is
essentially different from the linear one-step method developed in the previous sec-
tion for two main reasons. First, achieving a certain accuracy of the approximation
to A−1 typically requires more computational work than one evaluation of the ac-
tion of a preconditioner. Second, depending on the manner in which the accurate
approximate inverse is computed, the resulting inexact Uzawa algorithm may not
be linear. In view of this, we shall approach the analysis of this method differently.

The approximate inverse may be described as a map Ψ : H1 7→ H1, not neces-
sarily linear. In this section we shall assume that for any φ ∈ H1, Ψ(φ) is “close”
to the solution ξ of

Aξ = φ.(4.1)

More precisely, we assume that

‖Ψ(φ)−A−1φ‖As ≤ ε‖A−1φ‖As , for all φ ∈ H1,(4.2)

for some positive ε with ε < 1.
Notice that for any ε ∈ (0, 1), (4.2) can be satisfied by taking sufficiently many

steps of some iterative method for solving (4.1) which reduces the error in a norm
equivalent to ‖·‖As . For example, for an appropriate choice of the iteration param-
eter, the linear iteration (3.7) converges to the solution of the linear system (4.1)
(cf. Remark 3.4). Hence, an estimate of the type of (4.2) can be established for
any ε < 1, provided that sufficiently many iterations with (3.7) are performed.

Another example of Ψ results from a preconditioned generalized Lanczos pro-
cedure [12]. In this case the resulting Uzawa algorithm will be nonlinear. As an
example, we consider the generalized minimal residual algorithm (GMRES). Specif-
ically, let A0 satisfy (3.1) and consider the GMRES algorithm applied in the inner
product (·, ·)A0 ≡ (A0·, ·) to the preconditioned equation

A−1
0 Aξ = A−1

0 φ.

Using the initial iterate ξ0 = 0, we set Ψ(φ) = ξn, where ξn is the approximation
obtained after n steps. The GMRES method computes the best approximation to ξ
(in the norm ‖A−1

0 A·‖A0) in the Krylov spaceKn =span{(A−1
0 A)iξ, i = 1, . . . , n}.

Thus, it follows from Lemma 3.2 that

‖A−1
0 A(ξn − ξ)‖A0 ≤ ‖(I − δA−1

0 A)nA−1
0 Aξ‖A0 ≤ δ̄n/2‖A−1

0 Aξ‖A0 .

Applying Lemma 2.1 and (3.1) gives

‖A−1
0 A(ξn − ξ)‖A0 ≥ ‖ξn −A−1φ‖As .

Similarly,

‖A−1
0 Aξ‖A0 ≤ αβ1/2‖A−1φ‖As .
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Combining the above inequalities, we obtain

‖ξn −A−1φ‖As ≤ αβ1/2δ̄n/2‖A−1φ‖As .

This shows that, given ε, there exists n such that Ψ(φ) = ξn satisfies (4.2) provided
that (3.9) holds.

The variant of the inexact Uzawa algorithm which we investigate in this section
is defined as follows.

Algorithm 4.1 (Multistep inexact Uzawa). For X0 ∈ H1 and Y0 ∈ H2 given, the
sequence {(Xi, Yi)} is defined, for i = 0, 1, 2, . . . , by

Xi+1 = Xi + Ψ
(
F −

(
AXi + BTYi

))
,

Yi+1 = Yi + τQ−1
B (BXi+1 −G).

Algorithm 4.1 reduces to Algorithm 2.1 if Ψ(φ) = A−1φ for all φ ∈ H1.
The main result of this section is a bound for the rate of convergence of the

multistep algorithm in terms of the factors α, γ, and ε introduced in (2.2), (2.8),
and (4.2) respectively. The theorem below gives a sufficient condition on ε for
convergence of the algorithm.

Theorem 4.1. Suppose that A has a positive definite symmetric part and satisfies
(2.2), and QB is a symmetric positive definite operator satisfying (2.8). Assume
that (4.2) holds and that the parameter τ is chosen so that

0 < τ ≤ γ

α2
.

Set

θ =
(

1− τ γ
α2

)1/2

.

Then the multistep inexact Uzawa algorithm converges if

ε <
1− θ

1 + 2τ − θ .(4.3)

Moreover, if (X,Y ) is the solution of (1.1) and (Xi, Yi) is the approximation defined
by Algorithm 4.1, then the iteration errors EXi and EYi defined in (2.9) satisfy

ετ

1 + ε
‖EXi+1‖2As

+ ‖EYi+1‖2QB
≤ ρ2(i+1)

(
ετ

1 + ε
‖EX0 ‖2As

+ ‖EY0 ‖2QB

)
(4.4)

and

‖EXi+1‖2As
≤ τ−1(1 + ε)(1 + 2ε)ρ2i

(
ετ

1 + ε
‖EX0 ‖2As

+ ‖EY0 ‖2QB

)
,(4.5)

where

ρ =
(1 + τ)ε + θ +

√
((1 + τ)ε + θ)2 + 4ε(τ − θ)

2
< 1.(4.6)

Proof. We start by deriving norm inequalities involving the errors EXi and EYi .
Similarly to the approach in the previous section, we can write

EXi+1 = EXi −Ψ
(
AEXi + BTEYi

)
,

EYi+1 = EYi + τQ−1
B BEXi+1.

(4.7)
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The first equation above can be rewritten

EXi+1 = (A−1 −Ψ)
(
AEXi + BTEYi

)
−A−1BTEYi .(4.8)

It follows from the triangle inequality, (4.2), (2.4), and (2.8) that

‖EXi+1‖As ≤ ε(‖EXi ‖As + ‖A−1BTEYi ‖As) + ‖A−1BTEYi ‖As

= ε‖EXi ‖As + (1 + ε)‖BTEYi ‖(A−1)s

≤ ε‖EXi ‖As + (1 + ε)‖EYi ‖QB .

(4.9)

Using (4.8) in the second equation of (4.7) gives

EYi+1 = (I− τQ−1
B BA−1BT )EYi + τQ−1

B B(A−1 −Ψ)(AEXi + BTEYi ).

Applying the ‖·‖QB norm to both sides of the above equation and using the triangle
inequality yields

‖EYi+1‖QB ≤ ‖(I− τQ−1
B BA−1BT )EYi ‖QB

+ τ‖Q−1
B B(A−1 −Ψ)(AEXi + BTEYi )‖QB .

(4.10)

Since τ ≤ γ

α2
, by (2.10) we have

‖(I− τQ−1
B BA−1BT )EYi ‖QB ≤

(
1− τ γ

α2

)1/2

‖EYi ‖QB = θ‖EYi ‖QB .(4.11)

Because of (3.18), (4.2), the triangle inequality, and (2.8), the second term in
the right-hand side of (4.10) is bounded as follows:

‖Q−1
B B(A−1 −Ψ)(AEXi + BTEYi )‖QB ≤ ε(‖EXi ‖As + ‖EYi ‖QB ).(4.12)

Using (4.11) and (4.12) in (4.10) yields

‖EYi+1‖QB ≤ θ‖EYi ‖QB + ετ(‖EXi ‖As + ‖EYi ‖QB ).(4.13)

Combining (4.9) and (4.13) gives

‖EXi+1‖As ≤ ε‖EXi ‖As + (1 + ε)‖EYi ‖QB ,

‖EYi+1‖As ≤ ετ‖EXi ‖As + (θ + ετ)‖EYi ‖QB .
(4.14)

Let us adopt the notation (
x1

y1

)
≤
(
x2

y2

)
for vectors of nonnegative numbers x1, x2, y1, y2 if x1 ≤ x2 and y1 ≤ y2. Hence,
from (4.14) we obtain(

‖EXi+1‖As

‖EYi+1‖QB

)
≤
(
ε 1 + ε

ετ θ + ετ

)(
‖EXi ‖As

‖EYi ‖QB

)
.(4.15)

Repeated application of (4.15) gives(
‖EXi+1‖As

‖EYi+1‖QB

)
≤Mi+1

(
‖EX0 ‖As

‖EY0 ‖QB

)
,(4.16)

where M is given by

R =
(
ε 1 + ε
ετ θ + ετ

)
.
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We consider two dimensional Euclidean space with the inner product⌊(
x1

y1

)
,

(
x2

y2

)⌋
=

ετ

1 + ε
x1x2 + y1y2.

A trivial computation shows that R is symmetric with respect to the inner product.
It follows from (4.16) that

ετ

1 + ε
‖EXi+1‖2As

+ ‖EYi+1‖2QB
=

⌊(
‖EXi+1‖As

‖EYi+1‖QB

)
,

(
‖EXi+1‖As

‖EYi+1‖QB

)⌋

≤
⌊
Ri+1

(
‖EX0 ‖As

‖EY0 ‖QB

)
,Ri+1

(
‖EX0 ‖As

‖EY0 ‖QB

)⌋

≤ ρ2(i+1)

(
ετ

1 + ε
‖EX0 ‖2As

+ ‖EY0 ‖2QB

)
,

where ρ is the norm of the matrix R with respect to the b·, ·c-inner product. Since
R is symmetric in this inner product, its norm is equal to its spectral radius. The
eigenvalues of R are the roots of

λ2 − ((1 + τ)ε + θ) λ− ε(τ − θ) = 0.

It is elementary to see that the root with largest absolute value is that given by
(4.6). For any fixed positive τ and θ in the interval [0, 1], ρ is a function of ε only.
It is straightforward to check that ρ = 1 only if

ε =
1− θ

1 + 2τ − θ .

Moreover, ρ = θ if ε = 0. Thus, ρ < 1 for ε ∈ [0, 1−θ
1+2τ−θ ).

Finally, we prove (4.5). Multiplying both sides of the first inequality in (4.14)
by τ1/2 and using the fact that 0 < τ < 1, we obtain

τ1/2‖EXi+1‖As ≤ τ1/2ε‖EXi ‖As + τ1/2(1 + ε)‖EYi ‖QB

≤ τ1/2ε‖EXi ‖As + (1 + ε)‖EYi ‖QB .

We now apply the arithmetic-geometric mean inequality to the last inequality and
get that, for any positive η,

τ‖EXi+1‖2As
≤ (1 + η)τε2‖EXi ‖2As

+ (1 + η−1)(1 + ε)2‖EYi ‖2QB
.

Inequality (4.5) follows by taking η = 1 + 1/ε and applying (4.4). This completes
the proof of the theorem.

We conclude this section with the following remarks.

Remark 4.1. If we fix all parameters except ε, then provided that the assumptions
of the theorem are satisfied, ρ ∈ [0, 1). Moreover, ρ is a continuous function of ε
which is equal to θ at ε = 0, i.e., the theorem reproduces the result of Theorem 2.2
when ε = 0. We clearly can achieve any convergence rate between one and θ with
an appropriate choice of ε.

Remark 4.2. Theorem 4.1 is somewhat weaker than the result obtained in Section 3
for the linear case due to the threshold condition (4.3) on ε. As discussed above, it
is possible to take sufficiently many iterations n, so that (4.3) holds for any fixed γ,
α, and τ . In applications involving discretizations of partial differential equations,
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β or α may depend on the discretization parameter h. If, however, these param-
eters can be bounded independently of h, then a fixed number of preconditioned
GMRES iterations (independent of h) are sufficient to guarantee convergence of
Algorithm 4.1.

5. Application to Navier-Stokes problems

In this section we consider an application of the algorithms developed in the
previous sections to the problem of solving indefinite systems of linear equations
arising from finite element approximations of the steady-state Navier-Stokes equa-
tions. We consider the following model problem for the steady-state Navier-Stokes
equations:

−ν∆u + (u · ∇)u−∇p = f in Ω,(5.1a)

∇ · u = 0 in Ω,(5.1b)

u = 0 on ∂Ω,(5.1c) ∫
Ω

p dx = 0.(5.1d)

Here Ω is a the unit square in R2, u is a vector valued function representing the
fluid velocity, and ν is the kinematic viscosity of the flow. The fluid pressure p is
a scalar function. The pressure is determined only up to an additive constant, so
for uniqueness, we require (5.1d). Generalizations to more complex domains and
nonhomogenious boundary conditions are possible. For example, we shall consider
a problem with nonzero Dirichet boundary conditions in the next section.

Let Π be the set of functions in L2(Ω) with zero mean value on Ω and let H1(Ω)
denote the Sobolev space of order one on Ω ([6, 13]). The space H1

0 (Ω) consists
of those functions in H1(Ω) whose traces vanish on ∂Ω. Also, V = (H1

0 (Ω))2 will
denote the product space consisting of vector valued functions with each component
in H1

0 (Ω).
In order to derive the weak formulation of (5.1) we multiply the first two equa-

tions of (5.1) by functions in V and Π respectively and integrate over Ω to get

νD(u,v) + b(u,u,v) + (p,∇ · v) = (f ,v), for all v ∈ V,(5.2a)

(∇ · u, q) = 0, for all q ∈ Π.(5.2b)

Here (·, ·) is the L2(Ω) inner product and D(·, ·) denotes the Dirichlet form for
vector functions on Ω defined by

D(v,w) =
2∑
i=1

∫
Ω

∇vi · ∇wi dx.

The trilinear form b(·, ·, ·) for vector functions on Ω is given by

b(u,v,w) = ((u · ∇)v,w).

The existence of a solution to (5.2) has been shown (cf. [17], [9]). It is well known
that the Navier-Stokes equations may have more that one solution unless the data
(the kinematic viscosity and the external forces) satisfy very stringent requirements
(cf. [9], [17]). On the other hand, it has been shown that in many practical cases
these solutions are mostly isolated, i.e. there exists a neighborhood of ν and f in
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which each solution is unique. We refer the reader to [9] and [17] for additional
discussion.

We next define our finite element approximation subspaces. The discussion here
is very closely related to the examples given in [3] and [2], where additional com-
ments and other applications can be found. We partition Ω into 2n× 2n squares,
where n is a positive integer, and we define h = 1/2n. Let xi = ih and yj = jh
for i, j = 1, . . . , 2n. Each of the squares is further partitioned into two trian-
gles by its diagonal with positive slope. Let Sh be the space of functions that are
continuous and piecewise linear with respect to the triangulation just defined and
vanish on ∂Ω. We set Vh ≡ Sh × Sh ⊂ V. The space Π̃h of functions that are
piecewise constant with respect to the square elements and have zero mean value
on Ω together with Vh as defined above form an unstable pair of approximation
spaces. This means that the inequality

‖p‖ ≤ c0 sup
V ∈Vh

(∇ · V, p)
D(V, V )1/2

, for all p ∈ Π̃h,(5.3)

fails to hold. In fact, there is a function p ∈ Π̃h such that (∇ · V, p) = 0 for all
V ∈ Vh. Here (·, ·) denotes the inner product in L2(Ω) and ‖·‖ is the corresponding
norm. To get a divergence stable pair, we consider a smaller space defined as
follows. Let ηkl for k, l = 1, . . . , 2n be the function that is 1 on the square element
[xk−1, xk]×[yl−1, yl] and vanishes elsewhere. Define φij ∈ Π̃h for i, j = 1, . . . , n
by

φij = η2i−1,2j−1 − η2i,2j−1 − η2i−1,2j + η2i,2j

(see Figure 1). The space Πh is then defined by

Πh ≡
{
W ∈ Π̃h : (W,φij) = 0 for i, j = 1, . . . , n

}
.

Now (5.3), with Π̃h replaced by Πh, is satisfied with a constant c0 independent of
h [10]. Moreover, the exclusion of the functions φi,j does not change the order of
approximation, since Πh still contains the piecewise constant functions on squares
of size 2h.

Following Temam [17], we introduce a modification b̃(·, ·, ·) of the trilinear form
b(·, ·, ·), given by

b̃(u,v,w) = ((u · ∇)v,w) − ((u · ∇)w,v).

The approximation to the solution of (5.2) is defined by the pair (X,Y ) ∈ Vh×Πh

satisfying

νD(X,V ) + b̃(X,X, V ) + (Y,∇ · V ) = (f , V ), for all V ∈ Vh,(5.4a)

(∇ ·X,W ) = 0, for all W ∈ Πh.(5.4b)

Note that the use of b̃(·, ·, ·) above is justified by the observation that b̃(u, ·, ·) =
b(u, ·, ·) for functions u which are divergence free. The form of b̃(·, ·, ·) guarantees
the existence of a solution to (5.4) (cf. [17]). The uniqueness requires conditions
on the data ν and f .

To solve (5.4) we apply a Picard iteration of the following type (cf. [11]). Given
an initial approximation X0, we compute (X i, Y i), for i = 1, 2, ..., as the solution
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of the linear system

νD(X i, V ) + b̃(X i−1, X i, V ) + (Y i,∇ · V ) = (f , V ), for all V ∈ Vh,(5.5a)

(∇ ·X i,W ) = 0, for all W ∈ Πh.(5.5b)

It is shown in [11] that the algorithm converges under the assumption that

ν2c2a > cb‖f‖−1,

where ca and cb are the coercivity and boundedness constants of the trilinear form
b(·, ·, ·). Such an assumption is enough to guarantee a unique solution of (5.2).

The system (5.5) can be reformulated in the notation of the earlier sections. Set
H1 = Vh and H2 = Πh. Let

B : H1 7→ H2, (BU,W ) = (∇ · U,W ), for all U ∈ H1, W ∈ H2,

and

BT : H2 7→ H1, (BTW,V ) = (W,∇ · V ), for all V ∈ H1, W ∈ H2.

At each iterative step, X i−1 is fixed so that we can define

A : H1 7→ H1, (AU, V ) = νD(U, V ) + b̃(X i−1, U, V ), for all U, V ∈ H1.

It follows that the solution (X i, Y i) of (5.5) satisfies (1.1) with F equal to the
L2(Ω) projection of f onto H1 and G = 0. Notice also that

b̃(u,v,w) = −b̃(u,w,v).

Therefore,

As : H1 7→ H1, (AsU, V ) = νD(U, V ), for all U, V ∈ H1.(5.6)

It is possible to show that (2.2) holds for A and As with a constant α proportional
to ν−1 (cf. [17] and [9]). Moreover, it follows from (5.6) that (2.3) holds for As, B,
and BT as above with constant c0 independent of the mesh size h. This implies that
(2.8) is satisfied with QB = ν−1I and γ bounded away from zero independently of
h.

Figure 1. The square mesh used for H̃2; the support (shaded)
and values for a typical φij
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We still need to provide a preconditioner for As. Clearly, As consists of two
copies of the operator which results from a standard finite element discretization of
Dirichlet’s problem. There has been an intensive effort focused on the development
and analysis of preconditioners for such problems. For the examples in Section 6,
we will use a preconditioning operator which results from a V-cycle variational
multigrid algorithm. Such a preconditioner can be scaled so that (3.1) holds with
β independent of the mesh parameter h.

Remark 5.1. By rescaling p, one can rewrite (5.1a) in the form

−∆u +Re(u · ∇)u−∇p = Re f ,

where Re = ν−1 is the Reynolds number of the flow. This results in a different
scaling of the discrete problem (5.4) which is better suited for implementation on
finite precision machines. We use this scaling in our examples in the next section.

Remark 5.2. An alternative linearization of (5.4) can be defined by replacing
b̃(X,X, V ) with b̃(X i−1, X i−1, V ) which provides a different Picard iteration. We
will call this an explicit Picard iteration, because the nonlinear term is handled
in an explicit fashion. This leads to a symmetric saddle point problem at each
iteration. The inexact Uzawa methods analyzed in [4] can be used here. Even
though the symmetric linear systems are easier to solve, this linearization is a less
robust method for computing solutions to (5.4) than the implicit linearization de-
fined above, because the explicit Picard iteration breaks down for values of ν where
the implicit method converges. We shall provide a comparison of these two methods
in the next section.

6. Numerical examples

In this section we present the results from numerical computations that illustrate
the theory developed in the earlier sections. Our goals here are first to demonstrate
the efficiency and the robustness of the algorithm, and also to provide a comparison
between the implicit and the explicit Picard iteration applied to a Navier-Stokes
problem with known analytic solution. In addition, we show results from compu-
tations of a classical flow problem. The finite element discretization defined in the
previous section as well as the pressure rescaling according to Remark 5.1 are used
in both cases.

The first computations are for the solution of (5.4) when the velocity X is given
by

X =

(
x(1 − x)y(1− y)

x(1 − x)y(1− y)

)
,(6.1)

and the pressure Y is given by

Y = x− 1
2
.(6.2)

Obviously, ∇ · X 6= 0, so that the right-hand side of (5.4b) has to be adjusted
appropriately.

We first give some results which indicate the behavior of the linear iteration
method. Starting the implicit nonlinear iteration with zero initial guess, we report
the number of iterations needed to solve the nonsymmetric linear system on the
second nonlinear Picard iteration.
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Table 1. Linear iteration numbers on the second nonlinear
iteration for the implicit method.

h Re=1 Re=10 Re=100 Re=1000
1/8 39 50 590 37343
1/16 34 45 566 35964
1/32 30 41 527 35797
1/64 25 37 473 33827

In all of our examples, we use one V–cycle sweep of variational multigrid with
point Gauss-Seidel smoothing to define A−1

0 . This results in (3.1) being satisfied
with β independent of h. Thus, we can choose τ independent of h. The precondi-
tioner QB was taken to be the identity.

Table 1 gives the number of iterations of the linear one-step method for a 10−8

normalized reduction of the residual. The nonsymmetric term was relatively weak
for the case of Re = 1 and 10, so the discrete problem was dominated by its
symmetric part. Thus, we set δ = 1/β and τ = 1 consistent with the theory for
the symmetric problem (cf. [4]). Note that in Algorithm 3.1, A−1

0 always appears
multiplied by δ, so that using δ = 1/β with a preconditioner A0 satisfying (3.1) is
equivalent to using δ = 1 with the preconditioner Ã0 = βA0 satisfying

1
β

(Ã0V, V ) ≤ (AsV, V ) ≤ (Ã0V, V ),(6.3)

for all V ∈ H1. The unscaled multigrid preconditioner Ã0 automatically satisfies
(6.3).

As the value of Re increased further, the values of τ and δ had to be adjusted to
obtain stability of the iteration. The value τ = 0.1 was chosen. To obtain stability
in the case of Re = 100, we also needed to reduce δ to 0.1/β. Finally, for stability in
the case of Re = 1000, we needed to reduce δ to 0.001/β. This is in agreement with
the α−2 behavior required by the theory. The number of iterations was bounded
independently of the mesh parameter h, as suggested by the theory.

The value of δ clearly depends on the strength of the nonsymmetric term. This,
in turn, depends on the solution in nonlinear applications. For example, for the
driven cavity results given below, the case of h = 1/128 and Re = 1000 required
δ = 0.0001/β to remain stable, and diverged for δ = 0.001/β.

The next set of experiments illustrates the differences between the implicit and
explicit methods described in the previous section. Three conditions were common
in all experiments. First, at each Picard iteration, the corresponding linear problem
was solved exactly (i.e. the L2 norm of the normalized residual was reduced until
less than 10−8). Second, the nonlinear iteration was considered to have converged
when the L2 norm of the difference Ui − Ui−1 was less than 10−6. Here U consists
of both velocity and pressure components. Finally, the Picard iteration was started
with zero initial iterate. The numerical results from these experiments are shown
in Tables 2–4. In the case of Re = 1 and 10, the nonlinearity is small, and both
the explicit and implicit methods work well. In contrast, the explicit method fails
to converge for Re = 100 while the implicit method behaves quite well.

Our second numerical experiment is the calculation of the flow in a cavity. The
cavity domain Ω is the unit square and the flow is caused by a tangential velocity
field applied to one of the square sides in the absence of other body forces. Since
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Table 2. Errors and nonlinear iteration numbers for Re = 1
for the implicit and explicit methods.

h Error (p) Error (u1) Error (u2) Implicit Explicit
1/8 1.02e-2 7.87e-4 8.86e-3 4 4
1/16 2.50e-3 1.93e-4 5.41e-3 4 5
1/32 6.18e-4 4.81e-5 2.99e-3 4 5
1/64 1.93e-4 1.26e-5 1.57e-3 4 5

Table 3. Errors and nonlinear iteration numbers for Re = 10 for
the implicit and explicit methods.

h Error (p) Error (u1) Error (u2) Implicit Explicit
1/8 1.06e-2 7.87e-4 8.86e-3 5 6
1/16 2.60e-3 1.93e-4 5.41e-3 5 6
1/32 6.43e-4 4.81e-5 2.99e-3 5 6
1/64 1.65e-4 1.25e-5 1.57e-3 5 6

Table 4. Errors and nonlinear iteration numbers for Re = 100
for the implicit and explicit methods.

h Error (p) Error (u1) Error (u2) Implicit Explicit
1/8 3.15e-2 7.87e-4 8.85e-3 8 30
1/16 7.83e-3 1.93e-4 5.42e-3 8 88*
1/32 1.95e-3 4.80e-5 2.99e-3 8 **
1/64 4.89e-4 1.20e-5 1.57e-3 8 **

* – the algorithm converged to a different solution with correspond-
ing errors (p, u1, u2) 7.81e-3, 2.05e-4, 5.37e-3.

** – the algorithm could not converge to the solution.

all forces are independent of time, the flow in this case limits to a steady-state
which is modeled by (5.1) with corresponding changes in the boundary conditions
(5.1c). In particular, the solution u on the boundary is zero everywhere except on
the boundary segment y = 1, where u = (1, 0).

The corresponding discrete problem in the spaces H1 and H2 as defined in the
previous section is similar to (5.4) and is given by

D(X0, V ) +Re b̃(X,X0, V ) + (Y,∇ · V ) = Re (f , V )−D(X̂, V )−Re b̃(X, X̂, V ),

(∇ ·X0,W ) = 0,

for all V ∈ H1 and W ∈ H2. Here X = X0 + X̂, with X0 ∈ H1 and X̂ satisfying
the Dirichlet boundary conditions of u and vanishing at all interior vertex points
from the triangulation of Ω. Note that ∇ · X̂ = 0.

The implicit Picard iteration for this nonlinear problem is given as follows. Let
X̂ be as defined above. Then, given an initial iterate X0

0 , we compute (X i
0, Y

i), for
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Figure 2. Streamlines for h = 1/64, and Re = 1 (left); Re = 10 (right).

Figure 3. Streamlines for h = 1/64, Re = 100 (left); Re = 1000 (right).

i = 1, 2, ..., by

D(X i
0, V ) +Re b̃(X i−1, X i

0, V ) + (Y i,∇ · V )

= Re (f , V )−D(X̂, V )−Re b̃(X i−1, X̂, V ),

(∇ ·X i
0,W ) = 0,

and set X i = X i
0 + X̂.

The streamlines of the velocity field X computed using this algorithm for a range
of Reynolds numbers are shown in Figures 2 and 3. The effect of the Reynolds
number on the flow pattern is clearly seen. The flow for low Reynolds numbers
(see Figure 2) has only one vortex center, located above the center of the domain
(its location moves to the right as Re increases). As Re increases further, a second
vortex center appears near the lower right corner (see Figure 3, the case of Re =
100), and, for even larger Reynolds numbers, a third vortex center develops near
the lower left corner of the domain (see Figure 3, the case of Re = 1000).
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Again, the case of Re = 1000 was the most difficult problem, requiring a large
amount of work in the linear solver for each Picard iteration. The discretization
with h = 1/64 was sufficiently fine for resolving the essential flow behavior for all
Reynolds numbers tested. In contrast, the experimental results with h = 1/16 and
h = 1/32 for Re = 100 did not show the vortex center near the lower right corner
of the domain. The experiment with h = 1/128 and Re = 1000 resulted in a flow
field whose streamlines were very similar to the ones from h = 1/64.

In conclusion, the implicit algorithm is a simple, robust and efficient method for
solving Navier-Stokes equations for a wide range of Reynolds numbers. For each
nonlinear iteration it requires the solution of a nonsymmetric saddle point problem
which can be solved effectively with the inexact Uzawa algorithm 3.1.
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