SOME EXAMPLES RELATED TO THE $a b c-$ CONJECTURE FOR ALGEBRAIC NUMBER FIELDS

NIKLAS BROBERG

Abstract

We present a numerical method for finding extreme examples of identities related to the uniform $a b c$-conjecture for algebraic number fields.

1. Introduction

Let K be an algebraic number field and let V_{K} denote the set of primes on K, that is, $v \in V_{K}$ is an equivalence class of non-trivial norms on K (finite or infinite). Let $\|x\|_{v}=N_{K / \mathbb{Q}}(\mathfrak{p})^{-v_{\mathfrak{p}}(x)}$ if v is a prime defined by a prime ideal \mathfrak{p} of the ring of integers \mathfrak{O}_{K} in K and $v_{\mathfrak{p}}$ is the corresponding valuation. Let $\|x\|_{v}=|\varphi(x)|^{e}$ for all distinct (non-conjugate) embeddings $\varphi: K \rightarrow \mathbb{C}$, with $e=1$ if $\varphi(K) \subset \mathbb{R}$ and $e=2$ otherwise. We define the height of $(a, b, c) \in\left(K^{*}\right)^{3}$ to be

$$
H_{K}(a, b, c)=\prod_{v \in V_{K}} \max \left(\|a\|_{v},\|b\|_{v},\|c\|_{v}\right)
$$

and the conductor of (a, b, c) to be

$$
N_{K}(a, b, c)=\prod_{\mathfrak{p} \in I_{K}(a, b, c)} N_{K / \mathbb{Q}}(\mathfrak{p})
$$

where $I_{K}(a, b, c)$ is the set of all prime ideals \mathfrak{p} of \mathfrak{O}_{K} for which $\|a\|_{\mathfrak{p}},\|b\|_{\mathfrak{p}},\|c\|_{\mathfrak{p}}$ are not all equal. Let $\Delta_{K / \mathbb{Q}}$ denote the discriminant of K.

The uniform $a b c-$ conjecture. For every $\varepsilon>0$ there exists a constant C_{ε}, depending only on ε, such that

$$
H_{K}(a, b, c)<C_{\varepsilon}^{[K: \mathbb{Q}]}\left(\left|\Delta_{K / \mathbb{Q}}\right| N_{K}(a, b, c)\right)^{1+\varepsilon}
$$

for all $a, b, c \in K^{*}$ satisfying $a+b+c=0$.
Remark. In [4], $\Delta_{K / \mathbb{Q}}^{1+\varepsilon}$ is replaced by $\Delta_{K / \mathbb{Q}}^{A}$ for some constant A. The choice $A=$ $1+\varepsilon$ is suggested by a theorem in [1].

We define a real valued function on $K \backslash\{0,1\}$ by

$$
l_{K}(x)=\frac{\log H_{K}(x, 1-x, 1)}{\log \left|\Delta_{K / \mathbb{Q}}\right|+\log N_{K}(x, 1-x, 1)}
$$

The uniform $a b c$-conjecture is equivalent to the statement that $l_{K}(x)$ is bounded and its biggest limit point equals 1 . Examples of $x \in K \backslash\{0,1\}$ for which $l_{K}(x)$ is big may therefore be of interest. The definition of $l_{K}(x)$ suggests defining a function

[^0]on the algebraic numbers (excluding 0 and 1) by $l(x)=l_{\mathbb{Q}(x)}(x)$. It is not hard to show that the conjecture implies that $l(x)$ is bounded, and one could expect that the biggest limit point of $l(x)$ also equals 1 .

2. Examples

We are looking for algebraic numbers x for which $l_{K}(x)$ is large, that is, numbers x for which $H_{K}(x, 1-x, 1)$ is relatively large and $N_{K}(x, 1-x, 1)$ relatively small. One method is to approximate a number $\sqrt[n]{k}, k \in K$, by an element y in K and then hope that $l\left(k / y^{n}\right)$ is large. We will try to do so in a few norm-Euclidean quadratic fields.

Let $K=\mathbb{Q}(\sqrt{d})$, for a square free integer d. An integral basis for K over \mathbb{Q} is $\{1, \alpha\}$, where

$$
\alpha= \begin{cases}(1+\sqrt{d}) / 2 & \text { if } d \equiv 1(\bmod 4) \\ \sqrt{d} & \text { otherwise }\end{cases}
$$

Consider $\varphi: K \rightarrow \mathbb{R}^{2}$, where $\varphi(x+y \alpha)=(x, y)$, and define multiplication on \mathbb{R}^{2} by

$$
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)= \begin{cases}\left(x_{1} x_{2}+y_{1} y_{2} d, x_{1} y_{2}+y_{1} x_{2}\right) & \text { if } \alpha=\sqrt{d} \\ \left(x_{1} x_{2}+y_{1} y_{2} \frac{d-1}{4}, x_{1} y_{2}+y_{1} x_{2}+y_{1} y_{2}\right) & \text { if } \alpha=\frac{1+\sqrt{d}}{2}\end{cases}
$$

Then $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in K$ and $\varphi\left(\mathfrak{O}_{K}\right)=\mathbb{Z}^{2}$. We extend the norm from the image of K to \mathbb{R}^{2},

$$
N: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad N(a, b)=|(a+b \alpha)(a-b \alpha)|
$$

so $N(a, b)=\left|N_{K / \mathbb{Q}}(a+b \alpha)\right|$ for all $a, b \in \mathbb{Q}$. For any $x \in \mathbb{R}^{2}$ we define the subset T_{x} of \mathfrak{O}_{K} to be $\left\{r \in \mathfrak{O}_{K}: N(x-\varphi(r))<1\right\}$. Note that if T_{x} is non-empty for all $x \in \mathbb{R}^{2}$, then K is a norm-Euclidean domain. The following theorem from [3] gives a non-empty subset of T_{x} in some special cases:

Theorem. Let d be $2,3,6$, or 7 . For any $(x, y) \in \mathbb{R}^{2}$ let

$$
S_{(x, y)}=\{[x]+[y] \alpha+a+b \alpha: a=-1,0,1,2, b=0,1\} \subset \mathfrak{O}_{K}
$$

where $[a]$ denotes the largest integer less than a. Then $T_{(x, y)} \cap S_{(x, y)} \neq \emptyset$ for all $(x, y) \in \mathbb{R}^{2}$. For $d=-11,-7,-3,-2,-1$, the statement is true with

$$
S_{(x, y)}=\{[x]+[y] \alpha+a+b \alpha: a=0,1, b=0,1\} .
$$

Now select an element $a \in \varphi\left(\mathfrak{O}_{K}\right)$ such that the equation $x^{n}-a=0$ has a solution $x \in \mathbb{R}^{2} \backslash \varphi(K)$, where n is a positive integer. We want to expand x in a continued fraction p_{i} / q_{i}, where $p_{i}, q_{i} \in \varphi\left(\mathfrak{O}_{K}\right)$. Set $x_{0}=x$ and construct the sequences $\left\{x_{i}\right\} \subset \mathbb{R}^{2}$ and $\left\{a_{i}\right\} \subset \varphi\left(\mathfrak{O}_{K}\right)$ by

$$
x_{i+1}=\frac{(1,0)}{x_{i}-a_{i}}, \quad \text { where } \quad a_{i} \in \varphi\left(T_{x_{i}}\right)
$$

i.e. x_{i+1} is the inverse of $x_{i}-a_{i}$ with respect to the multiplication in \mathbb{R}^{2} defined above. To get uniqueness, one needs a rule for selecting a particular $a_{i} \in \varphi\left(T_{x_{i}}\right)$. To do this, choose an ordering of the $S_{x_{i}}$ of the theorem and let a_{i} be the first
element in $S_{x_{i}}$ satisfying $N\left(x_{i}-a_{i}\right) \leq N\left(x_{i}-a\right)$ for all $a \in S_{x_{i}}$. Let p_{i} / q_{i} be the continued fraction given by

$$
\begin{aligned}
p_{i} & =a_{i} p_{i-1}+p_{i-2}, & & p_{-1}=(1,0),
\end{aligned}
$$

Then one can check that

$$
x q_{i}-p_{i}=-\frac{x q_{i-1}-p_{i-1}}{x_{i+1}}=\frac{(-1,0)^{i}}{x_{1} x_{2} \cdots x_{i+1}}
$$

and, if we take the norm on both sides,

$$
N\left(x q_{i}-p_{i}\right)=\frac{1}{N\left(x_{1}\right) \cdots N\left(x_{i+1}\right)}=N\left(x_{0}-a_{0}\right) \cdots N\left(x_{i}-a_{i}\right)<1
$$

Note that $N\left(x-p_{i} / q_{i}\right) \rightarrow 0$ does not have to imply $\left|\varphi^{-1}(x)-\varphi^{-1}\left(p_{i} / q_{i}\right)\right| \rightarrow 0$, where $\varphi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{C}:(x, y) \mapsto x+y \alpha$ and $|\mid$ is the usual absolute-value on \mathbb{C}.

Now for some examples of identities $a+b=c$ for which $l(a / c)$ are large. The examples are computed using the method described above, for $n=2,3,4$ in the real cases and $n=2,3,4,5$ in the complex cases. We only searched among equations $x^{n}-a=0$ with $N(a) \leq 10000$. The rational examples are well known and are included here for completeness. There is a table of extremal (rational) $a b c$-examples to be found at URL: http://www.math.chalmers.se/~jub/abc.

References

[1] J. Browkin, The abc-conjecture, Preprint.
[2] J. Browkin and J. Brzeziński, Some remarks on the abc-conjecture, Math. Comp. 62 (1994), no. 206, 931-939. MR 94g:11021
[3] G. Cooke, A weakening of the euclidean property for integral domains and applications to algebraic number theory I, J. Reine Angew. Math. 282 (1976), 133-156. MR 53:10758
[4] A. Granville and H.M. Stark, Abc implies no "Siegel zeros", Preprint.
Dept. of Mathematics, Chalmers University of Technology, Göteborg University, SE-412 96 Göteborg, Sweden

E-mail address: nibro@math.chalmers.se

[^0]: Received by the editor September 28, 1998.
 1991 Mathematics Subject Classification. Primary 11D04, 11A55, 11 Y65.

