
MATHEMATICS OF COMPUTATION
Volume 70, Number 233, Pages 17–25
S 0025-5718(99)01180-1
Article electronically published on August 17, 1999

A TWO-GRID DISCRETIZATION SCHEME
FOR EIGENVALUE PROBLEMS

JINCHAO XU AND AIHUI ZHOU

Abstract. A two-grid discretization scheme is proposed for solving eigenvalue
problems, including both partial differential equations and integral equations.
With this new scheme, the solution of an eigenvalue problem on a fine grid
is reduced to the solution of an eigenvalue problem on a much coarser grid,
and the solution of a linear algebraic system on the fine grid and the resulting
solution still maintains an asymptotically optimal accuracy.

1. Introduction

The purpose of this paper is to present some discretization techniques based on
two finite element spaces for solving eigenvalue problems, including both partial
differential equations and integral equations.

The two-grid method used for discretization was first introduced by Xu [13, 15,
16] for nonsymmertic and nonlinear elliptic problems. Later on, it was further inves-
tigated by many other authors, for instance, Axelsson and Layton [2] for nonlinear
elliptic problems, Dawson and Wheeler [7] and Dawson, Wheeler and Woodward
[8] for finite difference scheme for parabolic equations, Layton and Lenferink [9] and
Utnes [12] for Navier-Stokes equations, Marion and Xu [11] for evolution equations,
and Xu and Zhou [17] for parallelization of two-grid discretizations.

In this paper we propose a two-grid discretization for eigenvalue problems. With
the new proposed scheme, for example, solving an elliptic eigenvalue problem will
not be much more difficult than the solution of some standard elliptic boundary
value problem. A similar scheme can also be applied to solve integral eigenvalue
problems. Our method is an iterative method, which is, in a way, related to that in
Lin [10]. The method in this paper, however, is based on two finite element spaces
with different scales.

The standard Galerkin approximation scheme for eigenvalue problems has been
extensively investigated, see e.g., Babuska and Osborn [3, 4], Chatelin [5], and
references cited therein, and some basic results in these papers are employed in our
discussions.
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Figure 1. Two grids

In the remainder of this section, we would like to give a simple example to
illustrate the main idea in this paper. Consider the following eigenvalue problem
posed on a convex polygonal domain Ω ⊂ R2:

−∆u = λu, in Ω,

u = 0, on ∂Ω.
(1.1)

Let SH(Ω) and Sh(Ω), satisfying SH(Ω) ⊂ Sh(Ω) ⊂ H1
0 (Ω), be two linear finite

element subspaces associated with a coarse grid TH(Ω) and the refined grid T h(Ω)
(see Figure 1), respectively. We can employ the following algorithm to approximate
the problem (1.1), say the first eigenvalue λ with its corresponding eigenvector u
and ‖∇u‖L2 = 1 (see Sections 4 and 5):

1. Solve an eigenvalue problem on a coarse grid: Find λH ∈ R1, uH ∈ SH(Ω)
such that ‖∇uH‖L2 = 1 and∫

Ω

∇uH · ∇v = λH

∫
Ω

uHv, ∀v ∈ SH(Ω).

2. Solve one single linear problem on a fine grid: Find uh ∈ Sh(Ω) such that∫
Ω

∇uh · ∇v = λH

∫
Ω

uHv, ∀v ∈ Sh(Ω).

3. Compute the Rayleigh quotient

λh =
‖∇uh‖2L2

‖uh‖2L2

.

If, for example, λH is the first eigenvalue of the problem at the first step, then we
can establish the following results (see Sections 4 and 5)

‖∇(u− uh)‖L2 = O(h+H2) and |λh − λ| = O(h2 + H4).

These estimates mean that we can obtain asymptotically optimal errors by taking
H = O(

√
h).



A TWO-GRID DISCRETIZATION SCHEME FOR EIGENVALUE PROBLEMS 19

2. Preliminaries

In this section, we shall describe some basic notation and properties of the stan-
dard finite element approximation.

Throughout this paper, we shall use the letter C (with or without subscripts)
to denote a generic positive constant which may stand for different values at its
different occurrences. For convenience, following [14], the symbols <∼, >∼ and =∼ will

be used in this paper. The expressions x1 <∼ y1, x2 >∼ y2 and x3 =∼ y3, mean that

x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3

that are independent of the mesh parameters (and the exact eigenvalues).
Suppose that (X, ‖ · ‖) is a real Hilbert space with inner product (·, ·) and norm

‖ · ‖. Let a(·, ·), b(·, ·) be two symmetric bilinear forms on X ×X satisfying

a(w, v) <∼ ‖w‖‖v‖, ∀w, v ∈ X,(2.1)

‖w‖2 <∼ a(w,w), ∀w ∈ X and 0 < b(w,w), ∀w ∈ X,w 6= 0.(2.2)

We note that ‖ · ‖a ≡ a(·, ·)1/2 and ‖ · ‖ are two equivalent norms on X . We assume
that the norm ‖ · ‖ is relatively compact with respect to the norm

‖w‖b ≡ b(w,w)1/2

in the sense that from any sequence which is bounded in ‖ · ‖, one can extract a
subsequence which is Cauchy with respect to ‖ · ‖b. In the rest of this paper, we
shall use a(·, ·) and ‖ · ‖a as the inner product and norm on X , and denote this
space by Xa. Set

Xb = the completion of Xa with respect to ‖ · ‖b.
Thus Xb is a Hilbert space with inner product b(·, ·) and is compactly imbedded
in Xa. Construct a “negative space” X−a = the dual of Xa with a norm ‖ · ‖−a
given by

‖w‖−a = sup
v∈Xa,‖v‖a=1

b(w, v).

Then Xb ⊂ X−a compactly, and for v ∈ Xa, b(w, v) has a continuous extension to
w ∈ X−a so that b(w, v) is continuous on X−a ×Xa.

We assume that Sh ⊂ Xa is a family of finite-dimensional spaces that satisfy the
following assumption: For any w ∈ Xa,

lim
h→0

inf
v∈Sh

‖w − v‖a = 0.(2.3)

Let Ph be the orthogonal projection of Xa onto Sh defined by

a(w − Phw, v) = 0, ∀w ∈ Xa, v ∈ Sh.
Clearly,

‖Phw‖a ≤ ‖w‖a, ∀w ∈ Xa.(2.4)

If w ∈ Xa, then, by (2.3)

‖w − Phw‖a = o(1), as h→ 0.(2.5)

Let ηa(h) be defined by

ηa(h) = sup
f∈Xa,‖f‖a=1

inf
v∈Sh

‖L−1f − v‖a,
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where L−1 : X−a −→ Xa satisfies

a(L−1f, v) = b(f, v), ∀f ∈ X−a, v ∈ Xa.

We have the following results (see Lemmas 3.3 and 3.4 in [3])

Lemma 2.1.

ηa(h) = o(1) as h→ 0,

and

‖w − Phw‖−a <∼ ηa(h)‖w − Phw‖a, ∀w ∈ Xa.(2.6)

3. A standard discretization

A number λ is called an eigenvalue of the form a(·, ·) relative to the form b(·, ·)
if there is a nonzero vector u ∈ Xa, called an associated eigenvector, satisfying

a(u, v) = λb(u, v), ∀v ∈ Xa.(3.1)

It is known that (3.1) has a countable sequence of real eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·
and corresponding eigenvectors

u1, u2, u3, · · · ,
which can be assumed to satisfy

a(ui, uj) = λjb(ui, uj) = δij .

In the sequence {λj}, the λj are repeated according to geometric multiplicity.
A standard finite element scheme for (3.1) is: Find a pair (λh, uh), where λh is

a number and 0 6= uh ∈ Sh, satisfying

a(uh, v) = λhb(uh, v), ∀v ∈ Sh,(3.2)

and use λh and uh as approximations to λ and u (as h→ 0), respectively. One sees
that (3.2) has a finite sequence of eigenvalues

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λnh,h, nh = dim Sh,

and corresponding eigenvectors

u1,h, u2,h, · · · , unh,h,
which can be assumed to satisfy

a(ui,h, uj,h) = λj,hb(ui,h, uj,h) = δij .

It follows directly from the minimum-maximum principle (see [4] or [5]) that

λi ≤ λi,h, i = 1, 2, · · · , nh.
Set

δh(λi) = sup
w∈M(λi)

inf
v∈Sh

‖w − v‖a

and

M(λi) = {w ∈ Xa : w is an eigenvector of (3.1) corresponding to λi, ‖w‖a = 1}.
The following results (see p. 699 of [4] and Lemma 3.7 and (3.29b) of [3], or cf. [5])
will be employed in the coming discussions.
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Proposition 3.1. (i) For any ui,h of (3.2) (i = 1, 2, · · · , nh), there is an eigen-
value ui of (3.1) corresponding to λi satisfying ‖ui‖a = 1 and

‖ui − ui,h‖a ≤ Ciδh(λi).(3.3)

Moreover,

‖ui − ui,h‖−a ≤ Ciηa(h)‖ui − ui,h‖a.(3.4)

(ii) For eigenvalues,

λi ≤ λi,h ≤ λi + Ciδ
2
h(λi).(3.5)

Here and hereafter Ci is some constant depending on i but not depending on the
mesh parameter h.

4. A two-grid discretization

In this section, we propose a two-grid discretization for the eigenvalue problem.
There is some superclose relationship between the Ritz-Galerkin projection of the
eigenvector and the finite element approximation to the eigenvector:

Proposition 4.1.

‖Phui − ui,h‖a <∼ λi,h − λi + λi‖ui − ui,h‖−a.(4.1)

Proof. From the identity

a(Phui − ui,h, v) = (λi − λi,h)b(ui,h, v) + λib(ui − ui,h, v), ∀v ∈ Sh,
we immediately obtain the result.

Our analysis is based on the following crucial (but straightforward) property of
eigenvalue and eigenvector approximation (see e.g. Lemma 3.1 of [3] or Lemma 9.1
of [4]).

Proposition 4.2. Let (λ, u) be an eigenvalue pair of (3.1). For any w ∈ Xa \{0},
a(w,w)
b(w,w)

− λ =
a(w − u,w − u)

b(w,w)
− λb(w − u,w − u)

b(w,w)
.(4.2)

Algorithm 4.1. 1. Find λi,H ∈ R1 and ui,H ∈ SH (i = 1, 2, · · · , nH) such that
‖ui,H‖a = 1 and

a(ui,H , v) = λi,Hb(ui,H , v), ∀v ∈ SH ;

2. Find ui,h ∈ Sh (i = 1, 2, · · · , nH) such that

a(ui,h, v) = λi,Hb(ui,H , v), ∀v ∈ Sh;

3. Set

λi,h =
a(ui,h, ui,h)
b(ui,h, ui,h)

, i = 1, 2, · · · , nH .

Theorem 4.3. Assume that (λi,h, ui,h) (i = 1, 2, · · · , nH) are obtained by Algo-
rithm 4.1. If SH ⊂ Sh, then

‖ui − ui,h‖a <∼ λi,H − λi + λi‖ui − ui,H‖−a + ‖ui − Phui‖a(4.3)

and

|λi,h − λi| ≤ Ci((λi,H − λi)2 + ‖ui − ui,H‖2−a + ‖ui − Phui‖2a).(4.4)
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Consequently,

‖ui − ui,h‖a ≤ Ci(δ2
H(λi) + ηa(H)δH(λi) + δh(λi))(4.5)

and

|λi,h − λi| ≤ Ci(δ4
H(λi) + η2

a(H)δ2
H(λi) + δ2

h(λi)).(4.6)

Proof. From the identity

a(Phui − ui,h, v) = (λi − λi,H)b(ui,H , v) + λib(ui − ui,H , v), ∀v ∈ Sh,
we immediately obtain (4.3). And (4.4) follows from (4.3) and Proposition 4.2.
Finally, the last two conclusions are obtained from Proposition 3.1.

5. Examples

The general two-grid discretization scheme presented in this paper can be applied
to a large class of eigenvalue problems. In this section, as an illustration, we give
two examples, one for a partial differential operator and another for an integral
operator. Let Ω ⊂ Rd (d = 1, 2, · · · ) be a bounded domain and T h(Ω), consisting
of shape-regular simplices, be a mesh of Ω of size h.

5.1. Second order elliptic operators. Let b(·, ·) = (·, ·) be the standard inner
product of L2(Ω), and let

a(u, v) =
∫

Ω

d∑
i,j=1

aij
∂u

∂xi

∂v

∂xj
,

satisfying aij ∈W 1,∞(Ω) and (aij) is uniformly positive definite on Ω.
Set Xa = H1

0 (Ω) and Xb = L2(Ω). Define Sh(Ω) to be a space of continuous
functions on Ω and vanishing at the boundary ∂Ω, such that for v ∈ Sh(Ω), v
restricted to each τ is a polynomial of total degree ≤ r, namely

Sh(Ω) = {v ∈ C(Ω̄) ∩H1
0 (Ω) : v |τ∈ P rτ , ∀τ ∈ T h(Ω)},(5.1)

where P rτ is the space of polynomials of degree not greater than a positive integer
r.

We assume that M(λi) ⊂ Hr+1(Ω). If Ω is polygonal and convex, then

ηa(h) = O(h), δh(λi) ≤ Cihr.(5.2)

Hence

‖ui − ui,h‖a ≤ Ci(Hr+1 + hr)(5.3)

and

|λi,h − λi| ≤ Ci(H2r+2 + h2r).(5.4)

If Ω has C1-smooth boundary, then better estimates can be obtained for Neu-
mann boundary value problems (using H1(Ω)/R1, boundary elements fitting ∂Ω
exactly and r > 1):

ηa(h) = O(h2), δh(λi) ≤ Cihr.(5.5)

Hence

‖ui − ui,h‖a ≤ Ci(Hmin{r+2,2r} + hr)(5.6)

and

|λi,h − λi| ≤ Ci(H2 min{r+2,2r} + h2r).(5.7)
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5.2. Fredholm integral operators. Let

(Kw)(x) =
∫

Ω

k(x, y)w(y)dy

be the symmetric and positive definite Fredholm integral operator on L2(Ω),
where k(x, y) ∈ Cr+1(Ω × Ω). Set a(·, ·) = (·, ·), the standard inner product of
L2(Ω), b(·, ·) = (K·, ·), Xa = L2(Ω) and Xb = the completion of Xa with respect to
‖ · ‖b.

Define Sh(Ω) to be a space of continuous functions on Ω such that for v ∈
Sh(Ω), v restricted to each τ is a polynomial of total degree ≤ r, namely

Sh(Ω) = {v ∈ C(Ω̄) : v |τ∈ P rτ , ∀τ ∈ T h(Ω)}.(5.8)

In this case, we have

ηa(h) = O(hr+1), δh(λi) ≤ Cihr+1,(5.9)

and hence

‖ui − ui,h‖a ≤ Ci(H2r+2 + hr+1)(5.10)

and

|λi,h − λi| ≤ Ci(H4r+4 + h2r+2).(5.11)

6. Nonselfadjoint problems

The approaches presented in the above can be applied to nonselfadjoint eigen-
value problems. We assume that b(·, ·) is symmetric but a(·, ·) may not be symmet-
ric; then the following property of eigenvalue and eigenvector approximation can
also be established for nonselfadjoint cases.

Proposition 6.1. Let (λ, u) be an eigenvalue pair of (3.1). For any w ∈ Xa \{0},
a(w,w)
b(w,w)

− λ =
a(w − u,w − u)

b(w,w)
− λb(w − u,w − u)

b(w,w)

+
a(w − u, u)− a(u,w − u)

b(w,w)
.

Note that, for instance,

| a(w − u, u)− a(u,w − u) |<∼ ‖w − u‖1−r

and ‖w − u‖1−r � ‖w − u‖1, when r > 1 and a(·, ·) is the bilinear form derived
from a general elliptic problem of second order.

Hence, in this case, our approach will work well. In fact, other techniques for
dealing with nonselfadjoint problems can also be employed, cf. [16].

7. Numerical experiments

For illustration, in this section, we report some simple numerical experiments
for a second order elliptic operator.

We consider the following eigenvalue problem:

−∆u = λu, in Ω,
u = 0, on ∂Ω,(7.1)
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Figure 2. A triangulation

where Ω ⊂ R2 is the unit square domain Ω = (0, 1) × (0, 1). The eigenvalues of
(7.1) are easily seen to be given by

λk,l = (k2 + l2)π2,

and are associated with the eigenvectors

uk,l = sin(kπ(x− 1)) sin(lπ(y − 1)), k, l = 1, 2, · · · .

Set a uniform triangulation T h(Ω) = {τ} (see Figure 2) and piecewise linear
finite element space as follows:

Sh(Ω) = {v ∈ H1
0 (Ω) : v |τ is linear, ∀τ ∈ T h(Ω)}.

Now we apply the algorithm to solve the problem (7.1) using the fine meshes of
sizes h = 2−j (j = 4, 6, 8, 10) and corresponding coarse meshes of size H =

√
h,

and apply the algorithm as described in the introduction.
If λH is the first eigenvalue of the problem, then by Theorem 4.3, we have

‖∇(uh − uh)‖L2 = O(H2) ≈ ch and |λh − λh| = O(H4) ≈ ch2,

where (λh, uh) is the standard first finite element eigenpair on T h.
The results shown in Table 1 are consistent with the above estimates.

Table 1. A two-grid algorithm for elliptic eigenvalue problems

h ‖∇(uh − uh)‖L2
‖∇(u4h − u4h)‖L2

‖∇(uh − uh)‖L2
|λh − λh|

|λ4h − λ4h|
|λh − λh|

2−4 0.7401E-01 0.1255E-01
2−6 0.2026E-01 3.6527 0.9028E-03 13.8980
2−8 0.5183E-02 3.9090 0.5997E-04 15.0572
2−10 0.1303E-02 3.9767 0.3811E-05 15.7322
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