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THE POSTAGE STAMP PROBLEM:
AN ALGORITHM TO DETERMINE THE h-RANGE

ON THE h-RANGE FORMULA
ON THE EXTREMAL BASIS PROBLEM FOR k = 4

SVEIN MOSSIGE

Abstract. Given an integral “stamp” basis Ak with 1 = a1 < a2 < . . . <
ak and a positive integer h, we define the h-range n(h, Ak) as

n(h, Ak) = max{N ∈ N | n ≤ N =⇒ n =
k∑
1

xiai,
k∑
1

xi ≤ h, n, xi ∈ N0}.

N0 = N ∪ {0}. For given h and k, the extremal basis A∗k has the largest
possible extremal h-range

n(h, k) = n(h, A∗k) = max
Ak

n(h, Ak).

We give an algorithm to determine the h-range. We prove some properties
of the h-range formula, and we conjecture its form for the extremal h-range.
We consider parameter bases Ak = Ak(h), where the basis elements ai are
given functions of h. For k = 4 we conjecture the extremal parameter bases
for h ≥ 11385.

1. Background

Given an integral basis Ak = {a1, a2, . . . , ak} with a1 = 1 < a2 < . . . < ak

and a positive integer h, we define the h-range n(h, Ak) as

n(h, Ak) = max{N ∈ N | n ≤ N =⇒ n =
k∑
1

xiai,

k∑
1

xi ≤ h, n, xi ∈ N0}.

N0 = N ∪ {0}. The integer n ∈ N has an h-representation by Ak if

n =
k∑
1

xiai |
k∑
1

xi ≤ h, xi ∈ N0.

We consider only bases Ak which are h-admissible, that is,

ak ≤ n(h, Ak).

For given h and k, the extremal basis A∗k has the largest possible extremal h-range

n(h, k) = n(h, A∗k) = max
Ak

n(h, Ak).

A popular interpretation arises if we consider the integers ai as stamp denomi-
nations and h as the “size of the envelope.” More information about the “postage
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stamp problem” can be found in E. S. Selmer’s comprehensive research monograph
[17]. Here we mainly use Selmer’s notation and presentation.

In the beginning, the main interest was centered around the global aspect, to
find an extremal basis A∗k with extremal h-range. The “local ” aspect is: Determine
n(h, Ak) when h, k and a particular basis Ak are given.

In the global case, a convenient approach is to keep k fixed and let h increase,
asking for asymptotic values of the extremal h-range n(h, k). We can also ask
for asymptotic values of “local” h-ranges n(h, Ak) = n(h, Ak(h)), when the basis
elements ai are given functions of h. We shall call such bases Ak(h) parameter
bases.

Let ϕ be the prefactor defined by

n(h, Ak(h)) = ϕ(
h

k
)k(1 + o(1)).(1)

Both the local and the global problems are trivial for k = 2, Stöhr [20]. The
extremal bases A∗3 were determined by Hofmeister [4], [5]. For k ≥ 4, our knowledge
is much more limited. The best known general upper bound is due to Rødseth [15]:

n(h, k) ≤ (k − 1)k−2

(k − 2)!
(
h

k
)k +O(hk−1).

For k = 4, the prefactor ϕ = 4.5 is far too large, and Kirfel [7] has the strongest
published result:

n(h, 4) ≤ 2.35
(

h

4

)4

+O(h3).

In [12] the author proved the lower bound

n(h, 4) ≥ 2.008
(

h

4

)4

+O(h3).

The proof consists in determining a parameter basis A4 = A4(h) whose h-range
equals the bound given. However (May 1991, unpublished), Kirfel and the author
have shown that the lower bound 2.008... (more decimals in (32)) is really sharp.
Hence, it is natural to investigate the local extremal parameter bases for k = 4.

For k = 5, Kolsdorf in [6] has given a parameter basis with asymptotic h-range
3.06(h/5)5.

It was shown by Kirfel [8] that the limit

ck = lim
h→∞

n(h, k)/(h/k)k(2)

really exists for all k ≥ 2. It is known that c2 = 1, c3 = 4/3, and c4 = 2.008....
Looking for the extremal bases, we consider parameter bases Ak(h) for which

n(h, Ak(h)) has order of magnitude hk.(3)

For the basis elements, this implies that ai(h) has order of magnitude hi−1, i =
2, 3, . . . , k.

Representations and gain. The regular representation of n by Ak,

n =
k∑
1

eiai,(4)
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satisfies the conditions

e1 + e2a2 + . . . + ejaj < aj+1, j = 1, 2, . . . , k − 1.(5)

A representation of n is minimal if the number of addends is the smallest possible
among all representations. For the elements ai ∈ Ak, i = 2, 3, . . . , k, we write

ai = γi−1ai−1 −
i−2∑
j=1

β
(i)
j aj ,(6)

where γi−1 = dai/ai−1e ≥ 2, and
∑i−2

j=1 β
(i)
j aj = γi−1ai−1 − ai is the regular

representation by Ai−2. As usual, dxe denotes the smallest integer ≥ x ∈ R.
Hofmeister [5] calls (6) the normal form of the basis Ak. Let n ∈ N have a regular
representation (4) by Ak, and let si ∈ Z, i = 2, 3, . . . , k. From (6) we get a new
representation n =

∑
zjaj by an (s2, s3, . . . , sk)-transfer :

n =
k∑

i=1

eiai +
k∑

i=2

si

γi−1ai−1 − ai −
i−2∑
j=1

β
(i)
j aj


=

k∑
j=1

ej − sj + sj+1γj −
k∑

i=j+2

siβ
(i)
j

 aj =
k∑

j=1

zjaj ,(7)

with s1 = sk+1 = γk = 0. We say that the transfer is possible if zj ≥ 0, j =
1, . . . , k.

The sum of the reductions in the coefficients is the gain G(s2, s3, . . . , sk) in the
transfer:

G(s2, s3, . . . , sk) =
k∑

j=1

(ej − zj).(8)

The usefulness of such transfers stems from the following result of Hofmeister [5]:
Every “legal” representation n =

∑
ziai (zi ≥ 0) can be obtained from the regular

representation by a suitable (s2, s3, . . . , sk)-transfer with all si ≥ 0. We also cite
another result of Hofmeister [5]: If a parameter basis Ak(h) satisfies (3) and is
expressed in normal form (6), then the si of any possible (s2, s3, . . . , sk)-transfer
are bounded as h →∞. See also Kirfel [7].

In 1963, Hofmeister [5], [3] gave formulas for the regular h-range of a basis. If
only regular h-representations are allowed, we get the regular h-range. He also
conjectured the formula for the extremal regular h-range, later proved by Mrose
[14].

Let
h0 = h0(Ak) = min{h ∈ N | ak ≤ n(h, Ak)}.

For all k and h ≥ h0 we trivially have

n(h + 1, Ak) ≥ n(h, Ak) + ak.(9)

Furthermore, Selmer [17] proved that, for arbitrary k and h ≥ h0,

n(h, Ak) ≥ (h + 1)ak−1 − ak(10)

implies

n(h + 1, Ak) = n(h, Ak) + ak.(11)
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If h is increased by 1, the right-hand side of (10) increases with ak−1, while the
left-hand side increases with at least ak. There is consequently an h1 (≥ h0) such
that (10) and hence (11) are satisfied for all h ≥ h1. This means that for given
h, h ≥ h1, we have

n(h, Ak) = n(h1, Ak) + (h− h1)ak.(12)

We see that for a basis Ak there may be different h-range formulas according to the
value of h, h0 ≤ h ≤ h1. From (12), the h-range formula is the same for all h ≥ h1.
In looking for bases with large h-range, we often have the same h-range formula for
all h ≥ h0.

Lemma 1. Let the basis Ak and the possible transfers T (i) = (s(i)
2 , s

(i)
3 , . . . , s

(i)
k ),

i = 1, 2, . . . , η, be given. Let

h2 = min{h|n(h, Ak) ≥ max
i
{s(i)

k }ak}.

Then for h ≥ h2

n(h, Ak) = n(h2, Ak) + (h− h2)ak.

Proof. The minimal representation of a positive integer is independent of the value
of h. For h ≥ h2 we can use all the transfers. From above we know that for h ≥ h1

the h-range is determined by (12) and we have h1 ≤ h2. Note that only the transfers
actually used determine h2.

2. The h-range algorithm

In the literature we find more or less general h-range algorithms by Lunnon [9],
Riddell and Chan [16], Mossige [10], and Challis [2].

Let the basis A4 and the possible transfers be given. For each integer n ∈
[1, n(h, A4)] given in a regular representation

∑
ejaj , we use the possible transfer

with the largest gain to give the minimal representation of n,
∑

zjaj . It satisfies the
inequality

∑
ej−gain =

∑
zj ≤ h. The algorithm gives sufficient such inequalities

that express the conditions that all the integers n have an h-representation. The
least integer n with n+1 not having an h-representation is the h-range. For a given
basis, the algorithm determines h0 and from which h ≥ h0 the h-range formula is
the same. The result is valid for all h ≥ h0.

We give the algorithm for k = 4, but it may be generalized to k > 4.
Now, let the possible transfers T (i) = (s(i)

2 , s
(i)
3 , s

(i)
4 ), i = 1, . . . , η, for the basis

A4 be given. Then the minimal representation of an integer n > 0 is independent
of h.

The upper bounds for the ej’s are given such that the representation (4) is
regular. The conditions for the transfers to be possible give lower bounds for the
ej’s. The coefficients zj of (7) must be ≥ 0, giving lower bounds on the ej’s. The
gain (reduction of coefficient sum) must be positive.

We get the following values of the gain and the lower bounds for ej ’s:

Gi = s
(i)
2 (−γ1 + 1) + s

(i)
3 (β(3)

1 − γ2 + 1)(13)

+s
(i)
4 (β(4)

1 + β
(4)
2 − γ3 + 1) ≥ 1,
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e1 ≥ −s
(i)
2 γ1 + s

(i)
3 β

(3)
1 + s

(i)
4 β

(4)
1 = L

′
i,

e2 ≥ s
(i)
2 − s

(i)
3 γ2 + s

(i)
4 β

(4)
2 = M

′
i ,

e3 ≥ s
(i)
3 − s

(i)
4 γ3 = N

′
i ,

e4 ≥ s
(i)
4 = Qi.

(14)

We may, however, find L
′
i and/or M

′
i and/or N

′
i < 0, and operate instead with

lower bounds

e1 ≥ Li = max{0, L
′
i}, e2 ≥ Mi = max{0, M

′
i}, e3 ≥ Ni = max{0, N

′
i}.

There may be repetitions among the Li, Mi, Ni, or Qi. We sort them first without
repetitions:

0 = L0 < L1 < . . . < Lr1 < Lr1+1 = U1 + 1
0 = M0 < M1 < . . . < Mr2 < Mr2+1 = U2 + 1
0 = N0 < N1 < . . . < Nr3 < Nr3+1 = U3 + 1
0 = Q0 < Q1 < . . . < Qr4 < Qr4+1 = U4 + 1.

The numbers L0, Lr1+1, and so forth, are added. Here L0 = M0 = N0 = Q0 =
G0 = 0 corresponds to using the regular representation itself, hence no transfer.
The upper bounds for ej , say Uj , j = 1, 2, 3, are given such that the representation
(4) is regular. For e4 we note that the largest s

(i)
4 is < h, and we put U4 = h. Then

we sort all the gains Gi,

G(1) ≥ G(2) ≥ . . . ≥ G(η) > 0,

without registering possible equalities. This gives a sequence of quintuples

(G(i), L(i), M (i), N (i), Q(i)), i = 1, 2, . . . , η,

to which we add (0, 0, 0, 0, 0), corresponding to no transfer. Assume that p, q, r
and s are given such that

0 ≤ p ≤ r1, 0 ≤ q ≤ r2, 0 ≤ r ≤ r3, 0 ≤ s ≤ r4.(15)

Let e1, e2, e3 and e4 be given such that

Lp ≤ e1 ≤ Lp+1 − 1, Mq ≤ e2 ≤ Mq+1 − 1,(16)

Nr ≤ e3 ≤ Nr+1 − 1, Qs ≤ e4 ≤ Qs+1 − 1.(17)

We then scan the quintuples (G(i), L(i), M (i), N (i), Q(i)), i = 1, 2, . . . , η + 1, and
register the first time (largest gain) such that

L(i) < Lp+1, M (i) < Mq+1, N (i) < Nr+1, Q(i) < Qs+1.

The corresponding gain G(i) = Gpqrs is then the largest one which can be used in
the case (16), (17). We must always have

e1 + e2 + e3 + e4 −G(i) ≤ h.

In the “worst” case e1 = Lp+1 − 1, e2 = Mq+1 − 1, e3 = Nr+1 − 1, and the
corresponding integer n has the regular representation

n = Lp+1 − 1 + (Mq+1 − 1)a2 + (Nr+1 − 1)a3 + e
′
4a4,(18)

with

Lp+1 − 1 + Mq+1 − 1 + Nr+1 − 1 + e
′
4 −Gpqrs ≤ h.(19)
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If Qs+1 < U4 + 1, then e
′
4 = Qs+1 − 1, and we must have

Lp+1 − 1 + Mq+1 − 1 + Nr+1 − 1 + Qs+1 − 1−Gpqrs ≤ h.(20)

The inequality defines a lower bound for h. If Qs+1 = U4 + 1, then

e
′
4 = h− (Lp+1 − 1 + Mq+1 − 1 + Nr+1 − 1−Gpqrs)(21)

gives an upper bound for e
′
4.

Each subset with Qs+1 = U4 + 1 determines a value e
′
4 such that all values

n =
∑

ejaj satisfying (16), (17) have h-representations, and the value

n
′
= Lp+1 − 1 + (Mq+1 − 1)a2 + (Nr+1 − 1)a3 + (e

′
4 + 1)a4(22)

does not, but all other values

m
′
= e1 + e2a2 + e3a3 + (e

′
4 + 1)a4,

where e1, e2, e3 satisfy (16), (17), do. Let

m = min
pqr

{n′};(23)

then m has no h-representation, but all values less than m do, so the h-range
n(h, Ak) = m− 1.

If Qs+1 < U4 + 1, then e
′
4 = Qs+1 − 1 ≥ 0, and the inequality (20) defines a

lower bound for h. Then h0 is the minimal value of h that satisfies the inequalities
(20) in all the cases with e

′
4 = Qs+1 − 1 = 0. Let h3 be the minimal value of

h such that all the inequalities (20) are satisfied. Then for h ≥ h3 the h-range
n(h, A4) ≥ maxi{s(i)

4 }a4, with the index running over all used transfers. From
Lemma 1, the basis has the same h-range formula for all h ≥ h3. If h3 > h0 and
h0 ≤ h ≤ h3, then the h-range is m− 1, (23).

For given h ≥ h3, the upper bound on e
′
4 is

h−max(Lp+1 − 1 + Mq+1 − 1 + Nr+1 − 1−Gpqrs),(24)

where the maximum is taken over all the cases with Qs+1 = U4 + 1, see (21). One
may also use e

′
4 to determine the prefactor of the basis; see [12] and Selmer [19].

Let h ≥ h3. The integers n ∈ [0, ha4] given in regular representation with an
h-representation may be split into disjoint sets. For each set of integers we perform
the procedure above. Let N be the smallest one of the integers m − 1, (23) with
Qs+1 = U4 + 1. Since we have used the possible transfer with the largest gain for
each integer, N is the h-range of the basis.

The algorithm may be easily modified for a parameter basis A4(h) where γ,
β, G, L, M , N and U are either linear expressions in h of the form ch + d or
constants. This means that the comparisons may have to be done in two steps.
Let L1 = c1h + d1 and L2 = c2h + d2. Then if c1 6= c2 we are finished with one
comparison. If c1 = c2 we have to compare d1 with d2 also.

We have described a constructive procedure to determine the h-range of a given
explicit basis A4 or a parameter basis A4(h) with a given set of transfers.

In [12] the author used the algorithm for k = 4 to determine the h-range formulas
of the parameter basis that by optimization gave the asymptotic prefactor c4. Also
it contributes to the characterization of the h-range formulas.

The algorithm requires that all the subsets (16), (17) must be considered in turn.
A slightly different approach might reduce the number of subsets which need to be
considered.
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First, choose Qs ≤ e4 ≤ Qs+1 − 1. Now extract from the set of quintuples
(G(i), L(i), M (i), N (i), Q(i)) just those which satisfy Q(i) < Qs+1. We do not
need to consider other transfers, because they are not possible for these values
of e4. This set of quintuples defines new subdivisions for e3, and there will in
general be fewer subdivisions than before. Next, we choose one of these subdivisions
Nr ≤ e3 ≤ Nr+1 − 1, and repeat the process. Finally, when we have chosen
subdivisions for e4, e3, e2 and e1 we will have a set of quintuples that describes
precisely those transfers which are possible for the subset, and so we have only to
choose the one with highest gain.

Properties of the h-range formula. Since Hofmeister [5] gave explicit formulas
for the regular h-range of a basis, we assume that at least one transfer must be
applied.

Theorem 1. Let h, k ≥ 3, and let the admissible basis Ak be given in normal form
(6). Let

∑k
1 εiai = n(h, Ak), εi ∈ N ∪ {0}, be the regular representation of the

h-range. Let us assume ε1 < a2 − 2. Then

ε1 =
k∑

i=3

siβ
(i)
1 − s2γ1 − 2,

where (s2, . . . , sk) is one of the transfers used for Ak. For this transfer to be possible
for an integer with regular representation

∑
ejaj, it is at least necessary that

e1 ≥
k∑

i=3

siβ
(i)
1 − s2γ1.

Proof. Let n(h, Ak) = N . The integer N +1 has no h-representation. Consider the
integer N + 2 =

∑
εiai + 2. Since the basis is admissible, we have one coefficient

εj ≥ 1, j ∈ [2, k]. Then the integer

M = N + 2− aj = ε1 + 2 +
j−1∑
2

εiai + (εj − 1)aj +
k∑

j+1

εiai =
k∑
1

z
′
iai,

and the representation is regular with
∑k

1 z
′
i > h. M has an h-representation

M =
k∑
1

ziai with
k∑
1

zi ≤ h, since M ≤ N.

If (s2, . . . , sk) is the transfer between the two representations for M , we have at least
one sj > 0, j ∈ [2, k]. The h-representation of M can not be used for M − 1, since
N +1 = M −1+aj would then have an h-representation. Hence the representation
of M must have z1 = 0, and thus from (7) (with ej replaced by z

′
j)

0 = z
′
1 − 0 + s2γ1 −

k∑
3

siβ
(i)
1 = ε1 + 2 + s2γ1 −

k∑
3

siβ
(i)
1 .

From the h-range algorithm and Theorem 1 we have

Theorem 2. Let k = 4, h ≥ 3, and let the admissible basis A4 be given in normal
form (6) with γ2 ≥ 3, β

(4)
2 ≥ 1 and 2a2 > β

(3)
1 + β

(4)
1 > a2. Let the used transfers
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of the basis be T (j) = (s(j)
2 , s

(j)
3 , s

(j)
4 ), j = 1, . . . , η. Let the regular representation

of the h-range of the basis be

n = ε1 + ε2a2 + . . . + ε4a4.(25)

Then

ε1 =
{ ∑4

i=3 s
(j1)
i β

(i)
1 − s

(j1)
2 γ1 − 2,

γ1 − 2,

ε2 =


s
(j2)
4 β

(4)
2 − s

(j2)
3 γ2 + s2 − 1,

γ2 − β
(4)
2 − 2− δ,

γ2 − 1− δ,

ε3 =
{

s
(j3)
3 − s

(j3)
4 γ3 − 1,

γ3 − 1− δ,

ε4 = h−
3∑

i=1

εi + g,

where g is the gain of the possible transfer of n with the largest gain. For at most one
value of l ∈ {2, 3} we have εl = γl−1. Here δ = 0 or δ = 1, j1, j2, j3 ∈ {1, 2, . . . , η}.
Proof. From the h-range algorithm we have that the values of εl are given by either
the conditions for the transfers to be possible or the conditions for n to be in regular
representation, [12]. In the algorithm we may have p = r1, giving Lr1+1 = γ1 and,
from (23), ε1 = γ1 − 2. If p < r1 we find ε1 from the algorithm or Theorem 1. The
possible transfer of n with the largest gain and with the conditions on the ej such
that we can have ej ≤ εj, j = 1, 2, 3, gives the gain g ≥ 0. If no possible transfer
for n exists, then g = 0.

Conjecture 1. For k ≥ 3, there exist an hs ∈ N, a set of transfers T (j) =
(s(j)

2 , . . . , s
(j)
k ), j = 1, . . . , η, and a σ ∈ [1, η] such that for h > hs we have

the extremal parameter basis A∗k(h) given in normal form (6) uses the transfers
T (j), j = 1, . . . , η. If the regular representation of the h-range of the basis is

n = ε1 + ε2a2 + . . . + εkak,

then

ε1 =
k∑

i=3

s
(σ)
i β

(i)
1 − s

(σ)
2 γ1 − 2,

εl = γl − 2,

for l = 2, 3, . . . , k − 1, and

εk = h−
k−1∑
i=1

εi + g,

where g is the gain of the possible transfer of n with the largest gain.

Also from a numerical point of view the conjecture is quite interesting, to find a
upper bound for a given basis.

For k = 3, h > 22, the (0,1)-transfer with the condition e1 ≥ β
(3)
1 = β, see (7),

is the only transfer used for the A∗3 basis, Hofmeister [4]. But with ε1 = β − 2,
we cannot apply it on n(h, 3). Hence, the extremal h-range n(h, 3) is a minimal
regular h-representation. The extremal bases for k = 3 and h ≥ 6 have ε2 = γ2− 2.
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All the known extremal bases for k = 4 are determined numerically and have for
h ≥ 43 and 23 other values, 6 ≤ h < 42, ε2 = γ2 − 2 and ε3 = γ3 − 2. See Challis
[2], Mossige [10] and [11].

3. The conjecture in the case k = 4

Let k = 4, h = 12αt + i, i ∈ [0, 11], α ≥ 1, α ∈ Q, t ∈ N. The parameter basis
AM = AM (h, b, p) we are going to use in normal form is (a1 = 1)

a2 = 9αt + b1t + p1,

a3 = (3αt + b3t + p3)a2 − (5αt + b2t + p2),(26)
a4 = (2αt + b6t + p6)a3 − (αt + b5t + p5)a2 − (6αt + b4t + p4),

where bl, pl ∈ Z (to be chosen suitablely) and where we put b = (b1, b2, . . . , b6) and
p = (p1, p2, . . . , p6). We shall also consider the basis AS = AS(h, b, p), given by
replacing the coefficient 5 in (26) by 7 and the coefficient 6 by 4. Let AM = AM (h, b)
be the basis (26) with p = (0, . . . , 0), and similarly, AS = AS(h, b).

Since 1971, the “record” prefactor ϕ = 2 was held by the parameter basis
AM (h, b) discovered by Hofmeister and Schell [5] with

b = (0, 0, . . . , 0), α = 1(27)

and the transfers that give a positive gain

T1 = (0, 1, 0) , T2 = (0, 0, 1) , T3 = (1, 1, 2) , T4 = (1, 0, 2).(28)

In 1988 Braunschädel [1] gave the basis AS with (27), using the transfers

T1, T2, T3, T
′
4 = (0, 0, 2).(29)

He examined (on a computer) all bases A4(h) of the form,

h = Ht; a2 = c1t, a3 = c2ta2 − c3t, a4 = c4ta3 − c5ta2 − c6t,(30)

with cl ∈ N, allowing only (s2, s3, s4)-transfers with s2, s3, s4 ≤ 2. He then always
found ϕ ≤ 2, and ϕ = 2 only for the bases AM (h, b) and AS(h, b) with (27) (see
also Selmer [19]).

The author’s idea was to make small variations of the leading coefficients of
the elements of the basis (26), by varying b around the six-tuple (0, . . . , 0), to see
whether an increase of the prefactor is possible. Let

bM = (15, 1,−15, 6,−13,−20).(31)

In 1985 he found a basis AM (h, bM ) with ϕ > 2 (see [12]):
To get the prefactor ϕ of this basis we consider the polynomial

g(γ) = −32γ − 168γ2 − 22γ3 + 3γ4

and determine the solution γ1 of g
′
(γ1) = 0, where

γ1 =
11
6

+
1
3

√
457 cos

ξ + 4π

3
, cos ξ =

7163√
4573

, with 0 < ξ < π/2,

giving γ1 = −0.09712372...

With this γ1 we put α1 = −20/γ1 and

σ = 2 + 3−12−6g(γ1) = 2.0080397...(32)
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For given ε > 0 we can choose t so large that for h = 12bα1tc the basis AM (h, bM )
has the prefactor

ϕ > σ − ε.

In fact, here σ is a cubic irrationality, and can only be approximated by “rational”
bases (26). We obtain a very good approximation if we put α = 206, that is,
h = 2472t, giving σ of (32) with all seven decimals correct. As usual, bxc denotes
the largest integer ≤ x ∈ R.

In [11] we developed formulas for the possible h-ranges of the parameter bases
AM (h, b, p), and based the optimization on the determination of the local h-range
n(h, AM ). In addition to the transfers (28), we discovered that it was possible to
use

T5 = (1, 2, 1) , T6 = (1, 0, 3).(33)

In spite of the very small improvement on ϕ = 2, this result gave quite a new
situation. Let

bS = (15,−1,−15, 2,−13,−20).(34)

In 1988 Selmer [19] showed that also the basis AS(h, bS) has the prefactor (32). In
[13] we show that my cited result (31), (32) for the basisAM (h, bM ) is valid also
for the basis AS(h, bS) with bM replaced by bS . Selmer [18] calls the two bases an
associate pair of bases.

Computational results. When we apply our h-range algorithm to the parameter
bases AM , (26) and AS , it gives for each basis the sufficient inequalities that express
the conditions that all the integers n ∈ [1, n(h, A)] have an h-representation and it
gives all the h-range formula candidates. By extensive computations for h ≤ 620000
we came to two constructions of two bases. For details see [13].

Construction 1. Given h = 12αt+ i ≥ 1236, where α ∈ Q, t ∈ N and 0 ≤ i ≤ 11.
Let bM = (15, 1,−15, 6,−13,−20). Let Pi = (p1, p2, . . . , p6) and r be given by
Table 1. Let β = αt = bh/12c, i = h− bh/12c12 and q = r + i. The basis A(t) has
the elements (a1 = 1)

a2 = 9β + 15t + p1,

a3 = (3β − 15t + p3)a2 − (5β + t + p2),
a4 = (2β − 20t + p6)a3 − (β − 13t + p5)a2,−(6β + 6t + p4),

and h-range formula

n(t) = (3β + 45t + q + 1)a4 + (2β − 20t + p6 − 2)a3

+(3β − 15t + p3 − 2)a2 + 5β + t + p2 − 2.

Let j = bβ/α1c, where α1 is given in the cited result (31), (32). If i = 0 then put
j = bβ/α1c+ 1. If n(j + 1) > n(j) then t = j + 1, else t = j.

Then the basis A∗M = AM (h, bM , Pi) = A(t) has h-range

n(h, A∗M ) = n(t).

For i even, h− h0 = 1. For i odd, h− h0 = 0.

Construction 2. Given h = 12αt+ i ≥ 1236, where α ∈ Q, t ∈ N and 0 ≤ i ≤ 11.
Let bS = (15,−1,−15, 2,−13,−20). Let Pi = (p1, p2, . . . , p6) and r be given by
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Table 1

i p1 p2 p3 p4 p5 p6 r
0 −8 0 10 −3 7 13 −25

1,2 −4 1 8 −1 5 10 −19
3,4 0 2 6 1 3 7 −13
5,6 4 3 4 3 1 4 −7
7,8 8 4 2 5 −1 1 −1

9,10 12 5 0 7 −3 −2 5
11 16 6 −2 9 −5 −5 11

Table 2

i p1 p2 p3 p4 p5 p6 r
0 −12 1 14 −1 11 19 −38

1,2 −8 2 12 0 9 16 −32
3,4 −4 3 10 1 7 13 −26
5,6 0 4 8 2 5 10 −20
7,8 4 5 6 3 3 7 −14

9,10 8 6 4 4 1 4 −8
11 12 7 2 5 −1 1 −2

Table 2. Let β = αt = bh/12c, i = h− bh/12c12 and q = r + i. The basis A(t) has
the elements (a1 = 1)

a2 = 9β + 15t + p1,

a3 = (3β − 15t + p3)a2 − (7β − t + p2),
a4 = (2β − 20t + p6)a3 − (β − 13t + p5)a2,−(4β + 2t + p4),

and h-range formula

n(t) = (3β + 45t + q + 1)a4 + (2β − 20t + p6 − 2)a3

+(3β − 15t + p3 − 2)a2 + 4β + 2t + p4 − 2.

Let j = bβ/α1c, where α1 is given in the cited result (31), (32). If i ≤ 4, then put
j = bβ/α1c+ 1. If n(j + 1) > n(j), then t = j + 1, else t = j.

Then the basis A∗S = AS(h, bS , Pi) = A(t) has h-range

n(h, A∗S) = n(t).

For i even, h− h0 = 1. For i odd, h− h0 = 0.

Two parameter bases A(1)(h) and A(2)(h) is said to be asymptotically equal if
a
(1)
j /a

(2)
j → 1 when h →∞ for 2 ≤ j ≤ 4.

In an unpublished work from 1991, Kirfel and the author have shown the follow-
ing result. For h →∞, all the bases A = A(h) with prefactor ϕ > 2.008 are either
asymptotically equal to AM (h, bM ) or equal to AS(h, bS). The sets bM and bS are
given in (31) and (34) respectively. In [12] it is shown that such bases exist.

Let AM (h, bS) denote the class of all bases A = A(h) that are asymptotically
equal to AM (h, bM ), and let AS(h, bS) be the similar class for AS(h, bS).

We now ask for the best choice of the basis A = A(h) in the class AM (h, bM )
and the best choice of the basis in AS(h, bS).
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Extensive computations for h ≤ 620000 give the following results.

Result A. For 9793 ≤ h ≤ 620000, A∗M = AM (h) in the class AM (h, bM ) is the
basis with the largest h-range.

Result B. For 10653 ≤ h ≤ 620000, A∗S = AS(h) in the class AS(h, bS) is the basis
with the largest h-range.

Result C. For 11385 ≤ h ≤ 620000, A∗M has larger h-range than A∗S .

For both the bases A∗M and A∗S the h-range formulas are of the type stated in
Conjecture 1.

Conjecture 2. For h ≥ 11385, A∗M = AM (h) is the extremal basis.

For h < 11385 we may get better bases when we replace the set bM or bS by
other sets b and suitable sets p.

Using a result of Selmer [18], we prove in [13] that if b = (b1, . . . , b6) and

b
′
= (b1, b1 − b2 + b3, b3, b1 − b4 − b5 + b6, b5, b6),

then for each basis AM (h, b) with prefactor ϕ there is a basis AS(h, b
′
) with the

same prefactor, and vice versa. If b = b
′
, then

2b2 = b1 + b3, 2b4 = b1 − b5 + b6.

For further details see [13].
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