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A Quadratic Partial Assignment and Packing Model and
Algorithm for the Airline Gate Assignment Problem
by
Eric L. Brown
Dr. Hanif D. Sherali, Chairman

Industrial and Systems Engineering

(ABSTRACT)

This thesis is concerned with an Airline Gate Assignment problem that seeks to al-
locate gates to aircraft at an airport, using the objective of minimizing passenger
walking distances. The problem is modelled as a variant of the quadratic assignment
problem with set packing constraints. The quadratic objective function is then trans-
formed into an equivalent linearized form by applying the first-order linearization
technique of Sherali and Adams [1989, 1990]. In addition to linearizing the prob-
lem, the application of this technique generates additional constraints that provide a
tighter linear programming representation. A suitable solution process that exploits
the structure of the linearized problem is developed. Test results are presented using

realistic data obtained from USA:r.
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Chapter 1

Introduction

The problem of assigning flights to airline gates has been a challenging problem for
operations research analysts for the past twenty years. Today, new formulations and
algorithms are being investigated to enhance the problem solving capability. As the
airlines have changed to a “hub” oriented environment, the number of passengers
transferring within the terminal from one flight to the next has grown. With the
recent airline mergers, buyouts, and bankruptcies, airlines have increased their flight

routes and the number of gates at their hubs.

Once the flight schedule has been developed and a fleet has been assigned, the gate
assignment problem can be formulated and solved, assuming that no terminal layout
changes are required and that at least one gate is available upon arrival for every
flight. The information provided to the model includes the types of aircraft, the time
requirements on the ground (i.e. arrival and departure times), and the estimated

passenger volumes. The output provides a gate assignment for each flight.



A relevant question to ask is how do passengers from flight a transfer to flight b when
flight b arrives after flight a departs (assuming that there are no transfers from flight b
to flight a)? Another question is how do we handle international flights, neighboring
restrictions, and terminal overcrowding? At the same time, are there existing models
to solve the gate assignment for many time periods without running the model more

than once to achieve the same purpose?

There have been many papers published presenting ideas on solving gate assignment
problems. These papers seek to minimize passenger walking distance, which ideally
favors the passenger’s interest. Braaksma [1977] proposes to minimize passenger to-
tal walking distances by taking a weighted average of passengers transferring from
one flight to the next. Babié, Teodorovi¢, and Tosié [1984], Mangoubi and Mathaisel
[1985], and Bihr [1990] mathematically show how to minimize passenger walking dis-
tance using the generalized assignment problem (GAP). Bihr’s [1990] model, however,
must run several times during the day as his model takes only one arrival-departure
cycle into account. Mangoubi and Mathaisel [1985] propose a second formulation
using the quadratic assignment problem (QAP). Constraints for all models include
assigning one aircraft to a gate at a time, requiring each aircraft to arrive and depart
from the same gate, and restricting a 747 jumbo jet from a gate only large enough

for at least a T727.

In another paper, Schrdéder [1972] proposed to minimize the expected number of

passengers having to use the hardstand gates, which are only accessible by bus, versus



the pier gates. Hence, this would require the use of fewer transport buses. Here, the
three-index assignment model is proposed. This model assigns flights to gates within
a horizon equal to one day in duration. (Each day is subdivided into several time
periods.) In addition to the previous constraints, another restriction is included to
handle domestic and international flights (i.e., customs procedures). Vanderstraeten
and Bergeron [1988] proposed to minimize the off-gate handling area, requiring fewer
transport buses as well. Their model assigns flights to gates over multiple time
periods as well. Certain neighboring constraints are proposed and included in the
model to accommodate any large size aircraft requiring the use of more than one

parking position.

The objective of USAir’s gate assignment system is to balance the passenger load
within the terminal by utilizing each gate equally. Their model assigns flights to
gates for the entire day (all time periods). When a flight departs from a gate, USAir
maximizes the time between the departure and the next flight arriving at the gate.
Once a gate assignment schedule is accepted, it is adopted for a three to four month
period. From the passenger’s viewpoint, the frequent flyers, by habit, can walk to
the same gate every time. From USAir’s point of view, the baggage handlers and

ticket attendants also know where the flights are located on a day by day basis.

USAir implements the following constraints. First, there is a time delay allowance to
permit a plane to be pushed out and clear of the ramp area. This time delay can be

increased to allow for early arrivals and late departures. In regard to international



flights, certain airports require the airplane to be pushed away from customs into
another gate slot designated for the particular airline. Second, gate restrictions are
included to assign arriving or departing flights to preassigned gates. Some ramp
areas can’t handle large size airplanes parked next to each other, since the wings
can touch. Two gates share the same push-out tug; therefore departure times must
not be equal. Flights having the same destination are kept apart from each other
to avoid passengers (sometimes mistakenly) jumping from one flight to the other.
Other restrictions prohibit flights with similar arrival and departure times from being

assigned to gates close to each other in order to avoid terminal overcrowding.

This thesis focuses on extending Mangoubi and Mathaisel’s [1985] model formulations
in the light of USAir’s practice in studying the airline gate assignment problem. The
quadratic assignment problem is modified via set packing constraints to formulate
a problem that seeks to minimize total passenger walking distances. Appropriate
constraints are developed, based on the literature and the practice at USAir. A

suitable solution methodology is then developed, and this is tested using realistic

data obtained from USAir.

We begin by presenting in Chapter 2, a literature review pertinent to this problem.
Chapter 3 contains a statement of the problem along with the QAP mathematical
formulation and the proposed methodology. Chapter 4 presents an example problem

applied to the methodology developed in Chapter 3. Chapter 5 presents test results.



Chapter 11

Literature Review

This chapter presents literature related to the present research. The first section of
this chapter reviews literature on gate assignments to minimize passenger walking
distances. The second section reviews literature on the gate assignment problem in
which the objective is to maximize the number of aircraft assignments at one terminal

versus another. The third section reviews literature on the quadratic assignment

problem (QAP).

The intent of this literature review is to present the different applications and formu-
lations of the gate assignment problem, mainly utilizing the generalized assignment
problem. The section on the quadratic assignment problem will present lineariza-
tion techniques, solution methodologies such as branch-and-bound, heuristics, graph
theoretical techniques, simulated annealing, and tabu search methods. Examining

the existing literature, a suitable quadratic assignment with side-constraints model



is developed for the problem of determining gate assignments to minimize passenger

walking distances.

2.1 Gate Assignment to Minimize Passenger Walking

Distance

Braaksma [1977]

This was the first article to propose that an interaction exists between the gate as-
signment (operation) and walking distance (layout) of any terminal building that can
be exploited to improve the performance of a terminal. This interaction can be mea-
sured by a passenger’s weighted walking distance, where the number of passengers on
a particular flight is multiplied by the passenger walking distance. The idea demon-
strates that walking distances can be reduced by a judicious assignment of flights
to gate positions. This can have a profound impact on passenger walking distances
without requiring changes in the terminal layout or the flight schedule. Only arriving
and departing passengers were considered since connecting passenger’s flow data was
not readily available. The results indicated that walking distances were reduced sig-
nificantly. However, as the airline at the terminal under study, namely, Air Canada
at Toronoto’s International Airport Terminal 2, was in the process of changing air-
craft types, some of them being larger in size than before, walking distances increased

slightly.



Babié, Teodorovié, and Tosi¢ [1984]

A method to find aircraft gate assignments that minimize the average passenger

walking distances is proposed. In this study, it is assumed that
1. All aircraft arriving can use any available gate

2. Arrival and departure times are flexible to allow an arriving flight to find at least

one available gate, and that
3. Each aircraft arrives and departs from the same gate.
To formulate this problem, the following is defined:
o Y =y,y2...,Y;...,Yn = set of aircraft parking positions (gates)
o B=10b,by,...,b,...,b, = set of aircraft that use gates in set Y

o Tl = tﬁ“’,tﬁ“’,. . ,t,(a), . ,t,g;':) = set of arrival times of set B, where

# <t for i=1,2,...,m~1

o T4 = tgd),tgd), e ,t,(d), ..., = set of departure times of set B where

£ <t for i=1,2,...,m—1

o D, = d&&,ds,.... d°

?,...,d, = set of walking distances for arriving passengers

from each gate j = 1,...,n to the baggage claim area

o D, = d¢,ds,... ,d‘;, ...,d% = set of walking distances for departing passengers

from the check- in counter area to each gate j =1,...,n

o P& — pﬁ“’,pg“),‘..,pﬁa’,...,pg) = set of the number of arriving passengers

where pz(a) >0 for :=1,2,...,m



o Pl = pgd),pgd), ces ,pf-d), ..., pt% = set of the number of departing passengers

where pt(d) >0 for e =1,2,...,m
1 if flight ¢ is assigned to gate j
® xij =

0 otherwise

The objective is to minimize the total weighted walking distance of all arriving and
departing passengers by assigning an available gate j to each aircraft : at the moment
of arrival tﬁ“). Each aircraft must be assigned to some gate and no two aircraft may

be assigned to the same gate co?gp;gently. The formal problem is posed as follows:

Minimize Z= 3.3 a;(p{”d? + pl¥d?) (2.1)
i=1 j=1
subject to Yozij=1 Vi=1l...m Lo (2.2)
i=1 o : "
¥ < Wwhen zx; =1 and z;;7= 1,

(2.3)
fork<land for j=1,2,...,n

X binary.
This model runs within the horizon of one day. It handles the maximum allowable
number of gates available to assign to flights. To find an optimal solution, a standard
branch-and-bound technique is used, slightly modified to accelerate computation.
Note that this problem takes arriving and departing passengers into account, not
transferring passengers. The optimal solution found was seen to mainly affect the
number of passengers who walk maximum distances, decreasing this number, and

those who walk minimum distances, increasing this number.



Mangoubi and Mathaisel [1985]

In planning aircraft gate utilization, one consideration is passenger walking distance to
reach the departure gate, baggage claim area, or a connecting flight. This study takes
Babi¢ et al.’s [1984] formulation and modifies it to allow for transferring passengers.
As in Braaksma [1977], Toronto International Airport Terminal 2 is the terminal
under study. Minimizing passenger walking distances within the airport terminal
area is solved using (1) a linear programming (LP) relaxation of an integer program
formulation and (2) a heuristic that provides a good solution to the congestion and
walking distance problems. The heuristic is also used to _provide an initial solution

e e S s e e

for the same branch-and-bound technique of Babi¢ et al. [1984].

To formulate this problem, the following are defined:
e 7 = the total walking distance for all passengers
e m = the number of flights in the schedule
e n = the number of gates

e p?, p¢, p! = respectively, the estimated number of arriving, departing, and trans-

ferring passengers using flight ¢

e d? = the walking distance of an arriving passenger at gate j to the baggage claim

area

. d;‘ = the walking distance of a departing passenger from the check-in counter to

gate 7



o d: = the walking distance for transferring passengers. If w; is the distance

between gate j and gate [ then this is taken as the average walking distance for

a transfer passenger arriving at gate j, i.e., =Y wi/nVji=1,...,n

£

e t¢ = is the arrival time of flight ¢ I3

>

o t¢ = is the departure time of flight A

L(z) = the set of all flights A which landed before flight : and are still assigned

to their respected gates at the time flight ¢ arrives

1 if flight ¢ is assigned to gate j

I =

0 otherwise

If the flights are indexed in order of their arrival time, then each set L(z), here termed

I D,
e ! ]

. — 1ol
a “conflict set,” can be defined as follows: —,

7
'S

o

L@ ={hel,...,i—1]t} >t} -

To simplify the formulation, when considering flight ¢, one only needs to consider
those flights belonging to L(¢ — 1) as well as flight : — 1 itself. Hence, L(z) can be

represented as:
LE)={he{Lii-1) U (i-1)} |t >t}

If any flight conflicts in time with flight ¢, it cannot be assigned to the same gate j.

The objective is to minimize the total weighted passenger walking distances of all

arriving, departing, and transferring passengers by assigning an available gate j to

10



each aircraft : at the moment of arrival. Each aircraft must be assigned to some
gate and no two aircraft may be assigned to the same gate concurrently. The formal

assignment problem is posed as follows:

Minimize Z = Y Y (ptd? + pld} + pidi)zi; (2.4)

i=1j=1

subject to Yzyj=1 Vi=1,....m (2.5)
3=1
Y mitwi; <1 Vi=1,....mVj=1,...,n (2.6)

heL(i)

X binary.

In identifying redundant constraints, we use an example of three aircraft (p—3, p—2,
and p — 1) on the ground at the time a pth aircraft is scheduled for arrival. The
conflict set is L(p) = {p—3,p—2,p— 1} and the conflict constraint for the pth flight

and any gate j is:

Z Thy + Tpj = Tp-3,j + Tp-2,; + Tp-1,; + Tp; < L. (2.7)
heL(p)

Assume that the (p 4 1)st flight arrives, while p nor any of the three flights contained
in L(p) depart. The conflict set is L(p+1) = {p—3,p —2,p — 1,p} = {L(p) U p}

and the conflict constraint for each gate j is:

D Thjt+ Tpyry = Tposj + Tpozj + Tpo1; + Tpj + Tppr,; < L. (2.8)
heL(p+1)

Any solution satisfying (2.8) (even in the continuous sense) will automatically sat-
isfy (2.7). Therefore, the constraints generated by the pth flight are redundant and

can be dropped.

We mention here that three more constraints are proposed in addition to constraints

e i e

(2.5) and (2.6). First, they suggested running separate models for each airline carrier,

11



b

requiring the gates to be divided into sets. Today at large airports, however, carriers

assign their own aircraft to gates, each requiring their own models.

Second, one may want to exclude some aircraft types from some gates. To do this, if

we let
e B = the subset consisting of all flights with a wide-body aircraft,
e (G = the subset of all gates which are incompatible with such aircraft,

then the constraint can be accommodated by setting the appropriate decision vari-

ables to zero (i.e. z;; =0 V i€ B and j € G).

Third, if two flights b and ¢ serve the same large number of transfers, it may be

desirable to have them assigned near to each other. If we let
e w,, = the distance between gates z and s,
o D** = the maximum allowable distance between flights b and ¢,

then the assignment can be done while enforcing
n on
Z E TpWysTes < D;r;az. (29)
z=1s=1

Since this constraint is nonlinear, a second method is proposed. First, the transfer
walking distance contribution is dropped from the objective function for z,, and z.,

for all gates s = 1,...,n; and the problem is solved. If flight b is assigned to a gate,

say z, then z;, is fixed at 1 and the following constraint is added:

3 weote, < DR (2.10)

s=1

12



Another_approach_for handling the problem of transfer passengers was formulated

using the QAP) Keeping all variables as before, the following are defined:
e p!, = the expected number of passengers transferring between flights : and k
e () = a very large constant

® Yiju = TijTh, 1 £k and j#1 e L,y

1 if flight ¢ is assigned to gate j and flight & is assigned to gate !
® Yijkl =
0 otherwise.

Then the formal problem as posed in the aforementioned paper, is as follows:

N

Z ada ddd xzj + ZZZZ(p;sz,‘)ywkl (211)

l‘,’j=1 Vi:l,...,m (212)

Minimize
subject to

Y api+ai; <1 Vi=1l,...,mVj=1,...,n (213)

heL(i)
Zzyijkl <Qzy; Vi (2.14)
k=11=1
22 Yim < Qau ¥ k1 (2.15)
1=1j=1

y,jkl =1 V i, k g e - Py (2.16)
j=11l=1 ‘ A ‘

X, Y binary.

Constraints (2.11) and (2.12) are exactly the same as constraints (2.5) and (2.6),
respectively. Constraint (2.14) states that if flight ¢ is not assigned to gate j, then

the sum over all possible assignments of flights k to gate [ in y;;x; must be zero, else

!Mangoubi and Mathaisel [1985] thank one of the referees who suggested this formulation; we present their for-
mulation and suggest a correction of it. Although admittedly hard to solve, it may well be an avenue for further

research.

13



the sum is effectively unconstrained. Constraint (2.15) is similar to (2.14), but with
respect to zj. Constraint (2.16) says that for all flight pairs ¢ and k, exactly one y;;x

must equal 1 over all possible combinations of gates 7 and [.

However, since y;;x denotes the product of z;;zk, we must have by (2.12) that
Z zyijkl = Ty Z Z Tkl S (m - 1).'1,',_7 v Z,] (2.17)
k#i l#; k#i l#5
Replacing (2.14), and likewise, rewriting (2.15), we obtain the modified formulation
of this problem as follows:

Z ad; +p?dj)wl.7 + ZEZZ(ptkal Yijkl (218)
i=1

=1 =1j=1k=11=1

Minimize

&

subject to

=1 Vi=1,..,m (2.19)

o

Y zpitez; <1 Vi=1l,....mViji=1..,n (220

heL(i)
Y yiu < (m—1zi; Vi,j (2.21)
k#i l#5
2.2 Ui S (m—1zg VY kl (2.22)
#k A
D>y <1 V ik (2.23)
=1 1=1

1#; ,
Yit 2 Tij+aiw—1 Vigk, j#l (2.24)

X, y binary.

Bihr [1990]
A sensible assignment of flights to gates is proposed which takes the passenger’s
perspective into account. This study looks at the problem of transferring passengers

from gate to gate, minimizing the total walking distance, during one arrival-departure

14



cycle. The more the number of passengers on flight X that neded to transfer for
destination A, the closer flight X should be positioned to the flight departing for A.

To formulate this problem, the following are defined:

e | = # of arrival gates

e n = # of departure gates

e m = # of arrival flights, m <1

o PAX(t,7) = # of passengers arriving on flight ¢ departing from gate j, : =
l,...,mand y=1,...,n

e DIST(z,7) = the distance from gate i to gate j,2=1,...,land j=1,...,n

e ¢;; =Y PAX(i,n) * DIST(j,n) = passenger-distance weights from arrival to
departure gates?

1 if flight ¢ is assigned to gate j
e I,;=

0 otherwise.

The objective is to minimize the total passenger-distance by assigning an available
gate ¢ to each aircraft j upon arrival during one arrival- departure cycle. Only one
aircraft can be assigned to each gate and each arriving flight is assigned to some gate.
The formal problem is posed as follows:

Minimize Z = Z Z: CijTij (225)

=1 j5=1

2The author expresses ¢;; as the elements of the matrix product of PAX (i,5) * DIST (%, 7)T, assuming T represents

the transpose, but appears to be confusing scaler and matrix quantities. We have stated a representation of his intent.

15



M=

subject to zi;=1 Vi=1,....m (2.26)

S,
ll‘

NgE

:L','J"—‘l ijl,...,n (227)

-.
Il
-

X binary.

Note that if a particular flight is to be preassigned to a particular gate, then the
corresponding z;; variable can be fixed at one, thereby removing the corresponding
flight and gate from further consideration. This would include any flight and aircraft
which must be constrained to particular gates for reasons of servicing, size, and

baggage and cargo handling.

It is suggested that the best application of this model is for the determination of a
standard gate assignment at a very large hub. However, this model must be run
several times each day. After running the model, the assignments would be reviewed,
imposing further necessary constraints, and re-running the program. Minor adjust-
ments can be made due to, for example, flight delays. However, frequent disruptions
to the assignment could be counter-productive not only for the passengers, but for

the ground crews.

2.2 Other Gate Assignment Problems

Schréder [1972]

Two types of gate positions exist: piers where passengers board the airplane directly

from the lounge, and hardstands where passengers are moved to or from the aircraft

16



by bus. A model was developed to minimize the expected number of passengers to

be transported by bus. Operational conditions include:

1. If ground time permits, aircraft arriving and then departing may be separated
by an intermediate push-out and pull-in, thus assigning the aircraft to different

gates.
2. Certain gates are reserved for domestic or international flights.
3. For 747’s or similar size aircraft:

e hardstand gates will not handle 747’s,
e some pier gates are too small for 747’s,

e the availability of some adjacent gates are affected by the parking of 747’s.

4. Certain flights are handled at the same gate every day.

A direct application, versus a formal model using the three-index assignment problem

are explored. To formulate the general model the following are defined:
e m = total number of flights (: = 1,...,m)
e n = total number of gates (j = 1,...,n)
o T = set of flight ¢’s airport occupancy time units (¢ =1,...,7)

e a;;; = expected number of passengers on flight ¢ assigned to gate j upon arrival

time ¢

¢ D;; = length of time flight z occupies gate j

17



¢ d = length of time for one period

1 if flight ¢ is assigned to gate 7 upon arrival time ¢
LJ xijt =

0 otherwise.

The general model is stated as follows. (See below for errors in this formulation):

m n T

Minimize Z = Z Z Z AijtTije (2.28)

i=1 j=1 t=1

subject to inﬁ:l Vi=1,...,m and t=1,...,T (2.29)
i=1

Y zijp=1 Vj=1,...,n and t=1,...,T (2.30)

1=1

T
Y ziip=1 Vi=1l,...,mand j=1,...,n (2.31)
t=1

X binary.

In order to maximize the number of passengers on the pier gates, the problem would
have to be one of maximization, or ¢;;; would have to be replaced by —a;;; above. To
have a flight remain at the assigned gate for all time periods occupied by it, Schroder

suggests that constraint (2.31) should be changed to

T
D;; . :
> IEijt:T] Vi=1,...,m and j=1,...,n. (2.32)
t=1

However, problems exist with the current formulation. Equation (2.30) states that all
gates will have a flight assigned to it during all time periods, which is not necessarily
true. Equation (2.31) states that each flight is assigned to each gate sometime during

its entire airport occupancy time.

However, Schroder [1972] states that, “Each plane defined by one index being held

18



constant must contain a solution to the corresponding two-index assignment prob-

lem.” In formulating his intent, the following are redefined:
o G; = set of all gates feasible for assigning flight 2

e a;; = expected number of passengers handled on pier gates for flight ¢ assigned
to gate j € G;
1 if flight ¢ is assigned to gate j

¢ I,;=

0 otherwise.

It is assumed that there are no towing operations involved.

The objective is to find an assignment of each of the m aircraft to the n pier gate
positions, if possible, upon their respective arrival times. To minimize the number
of arriving passengers using hardstand gates, the model maximizes the number of
passengers using a pier gate. If a pier gate is not available, then the flight is directed to
a hardstand gate. Each aircraft must be assigned to some gate, pier or hardstand, and
no two aircraft can be concurrently assigned to the same gate. Borrowing Mangoubi
et al.’s [1985] Equation (2.6) (keeping the definitions of this equation the same), the

revised gate assignment problem is stated as follows:

Maximize Z = Z E ai;T;5 (233)

1=17=1

subject to Z z; <1 Vai=1,...,m (2.34)
JEG;

Y ozpi+zi; <1 Vi=1,...,m and j€G; (2.35)
heL(d)

X binary.
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The program consists of three stages. The first stage defines the time scale d; in this
study d is taken as 15 minutes. Arrival times are rounded down to the nearest quarter
hour, whereas departure times are rounded up. The duration of events was also set
at this stage, allowing the extra time needed for aircraft push-outs and push-ins.
The second stage lists the events in time order, with priority being given to the
shorter event in case of equal valued start times. The third stage assigns events
to gates according to the constructed priority scheme. A feasible solution always
exists. Branch-and-bound methods have been proposed for solving this problem

with considerable success.

It is noted that this model generates a near-optimal assignment of aircraft to gates.
It was developed in a short amount of time to accommodate Lufthansa at the new
Frankfurt passenger terminal. Because of its simple and fast operation, different
alternatives could be run. Extra buffer time on arrival and departure times could be

added and gates could be reserved for international or domestic flights.

Vanderstraeten and Bergeron [1988]

This study seeks to minimize the number of aircraft having to use the off-gate handling
area at Air Canada’s terminal at the Toronto International Airport. The term “event”
is introduced to take into account the various types of visits each aircraft may make

to the airport. Specifications relative to the gates are:
1. Gates are divided among services (domestic, international, overseas, ...),

2. "Size codes” exist for gates that cannot handle large size airplanes,
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3. ”Neighboring” restrictions exist for gates when some airplanes, while parked at

these gates, prevent the use of one or both adjacent gates, and

4. A time gap is needed for various activities after the departure of an aircraft

before the next new arrival.

To formulate the problem, the following are defined:

I = set of scheduled events to be assigned to the gates

G; = set of all gates accommodating the event associated with aircraft :

o A;; = set of all events present at the airport at the same time as event ¢ and

which might also be assigned to gate j
e HA; = arrival time for event : when the aircraft arrives at the gate
e HD; = departure time for event : when the aircraft leaves the gate

e B;j,, B;i = set of, respectively, all event-gate assignment combinations at the
airport which may restrict aircraft ¢’s assignment to gate j because of a previous

assignment at the right or left-handed side of gate j

1 if aircraft ¢ is assigned to gate 3
® Ty =

0 otherwise.

Associated with each event i € I is HA;, HD;, and a aircraft size code. An event
is considered assigned if there is a gate j € J; for which z;; = 1, otherwise it will

be considered as an off-gate assignment, directed away from the main terminal. The
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formulation of these events allows the model to run continuously over a period of one

day.

The four types of events that exist in this study are:

Short stay: Events where the duration of the aircraft stay is too short to allow
any towing operations beyond boarding and deplaning. HA; and HD; will be
equivalent to the arrival and departure times of the aircraft at the airport. In
the case that no gate exists that is common to the two services that the aircraft

will perform, the aircraft will automatically have to park at an off-gate area.

Long stay: Events where towing operations are allowed. Two events, ¢ and j,
are created. The first event has an arrival time of HA; and a departure time
H D; equivalent to H A;, plus the time required for deplaning. The second event
will have an arrival time of HD; minus the time required for boarding and a

departure time HD;.

No local traffic: Events where the aircraft arrives and either boards or deplanes
passengers, but never both. An example would be an international flight (i.e.
Paris-Montreal-Toronto) where local passenger traffic may not be offered in Mon-

treal. This event is usually equivalent to the short stay event.

Overnight: Events where the aircraft arrives at the end of the day and leaves the
following day. Two events, : and j are created. HA; is the arrival time and
H D; is equivalent to H A; plus the end of operations time required on an aircraft.

The next day, the departure time is taken as HD; and the arrival time is taken
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as HD; minus the boarding time and the “start of activities” time.

The objective is to minimize the number of off-gate events, similar to maximizing
the number of events assigned to gates. Each event must be assigned to at most one
gate, no two events may occupy the same gate, allowing the earlier event to fulfill its
occupation time. Also some aircraft types have neighboring gate restrictions. The

formal problem is posed as follows:

Maximize Z= Y ) i (2.36)
i€l jeG;
subject to ox; <1 Viel (2.37)
JEGI
zij+ >,z <1 Viel, jEG; (2.38)
keA;;
xi; + Z Tgp + Z :L'kq_<_l Viel, ]EG,(239)
(k,p)EB;;» (k.9)€Biji
X binary.

2.3 Quadratic Assignment Problem

The quadratic assignment problem (QAP) is a celebrated, notorious class of prob-
lems. The problem of assigning interacting, indivisible entities to mutually exclusive
locations has long been of interest to engineers, economists, and management scien-
tists. However, problems having greater than fifteen entities are and remain largely
unsolvable using the best available algorithms. As stated in Francis, McGinnis, and
White [1992], “One of the great ironies of discrete optimization is that QAP is so

simple to state but so difficult to solve.” Because of the vast literature on the QAP,
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this section is divided into the following subsections: alternative reformulation tech-
niques, branch-and-bound, heuristics, graph theoretical techniques, simulated anneal-

ing, tabu search, genetic algorithms, and survey papers on the QAP.

Before starting, let us define the following:

e p;. = flow from facility 7 to facility & - BT

e d;; = distance from location j to location ! v
o a;; = fixed cost of assigning facility ¢ to location 3 -
® b;jr; = interactive cost of assigning facility ¢ to location j when facility k is
assigned location [
1 if facility ¢ is assigned to location j
° —

Zi; =
0 otherwise

® Yiiki = Tij Tl 1<k and j 7é l. Equivalently,

1 if facilities ¢ and k are assigned to locations & and [ respectively

® Yijkl =
0 otherwise
miz; =1 for y3=1,...,m
ezreXy= 1T =1 for 1=1,...,m
beinary.
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2.3.1 Alternative (Re-)Formulations

Koopmans and Beckmann [1957]

This is the first published statement of the QAP. The objective is to locate plants to
sites based on the economic activity between each pair of facilities, minimizing the
total interaction cost between the facilities. A one-to-one assignment between plants

(facilities) and sites (locations) is required. This problem can be posed as follows:

m

Minimize Z Z Z Ep;kdﬂxij:ckl. (2.40)
T€Xa O im1k=11m1

Lawler [1963]

Two generalizations of the QAP are considered. The first method proposes to incor-

porate a fixed cost a;; of assigning facility ¢ to location j, leading to the following

formulation:

Z > pidjizizi. (2.41)

1j=1k=11=1

m m
Minimize Z = ZZ(I.'J':C,'J‘ +
€ Xa

m
i=1 j=1 i=
The second method discusses a multicommodity case of a flow of products A =
1,...,H. Accordingly, p% is the flow of each product h from facility : to facility

k and d;‘, is the distance related cost per unit flow of product h from location j to

location l. This leads to the problem formulation

m m H
Z E Z Z P?kd?zxijwkt- (2.42)

1=

m m m
Minimize Z = a;;Ti; +
finirmiz 22 it + )

=1 j=1 1

o
Fed
It

b
-
I

—
b
il

[

Lawler’s QAP formulations can be linearized by defining m* y;;, variables, as in-

troduced earlier. Considering (2.42) for example, the equivalent linearized integer
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program can be posed as follows:

Minimize Z =

> agmi + Z > Z Z SijkiYiskl (2.43)

=1 i=1j=1k=1I=1

NE

-.
1l
A

[

subject to Z Z E Z Yijkl = (2.44)
i=1j5=1 k=1 I=1
m,-j+xk1-—2y,~jk1 >0 i,j,k,l=1,...,m (2.45)
z € X4, y binary
p,‘kdﬂ if 2 ;é k or ] ;é l
where Sijkl =

a;; +pud;; if i=k and j=1

Graves and Whinston [1970]

This study proposed to incorporate into the objective function a cost component b;;
that would depend on a pair of assignments. Thus, extending (2.42), for example,

the problem becomes the following:

H
Z i5k1Tij Tkl
1 h=1

m m m m H
+ Z Z IS P?kdf'mjmkz- (2.46)

M3

m m
Minir}rx(ije Z Z ai;xi; + Z Z >

z€ =11

—

LTN
I
-
Eod

I

Pierce and Crowston [1971]

In this paper, Lawler’s [1963] form of the objective function (2.42) was considered
while incorporating Graves and Whinston’s [1970] component b;;;. The quadratic

assignment problem is then posed as follows:

m m m m m m H
Minimize Z = 3 aiZij + 2. 9.9, SijkiTijTh (2.47)
z€Xa i=1 j=1 i1=1j=1 k=1 Il=1 h=1
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Yh b + i phdly if i#£k or j#I

where s; =
ai; + pdy; if i=k and j =1

T

Three classes of branch-and-bound algorithms, single assignment, pair assignment,
and pair exclusion were then presented in great detail. The different algorithms
can give rise to the elaboration of different partial trees of solutions with differing
numbers of nodes. Since the time required to evaluate a single node in a tree can
differ among the algorithms, it is difficult to measure the relative efficiencies of the
different algorithms. In practice, these relative efliciencies may well turn out to be

highly dependent on the particular form of the QAP being solved.

Beale and Tomlin {1972]

This study sought to relocate departments of the British Civil Service, situated in
London, to other areas in Britain. The objective is to monetarily reduce the cost
of office accommodation and to socially provide employment in development areas.

The unique features in this study are:

1. Facilities m are greater in number than sites n, meaning that there might exist

a multiple assignment of facilities to each location.

2. Total employment at any site must fall between an upper and a lower bound if

any facility is to be located at this site.

Keeping all variables as before, the following are defined:

e F; = number of persons employed by facility 2
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e F; = number of facilities communicating with facility : = number of non-zero

pik, k=1,...,m

e U,, L; = respectively, upper and lower bounds on the employment at site j, in

case any facility is located at the site

¢ s; = nonnegative slack on the employment upper bound at site j

1 ifi< k, a;; 7& 0, and TijTp = 1
® Yijki =
0 otherwise

1 if any facility is located at j
[ ] é] =

0 otherwise.

Mathematically, the problem has mn + 2n + ﬂ%}l + m constraints, with the last
%m(m —1) being generalized upper bounding types of restrictions, and has nm+2n+

mnfm-1)(n-1) "‘"21 2=1) variables. The formal assignment problem is posed as follows:

m n m-1 n m m
Minimize Z= )Y ayzi;+ 9>, >, D Pikdiyijk (2.48)

i=1 j=1 =1 j=1k=i+1 i=1
l#3
m n m-1 n
subject to Z Zy;,’kz + Z Zyklij —Fzy; =0 i=1,...,m (249)
k=i+1 I=1 k=1 =1
7=1,...,n
ZE;J?,’j—Ujfj-f-Sj:O j=1...,n (2.50)
=1
(Lj—Uj)€j+stO Jj=1...,n (2.51)
YD vim=1 1<i<k<m (2.52)
j=1l=1
dozy=1 i=1,....m (2.53)
j=1
X, Y binary.
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Sharpe and Brotchie [1972]

This is a modification to the QAP model of Pierce et al. [1971], considering T' time
periods (t =1,...,T). Each variable is defined as before, except with the ¢ subscript

signifying the time period. The formal problem is posed as follows:

m T m m m m H T
YD aimie + 3903 DY phidi T (2.54)

Ms

Minimize Z =

=1 j=1t=1 i=1 j=1k=1 [=1 h=1 t=1
subject to E =1 Vjy=1,...,m and t=1,...,T (2.55)
me—l Vi=1,...,m and t=1,...,T (2.56)

x binary.

Foulds and Robinson [1976]

A graph theoretic formulation of a special case of the QAP is presented. For each
pair of facilities, a benefit from locating them adjacent to each other is known, and
the objective is to maximize the sum of benefits over all pairs of adjacent facilities.

Defining,

e G = (V,E) = a weighted graph with V as a nonempty set of vertices (facilities),

and E as a set of edges

w;, = closeness rating indicating the desirability of locating facility : adjacent

to facility &

N = set of pairs of facilities which must be adjacent in any feasible solution

F = set of pairs of facilities which must not be adjacent in any feasible solution

E' = {(i,k) : 2z = 1,(i, k) € E}
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and letting other notation be defined as before, the graph theoretic formulation is

given as follows:

Maximize Z = Z Zwikm;k (2.57)
(i.k) €E

subject to zi =1 (i,k)EN (2.58)
zx =0 (i,k)€F (2.59)

(V, N C E') is a planar graph

X binary.

Love and Wong [1976]

An integer programming formulation of the QAP is presented using rectangular dis-
tances. It is assumed that the m locations are given as points on a two-dimensional
plane and transportation costs are proportional to weighted rectangular distances.

Keeping all variables as defined before, we define the following:

e w;;. = nonnegative weight or flow between facilities : and %

the horizontal distance between facilities ¢ and k if ¢ is to the right of k£

[ ] Rik =

0 otherwise

the horizontal distance between facilities 7 and & if 2 is to the left of &
L ] L‘J e

0 otherwise

the vertical distance between facilities  and & if ¢ is located above k
[ ] Aij =

0 otherwise
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the vertical distance between facilities 7 and k if ¢ is located below k

[ ] Bij =
0 otherwise

o (a;, 3;) = location of facility z, fore =1,...,m
¢ s; = sum of coordinates of location 7, for j =1,...,m

e d; = difference of coordinates of location j, value of the first coordinate minus

value of the second coordinate

The formulation is in a two dimensional space, having m? variables and (m? + 3m)

constraints. The problem is posed as follows:

m—1 m
Minimize Z = Z wik(Rix + Lix + Aix + Bix) (2.60)
z € X4 i=1 k=i+1
subject to Riy—Li=a;—ar 1=1,....m—-1, j=14+1 (2.61)

Ar—By=06;—0r i1=1,....m—1, j3=1+4+1 (262)

ai-l-ﬂ,':z:ij,-j i=1,...,m (263)
j=1

a,-—ﬂ,-:Zdjxij = 1,...,m. (264)
=

Kaufman and Broeckx [1978]

Considering Koopmans and Beckmann’s QAP (2.40) with symmetric flow and dis-

tance matrices, the objective function may be rewritten as:
m m m
zZ = ) Y (30 padazi).
i=1 =1 k=1 1=1
Introducing m? continuous variables as

m m
wi; = x5 Y Y pikdiTi

k=11=1
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and defining
;= max {} > pud;,0} for i,j=1,...,m,
k=1 I=1

we can equivalently minimize the sum of the w;;’s. The problem, having m? + 2m

constraints, is posed as follows:

Minimize Z = ZZw;j (2.65)
i=1j5=1
subject to C;";.’l",’j + Z Zp;kdﬂ:ck[ —w;; < c?'j (2.66)
k=11=1

w,-jZO v i,j:l,...,m

ZEEXA.

Bazaraa and Sherali {1980]

Using the formulation in Pierce et al. [1971], it is shown by using a convenient

transformation that, by denoting

a;; + ay R h h z h gh h Jh
Cijkl = T———~ -+ Z(bijkl+bklij) + Z(pikdjl"‘pkidlj)
(m - l) h=1 h=1

i=1,....m—1; k=i+1,...,m; Lj=1,...,n,l#7

the problem can be equivalently stated as

m—1 m m m

Minimize Z = ZZ 2 z CijklTi; Tkl (2.67)

T € Xa i=1 j=1k=i+l I=1
l#£3]

Equation (2.67) is then reformulated into a linear mixed integer problem, having

m?(m — 1)2/2 new variables and 2m(m — 1) new linear constraints. The resulting
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formulation is as follows:

m-1 m m m
Minimize Z = Z z Z CiikiYijki (2.68)
1=1 j=1k=i4+1 I=1
1#5
subject to Z z Yijkl = (m - z')xij = 1, ceey I — 1, (269)
k=141 l[;l .
J

j=1,...,m

o
|

1 m

Zyijklz(k_l)xij k::2,...,m; l=1,,m(270)
1 j=1

ey

r€ Xy 0<y<1

Christofides, Mingozzi, Toth [1980]

Assuming p;; and dj; to be symmetric, the QAP can be formulated as follows:

Minirlr%ize Z = Z Z z Pikdj1Tij Tt (2.71)

Introducing n* y;;x; variables, an equivalent linear mixed integer program is posed as
follows:
m—-1lm—-1 m

Minimize Z= ) > > E PirditYijk (2.72)

i=1 j=1 k=i41l=j7+1
T+ T S Y+ 1 (2.73)

z € X4, Yy binary.

Frieze and Yadegar [1983]

Three linearized integer programming representations of the first QAP formulation

due to Lawler [1963] (Equation (2.41)) are presented. The first of these can be stated
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as follows:

Minimize Z = Z Z a;Ti; + Z Z E Zp,'kdﬂy,'ju (2.74)
i=1j=1 i=1 j=1 k=1 I=1
m

subject to Z Visi =2Zu 5,k I=1,...,m (2.75)
=1
Zy,-jklz:ckl L, kii=1,...,m (2.76)
1=1
Zyijklzxij ivjalz 1a"'1m (2'77)
k=1
Doy =1y Lik=1,...,m (2.78)
=1
Yijij = Zi5 zaJ =1...,m (279)

r€X4 0<y<L1.

In the second formulation, an equivalence can be shown by summing subsets of con-
straints within each of (2.75)- (2.78) so that the resulting constraints from (2.75)
and (2.76) are identical, and so are the ones obtained from (2.77) and (2.78). The

equivalent problem is posed as follows:

Minimize Z = Z }: a;;Ti; + Z Z Z Zpikdjly,'jkl (2.80)
=1 j=1 i=1 j=1 k=1 I=1
subject to Zzyijk( =mzy kiI=1,...,m (2.81)
i=1j=1
Zzy;jkl = mTqy Z,] = 1,...,m (282)
k=1l=1
Yiji; = Ty45 l,] = 1,...,m (283)

The third formulation adopts the form of a Lagrangean relaxation subproblem of the

first formulation. Keeping everything defined as before, let:
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¢ a;;; = a multiplier selected for constraint (2.75)

e [ = a multiplier selected for constraint (2.76).

The Lagrangean subproblem, that is equivalent to the original problem in this case,

is then defined by

Saga + 30,0 Pudityiju (2.84)

Minimize Z =

1

i=1 j=1 i=1 j=1k=11=1

subject to f: Yiik = Tij  4,5,0=1,...,m (2.85)
k=1
iyi‘jkl:xﬁ ,5,k=1,...,m (2.86)
Yijei = Yklij (2-87)
Yisij = Tij L,3=1,...,m (2.88)
z€ Xy, 0<5y<1,

where a;; = a;j + Z ik + Z Biki

k=1

pirdit = pirdit — ajr — Bit-

Assad and Xu [1985]

An equivalent mixed-integer reformulation of the QAP is presented as follows:

Minimize Z = EZa,-j:z,-j + ZEZZpgkdﬂyﬁkz (289)
i=1 j3=1 i=1 j=1k=1I=1

subject to ZZyk,,-,- =mzy VYV kl=1,...,m (2.90)
=1 j=1
Novim=zu YV ikI=1,...,m (2.91)
=1
Zy,,k,—xk; v i,k,l:l,...,m (292)
=1

xEXA, yZO.
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Johnston [1992]

A mixed integer linear reformulation of the QAP is presented. The continuous relax-
ation provides a tight lower bound on the optimal objective function value. These
bounds are shown to be at least as large as any alternate linear representation, and
moreover, the constraints of a majority of the previous linear reformulations can be

obtained by surrogating constraints of the following representation:

m m m m m m

Minimize Z = Z Z a;; ;5 + Z Z Zpikdjlyijkl (2.93)
i=1 3=1 i=1j=1k=11=1

subject to Zyi,-k; =zy VY 5,ki=1,...,m (2.94)
=1
Zyiﬂd:xk, A i,k,l=l,...,m (295)
i=1
Yijki = Yklij v iajakvl= 11"'am (296)
ze X, y>0.

2.3.2 Branch-and-Bound Techniques

The branch-and-bound technique is a popular exact solution procedure for the QAP.
Many researchers have developed such solution procedures for the QAP including:
Gilmore [1962], Lawler [1963], Gavett and Plyter {1966], Graves and Whinston {1970],
Pierce and Crownston [1971], Heider [1973], Kaufman and Broeckx [1978], Burkard
and Stratman [1978], Bazaraa and Elshafei [1979], Bazaraa and Sherali [1980], Christofides,
Mingozzi, and Toth [1980], Bazaraa and Kirca [1983], Rendl [1985], Kaku and Thomp-
son [1986], Roucairol [1987], Christofides and Benavent [1989], Carraresi and Malucelli

[1992a], and Rendl and Wolkowicz [1992].
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After applying a linearization technique, the problem is relaxed and solved as a con-
tinuous problem at node zero of the enumeration tree. Since the z;;’s are b‘inary, each
node, if necessary, is partitioned along two branches, namely, z;; = 0 and z;; = 1.
Each node represents a restricted subproblem that satisfies the conditions imposed on
all the branches on the chain from it to node zero. If the solution is infeasible, then
the node is fathomed. To complete the assignment, a feasible permutation of the
remaining m’, say, facilities on the remaining locations must be obtained. However,
in this enumeration, there can be as many as m’! solutions to enumerate in order to
complete the assignment. To avoid the enumeration of all such permutations, lower
bounds are computed. These lower bounds investigate whether there could exist a
solution having an objective value smaller than the existing solution. If it can be

proven that no such solution exists, then the current node can be fathomed.

The lower bound computation for any partial solution can be divided into the follow-

ing three components:
e () = interaction cost between the assigned facilities,

e C, = interaction cost between the assigned facilities and the unassigned facilities,

and
e (53 = interaction cost between the unassigned facilities.

The importance of lower bounds is tremendous, since these lower bounds can fathom
a great percentage of the enumeration tree, significantly reducing the overall compu-

tational effort.
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The literature on branch-and-bound procedures for the QAP differs mainly in the

computation of the lower bound. These include:

Single assignment algorithms: A particular facility is associated to correspond
to each level in the branching process. For each location, the distance from all
other locations is computed and arranged in a nonincreasing order. Facilities

are then assigned to each level in this order.

Pair assignment algorithms: Pairs of facilities : and k are assigned to locations
7 and l. If the flow from 7 to j and j to ¢ is symmetric, then there are ﬂ%_—ll
pairs of facilities and -"l(";—"ll pairs of locations. If the flow between the two
facilities is asymmetric, there are m(m — 1) pairs of f@piii@igs and locatior'ls.‘
Feasible assignments of these pairs does not guarantee a feasible solution to the
original problem. In initializing this process, one facility may be assigned to two
locations. To obtain a feasible assignment to the original problem, additional
constraints are added to the linear pair assignment problem. These constraints
ensure that if facilities ¢ and & are allocated to locations j and I, then the
remaining allocations of facilities z and k will involve locations j and I, and vice
versa. The solution technique proceeds level by level, where pairs of facilities are
fixed to pairs of locations. After a node is fathomed, a standard backtracking

technique is employed.

Pair exclusion algorithms: First proposed by Pierce and Crownston [1971], this
algorithm proceeds on the basis of a stage-by-stage exclusion of assignments

from a solution to the problem. As in the pair assignment algorithm, pairs
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of assignments are created and the additional constraints are imposed. If the
relaxed problem assigns infeasible pairs, then these assignments are infeasible in
the optimal solution. Hence, the search branches into as many nodes as there are
conflicting assignments, eliminating the conflicting assignments at each ensuing
node. Further branching is necessary if no lower bound that fathoms the node
is found or if the problem remains infeasible. If a feasible solution is obtained,
then the node is fathomed. At any stage, the procedure selects another node

with the lowest bound and proceeds as before, continuing until all nodes are

fathomed.

2.3.3 Heuristic Techniques

Recognizing that branch-and-bound techniques could only solve the QAP for up to
dimension size 15, heuristic techniques have been widely applied for solving larger
sized QAP’s arising in real practical problems. The literature on heuristic techniques
include the following: Steinberg [1961], Hillier and Connors [1961], Gaschiitz and
Ahrens [1968], Elshafei [1977], Burkard and Derigs [1980], Lashkari and Jaisingh
[1980], Bazaraa and Sherali [1980, 1982], Liggett [1981], Murtagh, Jefferson, and
Sornprasit [1982], Bazaraa and Kirca [1983], Burkard and Bonniger [1983], West
[1983], Picone and Wilhelm [1984], Sherali and Rajgopal [1986], Kaku, Thompson,
and Morton [1991], Carraresi and Malucelli [1992b], Hadley, Rendl, and Wolkowicz

[1992a, 1992b] and Chakrapani and Skorin-Kapov [1993].
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The heuristic procedures that have been developed for solving the QAP can be clas-

sified into three groups:

Construction: This scheme is an n-stage decision process for intelligently building
a solution from scratch. Facilities are selected and placed at locations sequen-
tially, proceeding until all facilities have been placed. Facilities with larger flows
are generally placed closer together while facilities with smaller flows are placed
further away. This procedure generally produces a fast solution, however, the

solution is not very competitive, until an improvement scheme is applied.

Improvement: This scheme begins with an initial solution and attempts to in-

crementally improve it. The most common improvement scheme is the pairwise

— e,

interchange process. Taking the construction scheme, it systematically improves
f.he solution, randomly or by some rule involving less computational effort, by in-
terchanging two pairs of facilities at a time to check for any improvement. Other
improvement schemes in the literature are considerably more complex than the

pairwise interchange technique, providing more complex heuristic techniques.

Examples include running exact algorithms on smaller sized subproblems.

Adaptation of Exact Schemes: By either prematurely terminating an exact so-
lution procedure, or else, by selectively adopting judicious steps within some
formal exact algorithm, this strategy attempts to prescribe heuristic solutions

with a reasonable effort.

A brief summary of some of the proposed heuristic techniques for solving the QAP
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are presented below.

Elshafei [1977]

In using a direct application of the QAP to a hospital layout, consisting of locating
19 facilities to 19 locations to minimize patient travel, a heuristic was developed. A
general construction scheme ranks the locations in ascending order by distance and
ranks the facilities in descending order by flow, and matches these ranked facilities to
the ranked location. In the improvement scheme, pairwise exchanges of assignments
are conducted, consisting of 2-way exchanges and 3-way exchanges. The heuristic led
to an improvement of 19.2% in the total patient travel. The layout was adopted by

hospital management.

Lashkari and Jaisingh [1980]

The algorithm presented here employs a sequential search technique, constructing a
matrix of lower bounds on the costs of locating facilities at different locations (p;cd;:).
Modifications of the elements of this matrix are made by solving a succession of
linear assignment problems. After all the elements of the matrix are determined,
a feasible assignment is obtained, resulting in an improved objective function value
of the QAP. The procedure is repeated until the desired objective function value
accuracy is obtained or if no improvement in the objective function value continues.
The algorithm produces near-optimal results and is independent of a starting solution.

The results obtained compare reasonably well with the best known solutions to date.
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Liggett [1981]

This paper employs a constructive technique to generate an initial solution to a prob-
lem, allowing the solution to be modified using a variety of heuristic improvement
procedures. The construction technique combines a general enumerative procedure
with probability theory to yield an implicit enumeration algorithm, modified to in-
clude a back-tracking strategy. A simple pairwise exchange is incorporated as the
standard improvement procedure. Good solutions were produced in very reasonable

time.

Bazaraa and Sherali [1982]

This study addressed the use of exact and heuristic cutting plane methods for solving
the QAP. The cutting plane methods used are intersection cuts and disjunctive cuts.
It is recognized that the use of exact cutting plane methods would require a huge
computational effort in finding the solution. Therefore, several heuristics are derived
from the cutting planes to produce optimal or good quality solutions early on in the
search process. Initial starting solutions were generated, then the heuristics further
improved upon the initial run solutions. The heuristic produced the best known

solution available in literature to date.

Murtagh, Jefferson, and Sornprasit [1982]

The procedure presented here consists of a simple scheme to get a good feasible start-
ing point, then solve the problem as a nonlinear (quadratic) program using MINOS,

ignoring the integrality conditions, and finally to convert the near integer solution
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into an integer feasible solution using a heuristic procedure. This heuristic procedure
obtains the ‘closest’ integer feasible solution by partitioning the variables into sets
determined by each facility, determining the largest variable in each set, ordering the
sets to be considered in decreasing value of this largest member, and then prescribing
the assignments. Computational tests show that the relative performance of this

method improves as the problem size gets larger.

Bazaraa and Kirca [1983]

A branch-and-bound algorithm is proposed by using the symmetric properties of
the problem to eliminate “mirror image” branches, thus reducing the search effort.
Several routines transforming the procedure into an efficient heuristic are imple-
mented, including 2-way and 4-way exchanges, selective branching rules, and the use
of variable upper-bounding techniques for enhancing the speed of fathoming. As an
exact scheme, the problem solved the 12 facility problem of Nugent et al. [1968] and
the 19 facility problem of Elshafei [1977]. As a heuristic, best known solutions were
produced for all well known problems, and produced improved solutions in several

cases.

Burkard and Bonniger [1983]

An algorithm is presented for the quadratic Boolean program, with a direct applica-
tion to the QAP. Cutting planes are obtained directly without the use of Benders’
decomposition by a linearization technique. This new heuristic needs a storage ca-

pacity of only 6n? 4+ 11n bytes, being independent of the number of iterations and
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cuts. Computational tests exhibited a stable behavior: independent of the starting
solution, the suboptimal solution deviated from the best known solution by less than
5% in the worst case, and in average, less than 1%. The best known values have
not been found by applying a fixed method just once, but turned out more or less

incidentally in a long series of tests with different methods.

West [1983]

The heuristic presented is intended for the many applications in which the QAP’s are
large (m > 15), but a good suboptimal solution is acceptable. An algorithm is devel-
oped to examine all possible pairwise exchanges among the assignments, after some
facilities have been located. Tests were conducted for assymmetric and symmetric

assignments.

Sherali and Rajgopal [1986]

This paper describes a flexible, polynomial-time heuristic procedure, effective with
respect to the quality of solutions obtained, efficient with respect to computational
effort, and capable of compromising between these two measures of effectiveness as
may be necessary. The parameters varied within the heuristic determine the size and
number of quadratic assignment subproblems that are solved exactly as well as the
number of loops through the improvement routines. They may be varied as desired in
order to trade-off between solution quality and computational effort. Computational
experience shows that solutions found were near to the best known solutions existing,

in much less computational effort than before.
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2.3.4 Graph Theoretical Techniques

A graph G is defined by the set (V, E), where V is a nonempty set of vertices and £

is a set of links. Each link has a cost of a;.

Christofides and Gerrard [1981]

The QAP is expressed in terms of graph multiplication of a.mﬂ?wgraph G{ with a
idis’ta.nce gra’ph'g‘l’. When GY is decomposed into simpler graphs, a general unified
procedure to calculate bounds is given, generating two previously known bounds as
special cases and also generating some new bounds. By enumerating all practical
decompositions, it is shown that no better bounds within this class can be computed

in reasonable time, other than the bounds presented herein.

Flood [1990]

This study presented algorithms for finding exact and approximate solutions for the
weighted feedback arc set problem. The objective was to determine a minimum-
cardinality set of arcs that breaks all cycles in a directed graph. This problem is
also that of finding a group rank ordering given the rank orders for each member of
a group. The algorithm developed by Edwards [1980] was utilized, given that this

problem is a special case of the QAP.

Assad and Xu [1992]

This paper shows that the QAP can be polynomially transformed into the quadratic
minimum spanning tree problem (QMST), which is therefore also an NP-hard prob-

45



lem. A lower bound is presented, followed by two exact branch-and-bound tech-
niques, utilizing this lower bound. Recognizing that solving this to optimality is
highly time consuming even for problems of moderate size, two heuristic algorithms
are presented. Computational results favor the heuristic methods much more than

the branch-and-bound scheme.

2.3.5 Simulated Annealing

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller [1953] were the first to de-
rive a Monte-Carlo method for simulating the collection of atoms in contact with a
heat-bath, achieving thermal equilibrium. A brief statement of the procedure is as

follows:

Given a configuration of the elements of the system, randomly displace the
elements, one at a time by a small amount, and calculate the resulting
change in energy, AE. If AE < 0 then accept the displacement and use
the resulting configuration as the starting point for the next iterations.
If AE> 0, then the displacement is accepted with probability P(AE) =
exp(—AE/kyT), where T is the temperature and k, is Boltzmann’s constant.
(This constant is not required when applying the Metropolis et al. algorithm

to combinatorial problems.)

This improvement procedure bearing some similarity to the biased sampling approach

has been termed simulated annealing. The Monte Carlo sampling aspect is incor-
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porated by comparing P(AFE) with a random variable drawn from a (0,1) uniform
distribution. This procesé continues until equilibrium is achieved. The temperature
is then lowered according to the annealing schedule and the procedure is repeated
until the system freezes. The annealing schedule allows the simulation to proceed

long enough for the system to reach steady state at each temperature.

Applying simulated annealing to the QAP may be an effective and efficient way
of solving this problem. If each feasible assignment of facilities to sites in a QAP
is viewed as a configuration of atoms in the mechanical system, and the value of
the objective function is viewed as the energy of the system, then determining the
least cost assignment of facilities to sites is analogous to finding the arrangement of
atoms in the mechanical system which results in the lowest energy state. As the
temperature decreases sufficiently, the random search process is frozen and the best

solution available thus far is the prescribed heuristic solution.

Given below is a discussion on the literature dealing with applications of simulated

annealing to the QAP.

Burkard and Rendl [1984]

This was the first article to apply the simulated annealing procedure to the QAP.
A heuristic is presented by specializing a simulated annealing procedure that is ap-
plicable for general combinatorial optimization problems to the QAP. Problems of
dimension up to 36 were tested. Overall, the procedure produced solutions within

one to two percent of the best known solutions within reasonable computation effort.
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By starting the procedure several times at different solutions, all known minimal

objective function values were reached.

Bonomi and Lutton [1986]

The idea of statistical mechanics is presented in applying it to the QAP. The for-
malization of this allows the exhibition, in the limit of large problems, of asymptotic
behavior of the optimal value of the cost function. The temperature is used as an
external parameter which controls fluctuations of the random walk, among the set of
admissible solutions, generated by the simulation. It is shown that a very modest
cost saving can be obtained for small systems. But this economy disappears quickly

as the dimension of the problem increases.

Wilhelm and Ward [1987]

Stating that Burkard and Rendl [1984] did not provide very many details regard-
ing the settings of the control parameters used in the algorithm, an algorithm was
developed, performing better than that of Burkard et al. [1984]. The motivation
was to avoid excessive run times, particularly at low temperatures when the system
is “freezing-up”. Likewise, if the desired number of acceptances of location inter-
changes is not achieved at three successive temperatures, the system is considered
frozen and the last, least cost facility assignment is considered the best facility loca-
tion assignment. Problems of up to dimension 100 were tested, and a larger number
of runs were made for the simulated annealing algorithm under different combina-

tions of parametric values. However, it is concluded that simulated annealing is a
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promising approach for solving combinatorial optimization problems like the QAP,

warranting more research.

Connolly [1990]

A much-improved simulated annealing scheme is presented, performing well on a
range of examples, finding improved solutions for several of the largest problems
available in literature, requiring only modest amounts of computational effort. This
much-improved algorithm controls how the attempted assignments are selected and
how the temperature is determined and reduced. Problems of dimension up to 100
were tested, comparing results from Nugent, et al. [1968], Reeves [1985], and Wilhelm

and Ward [1987]. From this study, four conclusions were reached:
e Simulated annealing is an extremely efficient heuristic for the QAP.

o A sequential generation of neighbors is superior to a random selection method

in an annealing scheme.

o There exists a fixed temperature at which the performance of an annealing

scheme is optimized.

A scheme incorporating these ideas has been written which performs extremely well,
finding improved solutions for several of the largest problems in the literature in only
modest amounts of CPU time without the need to “tune” the system for each new

data set.
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2.3.6 Tabu Search

As stated in Glover [1989], “Tabu search is a strategy for solving combinatorial opti-
mization problems whose applications range from graph theory and matroid settings
to general pure and mixed integer programming problems.” Tabu search was intro-
duced as a technique to overcome local optimality with the idea of forbidding some
search directions (moves) at a present iteration in order to avoid cycling. To date,
tabu search techniques applied to the QAP have obtained the best results reported

in the literature.

We present a brief overview of the tabu search as stated in Glover [1990]. The

following is defined:

¢ c(z) = objective function, may be linear or nonlinear, and may also incorpo-
rate penalty function components to drive toward satisfying certain types of

constraints.

e r € X7 = constraining conditions which will be maintained at each step of the
search, and in many contexts of interest, will require specified components of

to receive discrete values, except in special strategic variations.

e s: X7(s) = X7 = a move s that leads from one trial solution to another being

viewed as a mapping defined on a subset X(s) of Xr.

¢ S(z) = a set consisting of the moves s € S that can be applied to z; i.e. S(z) =

{s€ S:z € Xr(s)}. Hence, Xr(s) = {z € Xr:s € S(z)}.
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o T = set of tabu moves, used as a starting point.
e OPTIMUM = evaluator function.

The optimization problem is presented as:

(P) Minimize c(z):z € Xr in R,.

The following is an algorithm for a simple tabu search:

1. Select an initial z € X7 and let z* := z. Set the iteration counter £ = 0 and

begin with T empty.

2. If S(z) — T is empty, go to Step 4.
Otherwise, set k := k41 and select s € S(z)—T such that sy(z) = OPTIMUM(s(z) :

s€ S(Xr)-=-T).

3. Let z := sx(X7). If c(z) <c(z*), where z* denotes the best solution currently

found, let z* : z.

4. If a chosen number of iterations has elapsed either in total or since z* was last
improved, or if S(z) = @ upon reaching this step directly from Step 2, stop.

Otherwise, update T' and return to Step 2.

The following is a brief summary of literature that applies the tabu search technique

to the QAP.
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Skorin-Kapov [1990]

This was the first instance of applying the tabu search to the QAP. A heuristic
procedure was developed for tabu-navigation, consisting of a construction phase to
develop an initial solution to the QAP, and an improvement phase. The method
implemented is flexible in that it allows the user to interact and change the parameters
(tabu list size, iteration limit, a search diversification parameter, and the number of

new starting solutions) during the run.

Results indicate that good tabu list sizes increase with the dimension of the problem.
Problems of dimension 42 through 90 were tested, delivering, in some cases, better
solutions than the simulated annealing technique, but requiring greater effort as the
problem size increased. Nonetheless, the method appeared to be very efficient when

tested on the standard problems of Nugent, et al. [1968].

Skorin-Kapov [1991]

This paper presents another tabu-search heuristic algorithm for the QAP. The dis-
tinct feature of the method is its continuous learning and dependence on past searches,
using the knowledge about good solutions previously encountered in the search pro-
cess. It is a refinement of the previous tabu search adaptation by Skorin-Kapov [1990]
in three directions. First, the evaluation function is modified by incorporating the
idea of target analysis to guide the nonimproving moves. Second, the possibility to
change the definition of the neighborhood where the evaluation function operates at

different stages in the search process is provided. Third, the tabu list size is changed
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dynamically by incorporating dynamic gaps in it corresponding to deleting the tabu
status of a subset of moves at certain iterations. The algorithm was found to perform

well for larger size problems.

Taillard [1991]

The tabu search has been applied to the QAP by performing multiple solution passes
for each problem, starting from different initial solutions and modifying parameters
between the solutions. This paper proposes a more robust form of the tabu search
for the QAP by fixing its parameters a priori, leaving a minimum number of free
parameters and being very easy to implement. The method is efficient and succeeds
in obtaining sub-optimal solutions for problems up to size 64. However, the search
for sub-optimal solutions for larger size problems must be done by other procedures,

using more elaborate concepts of the tabu search.

Chakrapani and Skorin-Kapov [1992a]

The purpose of this paper was to apply a Boltzmann machine, a connectionist model
that uses simulated annealing, and a related connectionist model in which the escape
from local optima is performed in a deterministic way using tabu search to the QAP.
The paper determined that the deterministic approach was an improvement upon
a Boltzmann machine. Further analysis led to a new, improved, massively parallel

computational model based on connectionist architecture.

The model enables simulated annealing to obtain starting solutions, then makes use

of tabu search to improve the resulting upon those solutions, finding better solutions
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to larger size problems. The tabu search is favored over the stochastic simulated

annealing procedure.

Chakrapani and Skorin-Kapov [1992b]

This paper presents a heuristic algorithm based on a new, efficient tabu search strat-
egy for the QAP, with special emphasis on applicability to larger problem sizes, and
provides a massively parallel implementation of this strategy. The algorithm, known
as Par_tabu, was developed to perform effectively while keeping the number of itera-
tions relatively small. It uses a preliminary phase that terminates quickly, identifying
the best solution found thus far. An intensification phase then focuses the search
around the current best solution found until no improvement is obtained for a fixed
number of iterations. Then long term memory is invoked to diversify the search to-
ward unexplored regions. At the same time, a new intensification strategy based on
intermediate term memory to restrict neighborhoods is proposed. This is known as

Augmented Par_tabu.

The computations were run on the Connection Machine system CM-2, a massively
parallel machine. The advantages of the CM-2 is that the benefits increase with
the dimension of the problem. QAP problems of dimension between 42 and 100
were tested. The tabu search strategy proved to be very efficient in terms of solution
quality, obtaining best known or close to best known solutions for problems of sizes up
to 90, and improved upon known solutions for problems of size 100. The Augmented

Par_tabu resulted in further improved solutions to larger problems, at the cost of
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performing more iterations. The increase in time per iteration was found to be a

logarithmic function of the size of the problem.

2.3.7 Genetic Algorithms

Genetic algorithms are a family of parallel, randomized-search optimization heuris-
tics which emulate biological natural selection on a population of feasible solutions.
It is widely recognized that genetic algorithms are not well suited to performing
finely-tuned local search. Like natural systems, genetic algorithms progress by virtue
of changing the distribution of high performance substructures in the overall pop-
ulation where individual structures are not the focus of attention. Once the high
performance regions of the source space are identified by the genetic algorithm, it
may be useful to invoke a local search routine to optimize the members of the final

population. Genetic algorithms contain the following features:

1. One or more “populations” of feasible solutions.

2. A mechanism for generating new feasible solutions by combining features from

multiple previously-known solutions (breeding or reproduction).

3. A mechanism for generating a new feasible solution by a random perturbation

of a single previously-known solution (mutation).

4. A mechanism for selecting individual solutions from the population(s), giving

preference to those with better objective function values (selection).

5. A mechanism for removing solutions from the population(s) (culling).
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The basic flow of any genetic algorithm implementation is given by the following:

1. Create an initial population or sub-populations of solutions, usually feasible and

random.
2. Repeat:

(a) Select parents.
(b) Breed offsprings, and add them to the population.
(c) Mutate certain members of the current population.

(d) Cull certain members of the current population.
3. Terminate when set criteria is met.

The genetic algorithm has proven to be most effective on nonconvex optimization
problems for which it is relatively easy to assess the quality of a given feasible solution,
but difficult to systematically improve solutions by deterministic iterative methods.

Most NP-complete combinatorial problems, such as the QAP, fall into this category.

The following is a brief summary of the literature that applies genetic algorithms to

the QAP.

Huntley and Brown [1991]

This study describes a heuristic procedure, combining a parallel hybrid of simulated
annealing and the genetic algorithm, with its intended use on parallel computers.

The genetic algorithm used is specifically adapted to the QAP through its crossover
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operator and parent selection procedure. The crossover operator inserts a permuta-
tion of one parent directly into the data structure of its mate. The parent selection
procedure is biased toward selecting very good solutions in the population, which
drives the algorithm more rapidly in the direction of superior candidate assignments.
In a similar fashion, the simulated annealing portions were designed to account for

the quality of the solutions passed by the genetic algorithm.

Computational results show that the algorithm is not as eflicient for problems of
smaller size. However, large-scale problems show the algorithm to be superior. The
authors conclude that additional work needs to be conducted for improving the algo-

rithm.

Tate and Smith [1992]

An investigation was conducted using a particular genetic algorithm for the QAP.
The motivation of using the genetic algorithm was to improve upon the heuristic
techniques already applied to the QAP. It was found that the genetic algorithmic ap-
proach yielded solutions comparable to those of the best previously reported heuristics
without extreme computational requirements, where the best solutions found over a
moderate number of test runs were invariably within a few percentage points of these
best known solutions. There appears to be strong advantages to encodings and gen-
eration operators that are as problem specific as possible, and that preserve feasibility
in all cases. It is concluded that the extension of the genetic algorithmic approach to

more complex assignment and placement problems will also be effective and practical.
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2.3.8 Survey and Application Papers

Survey papers on the QAP have basically presented other authors methods of lin-
earizing the QAP, techniques for solving the QAP, and in some cases, presenting a
new technique themselves. Application literature on the QAP have taken a devel-
oped technique, modified it, and applied it to a real world problem. Related papers
include: Hanan and Kurtzberg [1972], Foulds and Robinson [1976], Geoffrion and
Graves [1976], Sahni and Gonzalez [1976], Burkard and Fincke [1983], Heragu and
Kusiak [1988], LaPorte and Mercure [1988], Burkard {1990], and Cohoon, Hegde, Mar-

tin, and Richards [1991]. The following presents summaries on the survey literature.

Nugent, Vollman, and Ruml [1968]

This paper has turned out to be one of the classic papers on the QAP. Solution
techniques on the QAP, to date, are presented. But what makes this paper a classic
is the published set of test problems of sizes 5, 6, 7, 8, 12, 15, 20, and 30. Since 1968,
most authors have used this data to compare their algorithm against other competing

procedures.

Parker [1976]

This study examined the QAP heuristic approaches to date. Four “construction” and
nine “improvement” algorithms were selected for investigation. The construction
procedures were chosen primarily to evaluate the effects of the quality of starting
solution on the improvement methods. The improvement methods were selected

to test some basic strategies of pairwise-interchanges of components. Seventy-five
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problems were generated and tested, comparing them with respect to the produced
solution quality and CPU run-time requirements. A construction approach due to
Graves and Whinston [1970] produced the best results, both when used to generate
starting solutions for the improvement methods and when evaluated on its own merit

against the improvement methods using other construction approaches.

Burkard and Stratmann [1978]

A survey of the numerical behavior of different algorithms for solving the QAP is
presented. After a discussion of branch-and-bound algorithms, modifications by dif-
ferent researchers are presented. Finally, tables are presented based on the different

numerical results from these different algorithms and modifications.

Brujis [1984] -

This paper compares the heuristic solutions of a QAP of dimension size 19 of Elshafei
[1977], Lashkari and Jaisingh [1980], and Murtagh, Jefferson, and Sornprasit [1982].
The author shows that the concept of a ‘good initial solution’ is misleading in the
way that the quality of the initial and final solution prove to be rather weakly (or
even negatively) correlated. A simple, but broad and randomized search results in
significantly better solutions, while simple statistical aids provide an estimate of the
quality of these solutions. He concludes, based on Elshafei [1977], that when solving
a QAP heuristically, it is advisable to continue the search until a statistical evaluation
of the results does deliver a satisfactory confidence interval for the value of the optimal

solution.
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Burkard [1984]

This paper discusses which vauthor, to date, presents the smallest linearized reformu-
lation of the QAP, presents the use of branch-and-bound techniques, remarks on the
need for good heuristics, and on the use of graph theoretical techniques use in solving

a special case of the QAP. The idea of simulated annealing is also presented.

Finke, Burkard, and Rendl [1987]

Many applications of the QAP are discussed along with what different researchers
have done in the actual context of applying it to real world problems. Integer
programming formulations, solution methodologies such as exact branch-and-bound,
heuristic, and eigenvalue approaches are presented. It is concluded that there exists
no common trend for the different types and sizes of problems, but probably, this is

simply a characteristic of a combinatorial problem of such extreme difficulty.

Kusiak and Heragu [1987]

The linearization techniques discussed above are presented in this review in a much
scaled down version, stating only the major developments. Computational complex-
ity 1s shown to grow, almost exponentially, as the problem size increases. Algorithms
such as branch-and-bound, cutting plane, construction, improvement, hybrid, and
graph theoretic are summarized. A table is presented showing the computational

times on selected algorithms.
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Burkard [1990]

Just as in Finke, Burkard, and Rendl [1987], many applications of the QAP are
presented in an updated version which includes simulated annealing. Again, no

common trend exist for the size and type of problems.

Francis, McGinnis, and White [1992]

In this second edition of their book, a section is presented on the QAP. Different
subsections present the problem formulation and various construction heuristics, im-

provement heuristics, and simulated annealing approaches.

Chapter 3 presents a quadratic model with set packing types of constraints for the
gate assignment problem to minimize total passenger walking distances subject to
airport/airline regulatory constraints.. Preprocessing steps for model refinements,
along with a linearization scheme are also presented. Tasks for exploring possible

solution techniques are outlined in Chapter 4.
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Chapter III

Model Construction and

Preprocessing Routines

This chapter presents a model formulation to minimize total passenger walking dis-
tances. We start with the model assumptions and a description of the problem,
followed by a formulation of the model. Preprocessing routines and a linearized re-
formulation of the problem are also presented. Our analysis is based on the literature

dealing with gate assignments and the practice at USAir.

In particular, our model follows the same concepts as in Mangoubi and Mathaisal
[1985]. However, we present the constraints differently, avoiding the inclusion of
redundant constraints and variables more directly, and we also consider the walking
distances of transfer passengers more accurately by explicitly modelling their arrival

and departure flight locations via a quadratic term. Additional features such as
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neighboring restrictions, the assignment or preclusion of a pair of flights to neighboring

gates when enforced, and customs gate requirements are also incorporated.

Throughout this chapter, an example consisting of 8 flights and 4 gates will be uti-
lized. Figure 3.1 displays the layout of the terminal. Table 3.1 represents the partial
distance matrix, assumed to be symmetric, between the 4 gates, check-in, and baggage
claim. The diagonal entries are equal to zero. Table 3.2 presents the flight schedule
which includes the cities each flight arrives from and departs to, time of arrival and
departure, flight numbers, and the type of aircraft for each flight. Table 3.3 contains
the data regarding transferring passengers between the arriving and departing flights.
(Note: CI denotes Check-in, BC denotes baggage claim, I denotes International and

D denotes Domestic.)

CHECK-IN BAGGAGE CLAIM

TERMINAL

Gl G2 G3 G4

Figure 3.1: Terminal Layout

Table 3.1: Distances Between Gates, Check-In, and Baggage Claim

Gl G2 G3 G4 ClI BC
G1 200 450 700 200 700
G2 250 500 200 450
G3 250 450 200
G4 700 200
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Table 3.2: Flight Schedule

CITY CITY | TIME OF TIME OF | FLIGHT FLIGHT | AIRCRAFT

FLIGHT { FROM TO ARRIVE DEPART #IN # OUT SIZE

F1 FRA MIA 12:00 13:00 100 101 737

F2 SEA IAD 12:15 13:00 200 201 757

F3 HNL BOS 12:45 13:15 300 301 762

F4 LAX RDU 13:00 13:15 400 401 737

F5 DEN FRA 13:30 14:30 500 501 74L

Fé RDU ORD 13:45 14:30 600 601 737

F7 MEM BWI 13:45 14:30 700 701 737

F8 ATL AUS 14:00 14:30 800 801 737

RESTRICTIONS: Gates 1,2 restrict 757’s parking next to each other
Gates 1,2,3 restrict the occupancy of large size aircraft
Gate 4 is the customs gate

Table 3.3: Passenger Distribution Between Flights, CI, and BC

To Flights
Fi F2 F3 F4 F5 F6 F7 F8 CI BC
F1 10 5 7 8 10 6 20 30 6
F2 7 10 4 2 3 7 10 5 8
F3 2 3 7 8 9 5 6 10
F4 6 7 5 3 1 7
From F5 3 1 7 6 8 2
Flights | Fé 8 7 5 9 9
F7 8 15 4 6 20
F8 10 3 4 7 9
Cl 12 15 17 14 12 11 21 5
BC

This chapter is divided into the following sections: assumptions, definitions, model

formulation, preprocessing routines, and the linearized reformulation of the model.

3.1 Assumptions

¢ Terminal layout remains constant (i.e. no changes).

o Check-In and Baggage Claim are fixed positions.
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No changes can be made to the flight schedule and fleet assignment.

The flight schedule is sorted by order of departure times, with ties broken using

arrival times.
At least one gate is available upon arrival for every flight.
Each flight has a 15 minute buffer added onto arrival and departure times.

Distance from gate g, to gate g, is the same as from gate g, to gate g;. (The

distance from gate g to g is zero.)

Passengers may transfer from flight b to ¢ at the same gate g, given flight b’s

departure time occurs before flight ¢’s arrival time.

Transfer passengers are subject to geographical considerations (i.e. a passenger
flying from Miami to Pittsburgh will most likely transfer to a flight departing

northbound, like Boston, versus southbound, like Memphis).
Transfer passenger waiting times do not exceed three hours.
No transfers exist from:

1. Check-In to Baggage Claim,
2. Baggage Claim to Check-In,
3. Baggage Claim to Flights, and

4. Flights to Check-In.
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3.2 Definitions

The objective is to assign aircraft to gates such that the total passenger walking
distance is minimized. With each aircraft to gate assignment, a fixed cost is incurred.
A prohibitively large neighboring cost can also be used to disallow the assignment of
an aircraft to a gate when another conflicting aircraft is assigned to a neighboring
gate. (For example, US Air adopts the practice of restricting large size aircraft from

parking next to each other.)

Consider the following definitions:
e m = total number of flights (: = 1,...,m)
e n = total number of gates (j =1,...,n)

e arrtime;, deptime; = respectively, the arrival and departure times for flight ¢

G; = set of all gates feasible for assigning flight : (: = 1,...,m)

Siey ¢ = 1,...,Q; = maximal sets of flights feasible for gate ; which overlap
with respect to airport occupancy times, so that at most one flight from each

such set can be assigned to gate j ( = 1,...,n)

4

1 if flights ¢ and & overlap in airport

6;‘]; = an indicator function = < occupancy time

0 otherwise

\

p? = the number of passengers arriving on flight z and proceeding to baggage-claim
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p¢ = the number of passengers departing on flight ¢ directly after check-in (i =

1,...,m)

pir = the number of transfer passengers from flight i to flight & (possibly, pi #

pei) (Lk=1,...,m, i £k)

d} = walking distance from gate j to the baggage-claim area (j = 1,...,n)

d - . . . . -
dj = walking distance from the check-in to gate j (j = 1,...,n)

d;; = walking distance for passengers transferring between gates j and ! (dj; = dy;

forj#land dy=0forj=1)(j,l=1,...,n)
a;; = direct cost of assigning flight i to gate j (: = 1,...,m, j =1,...,n)

b;:jx1 = cost restricting the simultaneous assignment of flight z to gate j and flight
ktogatel(z=1,.... m—1,k=141,...,m, 5,1 =1,...,n,7 #1). (This cost is
typically used to model the physical regulatory pairwise assignment restrictions
discussed earlier, by setting it at a relatively large value in such cases, and at

zero otherwise.)

1 if flight ¢ is assigned to gate j
Decision Variables: z;; =
0 otherwise

fore=1,....m,y=1,...,n.
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3.3 Model Formulation for the Gate Assignment Problem

(GAP)

The objective is to minimize the total walking distance for

e transfer passengers from flight i at gate 5 to flight k at gate I, V (3, 7, k,1), 7 € Gi,

le G, i#k, j#1
e arriving passengers from flight 7 at gate j to baggage claim, V (3,j), 7 € G;, and
e departing passengers from check-in to flight i at gate j, V (¢,7), 7 € Gi,
plus the
e cost of assigning flight ¢ to gate j, V (¢,7), j € G, and the

e interaction cost for simultaneously assigning flight ¢ to gate ;7 and flight & to gate

l,V(l,],k,l),]EG,,IEGk,i#k,]#l

The formal gate assignment problem is posed as follows:

GAP: Minimize f(z) = E Z [a;; + (pid} + P:'id;'l)]xij (3.1)

=1 jEG;
m—1 m

+ 22 2 X bk
=1 JEG, k=141 1€G,

15 b6 =1
+ (pix + pri)dit | zijzri

subject to Y =z;=1 Vi=1,...,m (3.2)
JEG:
ZZI),’jSl VQ'—"—].,...,QJ', j:l,...,n (33)
1€5jq
X binary. (3.4)
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The objective function (3.1) is comprised of two terms: (z) a linear term representing
a fixed assignment cost and a cost of passengers walking between their flights and the
check-in and baggage-claim areas, and () a quadratic term representing pairwise as-
signment costs and the cost of transfer passengers walking between one flight location
and another. Note that the cost terms a;; and b;jx; are assumed to be appropriately
scaled so as to be commensurate with the walking distances, by dividing them with
a factor that reflects the cost per unit distance. Constraints (3.2) are partial as-
signment constraints, and reflect the restrictions that each aircraft must be assigned
to some gate. Constraints (3.3) are set packing types of restrictions that effectively
prohibit two overlapping aircraft from being assigned to the same gate concurrently.

Before proceeding, let us make some remarks pertaining to the model GAP.

Remark 1: In specifying the sets G; of admissible gates for each flight 2, consid-
eration is given to the size of the aircraft and the volume of passengers being
handled by flight :, and whether flight ¢ is an international flight (thereby requir-
ing access to customs facilities), or whether it is restricted to use only designated

“market gates” due to the city it is arriving from or departing to. O

Remark 2: For passengers transferring from some flight 2 to flight k, one may wish
to reflect in the model the fact that it is relatively more important to have these
flights assigned closer to each other if the time interval between the arrival of
flight ¢ and the departure of flight k is smaller, than if this difference is larger,
given the same number of interchanging passengers. Accordingly the distance

terms in the objective function can be replaced by average required transfer

69



velocity terms, with the fixed and quadratic assignment cost terms also being
scaled by dividing them with a measure of cost per unit velocity. A suitable

weighted average of these two objective functions can also be adopted. O

3.4 Preprocessing Routines for Developing the Model

This section presents routines for preprocessing constraints (3.2) and (3.3). After
reading the flight schedule and the passenger distribution, the first pair of routines
determine gate feasibilities and reduce the set of feasible assignments, thereby gen-
erating the sets G; (¢ = 1,...,m). The third routine then generates the sets .S;,
(¢=1,...,Q;), (j =1,...,n). While the size of the problem is reduced, the tight-
ness of the continuous relaxation of the problem is not worsened. For simplicity, one

such model can be developed for each “hub” separately.

Flight Information Routine

This routine reads in the flight schedule. The information collected includes the
arrival and departure cities, times, and flight numbers, and the aircraft size. Within
this routine, a time of 15 minutes is subtracted from the arrival time and is added to

the departure time to allow for early arrival, late departure, and push-out durations.
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Passenger Distribution Routine

This routine reads in the passenger distribution data. The information collected in-

cludes the number of passengers arriving, departing, and transferring between flights.

START

i=1

t=1+1

Flight Y Gi = {j}
preassigned to where j = the
one gate 37 preassigned gate

G =
{set of admissible
customs gates}

International
restrictions?

Gi =
{set of admissible
market gates}

Market

restrictions?

—

)

{set of admissible
gates}

END

Figure 3.2: Gate Feasibility Routine
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Gate Feasibility Routine

Figure 3.2 provides a flow chart for determining the set of feasible gates for each
flight. Flights that are preassigned to one gate, or special flights such as international
flights and market restriction flights (flights that are arriving from or departing to
certain restricted cities) are taken into account separately due to airline managerial
procedures. For all other flights, we iterate through the set of gates, and if such a
flight : is feasible for a gate j, we set G; «— G; U {j}. Table 3.4 presents the set of
constraints (3.2) for the example problem that would be generated by utilizing this

routine.

Table 3.4: Constraint (3.2) for the Example Problem

Flight | Constraint
1 T14 = 1
Toy + Taa + Toz + Ty =1
T3 + T3z + Taz + T34 = 1
Tqy + Ty2 + Tyz + T4q = 1
Tyq = 1
Ze1 + T2 + Tez + Tea = 1
T+ T2+ T+ =1
Tg1 + Ty + Tez + Tag = 1

OO =3 O Ot W W N

Feasible Assignment Reduction Routine

This routine fixes flight ¢ to gate j if G; = {j} is a singleton, and accordingly elim-
inates this gate from being assigned to another flight that overlaps with flight 7 in
airport occupancy duration. Successive reductions of this type are conducted until a

reduced problem having | G; | > 2 V ¢ results. Figure 3.3 gives a self-explanatory flow
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i=1+1

Suppose G; = {j}
Set k=1

If bijk1 = o0, set
Gr — G = {1}

\i‘-'—‘m?

k > 1 & arrtimex < deptime;
or
k <t & deptime,, > arrtime;?

Gr — G ~ {j}

=k+1

STOP;

infeasible

problem.

Figure 3.3: Feasible Assignment Reduction Routine
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chart for this procedure and Table 3.5 presents feasible assignments for our example

problem.

Table 3.5: Constraint (3.2) Revised for the Example Problem

Flight | Constraint
1 T14 = ].
2 o1 + To2 + Ta3 =1
3 T3 + Z32 + 33 =1
4 ZTgy + Ty2 + Ty3 =1
5 I54 = ].
6 Ze1 + Te2 + Te3 =1
7 T+ T2+ T73 =1
8 Tg1 + Ts2 + Ts3 =1

Gate: 1,2,3 [11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15 14:30 14:45
2 - _l
L __l
3 I"' ]
C _J
[ ]
4 C ]
6 F° 1
L |
7 C |
L _I
8 [ 1
- _
[
Gate: 4
1 C ]
L_ il
5 — |
I_ -

Figure 3.4: Diagram Displaying the Overlapping Flights By Gate
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Routine for Generating the Sets S;,, ¢=1,...,Q;,7=1,...,n

Figure 3.4 illustrates for our example how the flights assignable to each gate overlap in
airport occupancy time. Flights 1 and 5 can only be assigned to gate 4, while the rest
of the flights are all feasible for assignment to gates 1, 2, and 3. Figure 3.5 provides
a flow chart for generating the sets Sj;, ¢ = 1,...,Q; for each gate j = 1,...,n.
The routine explores each gate separately, examining only the flights feasible for
assignment to this particular gate. For k > ¢, due to our ordering of the flights,
flight &k overlaps flight ¢ when flight &’s arrival time is strictly less than flight i’s
departure time. If this condition is true, flight k£ is added to S;,. We make two
observations. First, the required sets S;, all correspond to overlapping flights ¢ at
some time, deptime;, where j € G|, since for any other time, we can increase the
time and still have the same overlapping pattern continue with respect to the next
departure time. Hence, this motivates our arranging the flights in increasing order of
departure times. Second, if overlapping sets are constructed for each distinct time,
deptime;, in this increasing order of departure times, then each set that is not a subset
of the previous set gives a new nonredundant constraint. This follows since by the
nature of the construction, no set can be a subset of a following set, and any set that
is a subset of an earlier set is also a subset of the previous one. Hence, when any
overlapping flight set S;, is constructed, it is inspected to verify whether or not it is
a subset of the previous set, Sj(,_1) for ¢ > 0, or if only one flight exists in the set. If
this condition is true, then the current set S;, is rejected. Otherwise, it is accepted

for constructing a new constraint (3.3). Once a maximal set (1,...,k), say, has been
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constructed, any new set must contain flight £ + 1 or higher.

Table 3.6 presents the set of constraints (3.3) for the example problem that would be

generated by utilizing this routine.

START
ji=1 END
Y
i=q=(] N
deptime, =0 j=J3+1
Sjo=19
t=1+1
N
|Gi|=1a Y Y

deptime; = deptime,_,,,
or j € Gi

\i:m? Qi=Q“1

¢g=q+1

k=k+1

I Gk = 1)
arrtime; > deptime;
or
7€ Gk?

Siq < Siq U{k}

Figure 3.5: Routine for Generating the sets S;;, ¢ =1,...,Q; for all gates j =1,...,n.
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Table 3.6: Constraint (3.3) for the Example Problem

S; Constraint (3.3)
S| z21 + 2+ <1
S12 | ze1 +xri+ 181 <1
So1 | T2+ T3+ 742 <1
Sy | Tez + T72 + x82 < 1
S31 | Toz + Zaz + 743 < 1
Saz | ez + T73 + 283 < 1

3.5 Linearized Reformulation of the Model

In reformulating the QAP, we transform the quadratic objective function into an
equivalent linearized form. We present three particular equivalent, linearized refor-
mulations of the gate assignment problem CAP by suitably adapting the first-order
Reformulation-Linearization Technique (RLT) of Sherali and Adams [1989, 1990].
(Also see Adams and Sherali [1986, 1990]). Besides producing a linearization of
the objective function, this procedure also introduces new constraints that serve to
tighten the continuous relaxation of the underlying linear mixed-integer program, and

hence results in an improved representation of the problem.

Toward this end, let us first generate implied nonlinear constraints via the following

products:

*

constraint (3.2) Tk, k>, leGy
constraint (3.2) * =z, k<zi, l€G;

constraint (3.3)

*

Ty VYV k 1E€G L#jifkeS,,

constraint (3.3)

*

].—:Bk!, Vk, IEGk, l#]lkaSJq

Let us then add these quadratic constraints to the problem GAP and subsequently
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linearize the entire problem upon using the substitution

Yijkl = Tij Ti it=1,....m—1, k=1+4+1,...,m,

jalzl,---,n, ]#l if & =1.

In other words, for the defined combinations of indices, we have,

(3.5)

1 if flight 7 is assigned to gate j and flight k is assigned to gate [

® Yijkl =

0 otherwise.

This produces the following 0-1 mixed-integer programming problem MIP1.

Note

that the constraints (3.3) have been omitted since they are implied by the constraints

(3.10) and (3.11), even in the continuous sense, as seen by summing respective pairs

of constraints from these sets. Also, note that constraints (3.8)-(3.11) have been gen-

erated upon linearizing constraints (3.5)-(3.5), respectively, via the substitution (3.5).

MIP1: Minimize

subject to

m m—1 m
DD+ Y Y Y > Gijk1Yijkl

i1=1 j€G; =1 jEG; k=141 1€Gx
l#7if b =1

Z.’B,’j———l Vi=1,...,m

JEG

> Yijw = T Vi, k>4, 1€Gy
A b =1
J 11 0ix =

> Yi; = T Vi, k<t leGy

. JEG;

J#F IS =1

D v+ D ki < T
€S54 1€S,,

i<k >k

V],q’ksleGlnl#]lfkesjq

Z Tii— 1<) v+ > Yk — Tw

t€S;q igsi': igs;-:
1< 1>

Vig k,1€eG,l#£5ifk €S,
X binary, X, y>0
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cij = ai;+(pid} + pid])
where ! ! ! ! (3.13)

Gkt = b + (P + pri)dji-

Remark 3: By Sherali and Lee [1993], it follows that equations (3.7)-(3.9) and (3.12)
imply that

Yijet < Tijy Yijht S Trl (3.14)

Yijit 2 0, and yiju >z +auw—1, Vi,5,k>el#7 if =1 (3.15)

Hence, we have (3.5) holding true for any binary x feasible to MIP1, therefore
validating the equivalence of Problem MIP1 to the original quadratic model

(3.1)-(3.4).

Remark 4: In light of Remark 3, note that a more compact equivalent lineariza-
tion, albeit negligent of the tightness of the resulting relazation, would be one
that includes constraints (3.2), (3.3), (3.14), (3.15), and (3.12) along with the
objective function (3.6). However, because ¢;;u > 0 V (¢,7,k,1), we can omit
constraints (3.14) and have them automatically holding true at optimality be-
cause, given that x* is part of an optimal solution to this problem, an accom-
panying set of optimal y variables is given by yJj;, = max {0,z}; + 2}, — 1} V
(¢,7,k,1). This must satisfy (3.14) because if, for example, z}; < y;;; = max
{0,z}; 4+ zz; — 1}, then the maximum must be given by the second term in the
maximand as z; > 0, and this would in turn imply that z}; > 1, a contradiction.

Hence, a more compact, but weaker, linearization of GAP can be derived as the
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following mixed-integer program MIPQ.

m m-—1 m
MIP0O: Minimize 2 Z ci;xi; + Z Z Z Z QijklYijkl
i=1j€G; i=1 jeG; k=i+1 1€Gy
#if bix = 1

subject to Z:t;jzl Vi=1,...,m
JEG;

Z:EUS]- Vq=1,...,Qj,j=1,_,,,n
€554

Yij 2 Tij +xu—1 Vi g,k>l#7if by =1

X binary, X,y > 0.

Later, we will present some computational comparisons on the relative bounds

obtained using MIPOQ versus the other proposed linearizations. O

We now present two other relaxed versions of MIP1 that we found to be computa-
tionally effective among several others that we investigated. Both these versions are
equivalent representations of the original gate assignment problem. In the first of
these reformulations, we delete the constraints (3.10) that upper bound the sums of y
variables (motivated by the fact that ¢i;x > 0V (2,4, k,1)), but now, we add back the
original constraints (3.3) that are no longer implied. In the second reformulation, we
additionally delete the constraints (3.11). These reformulations are specified below -
their equivalence to GAP follows by Remark 3. Note also that if we denote v(-) to
be the optimal value of any problem (:), and if we denote the continuous relaxation

of MIP: by MIP: for : = 0,...,3, we have,

v(GAP) > y(MIP1) > »(MIP2) > v(MIP3) > »(MIPO) (3.16)
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m ‘ m-—1 m
MIP2: Minimize »_ ) cjzi; + >, D>, D, > ijkiYijkl

i=1j€G; i=1 j€G; k=i+1 1€G
I£jitb =1
subject to Y z;=1 Vi=1,...,m
JEG;
Z z; <1 Vg=1,...,Q; 3=1,...,n
1€55q

S yiw o= zm Vi k>i,1€G

JEG;
J# L bk =1

> Yeij = T Vi, k<, l1€Gy

JEG;
J#FIf by =1
Z ri;—1< E Yijt + Z Yrli; — Tk
1€554 €554 $€S5;5,

i<k i>k
Vi, k 1€Gr,1#jif k€S

X binary, x,y>0.

m C m-1 m
MIP3: Minimize Z Z cijzi; + E Z Z Z QijklYijkl

i=13€G; =1 j€G; k=141 1€G
l#£5iféir =1
subject to Z z; =1 Vi=1,...,m
JEG;
Z-’II;‘jSl Ve=1,...,Q; j=1,...,n
iESJ‘q

> Vit = T Vi, k>, 1€ Gy
JEG;

G£ Ui b =1
Z Yeiij = Tw Vi,k<i,l€Gk
JEG;

j#EIT 6 =1

X binary, x,y>0.
Remark 5: Note that due to the combinatorial nature of the (z, k, 7, {) combinations,

the sizes of the linearized reformulations of GAP presented above can get fairly

large as problem size increases. More specifically, denote the number of x and
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y variables as, respectively,

nI=Z|G;| and n, =

i=1

>1G:1 X1 Ge ) (3.17)

k#i

BN | =

(Actually, the number of y variables is lesser than n, because of certain undefined
products z;;z; when 6, = 1 for ¢ < k, where 7 € G;NG}, as evident from (3.6).)
Also, denote by T the number of constraints in (3.3) and by T, the number of

constraints in (3.10) or (3.11). Hence, we have,

Ty =¥,Q; and To=3 (@5 Yo {1Ge| — & } ] (3.18)
Jj=1 k=1

1 if j € Gy and k € 5
where 8, = Y (4,9,k).

0 otherwise

Based on this, we can construct the following table.

Problem | Number of Structural Constraints (M) | Number of Variables (N)
GAP m+ T ns
MIPoO m+ T1 + ny n: + ny (319)
MIP1 m + (m—1)n, + 2T, ne + ny
MIP2 m+ T + (m-1)n, + T2 ne + ny
MIP3 m+ Ty + (m—1)n, n: + ny

Because of the potential burden of computing lower bounds or deriving heuristic
solutions via MIP: for : € {0,1,2,3} for larger sized problems, we also investi-

gated the use of the following (obvious) lower bounding linear program (LBLP).

m

LBLP: Minimize F(z)=)_ > &;z;; (3.20)
i=1 j€G;
subject to Y z;=1 Vi=1,...,m (3.21)
JEG;
Y az; <1 Vg=1,...,Q; j=1,...,n (3.22)
i€S,,

Tij +y < 1 if bijkl = 0o V defined (i,j, k, l) (323)
x>0 (3.24)
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where & =cij+ 5 > | minimum {gijee} ] (3.25)
k=1 x )

Note that LBLP has the same number of variables and constraints as does GAP.
Also, note that if some pairwise assignment z;; = 1 and zx = 1 has been pre-
cluded by taking the corresponding b;;1; to be (virtually) infinitely large, then
this is specifically imposed as a constraint (3.23) in LBLP, since this feature
would otherwise not be reflected in the revised lower bounding objective func-
tion (3.20). We also remark here that because of the nature of the constraints in
LBLP, its solution often turns out to be integer valued, hence providing promis-

ing feasible (upper bounding) solutions for Problem GAP. O

3.6 Results of the Linearized Reformulations

In order to compare the relative tightness of the lower bounds derived via v(LBLP)
and v(MIP:), ¢ = 0,1,2,3, along with the effort required to solve these correspond-
ing linear programming problems, we generated test problems of various sizes based
on realistic data obtained from USAir, and ran these problems on a SunSparc IIpx
workstation, using CPLEX 2.0 as the LP solver. Table 3.7 summarizes the results
obtained. Note that for all these test problems, the linear programming bounding
problems MIP1 and MIP2 both achieve optimal integer solutions. As problem size
increases, however, the task of solving these linear programs becomes prohibitively

expensive. The linear program MIP3 also affords fairly tight lower bounds, but
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Table 3.7: Comparison of various lower bounding linear programming problems

# Gates | # Fhights [ ny Opt value | Bound Time
Problem n m (3.17) | (3.17) | (if known) | Problem | Rows Iters (secs) | Soln
1 4 8 16 50 190300 MIP1: 200 6 0.03 190300%
MIP2: 137 6 0.05 | 190300°
MIP3: 128 8 0.05 | 190300°
MIPO: 65 16 0.22 | 190300°
LBLP: 16 6 0.02 | 189250
2 4 12 31 299 257800 MIP1: 1080 84 2.37 | 257300°
MIP2: 675 97 1.93 | 257300°
MIP3: 371 23 0.55 | 257800
MIPO: 328 120 1.15 | 250050
LBLP: 30 16 0.03 | 253150
3 4 16 40 859 322100 MIP1: 2118 175 8.47 | 322100°
MIP2: 1291 188 6.42 | 322100°
MIP3: 643 61 1.32 | 322100°
MIPO: 568 259 2.98 | 313500
LBLP: 43 20 0.07 | 309850
4 4 20 50 1480 433300 MIP1: 3580 367 30.33 | 438300
MIP2: 2150 334 22.47 | 438300°
MIP3: 1006 71 1.93 | 438300°
MIPO: 914 726 12.20 | 433425
LBLP: 56 36 0.08 | 425500
5 4 24 63 2462 578150 MIP1: 5392 1127 171.48 | 578150"
MIP2: 3524 1258 136.33 | 578150°
MIP3: 1520 77 2.35 578150*
MIPO: 1548 779 135.28 | 539575
LBLP: 71 53 0.13 | 538300
6 4 32 89 3131 785350 MIP1: 11823 3627 | 1304.08 | 785350”
MIP2: 7026 4534 1160.05 785350*
MIP3: 2857 163 9.12 785350°
MIPO: 3224 5424 227.52 | 735675
LBLP: 98 72 0.183 | 711750
7 4 36 99 3390 380050 MIP1: 14494 4960 | 1791.15 | 830050
MIP2: 8620 6985 | 1907.35 | 330050*
MIP3: 3537 394 31.02 | 875200
MIPO: 3993 6453 328.84 | 810925
LBLP: 108 31 0.22 [ 790950
8 5 10 23 219 301600 MIP1: 530 76 1.47 | 301600
MIP2: 330 80 1.25 | 301600
MIP3: 273 62 0.73 | 301600°
MIPO: 239 125 0.98 | 267017
LBLP: 21 8 0.02 | 253350
9 5 15 51 933 464000 MIP1: 2913 6438 57.16 464000*
MIP2: 1755 1170 82.50 | 464000*
MIP3: 757 348 6.90 | 464000
MIPO: 986 598 10.28 | 365400
LBLP: 43 20 0.05 | 379850
10 5 20 67 1639 594500 MIP1: 5547 1410 239.62 | 594500
MIP2: 3295 | 10671 | 1194.99 | 594500°
MIP3: 1333 907 25.18 | 594500°
MIPO: 17438 865 26.32 | 469000
LBLP: 60 35 0.10 | 495050
11 5 25 34 2749 774400 MIP1: 9156 | 26721 | 7417.52 | 774400"
MIP2: 5392 | 18521 | 3969.50 | 774400°
MIP3: 2093 1772 66.839 | 774400
MIPO: 2825 3693 20.42 616263
LBLP: 77 60 0.17 | 643200
12 6 12 44 648 502100 MIP1: 1334 326 49.08 | 502100°
MIP2: 1133 824 35.43 | 502100°
MIP3: 521 366 5.47 | 463500
MIPO: 681 264 3.42 | 372725
LBLP: 37 18 0.05 | 331900
13 6 13 77 2326 763950 ‘MIP1: 6186 | 28330 | 4293.40 | 763950°
MIP2: 3657 | 25344 | 6366.25 | 763950°
MIP3: 1368 2975 86.61 693575
MIPO: 23381 1138 43.93 | 512300
LBLP: 59 31 0.12 | 541300
14 7 14 64 1500 665000 MIP1: 4084 | 17271 2496.33 | 6650007
MIP2: 2385 12188 1208.75 665000*
MIP3: 831 1087 28.67 | 636620
MIPO: 1545 584 15.62 518536
LBLP: 49 23 0.07 { 513750

»: Optimum found by linear programming lower bounding solution itself.
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Table 3.8: Upper and lower bounds of LBLP

# Gates | # Flights % of % over | Opt value

Problem [ = m LB optimal UB optimal | (if known)
1 4 8 189250 99.45 | 190300 0.00 190300
2 4 12 253450 98.31 | 257800 0.00 257800
3 4 16 308975 96.25 | 322100 0.00 322100
4 4 20 425150 96.8% | 438800 0.00 438800
5 4 24 539500 93.31 | 578150 0.00 578150
6 4 32 710650 90.49 | 785350 0.00 785350
7 4 36 790500 89.82 | 880050 0.00 880050
8 5 10 264200 87.60 | 304750 1.03 301600
9 5 15 388550 83.74 | 501550 7.49 464000
10 5 20 508600 85.55 | 594500 0.00 594500
11 5 25 656600 84.79 | 818500 5.39 774400
12 6 12 376175 74.92 | 527800 4.87 502100
13 6 18 539525 70.62 | 813850 6.13 763950
14 7 14 508775 76.51 | 761250 12.64 665000

this bound begins to deteriorate somewhat significantly below the value v(MIP1) as
problem size increases. In contrast, MIPO and LBLP provide relatively weak lower
bounds. However, as problem size increases, it eventually becomes computationally
reasonable to solve just LBLP. Table 3.8 provides the lower and upper bounds ob-
tained via LBLP for the same set of 14 test problems used in Table 3.7. Noting
the foregoing comment, and the fact that LBLP often returns near optimal integer

feasible (upper bounding) solutions, we now proceed to prescribe a viable heuristic

procedure to solve Problem GAP in Chapter 4.
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Chapter IV

Design of a Heuristic Procedure

Motivated by the observations made in Chapter 3, we now present a heuristic proce-
dure to derive a good quality feasible solution to the gate assignment problem GAP.
This procedure is essentially a truncated depth-first branch-and-bound scheme that

selects a relaxation in the order

{ MIP1, MIP2, MIP3, LBLP } (4.1)

depending on the first one in this string that might be computationally viable to
solve, in order to compute lower and upper bounds. (Note that MIPO is not used
here, because as seen from Table 3.7, it provides a bound far weaker than does MIP3,
and not any quicker.) In this process, the first time when a certain node problem
solves a reduced relaxation MIP3, for some i € {1,2,3} and obtains an integer optimal
solution that therefore provides an optimal completion to the current partial solution,
the procedure is terminated, and the best solution obtained thus far is taken as the

prescribed heuristic solution.
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Remark 6: Note that one could alternatively choose to continue the branch-and-
bound scheme until completion while using a stepped-fathoming strategy in
which a node is fathomed whenever its lower bound LB exceeds (1 — €)UB for
some tolerance 0 < € < 1, where UB is the incumbent upper bound. However,
if a careful, judicious choice is made in fixing variables, then it is likely that the

solution obtained using the prescribed termination criterion will be near optimal.

O

4.1 Ranking the Linearized Reformulations

The decision as to which highest (earliest) ranked relaxation in Equation (4.1) is
viable to solve is made based on an estimate of solution time predicted via regression
equations derived for each problem and based on the size of the overall problem, using

the results of Table 3.7. These regression equations are of the form

N

M2 Ny 14 Ban + Belog(n), (4.2)

log(time) = B, + Bilog [ (100 )2 (1000

where M and N are respectively the number of structural constraints and variables
as given by Equation (3.19), n is the number of gates, and p is the density of the
coefficient matrix of the problem. The values of the regression coefficients 8g, 81, B2,
and f; are specified below, along with the R? statistic that measures the goodness of
fit. (We remark here that the regression equation for LBLP has been derived only
for comparison purposes; this relaxation is solved in any case, if the predicted effort

of the preceding relaxations in Equation (4.1) are excessive.)
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Besides using Equation (4.2) in selecting a relaxation, in order to ensure that the
predicted times are reliable estimates of anticipated effort, a maximum row size is
also enforced for each MIPs, ¢ € {1,2,3}. Specifically, we compute the number of
rows created by the free flights for each relaxation MIP3, i € {1,2,3} and select that
highest ranking relaxation from Equation (4.1) that has a predicted time lesser than
a specified maximum (this maximum being taken as oo for LBLP) and has a row size

lesser than or equal to the maximum specified size given in Equation (4.3).

Problem | fo o B2 B3 R* | Maximum Rows

MIP1 [-1.39|1.00| 0.66 | —2.80|0.97 3000

MIP2 | —6.11{1.07|-0.91 15.65 | 0.98 3500 (4.3)
MIP3 | -1.33|0.77| 0.37 | —0.99 | 0.85 7000

LBLP | —-1.010.31| 0.07 {—-1.17]0.90 00

After a solution is constructed using the above truncated branch-and-bound search,
this solution can be subjected to an improvement routine. Here, a sequence of partial
subproblems of GAP can be investigated, each in turn, holding some of the prescribed
flight-to-gate assignments as fixed, and attempting to improve the remaining assign-

ments.

4.2 Heuristic Procedure (HP)

A detailed statement of this overall heuristic procedure is given below. Figure 4.1
provides a flow chart for this routine. Notationally, for any partial solution in which
some flights are assigned to certain gates, we denote the corresponding gate in Gj

to which flight ¢ has been assigned, for : € {1,...,m}, as j(¢). Also, given a set of
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fixed flights C {1,...,m}, and considering the remaining flights as “free”, the sets

G; are revised to include only the feasible and free assignable gates for each of the

free flights 7, and the conflict set packing constraints (3.3) are derived based on the

free problem as in Figure 3.5. This yields the constraints for the various relaxations

in Equation (4.1). Their revised objective functions are given as follows.

LBLP Objective Function:

z = E cijt) + E : § : qij(i).kj(k)
7 fixed t fixed k fixed
> 1 fixed

+ minimum { Y Y &;z;; }
t free 7€G;
where ¢;; =c¢;; + Z qijkj(k)
k fixed

1 : .
+§ Z [ minimum {Qijkl} Vi free, j € G;.
k free 1€ G
k#Fil£5if 6, =1

MIP: Objective Function, for 7 = 1,2,3:

z= Z Cij(i) + Z Z 9i5(i).ki(k)
1 fixed 1 fixed k fixed
> 1 fixed

+ minimum { Z Z CijTi;

t free j€G;

+ 22 2 Y Gk Yim )

t free JEG; k free Gk
k>t l#7ifbix =1

where ¢&; =c¢; + Z Gijkik) Vi free, j € Gi.
k fixed
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Heuristic Procedure (HP) (See Figure 4.1 for a flow chart): -

Step 1 (Initialization):

Solve LBLP given by (3.20)-(3.25). If this problem is infeasible, then so is GAP; stop.
Else, let X denote an optimal solution of objective value F(x). If x is integral, then
denote x* = X as an incumbent solution to GAP with z* = f(x*) as its objective
value computed via (3.1). On the other hand, if X is fractional, then attempt to
construct a feasible solution by fixing at value 1 the variables for which z;; = 1 in this
solution, and then taking a most fractional variable and making it 1. Accordingly, fix
at value 0 any variables appearing with this variable in any of the constraints (3.21)-
(3.23). Repeat this until all variables are integer valued. Check if the resulting
solution is feasible to the equality constraints (3.21). (It is automatically feasible to
the inequality constraints.) If so, then let x* be this solution, and set z* = f(x*). If
no incumbent solution is available thus far, then set x* = @) and 2* = oco. If the lower
bound F(X) > 2*(1 — ¢€) for some chosen tolerance 0 < € < 1, then terminate with
x* of objective value z* as an e-optimal solution. Otherwise, initialize the partial
solution list PS = @ (see Geoffrion, 1969), let the current linear program solved
LPcurrent = LBLP, and set the indicator IND = 1. (IND = 1 indicates that only a
subset of variables that were already 1 in a current linear programming relaxation
solution have been fixed at this value, and so, the same relaxation need not be resolved

at this point.) Proceed to Step 2 with X being the optimal solution obtained for LBLP.

Step 2 (Selecting a Lower Bounding Relazation):

Using the regression equations (4.2) and (4.3), select the highest ranked relaxation
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from (4.1) that has a predicted time < Tmax and a row size lesser than or equal to
thevmaxinmm row size. (We used Tpax = 600 seconds in our computations based on
a SUN Sparcstation 1000 Workstation using CPLEX 3.0 as the LP solver.) Call this
relaxation LPpext. If all predictions exceed Tmax and the maximum number of rows,
let LPpext = LBLP. If IND = 0 or if LPpext # LPcurrent, go to Step 6. Otherwise,

proceed to Step 3.

Step 3 (Augment Partial Solution List PS):

Case (i). LPcurrent = LBLP: Fix those flights ¢ to gates j for which Z;; = 1 and ¢;

=min { ¢, : t € G; }, where éis defined by (3.25) or (4.5). If no such combinations

exist, fix a free flight 7 to that gate 7 for which
Ty = arglexmin { | G; |,&;: Z;=1}. (4.8)

(If no z;; variable is 1, perform (4.8) over the set of largest valued Z;; variables.)

Case (ii). LPcyrrent = MIPz, 2 € {1,2,3}: Find the greatest value of Z;; over all :

free, 7 € G;. If this value Zp,x, say, exceeds 0.5, perform part (a) below. Otherwise,

perform part (b).

(a). Define S = { i free: T;; = Tmax for some j € G; }.

Select 7 = arglexmin { | G; |,&(; min),—Cia : 1€ S }, (4.9)
where € min) =min { &;: j € G; } for i free, and (4.10)
¢ia = (absolute) difference between the minimum (4.11)

and the next smallest ¢; value over j € G|.
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Fix flight 7 to gate 7 for which Z;; = ZTmax.
(b). Select 7 = arglexmin { | G; |,(; min), —Cia : @ free } where &(; min) and €;a are
defined in (4.10) and (4.11), and select
j= arglexmax { Zs,—Gj,— | Fj | j € G}, (4.12)

where | F;

; |= number of flights that are assignable to gate 5. (4.13)

Fix flight 7 to gate J.

In each case above, increment the partial solution list PS by fixing the assignment
zz = 1, and set IND = 0 if any fractional variables in the solution X have been set

at 1. Proceed to Step 4.

Step 4 (Logical Reductions):

Given the current list PS, fix the variables as prescribed in PS and extract all the
flights along with their assignable gates. Perform the preprocessing routines illus-
trated in Figures 3.3 and 3.5 to possibly fix additional variables at 0 or 1, and hence
deduce the admissible set of gates G; for each free flight : along with the resulting
conflict constraints (3.3) involving these free flight-gate combinations. If any addi-
tional variables are fixed at 0 or 1 using these logical tests, augment PS by these
designated fixings in an “underlined” mode as per Geoffrion (1969) (i.e., with an
indication that the oppbsite side of the corresponding branch is fathomed). If these
logical tests indicate infeasibility, then proceed to Step 5. Otherwise, return to Step

2 with this reduced gate assignment problem.
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Step 5 (Fathom PS):

Fathom PS and backtrack as in Geoffrion’s (1969) LIFO scheme. If PS = @, then
stop; Problem GAP is infeasible if x* = ), and otherwise, x* is an e-optimal solution.

Else, set IND = 0 and return to Step 4.

Step 6 (Solution of Selected Relazation):

Set LPcurrent = LPpext- Formulate and solve this reduced relaxation, using (4.4)
and (4.5), or (4.6) and (4.7) appropriately. Let X be the solution thus obtained, with
objective value z given by (4.4) or (4.6), as the case might be. Using X, perform
the rounding procedure (if X is nonintegral) as in Step 1 to possibly obtain a new

incumbent solution x* of objective value z*.

o If LP.yrrent = MIP: for some i € {1,2,3}, and if X is an all-integer solution,

then proceed to Step 7.

o If Z > 2*(1 — ¢), then go to Step 5.
o Else, if LPcyrrent = LBLP, then set IND = 1 and return to Step 2.
e Else, if LPyrrent = MIPI, then return to Step 3.

Else, we have LP ¢ rrent = MIPi for some 7 € {2,3}, and in this case, fix all free
flights ¢ to free gates j for which Z;; = 1. Increment PS accordingly, set IND =

1, and return to Step 4. If no such z;; = 1 variables exist, then return to Step 3.

Step 7 (Improvement Phase):

Given an incumbent solution x* that assigns flights to gates over a certain time
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horizon, identify an initial time-window (dependent on the problem data), such that
it is computationally feasible to solve MIP1 by freeing the flight assignments over
this time-window and holding the other assignments fixed. Solve the corresponding
reduced problem MIP1 defined via (4.6), (4.7), and Step 4 in order to possibly improve
upon x*, using the rounding routine described at Step 1 for this purpose in case the
solution to MIP1 is fractional. Repeat this procedure for a suitable set of such

overlapping time-windows, identified sequentially to cover the entire horizon.

4.3 Results of the Heuristic Procedure

We now present computational results using our heuristic procedure. The test prob-
lems used are based on data provided by USAir. All computations are performed on
a SUN SparcStation 1000 Workstation using CPLEX 3.0 as the LP solver. Tables 4.1
and 4.2 provide a summary of the results. It includes the test problems from Table 3.7

as well as larger test problems.

Table 4.1 returned optimal answers as in Table 3.7 in less time. Due to the small size
of these test problems, augmentation was not necessary in fixing flights. Problems 7
and 13 did require use of the heuristic procedure, the MIP3 formulation was run first
followed by the MIP2 and MIP1 formulations, in that order. After MIP3 returned a
solution, flights were fixed to gates corresponding to variables that returned a value

of 1.0. The overall performance was greatly improved.

Table 4.2 reports on experience using larger test problems. For problems 16, 17,
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STOP;
infeasiblity
or (near)
optimality
detected.

START

Solve LBLP (solution %)
Obtain LB, UB,
incumbent x*, 2*

LBLP infeasible
or

LB + ¢ > UB?

Initialize PS = §
chu"cnt = LBLP
IND =1

Set LPgext= to the
highest ranked relaxation

solvable within Tyax secs.
Else, set LPy.x¢« = LBLP

IND = 0 or
Lpncx‘t # LPcunent?

Augment PS list as in Step 3

PS infeasible?

Set IND = 0ifa

fractional ;; — 1.

Fix variables in PS

STOP;

solution found.
Implement improvement

routine, if desired.

LPcurrent =

IPi, i € {1,2,3},
& % integer?

LPcurrent = LPgext
Formulate, solve LPyex¢
Obtain solution X, ¥
Update x*, z*

IND =1

as possible (Step 4)

STOP;
c-optimality or
nfeasiblity detected

IND =0

Fix i to §
where £;; = 1; Y
Increment PS;

IND =1

P

Fathom, backtrack PS JL

Figure 4.1: Heuristic Procedure Routine
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and 20-24, augmentation was required initially as described in the heuristic to select
flights to fix at gates in order to reduce the problem size. Once the problem size
was adequate, the problems were solved using various combinations of formulations
invoked in the order of Equation (4.1). The improvement routine returned better
solutions. In the case of problems 17 and 19 where the improvement routine required
more than 1400 CPU seconds, one can reduce the size of the time horizon to speed

up this process. Backtracking was not necessary in any of the problems.

It is our observation that the heuristic procedure returns very good answers in a
reasonable amount of time. When the improvement routine is used, it usually returns

even better results.

One final comment on our computational results. Note that all are test problems were
feasible. In case GAP is infeasible, on can attempt to decrease the time buffer added
on to the arrival or departure times. A second alternative might be to examine the
flights that have an unusually long dwell time at the terminal. These flights can be
scheduled to leave the terminal (i.e. pushed away and parked at on off-gate location
and then returned to the terminal in enough time for passengers to board). Such

considerations need to be incorporated into an operational scheme in practice.
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Table 4.1: Results of the Heuristic Procedure for the Test Problems from Table 3.7

Problem 1 2 3 4 5 [ 7
Gates 4 4 4 4 4 4 4
Flights 8 12 16 20 24 32 36
Initialize: CPU 0.02 0.03 0.02 0.05 0.06 0.07 0.09
LB 189250 253450 308975 425150 539500 710650 790500
UB 190300 257800 322100 438800 578150 785350 880050
Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU
LBLP
MIP3 1- 273 1- 13.35 1- 2030
MIP2
MIP1 1- 003 1- 090 1- 281 1- 8387 2- 004
Solution 190300° 257800* 322100* 438800° 578150* 785350* 880050°*
Improve: CPU
Solution
Final Solution 190300 257800* 322100* 438800" 578150* 785350° 880050*
# Flight Fix: LBLP
MIP3 23
MIP2
MIP1
Program CPU 0.11 1.07 2.99 9.25 2.99 13.77 20.94
Problem 8 9 10 11 12 13 14
Gates 5 5 5 5 6 6 7
Flights 10 15 20 25 12 18 14
Initialize: CPU 0.05 0.05 0.08 0.07 0.01 0.08 0.05
LB 264200 388550 508600 656600 376175 539525 508775
UB 304750 501550 594500 818500 527800 813850 761250
Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU
LBLP
MIP3 1- 3.06 1- 13.12 1- 11.78
MIP2 1- 2571 2 - 326.01
MIP1 1- 039 1- 17.68 1-404.73
Solution 301600" 464000* 594500* 774400° 502100* 763950* 665000*
Improve: CPU
Solution
Final Solution 301600°* 464000* 594500* 774400* 502100* 763950°* 665000°
# Flight Fix: LBLP
MIP3 2
MIP2
MIP1
Program CPU 0.53 26.01 3.35 13.53 17.85 338.40 405.05
Note: CPU time is in seconds.

1.

2. A blank represents a zero entry or a routine that was not performed.
3. A “x” represents the known optimal solution value.
4.

Improvement routine not implemented if variables were not augmented.
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Table 4.2: Results of the Heuristic Procedure Using Larger Size Test Problems

Problem 15 16 17 18 19
Gates 4 5 5 6 6
Flights 33 45 49 54 64
Initialize: CPU 0.07 0.23 0.16 0.71 0.46
LB 434625 1185000 702625 1617800 1155925
UB 494750 1470000 898800 2403800 1612900
Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU Run#-CPU
LBLP
MIP3 1- 52.03 1 - 435.32 1- 10.70 1-102.27 1- 7.71
2 - 58.41
3- 19.47
4- 11.38
MIP2 2 - 238.67 2- 31.25 5- 0.78
MIP1 2 -100.48
Solution 488150* 1470000 874600 2385700 1601450
Improve: CPU 2201.59 102.36 1491.30
Solution 849200 2318600 1562550
Final Solution 488150* 1470000 849200 2318600 1562550
# Flight Fix: LBLP 20 13 30
MIP3 14 22 10 18
MIP2
MIP1
Program CPU 291.47 468.17 2314.42 298.91 1502.43
Problem 20 21 22 23 24
Gates 7 7 8 12 15
Flights 63 79 92 170 187
Initialize: CPU 1.48 1.46 5.26 4.72 4.86
LB 2169250 1615925 781513 2935225 5315075
UB 3572800 2697760 1014925 4002750 6438125
Run#-CPU | Run#-CPU | Run#-CPU | Run#-CPU Run#-CPU
LBLP
MIP3 1- 844 1-181.23 1- 4.16
2-126.30
3 -101.69
4- 73.38
5- 53.33
6- 23.33
7- 921
MIP2
MIP1 8- 14.04 1- 213 1- 049
Solution 3538700 2664950 998225 3984625 6426175
Improve: CPU 85.46 735.38 64.74 29.93 91.35
Solution 3435550 2646350 982600 3949675 6375525
Final Solution 3435550 2646350 982600 3949675 6375525
# Flight Fix: LBLP 29 36 45 104 127
MIP3 26
MIP2
MIP1
Programm CPU 98.78 1330.59 80.79 66.20 126.48

Note: 1. CPU time is in seconds.
2. A blank represents a zero entry or a routine that was not performed.
3. A “x" represents the known optimal solution value.
4. Improvement routine not implemented if variables were not augmented.
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Chapter V

Conclusions and

Recommendations

In this thesis we have formulated a quadratic partial assignment and packing model
for the airline gate assignment problem. Several classes of linearizations aimed at
producing tight linear programming relaxations have been designed and tested for this
problem. Based on this study, a heuristic procedure has been developed, illustrated,

and successfully tested with test problems provided by USAir.

This chapter concludes our thesis and presents ideas to improve the performance of
the solution approach, discusses alternative applications of the model, and suggests
recommendations for future research. The first section will be a revised reduction
routine taking advantage of further variable reductions. The second section proposes

how to group a series of gates together. Then, applications of the model within
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other areas of the transportation industry are presented. Finally, we present our

recommendations for future research.

5.1 Revised Reduction Routine

Using the feasible assignment reduction routine of Figure 3.3, we present two enhance-
ments. (Other similar enhancements might be possible). The first enhancement takes
advantage of two gates that share a push-out tug. The second enhancement takes
advantage of a fixed number of overlapping flights, say a,b,c € F, feasible to the
same gates, where | G, | = | Gy | = | G. | = | F |, and the members of G,, Gs, and

G, are the same gates.

Two Gates Sharing a Push-Out Tug:

Push-out tugs are the vehicles that push back a departing flight from the gate. Once
it’s pushed back, the tug releases itself from the aircraft and returns to the gate. This
process takes about five minutes. Therefore, if a flight is assigned to one of two gates
that share a push-out tug, then a flight can be assigned to the other gate only if its

departure time is five minutes before or after the first flight’s departure time.

Assume flight a has | G, |= 2, and the two gates, j;, j2 € G, share the same push-out
tug. If any flight b overlaps flight a, has its departure time within five minutes of

flight a, and is feasible to j; and/or j,, then G, — Gy — {51}, {=1,2 if j; € G;.

We note here that this enhancement was used in problems 22, 23, and 24 of Table 4.2.
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QOverlapping Flights Feasible to the Same Number of Gates:

Consider a situation which a given set of flights overlap with each other, and suppose
that these flights are feasible to the exact same gates, and number of feasible gates
being equal to the number of flights in this set. If there exists another flight that

overlaps these flights, then a variable reduction strategy can occur.

For example, assume we have three flights, a, b, and ¢, feasible to the same three
gates, j;, J2, and j3, and these three flights all overlap each other. Clearly, one can
see that a, b, and ¢ will be assigned to j;, 72, and j3. The exact assignment will
depend on the objective function. For any flight d that overlaps flights a, b, and ¢
and is feasible to ji, j2, and/or j3, we can set G4 — Gq— {ji}, {=1,2,3 if j; € G,.
This process will work for any number of flights, as long as the number of flights is

less than the total number of gates at the airport.

5.2 Grouping a Series of Gates Into One Gate

A third enhancement would be to group a series of gates into one fixed gate, such as
gates that handle commuter and shuttle flights. As an example, most airports have
commuter and shuttle flights designated to a series of gates. These series of gates
are doors that are a few feet apart. As the gate agent announces that the flight is
boarding, passengers line up at one of the available doors. Then passengers walk or
take a bus to the aircraft. Therefore, the walking distance to these gates from other

areas of the terminal are the same and the only consideration is how close to assign
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the regular flights to the commuter or shuttle flights. By grouping a series of gates
into one gate, the walking distances can be treated just like check-in and baggage

claim. This reduces the number of quadratic variables in MIP1, MIP2, and MIP3 as

well as the number of rows in the constraints, thus reducing the overall problem size.

5.3 Applications

There are many applications that mirror the model studied in this thesis. Two direct
applications that come to mind are within the transportation industry. The first is to
use a similar model to schedule gate agents at an airport in order to minimize their
walking distances from gate to gate. Once the flights have been assigned to their
gates, agents need to be scheduled to help with the passenger demand. Once the
flight departs and a long time period exists before the next flight arrives, these agents
could perform their duties at another gate. By minimizing total walking distances,
this can improve productivity /convenience, and perhaps, reduce the total number of
gate agents needed. A second application might be to use a model of this type to
assign trailers to docking ramps for a Less-than-Truckload carrier. As trailers are
docked, they are unloaded, the cargo is sorted, then loaded onto another trailer. A
model could be formulated to schedule the movements of trailers so as to minimize

the total distance that the cargo must travel.
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5.4 Recommendations for Future Research

As with any model formulation, there is always room for further enhancements. We
have recommended two of them in Section 5.1 above. Another would be to consider
Remark 2 from Chapter 3 and test the strategy of assigning flights to be closer together
that have a smaller time interval between the arrival of one flight and the departure of
the next flight. USAir naturally has a policy of leaving adequate time for passengers
to transfer between flights. This time duration varies depending on the type of flight
transfers (i.e. regular to commuter), but the minimum time is usually 25 minutes. By
applying the aforementioned strategy in conjunction with current policies, passengers
having a small time duration to transfer between flights would not have to walk large
distances. This would also enable an improved contingency in case of late arrivals.
Finally, one can study the above mentioned applications (Section 5.2), reformulate
the model to represent the particular problems, and design and test similar solution

procedures for these cases.
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