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ULTRACONVERGENCE
OF THE PATCH RECOVERY TECHNIQUE II

ZHIMIN ZHANG

Abstract. The ultraconvergence property of a gradient recovery technique
proposed by Zienkiewicz and Zhu is analyzed for the Laplace equation in the
two dimensional setting. Under the assumption that the pollution effect is
not present or is properly controlled, it is shown that the convergence rate
of the recovered gradient at an interior node is two orders higher than the
optimal global convergence rate when even-order finite element spaces and
local uniform rectangular meshes are used.

1. Introduction

In a previous work [6], the ultraconvergence property (i.e., two orders higher than
the optimal global convergence rate) of the Zienkiewicz-Zhu patch recovery tech-
nique was justified for a class of two-point boundary value problems. The current
work is devoted to the theoretical justification of the ultraconvergence phenomenon
in the two dimensional setting. The main difficulty in the higher-dimensional situ-
ation is that when the domain has a nonsmooth boundary, the solution may have
corner singularity, and consequently, the finite element approximation may suffer
from “pollution effect”, which will result in the failure of the recovery procedure.
There have been many techniques to treat the pollution effect caused by domain
singularity, and perhaps the most popular one is local mesh refinement. In this
paper, we assume that a certain method is applied and the pollution effect is under
control. Therefore we can concentrate on the local recovery. To further simplify the
matter, we use the Laplace equation as the model problem. Then it can be shown
that the patch recovery procedure results in ultraconvergence gradient recovery at
an interior node when local uniform rectangular meshes and even-order elements
are used.

2. The patch recovery technique

Consider the Dirichlet problem on a bounded domain Ω ⊂ R2 with a piecewise
smooth boundary ∂Ω:

−∆u = f in Ω, u|∂Ω = 0.(2.1)

We assume that f is sufficiently smooth for our analysis.
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The weak formulation of (2.1) is to find u ∈ H1
0 (Ω) such that∫

Ω

∇u∇vdxdy =
∫

Ω

fvdxdy, ∀v ∈ H1
0 (Ω).(2.2)

Let Th be a sequence of subdivisions of Ω̄. An element of Th can be either a
triangle or a quadrilateral. But we assume that rectangular elements are used on
an interior region away from the boundary ∂Ω. It is on this region that the patch
recovery technique will be applied and analyzed. The finite element space Sh(Ω)
is defined as usual, and it contains continuous piecewise polynomials of degree not
greater than r.

Now we define local finite element spaces for rectangular elements. Given a
rectangular element K, let FK be the linear mapping that maps the reference
element K̂ = [−1, 1]× [−1, 1] onto K. We then denote v̂ = v ◦ FK for function v
on element K.

We assume on K̂, that the polynomial basis Pr contains P (r) and is contained in
Q(r), where P (r) denotes the class of polynomials which are of degree r, and Q(r),
the class of polynomials of degree r in each variable separately. In other words, any
element p ∈ P (r) has the form

p(ξ, η) =
r∑

i+j=0

cijξ
iηj ,

whereas any q ∈ Q(r) will be of the form

q(ξ, η) =
r∑

i=0

r∑
j=0

cijξ
iηj .

Some popular choices of polynomial basis Pr for rectangular (quadrilateral) finite
elements are:

(I) Serendipity family: P (r) ∪ {ξrη, ξηr}.
(II) Intermediate family of the first type:

P (r + 1) ∩Q(r) = P (r) ∪ {ξrη, ξr−1η2, . . . , ξηr} = P (r + 1) \ {ξr+1, ηr+1}.

(III) Intermediate family of the second type:

P (r + 2) ∩Q(r) = P (r) ∪ {ξrη, ξr−1η2, . . . , ξηr; ξrη2, ξr−1η3, . . . , ξ2ηr}
= P (r + 2) \ {ξr+1, ηr+1; ξr+2, ξr+1η, ξηr+1, ηr+2}.

(IV) Tensor-product elements: Q(r).
Note that

P (r) ∪ {ξrη, ξηr} ⊂ P (r + 1) ∩Q(r) ⊂ P (r + 2) ∩Q(r) ⊂ Q(r).

When r = 1, they are all the same; when r = 2, (I), (II) are the same, and (III),
(IV) are the same; when r ≥ 3, they are all different.

The finite element solution of (2.2) is to find uh ∈ S0
h(Ω) = Sh(Ω) ∩H1

0 (Ω) such
that ∫

Ω

∇uh∇vdxdy =
∫

Ω

fvdxdy, ∀v ∈ S0
h(Ω).(2.3)

Since all of the four bases above contain P (r), the optimal convergence rate for
the gradient of the finite element solution is of order O(hr). We shall show that the
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patch recovery procedure is able to achieve O(hr+1) on an interior element patch
and O(hr+2) at an interior nodal point.

In order to define the recovered gradient, we introduce the Gauss points and the
Lobatto points.

Let Lr(x) be the Legendre polynomial of degree r on [−1, 1]. It is well known that
Lr(x) has r zeros and L′r(x) has r− 1 zeros in (−1, 1). Denote by g

(r)
1 , . . . , g

(r)
r the

zeros of Lr(x), and by l
(r)
1 , . . . , l

(r)
r−1 the zeros of L′r(x) with l

(r)
0 = −1, l

(r)
r = 1. Then

g
(r)
j , j = 1, . . . , r, are called the Gauss points of order r, and l

(r)
j , j = 0, 1, . . . , r,

the Lobatto points of order r.
The Gauss and Lobatto points on a rectangle are defined as the tensor product

of affine transformations of g
(r)
j and l

(r)
j of the respective rectangle. To be more

precise, for a rectangle centered at (x̄, ȳ) with length h and height }, the Gauss and
Lobatto points are

G
(r)
ij = (x̄ + g

(r)
i h/2, ȳ + g

(r)
j }/2), i, j = 1, . . . , r,

L
(r)
ij = (x̄ + l

(r)
i h/2, ȳ + l

(r)
j }/2), i, j = 0, 1, . . . , r.

The Gauss and Lobatto points on an arbitrary quadrilateral can be defined through
a bilinear mapping. In this paper, we focus our analysis on the element patch that
contains four rectangles which share a common node.

In general, ∇uh is a piecewise polynomial vector field and is discontinuous across
element edges. The recovered gradient by the patch recovery is a continuous piece-
wise polynomial vector field, RRR∇uh ∈ Sh(Ω)×Sh(Ω), which is uniquely determined
by its values at the Lobatto points. The values of the recovered gradient at the
Lobatto points are obtained by the following least squares fitting procedure. On
an element patch D0 (it contains four rectangles that share a common node, as
we mentioned earlier), consider a polynomial in P with P (r) ⊂ P ⊂ Q(r) (for the
serendipity family and the intermediate family of the first type), or P (r+1)∩Q(r) ⊂
P ⊂ Q(r) (for the tensor product element and the intermediate family of the second
type),

p∗r(x, y) = (1, x, y, x2, xy, y2, . . . )a.

The vector a = (a0, a1, . . . , am)T is computed by fitting, in the least squares sense,
∂uh

∂x
(or

∂uh

∂y
) at 4(r × r) Gauss points. Then the values of R

∂uh

∂x
at the Lobatto

points are the values of p∗r at the same points. Note that adjacent element patches
overlap. If different patches result in different recoveries at a Lobatto point in an
overlapped region, an averaging is applied (see [8] for more details).

3. Ultraconvergence analysis

Define

φk(ξ) =

√
2k − 1

2

∫ ξ

−1

Lk−1(t)dt

and recall that Lk−1 is the Legendre polynomial of degree k − 1. Then we have

φk(−1) = φk(1) = 0,

∫ 1

−1

φ′k(ξ)dξ = 0,

∫ 1

−1

φ′k(ξ)φ′l(ξ)dξ = 0, k 6= l.
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Here we adopt a set of hierarchic shape functions used in practical engineering
code (cf., e.g., [4, section 6.1]). They are defined on the reference element and
organized into three categories:

1) Nodal shape functions. There are 4 of them:

Node 1 N1(ξ, η) =
1
4
(1 − ξ)(1− η);

Node 2 N2(ξ, η) =
1
4
(1 + ξ)(1− η);

Node 3 N3(ξ, η) =
1
4
(1 + ξ)(1 + η);

Node 4 N4(ξ, η) =
1
4
(1 − ξ)(1 + η).

2) Side modes. There are 4(r− 1) (r ≥ 2) of them and r− 1 on each side. For
Side 1 (between Node 1 and Node 2) we have

N1j(ξ, η) =
1
2
(1− η)φj(ξ), j = 2, . . . , r;

and for Side 2 (between Node 2 and Node 3) we have

N2j(ξ, η) =
1
2
(1 + ξ)φj(η), j = 2, . . . , r.

The modes on the other two sides are defined accordingly.
3) Internal modes.

N01(ξ, η) = φ2(ξ)φ2(η),

N02(ξ, η) = φ3(ξ)φ2(η),

N03(ξ, η) = φ2(ξ)φ3(η),

N04(ξ, η) = φ4(ξ)φ2(η),

N05(ξ, η) = φ3(ξ)φ3(η),

N06(ξ, η) = φ2(ξ)φ4(η),
etc.

The following is a list of the number of internal modes for rectangular finite element
families mentioned in the previous section.

Pr Number of internal modes

P (r) ∪ {ξrη, ξηr} (r − 2)(r − 3)/2 r ≥ 4,

P (r + 1) ∩Q(r) (r − 1)(r − 2)/2 r ≥ 3,

P (r + 2) ∩Q(r) r(r − 1)/2 r ≥ 2,

Q(r) (r − 1)2 r ≥ 2.

Based on this set of hierarchic shape functions, we shall define a special interpo-
lation uI for a given function u. We will see that uI has some surprisingly nice
superconvergent properties that the traditional interpolating functions do not have.
These properties allow ∇uI to be used as a vehicle in proving the superconvergence
of the recovered finite element gradient RRR∇uh.
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K4 s3 K3

s4 s2

h2

Figure 1

Given a smooth function u(x, y), we consider û(ξ, η) = u(x(ξ, η), y(ξ, η)) on the
reference element [−1, 1]2 and define uI(x, y) with ûI ∈ Pr, such that

ûI(ξ, η) =
4∑

i=1

uiNi(ξ, η) +
4∑

i=1

r∑
j=2

u
(i)
j Nij(ξ, η) +

∑
j

u
(0)
j N0j(ξ, η),

with the coefficients decided by (i) ûI(±1,±1) = û(±1,±1); (ii)∫
∂K̂

∂

∂s
(û− ûI)

∂v̂

∂s
ds = 0,

for any side mode v̂; and (iii)∫
K̂

∇(û− ûI)∇v̂dξdη = 0,

for any internal mode v̂. Recall the structure of the hierarchic shape functions. It
is straightforward to verify that the definition above is meaningful and decides uI

uniquely. Note that (i) and (ii) guarantee that uI is continuous across elements.
The relationship of the special interpolation uI with the traditional interpolation

can be revealed by the following observation:
If û ∈ Q(r + 1), and Pr = Q(r), then ûI is the Lagrange interpolation of û at

the (r + 1)× (r + 1) Lobatto points.
Remarkable recovery properties of uI under RRR can be seen from the following

key lemma.

Lemma 3.1. Let an element patch D0 contain four rectangles that share a common
node. (a) If u ∈ P (r + 1)(D0) (r ≥ 1) and the local finite element space Pr on D0

contains the intermediate family of the first type, then RRR∇uI = ∇u on D0; (b) if
the four rectangles in D0 are uniform, u ∈ P (2s + 2)(D0) (s ≥ 1), and the local
finite element space P2s on D0 contains the intermediate family of the second type,
then RRR∇uI = ∇u at the center of D0.

Proof. Without loss of generality, we assume that D0 is centered at the origin. The
four rectangles are denoted as Ki, i = 1, 2, 3, 4 (see Figure 1).
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(a) Since the finite element space has all terms in P (r + 1)(D0) ∩Q(r)(D0), we
only need to prove the statement for

u ∈ P (r + 1)(D0) \Q(r)(D0) = {xr+1, yr+1}.

Let u = xr+1. It can be verified from the definition of the special interpolation uI

that

u− uI =

{
aφr+1(2x/h1 + 1), in K1 and K4,

aφr+1(2x/h2 − 1), in K2 and K3,

where hi (i = 1, 2) are the lengths of the rectangles.

Recall φ′r+1(ξ) =
√

(2r + 1)/2Lr(ξ), and we see that
∂

∂x
(u − uI) = 0 along r

Gaussian lines in each Ki, i = 1, 2, 3, 4. By the least squares fitting procedure,

R
∂uI

∂x
is a polynomial of degree r in x and equals

∂u

∂x
at 2r distinct points in D0.

Hence R
∂uI

∂x
=

∂u

∂x
on D0, and therefore RRR∇uI = ∇u on D0 since it is trivial to

verify
∂uI

∂y
= 0 =

∂u

∂y
.

The case u = yr+1 can be proved similarly.
(b) Since the finite element space has all terms in P (2s + 2)(D0) ∩ Q(2s)(D0),

we only need to prove the statement for

u ∈ P (2s + 2)(D0) \Q(2s)(D0) = {x2s+1, y2s+1; x2s+2, x2s+1y, xy2s+1, y2s+2}.
We discuss them separately.

(1) u = x2s+1 and u = y2s+1. The proof is the same as in (a) by setting r = 2s.
(2) u = x2s+1y. In this case,

u− uI =

{
aφ2s+1(2x/h + 1)y/}, in K1 and K4,

aφ2s+1(2x/h− 1)y/}, in K2 and K3.

Note that the mesh is uniform. As in (a),
∂

∂x
(u− uI) = 0 along 2s Gaussian lines

in each Ki, i = 1, 2, 3, 4; hence, R
∂uI

∂x
=

∂u

∂x
on D0. Further,

∂

∂y
(u − uI) =

{
aφ2s+1(2x/h + 1)/}, in K1 and K4,

aφ2s+1(2x/h− 1)/}, in K2 and K3.

Realizing that φ2s+1 is an odd function, we see that

∂

∂y
(u − uI)(x) = − ∂

∂y
(u− uI)(−x).

Since D0 has four uniform rectangles, the least squares fitting evaluated at the
center of D0 leads to the same coefficients for function values at the symmetric
sampling points. Hence, cancellation occurs for all terms and consequently

R
∂

∂y
(u− uI)(0, 0) = 0.

Observe that

R
∂u

∂y
(0, 0) = 0 =

∂u

∂y
(0, 0).
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Since
∂u

∂y
= x2s+1 is an odd function, we then have

R
∂uI

∂y
(0, 0) =

∂u

∂y
(0, 0).

(3) u = x2s+2. Now

u− uI =

{
aφ2s+2(2x/h + 1), in K1 and K4,

aφ2s+2(2x/h− 1), in K2 and K3.

Since φ′2s+2(ξ) =
√

(4s + 3)/2L2s+1(ξ) is an odd function, the least squares fitting
evaluated at (0, 0) results in cancellation of all terms in K1 ∪K2 and K3 ∪ K4 as
explained in (2). Hence

R
∂

∂x
(u − uI)(0, 0) = 0.

Further,
∂u

∂x
= (2s + 2)x2s+1 is an odd function, R

∂u

∂x
(0, 0) = 0 =

∂u

∂x
(0, 0). Hence

R
∂uI

∂x
(0, 0) =

∂u

∂x
(0, 0).

Again, it is trivial to verify that
∂uI

∂y
= 0 =

∂u

∂y
.

The analysis for terms y2s+1, xy2s+1 and y2s+2 is similar. Summing up, we have
proved for u ∈ P (2s + 2)(D0),

RRR∇uI(0, 0) = ∇u(0, 0).

Examining the argument for u = x2s+2 in the proof of Lemma 3.1 (3), we see
that in order to have the cancellation at the center of D0, a simple averaging will
do the work. To be more precise, we define an averaging nodal recovery operator
by symmetrically picking up some points in the element patch, and setting

R̃RR∇uh(0, 0)=
∑

i

αi(∇uh(x̄i, ȳi)+∇uh(−x̄i, ȳi)+∇uh(−x̄i,−ȳi) +∇uh(x̄i,−ȳi)),

where 0 < x̄i < h, 0 < ȳi < }, and
∑

i

αi = 1/4. For this averaging nodal recovery

operator, we have

Corollary 3.1. Let an element patch D0 contain four uniform rectangles that share
a common node. If u ∈ P (2s)(D0) (s ≥ 1) and the local finite element space P2s−1

on D0 contains the intermediate family of the first type, then R̃RR∇uI = ∇u at the
center of D0.

Now we define

‖∇v‖L∞(D) = max(‖∂v

∂x
‖L∞(D), ‖

∂v

∂y
‖L∞(D));

|∇v(z)| = max(|∂v

∂x
(z)|, |∂v

∂y
(z)|).

A direct consequence of Lemma 3.1 and Corollary 3.1 is the following theorem (also
see [7] Theorem 3.1 and the Corollary for a different proof).
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Theorem 3.1. Let the element patch D0 contain four rectangles that share a com-
mon node z0, and let Dh contain sixteen rectangles with the interior four elements
being D0 (see Figure 3).

(a) If the local finite element space Pr (r ≥ 1) on D0 contains the intermediate
family of the first type and u ∈ W r+2∞ (Dh), then

‖∇u−RRR∇uI‖L∞(D0) ≤ Chr+1|u|W r+2∞ (Dh).(3.1)

(b) If the four rectangles in D0 are uniform, the local finite element space P2s

(s ≥ 1) on D0 contains the intermediate family of the second type, and u ∈
W 2s+3∞ (D0), then

|(∇u−RRR∇uI)(z0)| ≤ Ch2s+2|u|W 2s+3∞ (D0).(3.2)

(c) If the four rectangles in D0 are uniform, the local finite element space P2s−1

(s ≥ 1) on D0 contains the intermediate family of the first type, and u ∈ W 2s+1
∞ (D0),

then

|(∇u− R̃RR∇uI)(z0)| ≤ Ch2s|u|W 2s+1∞ (D0).(3.3)

The constant C is independent of h and u.

Remark 3.1. Note that Dh appears in the right-hand side of (3.1), since the recovery
on D0 involves the Gauss points on Dh.

Remark 3.2. We see that RRR∇uI is superconvergent to ∇u on the entire element
patch D0 when the local finite element space contains the intermediate family of
the first type; R̃RR∇uI is superconvergent to ∇u at the center of D0 when the local
finite element space contains the intermediate family of the first type with an odd
degree; and RRR∇uI is ultraconvergent to ∇u at the center of D0 when the local
finite element space contains the intermediate family of the second type with an
even degree.

Although uI is not the finite element solution, we are able to show that it is
“almost” the finite element solution in the sense of the Lemma 3.2.

Lemma 3.2. Let a rectangular domain D ⊂ Ω be subdivided into rectangles K ⊂
D.

(a) If u ∈ P (r + 1)(K) (r ≥ 1) and the local finite element space Pr on D
contains the intermediate family of the first type, then∫

K

∇(u − uI)∇vdxdy = 0, ∀v ∈ S0
h(D).(3.4)

(b) If two rectangles K and K ′ that share a common horizontal/vertical side are
uniform, u ∈ P (r + 2)(K ∪K ′) (r ≥ 2), and the local finite element space Pr on D
contains the intermediate family of the second type, then∫

K∪K′
∇(u− uI)∇vdxdy = 0, ∀v ∈ S0

h(D),(3.5)

where v = 0 on the rest two horizontal/vertical sides (see Figure 2).

Proof. Again, we only need to prove the claim for u not included in the local finite
element space.
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K
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h

Figure 2

If u = xk+1, k = r, r + 1. From (a) of the proof for Lemma 3.1, we have on each
rectangle K ⊂ D,∫

K

∇(u − uI)∇vdxdy = c

∫ 1

−1

∫ 1

−1

Lk(ξ)
∂v̂

∂ξ
dξdη = 0, ∀v ∈ S0

h(D),

since
∂v̂

∂ξ
is a polynomial of degree not exceeding r − 1 in ξ. The argument for

u = yk+1, k = r, r+1 is the same. This proves (3.4) and special cases of (3.5) when
u = xr+2, yr+2, xr+1, yr+1.

Recall the definition of uI , for any K ⊂ D,∫
K

∇(u − uI)∇vdxdy = 0,

if v is an internal mode. Hence it remains to prove (3.5) for u = xr+1y, xyr+1, and
v being side modes and node modes. In order to include all the possible choices,
we consider an element patch D0 centered at the origin that contains four uniform
rectangles which share a common node. Denoting by si, i = 1, 2, 3, 4, four sides
between K1 and K2, K2 and K3, K3 and K4, K4 and K1, respectively (Figure 1).
Let vi,j be the side mode on si, j = 2, . . . , r. Then

v1,j =

{
(1 + x/h)φj(2y/} + 1), in K1,

(1− x/h)φj(2y/} + 1), in K2;

v2,j =

{
(1 + y/})φj(2x/h− 1), in K2,

(1− y/})φj(2x/h− 1), in K3;

v3,j =

{
(1− x/h)φj(2y/}− 1), in K3,

(1 + x/h)φj(2y/}− 1), in K4;

v4,j =

{
(1− y/})φj(2x/h + 1), in K4,

(1 + y/})φj(2x/h + 1), in K1.
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D

D1

D0

z0

Dh

Figure 3

There is only one node mode whose support is in D0:

v =


(1 + x/h)(1 + y/}), in K1,

(1− x/h)(1 + y/}), in K2,

(1− x/h)(1 − y/}), in K3,

(1 + x/h)(1 − y/}), in K4.

Recall from the proof of Lemma 3.1 (b), if u = xr+1y, then

u− uI =

{
aφr+1(2x/h + 1)y/}, in K1 and K4,

aφr+1(2x/h− 1)y/}, in K2 and K3.
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Hence ∫
K1∪K2

∇(u − uI)∇v1,jdxdy

=
2a

h2

∫
K1

φ′r+1(
2x

h
+ 1)

y

}
φj(

2y

}
+ 1)dxdy

+
2a

}2

∫
K1

φr+1(
2x

h
+ 1)(1 +

x

h
)φ′j(

2y

}
+ 1)dxdy

− 2a

h2

∫
K2

φ′r+1(
2x

h
− 1)

y

}
φj(

2y

}
+ 1)dxdy

+
2a

}2

∫
K2

φr+1(
2x

h
− 1)(1− x

h
)φ′j(

2y

}
+ 1)dxdy = 0,

since all four terms contain one of∫ 1

−1

φ′k(ξ)dξ = 0, k = 2, . . . , r + 1.

If u = xyr+1, then

u− uI =

{
aφr+1(2y/} + 1)x/h, in K1 and K2,

aφr+1(2y/}− 1)x/h, in K3 and K4.

Hence ∫
K1∪K2

∇(u − uI)∇v1,jdxdy

=
a

h2

∫
K1

φr+1(
2y

}
+ 1)φj(

2y

}
+ 1)dxdy

+
4a

}2

∫
K1

φ′r+1(
2y

}
+ 1)

x

h
(1 +

x

h
)φ′j(

2y

}
+ 1)dxdy

− a

h2

∫
K2

φr+1(
2y

}
+ 1)φj(

2y

}
+ 1)dxdy

− 4a

}2

∫
K2

φ′r+1(
2y

}
+ 1)

x

h
(1− x

h
)φ′j(

2y

}
+ 1)dxdy = 0,

since the first and the third terms are canceled, and the second and fourth terms
both contain the term∫ 1

−1

φ′r+1(ξ)φ
′
j(ξ)dξ =

∫ 1

−1

Lr(ξ)Lj−1(ξ)dξ = 0, j = 2, . . . , r.

The argument for the remaining three side modes is similar and, hence, mode. is
omitted. This finishes the proof of (3.5) when v is a side mode.
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Next we consider the node mode. When u = xr+1y,∫
K1∪K4

∇(u− uI)∇vdxdy

=
2a

h2

∫
K1

φ′r+1(
2x

h
+ 1)

y

}
(1 +

y

}
)dxdy +

a

}2

∫
K1

φr+1(
2x

h
+ 1)(1 +

x

h
)dxdy

+
2a

h2

∫
K4

φ′r+1(
2x

h
+ 1)

y

}
(1− y

}
)dxdy − a

}2

∫
K4

φr+1(
2x

h
+ 1)(1 +

x

h
)dxdy

= 0,

since the first and the third terms both contain∫ 1

−1

φ′r+1(ξ)dξ = 0,

and the second and the fourth terms are canceled. Similarly, we can prove∫
K2∪K3

∇(u− uI)∇vdxdy = 0.

The proof of the integral on K1 ∪K2 needs some more work.∫
K1∪K2

∇(u− uI)∇vdxdy

=
2a

h2

∫
K1

φ′r+1(
2x

h
+ 1)

y

}
(1 +

y

}
)dxdy +

a

}2

∫
K1

φr+1(
2x

h
+ 1)(1 +

x

h
)dxdy

− 2a

h2

∫
K2

φ′r+1(
2x

h
− 1)

y

}
(1 +

y

}
)dxdy +

a

}2

∫
K2

φr+1(
2x

h
− 1)(1− x

h
)dxdy

= 0.

The first and the third terms are zeros. The cancellation of the second and the
fourth terms can be seen from the following.∫ 0

−h

φr+1(
2x

h
+ 1)(1 +

x

h
)dx +

∫ h

0

φr+1(
2x

h
− 1)(1− x

h
)dx

=
∫ 1

0

[φr+1(1−
2x

h
) + φr+1(

2x

h
+ 1)](1 − x

h
)dx = 0,

since when r is an even number,

φr+1(1 −
2x

h
) + φr+1(

2x

h
+ 1) = 0;

and when r is an odd number, it must be r ≥ 3. Then it can be verified that φr+1

is orthogonal to any linear function from its definition. Similarly, we can prove∫
K3∪K4

∇(u− uI)∇vdxdy = 0.

The argument for u = xyr+1 is similar. Hence we have proved (3.5) when v is a
nodal shape function. This completes the proof of the lemma.

Theorem 3.2. Let the support of u be contained in a rectangular domain D which
is subdivided into rectangles.
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(a) If the finite element space Pr (r ≥ 1) on D contains the intermediate family
of the first type and u ∈ W r+2∞ (D), then

|
∫

D

∇(u− uI)∇vdxdy| ≤ Chr+1|u|W r+2∞ (D)|v|W 1
1 (D), ∀v ∈ S0

h(D).(3.6)

(b) If the finite element space Pr (r ≥ 2) on D contains the intermediate family
of the second type, the rectangular subdivision is uniform, and u ∈ W r+3∞ (D), then

|
∫

D

∇(u− uI)∇vdxdy| ≤ Chr+2|u|W r+3∞ (D)|v|W 1
1 (D), ∀v ∈ S0

h(D).(3.7)

Here C is a constant depending only on r and the ratio of the horizontal and vertical
sides of K ⊂ D.

Proof. (a) We decompose D into elements ∪K⊂DK, and write∫
D

∇(u − uI)∇vdxdy =
∑

K⊂D

∫
K

∇(u− uI)∇vdxdy.

Recall that the local finite element space Pr contains the intermediate family of the
first type. Then we have, from Lemma 3.2 (a),∫

K

∇(u − uI)∇vdxdy = 0, ∀v ∈ S0
h(D),

whenever u ∈ P (r + 1)(K) (r ≥ 1). By the Bramble-Hilbert lemma, there exists
a constant C depending only on r and the ratio of the horizontal and the vertical
sides of K, such that

|
∫

K

∇(u− uI)∇vdxdy| ≤ Chr+1|u|W r+2∞ (K)|v|W 1
1 (K).

Therefore,

|
∫

D

∇(u− uI)∇vdxdy| ≤ Chr+1|u|W r+2∞ (D)

∑
K⊂D

|v|W 1
1 (K)

= Chr+1|u|W r+2∞ (D)|v|W 1
1 (D).

(b) We denote by S the set of all interior sides in D, and write∫
D

∇(u− uI)∇vdxdy =
∑

K∩K′=s∈S

∫
K∪K′

∇(u− uI)∇vsdxdy,

where vs = 0 on the two horizontal or vertical sides of K and K ′ other than s (see
Figure 2). Recall that the local finite element space Pr contains the intermediate
family of the second type, from Lemma 3.2 (b),∫

K∪K′
∇(u− uI)∇vsdxdy = 0, K ∪K ′ = s,

whenever u ∈ P (r + 2)(K ∪ K ′) (r ≥ 2). By the Bramble-Hilbert lemma, there
exists a constant C1(r) depending only on r and the ratio of the horizontal and the
vertical sides of K, such that

|
∫

K∪K′
∇(u− uI)∇vsdxdy| ≤ C1(r)hr+2|u|W r+3∞ (K∪K′)|vs|W 1

1 (K∪K′).

For the uniform mesh, the constant C1(r) is the same for any pair K and K ′ that
share a common side. Next, we show that there exists another constant C2(r)
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depending only on r and the ratio of the horizontal and the vertical sides of K,
such that

|vs|W 1
1 (K∪K′) ≤ C2(r)|v|W 1

1 (K∪K′),(3.8)

for any pair K and K ′ that share a common side. Without loss of generality, we
assume that v is not a constant other than zero on any K ⊂ D. If so, we simply
drop the zero term

∫
K ∇(u− uI)∇vdxdy from the sum∫

D

∇(u − uI)∇vdxdy =
∑

K⊂D

∫
K

∇(u− uI)∇vdxdy.

Having this in mind, if we set |v|W 1
1 (K∪K′) = 0, the expansion of v on the basis

functions on K ∪K ′ has to be zero. Therefore, vs = 0 on K ∪K ′ due to the linear
independence of the basis functions. For the finite dimensional (related to r) case,
there is a constant C2(r) such that (3.8) holds. By the uniform mesh assumption,
this C2(r) is universal for all element pairs. Its dependence on the ratio of the
horizontal and the vertical sides (not the size of them) can be seen by mapping K
and K ′ onto the reference element and performing the standard argument. In light
of (3.8), we have

|
∫

D

∇(u − uI)∇vdxdy| ≤ C1(r)C2(r)hr+2|u|W r+3∞ (D)

∑
K∩K′=s∈S

|v|W 1
1 (K∪K′)

≤ 4C1(r)C2(r)hr+2|u|W r+3∞ (D)|v|W 1
1 (D).

Note that an element may repeat as many as four times since the overlapping.

We are interested in derivative recovery at an interior point or a small interior
region (e.g., an element patch) which is away from the boundary ∂Ω. We consider
D, a fixed rectangular interior subdomain of Ω. Suppose that a rectangular mesh
refinement is used on D that keeps its center z0 as a node. Let D0 be the element
patch that contains four elements with the common node z0, let Dh be the element
patch obtained by adding one more layer of elements to D0, and let D1 be a fixed
rectangular domain whose boundary is about half way between the boundaries ∂D0

and ∂D (Figure 3). Then we have the following local analysis.

Theorem 3.3. Let u be the solution of (2.2) and let uh be its finite element ap-
proximation defined by (2.3).

(a) If the finite element space Pr (r ≥ 1) on D contains the intermediate family
of the first type and u ∈ W r+2

∞ (D), then

|uI − uh|W 1∞(Dh) ≤ Chr+1(| ln h||u|W r+2∞ (D) + hk‖u‖Hr+1(D)) + ‖u− uh‖H−k(Ω),

(3.9)

for a non-negative integer k ≤ r − 1.
(b) If the finite element space Pr (r ≥ 2) on D contains the intermediate family

of the second type, the rectangular subdivision is uniform, and u ∈ W r+3
∞ (D), then

|uI − uh|W 1∞(D0) ≤ Chr+2(| ln h||u|W r+3∞ (D) + hk−1‖u‖Hr+1(D)) + ‖u− uh‖H−k(Ω),

(3.10)

for a positive integer k ≤ r − 1. Here C is a constant independent of u and h.
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Proof. We construct a cut-off function ω such that Suppω ⊂ D, ω = 1 on D1. We
then decompose u into u = ũ + u′ with ũ = uω. For any z ∈ Dh, we define the
discrete Green’s function Gh

z ∈ S0
h(D) by∫

D

∇Gh
z∇vdxdy = v(z), ∀v ∈ S0

h(D).

Let ∂z denote any directional derivative with respect to z, then∫
D

∇∂zG
h
z∇vdxdy = ∂zv(z), ∀v ∈ S0

h(D).

It is known that ‖∂zG
h
z‖W 1

1 (D) ≤ C| ln h| (cf., [9, Theorem 3.14]) with the constant
C independent of z. Therefore,

∂z(ũI − ũh)(z) =
∫

D

∇∂zG
h
z∇(ũI − ũh)dxdy =

∫
D

∇∂zG
h
z∇(ũI − ũ)dxdy.

By Theorem 3.2, we have

|∂z(ũI − ũh)(z)| ≤ Chr+l|u|W r+1+l∞ (D)|∂zG
h
z |W 1

1 (D) ≤ Chr+l| ln h||u|W r+1+l∞ (D),

where l = 1 for (a) and l = 2 for (b). Since C is independent of z, we then have

|ũI − ũh|W 1∞(Dh) ≤ Chr+l| ln h||u|W r+1+l∞ (D).(3.11)

Next, we consider u′I − u′h. Note that u′ = 0 = u′I on D1 ⊃ Dh, we then have

|u′I − u′h|W 1∞(Dh) = |u′h|W 1∞(Dh) = |u′ − u′h|W 1∞(Dh).

Further, ∫
Ω

∇(u′ − u′h)∇vdxdy = 0, ∀v ∈ S0
h(D1).

Hence, by [3, Theorem 1.2], we have for 1 ≤ q ≤ ∞ and k a nonnegative integer,
that there exists a constant C depending only on q and k such that

|u′ − u′h|W 1∞(Dh) ≤C min
χ∈Sh

(|u′ − χ′|W 1∞(D1) + d−1|u′ − χ′|L∞(D1))

+ Cd−1−k−2/q‖u′ − u′h‖W−k
q (D1),

where d = dist(∂Dh, ∂D1) which is a fixed number independent of h by the con-
struction of D1. Since u′ = 0 on D1, only the last term on the right-hand side is
left. By selecting q = 2. We have

|u′ − u′h|W 1∞(Dh) ≤ C‖u′ − u′h‖H−k(D1).

Recall u′ − u′h = u − ũ − (uh − ũh), and notice that ‖v‖H−k(D1) ≤ ‖v‖H−k(D) ≤
‖v‖H−k(Ω). We then have

|u′ − u′h|W 1∞(Dh) ≤ C(‖ũ− ũh‖H−k(D) + ‖u− uh‖H−k(Ω)).

For the first term on the right-hand side with k ≤ r−1, we apply the negative norm
estimate for Dirichlet’s problem on a rectangle (D) given in [1, section 7, Example
3] to have

‖ũ− ũh‖H−k(D) ≤ Chr+1+k‖ũ‖Hr+1(D) ≤ Chr+1+k‖u‖Hr+1(D),

since

|uω|Hr+1(D) ≤ C
r+1∑
i=0

|DiuDr+1−iω|L2(D),
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and all derivatives of ω are independent of h. Hence

|u′I − u′h|W 1∞(Dh) = |u′ − u′h|W 1∞(Dh) ≤ Chr+1+k‖u‖Hr+1(D) + C‖u− uh‖H−k(Ω).

The conclusion follows by combining this with (3.11), and applying the triangle
inequality.

In order to prove the main theorem of the paper, we assume that the pollution
caused by the boundary singularity is properly controlled (for example, by local
mesh refinement) in the sense that for some non-negative integer k ≤ r − 1,

‖u− uh‖H−k(Ω) ≤ C(f)hl,(3.12)

where C(f) is a constant depending only on f and Ω, and l = r + 1, 2s + 2, or 2s,
whenever it is necessary. For more details about negative norm estimates, see [5,
section 6.3].

Theorem 3.4. Let u be the solution of (2.2), let uh be its finite element approx-
imation defined by (2.3), and let z0 ∈ D0 ⊂ Dh ⊂ D1 ⊂ D ⊂ Ω be defined as in
Theorem 3.3. Assume that (3.12) is satisfied.

(a) If the local finite element space Pr (r ≥ 1) on D contains the intermediate
family of the first type and u ∈ W r+2

∞ (D), then

‖∇u−RRR∇uh‖L∞(D0) ≤ Chr+1(| ln h||u|W r+2∞ (D) + hk‖u‖Hr+1(D) + C(f)),(3.13)

for a non-negative integer k ≤ r − 1.
(b) If the local finite element space P2s (s ≥ 1) on D contains the interme-

diate family of the second type, the rectangular subdivision is uniform, and u ∈
W 2s+3
∞ (D), then

|(∇u−RRR∇uh)(z0)| ≤ Ch2s+2(| ln h||u|W 2s+3∞ (D) + hk−1‖u‖H2s+1(D) + C(f)),
(3.14)

for a positive integer k ≤ 2s− 1.
(c) If the local finite element space P2s−1 (s ≥ 1) on D contains the intermediate

family of the first type, the rectangular subdivision is uniform, and u ∈ W 2s+1∞ (D).
Then

|(∇u− R̃RR∇uh)(z0)| ≤ Ch2s(| ln h||u|W 2s+1∞ (D) + hk‖u‖H2s(D) + C(f)),(3.15)

for a non-negative integer k ≤ 2s− 2.

Proof. (a) By the triangle inequality

‖∇u−RRR∇uh‖L∞(D0) ≤ ‖∇u−RRR∇uI‖L∞(D0) + ‖RRR∇(uI − uh)‖L∞(D0).(3.16)

Observe that the recovery operator RRR is a bounded operator with an bound C(r)
depending only on r and size ratios among elements in the patch. Then

‖RRR∇(uI − uh)‖L∞(D0) ≤ C(r)‖∇(uI − uh)‖L∞(Dh) = C(r)|uI − uh|W 1∞(Dh).

(3.17)

Note that the recovered gradient on D0 involves sampling Gauss points on Dh.
Substituting (3.17) into (3.16), the conclusion follows by applying (3.1) and (3.9).

(b) Again, the triangle inequality gives

|(∇u −RRR∇uh)(z0)| ≤ |(∇u−RRR∇uI)(z0)|+ |RRR∇(uI − uh)(z0)|,
where

|RRR∇(uI − uh)(z0)| ≤ C(s)‖∇(uI − uh)‖L∞(D0) = C(s)|uI − uh|W 1∞(D0).
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Then we use (3.2) and (3.10) to achieve the desired result.
(c) The argument is the same as in (b) by using (3.3) and (3.9) with

|R̃RR∇(uI − uh)(z0)| ≤
∑

i

|αi||uI − uh|W 1∞(D0).

Applying Theorem 3.4 to the four rectangular finite element families I–IV intro-
duced in Section 2, we summarize the results.

1) When r = 1, all four families reduce to the same bilinear element. If the
element center (Gauss point) is used as a sampling point, we will have supercon-
vergence recovery on the whole element patch even when the rectangular mesh is
nonuniform. But if arbitrary sampling points are selected symmetrically (one from
each element), superconvergence recovery only occurs at the center of the patch
that contains four uniform rectangles.

2) When r = 2, I and II are the same—the quadratic serendipity element; III
and IV are the same—the quadratic tensor-product element. For all cases, if the
Gauss points (four in each element) are used as sampling points, superconvergence
recovery is achieved on the whole element patch even for nonuniform rectangular
meshes. Further, for the tensor product element, ultraconvergence recovery occurs
at the center of the patch that contains four uniform rectangles.

3) When r ≥ 3, for families II–IV, if the Gauss points (r2 in each element)
are used as sampling points, superconvergence recovery is achieved on the whole
element patch. But when r is an odd number and the patch contains four uniform
rectangles, a simple averaging of four symmetric points on the patch will result
in superconvergence recovery at the center of the patch. For families III and IV,
when r is an even number and the Gauss points are used as sampling points, except
superconvergence recovery on the whole patch, we have ultraconvergence recovery
at the center of the patch that contains four uniform rectangles.

Remark 3.3. As a byproduct, Theorem 3.4 (c) explains the observation from nu-
merical tests [8] that superconvergence recovery occurs at the element nodal point
(patch center) with arbitrary sampling points (not Gauss points) for odd-order fi-
nite elements when uniform meshes are used (see [2] for additional superconvergence
results in this respect involving local symmetry). However, our theory suggests the
use of the Gauss points to achieve the best possible recovery.
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