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Transition Systems with Independence and Multi-Arcs

Thomas T. Hildebrandt and Vladimiro Sassone

ABSTRACT. We extend the model of transition systems with indepengléencrder to
provide it with a feature relevant in theoninterleavinganalysis of concurrent systems,
namelymulti-arcs Moreover, we study the relationships between the categfdrgnsition
systems with independence and multi-arcs and the cateddapeled asynchronous tran-
sition systems, extending the results recently obtainetidputhors for (simple) transition
systems with independence (Efroc. CONCUR'9§, and yielding a precise characterisa-
tion of transition systems with independence and mults-ancterms of évent-maximal
diamond-extensionplabeled asynchronous transition systems.

Introduction

Following the leading idea of CC2.2] and related process calculif, 2, 13, 9, the
behaviour of concurrent systems is often speci@rnsionallyoy describing their ‘state-
transitions’ and the observable behaviours that suchiti@ns produce. The simplest
formal model of computation able to express naturally hésiis that ofabeled transition
systemswhere the labels on the transitions are thought of as theractf the system at
its ‘external ports’, or, more generally, the observable p&its behaviour.

Transition systems are anterleavingmodel of concurrency, which means that they
do not allow to draw a natural distinction between intereghgnd concurrent execution of
actions. More precisely, transition systems do not modeffélet that concurrent actions
can overlap in time and reduce concurrency to a nondetestitiithoice of action inter-
leavings, so loosing track of the casual dependencies leataetions and, consequently,
of the fact that computations that differ only for the ordeinolependent actions represent,
actually, the same behaviour. In other words, interleaniglels abstract away from the
difference between the factugmporaloccurrence order and the more conceptaaisal
ordering of actions. The simplest exemplification of thisiaiion is provided by the CCS
termsa | b anda.b+ b.a, both described by the following transition system.
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Although for many applications this level of abstractiorajgpropriate, for several other
kinds of analysis a model may be desirable that takes fulbbaacof concurrency. For
instance, apart from any philosophical consideration ath@semantic relevance of cause/
effect relationships, knowing that different interleaysrepresent the same behaviour can
reduce considerably the state-space explosion problem winecking system properties
such as safetyg] and liveness propertie2], 17.

Several efforts have been devoted to the search of tramgiassedhoninterleaving
models, e.g., transition systems enriched with additideatures that make expressing
concurrency explicitly possible (cf., e.g14§, 4, 6, 7, 5, B. The present paper focuses
on two such models, namebsynchronous transition systenistroduced independently
by Bednarczyk ] and Shields20], andtransitions systems with independenm®posed
by Winskel and NielsenZ2]. These two competing approaches are, among the others,
those building on the simplest idea: endow transition sgstevith some formal notion
of ‘similarity’ of transitions that enables to distinguisthether or not the opposite edges
in diagrams such as (1) represent the same action. Intyjtitkés is achieved in both
approaches by thinking of transitions@surrence®f eventstwo transitions representing
the same event if they correspond to the same action. Howtleeadifferences induced on
the models by the different choices of how to assign eventatsitions are definitely not
trivial. And so are the relationships that these models tieaach other.

Getting to the details, asynchronous transition systersgmasvents to transitions
explicitly and enrich the structure further by addingatlependence relatioon the events
that describes their causal relationships. This clearlasadistinguishing nondeterminism
and concurrency possible;b+ b.a andalb can be represented respectively by, e.g., the
following labeledasynchronous transition systems, wherndicates whether or not the
eventse and€ (labeled bya andb) are independent.

v Y
NS N

Observe that here and in the rest of the paper we conisideledasynchronous transition
systems], 23, i.e., asynchronous transition systems with a furtheelialy of events, as
the proper extension of labeled transition systems.

The expressive power of asynchronous transition systegisasly not limited to the
example above; for instance, Bednarczgkdnd Mukund and Nielsenlp] have shown
that noninterleaving related issues for CCS processes H-aslacalities— can be mod-
eled faithfully using this model. However, it can be arguleat tassigning both the inde-
pendence relation and the decoration of transitions wigmess/explicitly means assigning
too much. In fact, this obviously introduces soradundancief the model: there are, for
instance, many non-isomorphic variations of the asynabwerransitions systems above
which can still be reasonably thought as modela|bfanda.b -+ b.a. Moreover, although
it is usually easy to tell about independence of transitionmany important cases it is at
leastnot immediate to assign events to transitions: it might veryl Wwelthe goal of the
entire semantic analysis to understand what the evente afftem and their mutual rela-
tionships are. This consideration seems to indicate thetcisonous transitions systems
cannot have a significant impact in Plotkin’s SOS style sdiogrunless the independence
relation is promoted to a greater role.

Transition systems with independeree an attempt to answer to the previous obser-
vation. Here events arotintroduced explicitly. They are rathderivedfrom the structure
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of the ‘simply-labeled’ transitions, upon which the indagence relation is directly lay-
ered. In such a model, each of the CCS terms discussed abmits atly one transition
system which can faithfully represent it, viz., respedtive

SN N,
N N

The implicit information about events can be easily deduteth the presence (or the
absence) of-, making the achieved expressive power comparable to treyasfchronous
transition systems. Moreover, avoiding a primitive notievent makes providing a
‘noninterleaving’operational semantics in the SOS style a relatively simgdk cf. P2]).

However, in order to be consistent with the computationaiifion, the axiomatics of
transition systems with independence involves (appareettessarily19]) onecondition
expressed ‘globally’ in terms of all the transitions remting occurrences of the same
event. This contrasts with the ‘local’ conditions definirgyachronous transition systems
(due to the globally identified events) and can make hardkihgthat a given structure is a
transitions system with independence. Thus, the diffeseimduced on the two models by
the choice of grimitive versus alerivednotion of event are far-reaching and seem to make
them suitable for different applications. This indicatesttit is not wise to choosence and
for all between asynchronous transition systems and transitgiarsg with independence,
which, in turn, opens the issue of investigatfiogmally their analogies and differences.

An exhaustive analysis of this question was carried out byailtthors in 10], show-
ing that transition systems with independence, besidesyldcely related to a class of
asynchronous transition systems cakediensionglareequivalentto the so-callegvent-
maximalasynchronous transition systems. The result®ofcit. are summarized by the
following diagram, wherel SI, LATS, eLATS, andmeLATS are, respectively, the cate-
gories of transitions systems with independence, labebggnsional, and event-maximal
asynchronous transitions systems, and wherel , and= stand respectively for embed-
dings, coreflections, and equivalences.

TSI S——LATS
J{ \ j
X
melLATS &———— el ATS

Essentially, the extensionality condition refers to thésnce of auniqueway to
‘complete’ pairs of independent transitions toadependence-diamoridélso, it excludes
multi-arcs, i.e., multiple transitions with the same labektween the same two states.
Event-maximality, on the other hand, can be seen at the sameas identifying those
transition systems that make as few identifications of itms as possible, i.e., con-
tain no confusion about event identities, and those in whigth identities are derivable
from the independence relation, i.e., reduce the redunydainis worth noticing here that
at: eLATS — TSI, the right adjoint of the coreflection, complements and exts a non-
well-defined construction sketched @9: as a matter of fact, due to the greater generality
of asynchronous transition systerasATS happens to be the largest subcategonyArS
on which such a construction makes sense.

A question left open byJ[0] is whether or not the need to restrict to extensional asyn-
chronous transition systems is a consequence of the iiatdifferences between the two
notions of events considered, i.e., if in order to be able ddehsituations ruled out by the
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extensionality constraints it is necessary to assign svexlicitly. This paper addresses
such a question; namely, we remove the restriction to tianssystems without multi-
arcs, relaxing the definition of transition systems withdpdndence, and yielding the new
notion oftransition systems with independence and multi-gnzsextensional transition
systems with independenweuld probably be a better name, though).

This represents, in our view, an interesting enhancemettieofnodel. In fact, in
noninterleaving semantics, to be able to treat multi-arcédarly very relevant. In a sense,
it can be seen as allowing ‘quotienting’ of the state-spalkewetaining full information
about events and causality. As an example, consider the @8%d|b) + a.b, traditionally
described by the following transition system.

a|nil
N
(<’=1|b)+a.ba1 ~ . nil
\ /

2 nillb /,

b

It is common (see e.g1B, 13 among others) tguotientthe state-space by some struc-
tural congruence that, e.g., collapses the statesdnil|b, obtaining the more compact
representation — with multi-arcs — shown below.

/ a|nil
b \a‘
(aby+ab , ~ nil

ST

2 nillb~ b

Observe that, contrarily to the interleaving case, iital here to havawo different a
transitions, since they rappresent different events: ®paiit of the independence-diamond
and is, therefore, independentlpfthe other is not.

In order to justify our definition, we prove that, except foe extensionality condition,
the categoryl Sl,, of transition systems with independence and multi-arcedx®eactly the
same relationships a&SI to LATS. More precisely, we prove thaiSl,, is coreflectiven
the categorylLATS of the diamond-extensionasynchronous transition systems — intu-
itively, those transition systems that make no confusiosuathe identities of the events
carried by transitions facing each other in independernasands. Similarly to the case of
TSI, dLATS is the largest subcategory bATS for which such a result holds. Moreover,
among thediamond-extensionalve identify theevent-maximaasynchronous transition
systems and prove that they induce the largest full subogategf LATS, mdLATS, for
which the coreflection cuts down to aquivalenceThis yields a precise characterisation
of TSI, in terms ofLATS that extends the relationships betw&esi andLATS discussed
above: in fact, the category eLATS and its full subcategorgneLATS are, respectively,
the full subcategories afLATS and mdLATS consisting of transition systems without
multi-arcs.

Summing up, this paper presents the following diagram ahfdrrelationships be-
tween the new model of transition systems with independandemulti-arcs and asyn-
chronous transition systems which can be useful in pratbigeanslate back and forth
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between the two models when the application one has in mopanes it.
TSl 6 LATS
am
TSI n){deATS C dLATS
J N /

meLATS © eLATS

Although the technical development here goes along thes ifi¢l(], and therefore,
strictly speaking, this paper is simply an extensiotoof cit., we believe that the definition
of TSI, is a relevant contribution on its own.

1. Preliminaries

In this section we recall briefly the definitions of asynchoos transition systems,
transition systems with independence, and their respectitegories]], 2.

As discussed in the introduction, asynchronous transitystems are simply transition
systems whose transitions are decorated by events equigitesh independence relation.

Four axioms A1-A4) are needed to guarantee the intended meaning for the erehthe
independence relation.

DEeFINITION 1.1 (Labeled Asynchronous Transition Systems).laBeled asynchro-
nous transitiorsystem lats for short) is a structure

A= (SA7 iA; EA; TranAa IA7 LAng)a

where(Sa,ia, Ea, Trana) is a transition system with set sfates &, initial state iy € S,

andtransitions Tran C Sy x Ea x Sa, and whereE, is a set ofevents L a set of la-
bels,/p: Ea — La alabelingfunction, anda C Ea x Ep, theindependence relatigtis an
irreflexive, symmetric relation such that

Al. ecEpn = 35,%€ S (S1,6%) € Tran;
A2. (ses) (ses)eTram = s=$;

S
€ &
A3. eilae, (se1,51),(S€,%) € Traly = sl/""'A\sZ
Ju. (817627u)7 (SZaelau) S TranA; ez"( Lel
u
€ S.__ez
Ad. erlpae, (S€1,81),(S1,€,u) € Trany = o,
I5. (s€,%). (.U eTram. N oy
u

In the rest of the paper we shall l€e) denote the sdte | e I €} and, for convenience,
use(s,e?,s) as a shorthand for a transiti¢s e, s') with £a(e) = a.

The following is the standard definition of morphisms ftgss, which essentially mim-
ics the idea osimulation(cf. [1, 23).
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DEFINITION 1.2 (Asynchronous Transition System Morphisms). &AandA' lats, a
morphismfrom Ato A is a triple of (partial) function's

(O': SA— SA/,I']: Ep— EA/,}\: La— LA’);
where(o,n) is a morphism of labeled transition systems, i.e.,
> a(ip) =ip;
> (Sﬂ.a ea5’2> € TranAa n(e)l = (O-(Sﬂ.)v n(e)a O-(SZ)) € TranA’;

(s1,6%) € Tram, n(e)T = o(s1) =0(s);
which preserves the labeling, i.e., makes the followingdian commutative

En 1 Ey

W

LA T LA’v
and the independence, i.e.,

erlaer, ner)l, ne2)l = n(e)lanie).

It is immediate to see thadts and their morphisms form a category, which we shall
refer to ad ATS.

Starting from Definition 1.1, transition systems with indaegence attempt to simplify
the structure retaining explicitly only the independeny layered directly on the tran-
sitions. As already mentioned, the notion of event becommggicit, determined by the
independence relation through the equivalence-clasgbe oélation~.

DEeFINITION 1.3 (Transition Systems with Independence) trAnsition system with
independencési for short) is a structure

T = (Sr,it,Ly, Trany, I7),

where(Sy,it,Lt, Trany) is atransition systenandly C Trany x Tranr, the independence
relation, is an irreflexive, symmetric relation, such tleemnoting by< the binary relation
on transitions given as

(s,a,51) < (s2,a,u) ifand only if
dbelr.(sas)lr (shs),
(s,a,s1) It (s1,b,u), (s,b,s2) It (52,8, 1),

and by~ the least equivalence on transitions which includes it, axesh

TL (sas)~(sas) = si=%;

T2. (s,as)lt (sb,s) = 3Fu. (sas)lt (s,b,u), (sb,s) It (s2,a,U);

T3. (s,a,5) It (s1,b,u) =  3s. (s,a,5) 17 (5,b,%), (5b,%) It (S2,8,U);

T4. (sa,s1) <U> (s2,a,u) It (wb,w) = (sas)r (wbw).

The ~-equivalence classes are to be thought of as eventst;i-.f, means thaty

andt, are part of a ‘concurrency diamond’, whitst~ t, means that they are occurrences

of the same event. Concerning the axioms, notice thenThatorresponds té\2 and
axiomsT2 andT3 correspond, respectively, &3 andA4.

1We use, respectivelyf: A— B and f: A — B to indicate total and partial functions. Féra partial
function, f(x)| (f(x)T) means thaf is (un)defined ax.
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The following definition of morphisms for transition systemith independence re-
sembles closely the one given aboveltas.

DEFINITION 1.4 (Transition System with Independence Morphisms). Faand T’
tsi, @ morphism fronT to T’ consists of a pair of (partial) functions

(0: St —= Sy, A Ly —Ly)
which is a morphism of transition systems and, in additioasprves independence, i.e.,

(S_|.7a752) IT (glvbvdz)a )\(a)l,)\(b)l =
(a(s1).M@),0(s2)) 117 (a(sy),A(D), 0(s3)).

We shall useT'SI to denote the category ofi and their morphisms.

The following lemma states thati morphisms are well defined as maps of events, an
easy consequence of the fact that they preserve indepenttexiave shall use in order to
embedT Sl into LATS.

LEMMA 1.5 (Morphisms map Events to Eventdjor (g,A): T — T’ a morphism of

tsi, (S1,a,%2) and (sy,a,s,) transitions of T,(a(s1),A(a),0(s2)) ~ (a(s)),A(a),0(s}))
whenevels;,a,s,) ~ (s1,a,S,) andA(a)|, i.e.,lats morphisms preserve.

2. Comparing LATS with TSI: Considering multi-arcs

In this section we first recall the results of the comparison$ andLATS carried out
by the authors in1(Q], and then, reconsidering a restriction usedbia cit., we introduce
the notion oftransition systems with independence and multi-ares.e., tsi in which
multiple transitions carrying the same label are allowetlvben the same two states. In
the next section we shall then perform an analysis matclhiagdf [10], investigating the
relationship between such a category &aAd' S, and showing that, in a precise sense, our
definition provides a minimal, conservative way to extesiadvith multi-arcs.

The starting point of the analysis i1 is the obvious inclusiorna: TSI — LATS
which acts on objects by decorating each transition wittetrent identified by the--class
the transition belongs to, and by inheriting the indeperdeglation directly from thesi.
On the opposite direction, we considered the ‘abstractiofibm LATS to TSI that forgets
the events and brings the independence from the events adtlva transitions. However,
a simple argument shows that the presence of multi-arca b makes it impossible for
at to be well-defined as a map Wb5I. Thus, the very first step ofl)] is to consider only
thoselats A satisfying

(Ex) (s1.68,%) # (s1,6),5) € Trany = a#bh,

whose purpose is to forbids multi-arcs. This allows to pritvad thediamond-extensional
asynchronous transition systems, whose definition follawe exactly thos&ats A such
thatat(A) belongs toTSl.

DEFINITION 2.1 (Diamond-Extension&dts). A diamond extensional labeled asyn-
chronous transitiorsystem {lats for short) is aats that satisfies
Al3. e lae, (56,5),(56,%) cTrany, =
3! pair (s,X3,u), (52,X8,U) € Trama. €1 1a Xz, € 1a X1, X1 Ia X2}
Ald. erlpey, (56,5),(s,68,u) € Trany =
3! pair (s, xg,sg), (s2,X§,u) € Trana. €1 la X2, € 1a X1, X1 1a Xo.
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The categorgdLATS is the full subcategory dfATS consisting of theliamond-extensional
lats.

We callextensionathe diamond-extensionkits that in addition satisfyfx), and we
denote byl ATS the full subcategory odLATS that they determine. We can now give the
formal definitions of the functors: TSI — LATS andat: eLATS — TSI.

DEFINITION 2.2 (TSI — LATS). ForT atsi, letta(T) be the structure
(ST7iT7EaTrana IaLTa€)7
where, denoting by the equivalence relation induced lyyas in Definition 1.3,
» E =Tranr/~, the set of~-classes ofrany;
> Tran={(s1,[(s1,8,%)]~,%) | (s1,a%) € Tranr |;
> [(Slvast)]N I [(gbav%)]’v if and Only if (Sﬁl.aaaSQ) IT (dbaa%);
> (([(sLas).)=a
For(o,A): T — T’ amorphism otsi, letta((o,A)) be(o,n,A), where

_J[(a(s),\(@),0(8))] . ifA@)],
n(((sa9)) = {undefined if (@),

The proof thatta is well defined follows easily from Lemma 1.5. Actuallg is a
full andfaithful functor, i.e., an embedding 4afSI in LATS. In the following, when no
confusion is possible, we may occasionally omit the indekrom the notation for~-
classes.

DEFINITION 2.3 €LATS — TSI). ForAalats, letat(A) be the structure
(Sa,ip, La, Tran, 1),

where

» (s5,a,9) € Tran ifand only if (s,€%,9) € Tran,

> (sas)l (s,b.s) ifand onlyif (s.€.s1),(s2,63,5) € Trama, €1 Ia €.
For(o,n,A): A— A’ a morphism ofats, letat((o,n,\)) be(a,A).

The result of L0 is thatta andat form acoreflectionof TSI in eLATS.

PROPOSITION2.4 (a—at: TSI — eLATS). TSlis coreflective ireLATS.

PROOF Subsumed by that of the forthcoming Proposition 3.8. O

Thelats corresponding tasi are characterised as tegent-maximalats. Intuitively,
a lats is event-maximaif its events and independence are ‘tightly coupled’, sa tree
cannot ‘split’ events without destroying the glolets structure. In other words, the iden-
tity of the events in event-maximélts is forced by the independence relation. This will
provide a direct characterisationf in terms oflats

DEFINITION 2.5 (Event-Maximalats). ForAalats, e€ Ea, andT C Tg, whereTg=
{(s,e,s) € Tramy | e= €}, let A[T] denote the replacement ebn the transitions i for
afreshevene & Ep, i.e.,

A[T] = (Sa,ia, EAU{&}, Tran I, La,¢),
where
» Tran= (Trama~T)U{(s1,€ ;) ‘ (s1,6%) €T}
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> | =1aU{(&e)|Elre};
. KA(G) ifeEEA,
>£(e){€A(é) ife—6&

A lats A is event-maximaif for eache € Ex and each nonempfy C Tg, the transition
systemdA[T] is nota lats.
The categoryndLATS is the full subcategory of ATS consisting of thediamond-exten-
sional event-maximalhts.

The definition above, stating that any structure obtainetldarranging’ events non-
trivially must fail to be alats, is our way to express that — as remarked before — the
identity of the events in event-maximats is forced by the independence relation.

Now, if we denote bymel ATS the restriction ofmdLATS to the full subcategory
induced by the objects satisfyingx), we can state the final result df(.

PROPOSITION2.6 (meLATS = TSI). meLATS is equivalent toT SI.
PROOF Subsumed by that of the forthcoming Proposition 3.9. O

Technically, the contribution of this paper is to re-addrédse choice of condition
(Ex) which forbids multiple transitions with the same labelMeén the same two states.
Namely, instead of restrictintts in order to get a well-defined functat to TSI, we
relax the definition oftsi to allow multi-arcs, proposing below the notion wénsition
systems with independence and multi-afEBis represents an interesting evolutiortof
whose relevance goes beyond the comparisotsicind lats; morally, it constitutes the
main contribution of this paper. In other words, we proposeehransition systems with
independence and multi-arcs and justify their definitiorshgwing how their multi-arcs
relates to those déts.

Formally, we extendsi in the simplest possible way: transitions are representea b
map assigning to each element of aBetn of transitions a triple consisting of its source,
label, and target. This allows to have more transitions betwthe same two states with
the same label simply by having more elementJ@in mapped to the same triple. The
independence relation and the defining axioms are the obwianslations of those afi.

DEFINITION 2.7 (tsi with Multi-Arcs). A transition system with independence and
multi-arcs(tsi,, for short) is a structure

T= (ST;iT;LT;TranTa<_>T7IT)a
where(— ) : Trant — Sy x Lt x Sy and(Sy, i, L1, (Tranr);) is atransition systenand
I+ C Trany x Trany, the independence relation, is an irreflexive, symmettatian, such
that, denoting by< the binary relation on transitions given as
t< t" ifand Only if <t>T = (Sa a,81), <t/>T = (Szaaa U),
3t17t2 S TranT- <tl>T = (S; baSZ)a <t2>T = (Sﬂ.a ba U),
witht It ty, tlTto, ty 17 1/,
and by~ the least equivalence on transitions that includege have
Twl. t~t, )y =(sa9), {)r=(sax) = t=t;
Tm2. tigt/, )y =(sas), )1 =(sbs) =
Fty, to. (ta)7 = (S2,8,1), (t2)7 = (s,b,u), tir to, t' 17 tg;
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Tw3. tirt/, () =(sas), ') =(s1,b,u) =
Jty,to. (t1)r = (S2,a,u), (to)r = (sb,sp), tlrto, t1I7 1y
Thd. t<Ust It " = t It t”.

As for tsi, the ~-equivalence classes — in the following denotedthy, fort a rep-
resentative of the class — are to be thought of as events. Xibena are recast to fit
with the indirect way of assigning source, label, and tatgdtansitions. Notice that a
global axiom likeT,1 is still necessary, since the intended notion of eventscgtiinot
be determined locally. AxionT ,4 ensures that the independence relation determines a
well-defined relation on events.

In the rest of the paper we shall see that this viewWtlf agrees with the notion of
events forlats and that, in facttsi,, relates well to the category of diamond-extensional
lats.

Usingl (t) to denote the s€ft’ | t I t'}, we can state the following lemma which will
be useful later on. As a matter of notations, we shalluse;, i = 1,...,3, to denote the
composition of{ — )1 with the appropriate projection, i.e.,{f); = (s,a,5), then(t); =,

(t), =a, and(t); =5.

LEMMA 2.8. AxiomT 4 is equivalent to
(Tm4) ety = 1(t) =1(t).
PrROOF Easy, by induction. O

The definition of morphisms for transition systems with ipdedence and multi-arcs
necessarily involves a (partial) function on transitiombjch, of course, must respect the
mapping of states and labels.

DEFINITION 2.9 (tsiy, Morphisms). Foil andT’ tsi,,, a morphism fronT to T’ con-
sists of a triple of (partial) functions

(0: St — Sp,A: Ly — Ly, T2 Trany — Trany)
that respects sources, targets, and labels, i.e., thatsttaédéollowing diagram commute

T

Trany Trany,
| |
SrxLrxSr Sp x L X Spr,

<0o\,0>
preserves independence, i.e.,
tirt, Tt)], Tt = Tt) I T(t),
and preserves the ‘diamond relatiox), i.e.,
t=<t, tt)] (ort(t)]) = T(t) <T(t).

We shall us€T S, to denote the category ofi,, and their morphisms.

Observe that in the definition above it is necessary to censite reflexive closurg
of the relation<, since morphisms can be partial and, therefore, collagseaids.

Concerning the relationships betwe&8l and TSI,,, everytsi can be regarded as a
tsim Simply by defining the map— ), to act as the ‘identity’, i.e., interpreting transitions as
themselves. Such a mapping extends to an inclusion futratof S| — TSI, by defining
tm((0,A)) to be(o,A,1), wheret((s,a,5)) = (0(s),A(a),0(s)). It follows immediately
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from the last condition in Definition 2.9 thats well defined as a map of events, a fact that
we shall use in later on to emb@®l,, into LATS.

LEMMA 2.10 (Morphisms map Events to Event$pr (o,A,T): T — T’ a morphism
of tsi, and t~t’ equivalent transitions of T, if(t) |, thent(t) ~ T(t’), i.e., tsi,, morphisms
preserve~.

In general, it is not possible to define a map fré®l,, to TSI that forgets multi-arcs
and preserves independence. This is shown by the followsample in which collapsing
thea-multi-arcs would make the twa-labeled transitions sticking out ebreak axiomr'1

7N
N

This means that the embedditg: TSI — TSI, does not have a right adjoint. Dually, it
can be proved thatm cannot have a left adjont either (a proof that we shall othdugh).
Thus, TSl is neitherreflectivenor coreflectivan TSl,,,.

3. From LATS to TSI,,: A coreflection

Now that all the bricks are in play, we can complete the p&ghowing how to ex-
tend the functor$a andat to a pair of adjoint functormmaandamforming a coreflection
betweenTSl,, anddLATS. There is only one reasonable way to define the embeddang

DEFINITION 3.1 (TSI, — dLATS). ForT atsi, letma(T) be the structure
(Sr,it,E, Tran,l,Lt,?),
where, denoting by the equivalence relation induced lyyas in Definition 2.7,
» E =Tranr/~, the set of~-classes ofranr;
> Tran={({t)y, [l (t)s) |t € Tranr };
» [t} | [t']~ ifand onlyif t Iy t/;
> (([tl-) = (Vs

It follows from Lemma 2.8 and the definition ef that the definition of the inde-
pendence and labels on the eventsraT) is well given. It is now easy to verify the
following.

PROPOSITION3.2. The transition system ni@) is a d/ats.

PrROOF Axiom Al is trivially satisfied. AxiomA?2 is satisfied because df,1, for,
by definition ofma, two transitions carry the same event if and only if they hglto the
same~-class inT. ConcerningA3 andA4, they correspond directly t6,,2 andT,,3, and
the uniqueness criteria imposed A3 andA!4 are a direct consequencebi. O

In order to definemaas a functor, we need to define its action on the morphisms of
TSl
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DEFINITION 3.3 (TSI, < dLATS). For (0,A,1): T — T’ a morphism oftsi,,, let
ma((o,A, 1)) be(o,n,\), where

10 ~{ e

undefined if T(t)7.

That Definition 3.3 is well given follows from Lemma 2.10; & also easy to check
thatmais afull andfaithful functor, i.e., an embedding afSl,,, in dLATS.

The obvious way to define the ‘abstracti@mto TSI, on the objects ofATS is, for
alats A, to make the transitiorirana the elements of the transition SEan, s, and then
interpret them (vig — )am(A)) simply by replacing the event with its label. We shall prove
that this gives a well-defined object-map from the categddiamond-extensionddts to
TSI, and thatdLATS is actually the largest full subcategoryloATS whose every object
is mapped byamto atsiy,.

DEFINITION 3.4 LATS — TSl,,). ForAalats, letam(A) be the structure

(Sa,ia;La, Tran, (=), 1),
where,
> (s,€%,5) e Tran ifand only if (s,€*,S) € Tram,
> ((s€.s))=(sas),
> (s,6,5) 1 (5,60,5) ifand only if e Ia €.

PrRoOPOSITION3.5. For A a lats, am(A) belongs toT Sl,, if and only if A belongs to
dLATS.

PROOF The pairs of transitions iA!3 andAl4 exist because of axion®s3 andA4.
If am(A) € TSI, their uniqueness is needed in order &n(A) to satisfy axiomT 1.
Suppose that, on the contrary, in the casé\t there are two pairgs;, x5, u), (S, X2, u)
and(sy, yg, ,(S2,¥5,w) satlsfylng the condltlon Assume, without loss ofgend,yaﬂhat
Yo # Xo. Then we havés;,y3,w) # (s1,X3,u), but we also have thas, €5, ) < (s1,Y3,w)
(as transitions cAm(A)) and(s,%,sg) < (s1,X8,u), i.e., that(sy, X3, u) ~ (si,yb,w), which
contradictsT,1. The case foA!4 can be proved along the same lines, thus showing the
necessity of the uniqueness conditions.

Concerning their sufficiency, the property of symmetry améfiexivity for I a)
is inherited froml,. It remains to check that the axioms,1-T .4 definingtsim hold
for am(A). Axioms A3, A4 and A!l3, Al4 ensure that |f(ae"i‘,sl (2,65,s3), then
e, = e. It follows then by induction thats,€2,s;) ~ (s,€65,s3) impliese; = e, for all
(s.€],s1),(%,6,%3) eTranam(A If in additions = s,, then axiomA2 implies thats; = sz,
and so(s,€],s1) = ($,65,%3), i.e., Tm1 is satisfied. Actually, this also implies that,4
holds. For, since the mdependencea'm(A) is inherited from that on the events Ay we
have thal(s,e"i‘,si (2,68, 53) implies| ((s,€8,51)) =1((s2,€5,%3)). This, as proved by
Lemma 2.8, is equivalent fb,4. Finally, T,,2 andT,3 hold because of the corresponding
A3 andA4. O

The definition ofamon morphisms depends on the fact thAT'S morphisms preserve
independence on events.

DEFINITION 3.6 dLATS < TSl,,). For (o,n,A): A— A" a morphism oflats, let
am((o,n,\)) be(o,A,1), where
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_ J(o(9).n(€®,0(s)) ifn(e)l,
(s&s) = {undefined if n(e1.

By inspecting Definition 3.4, it is easy to verify that the a&balefinition makes the
diagram in Definition 2.9 commute. Moreover, it preserggsince axioms\!3 andAl4
ensure thae; = ey, whenever(s,ef,u) < (s,€,U), i.e., sincen preserve independence,
am((o,n,\)) is well defined.

In order to prepare for our main proof, we first prove the failog lemma.

LEMMA 3.7. Forany T inTSl,,,, we have that amma(T) is isomorphicto T.

PROOF. (Sketch) We show that there is a bijectidbetweenT rant andTran,mmar)
such that(ids,id,,8) and (ids,id_,0) are morphisms ofTSl,,, respectively from T
to amoma(T) and vice versa, inverses of each other. The obvious choic8(fp is
((t)1,[t]2, (t)5). Observe that this gives an injective map because of afigi O

The isomorphisms of 3.7 directly extends to a natural ti@msation

n={(ids,id.,8): T — amoma(T . 1ts),, => amoma

)}TGTSIm

We shall prove now that such a transformation is thé of an adjunction involvingna
andam i.e., thatamis right adjoint toma: TSI, — dLATS.

PROPOSITION3.8 (ma-am: TSI,, — dLATS). For any Ae dLATS and any mor-
phismm T — am(A) in TSI, there exists a unique morphisnf mma(T) — A indLATS
such that antm™) ont = m.

PROOF. Let m be (o,A,1). Clearly, by definition ofam, m' must be of the form
(0,Y,A) for somey: Eyq7) — Ea. Itis easy to realize that the only possible choiceyfor
is the following: fort € Tranr andt(t)], lety([t]) = e, if T(t) = (s,€%,5). This is a well
given definition, for Lemma 2.10 ensures thamaps all transitions ift] to the same--
class ofTran, ), and the proof of Proposition 3.5 shows that if two transiibelong to
the same--class ofTran,, ), they originate from transitions ifirana carrying the same
event. This proves both existence and uniqueness'ofFinally, it immediate to check
thatamm' ) ont = m. a

Sincen is an isomorphism, by standard results in category theogyhawe that the
adjunctionrma-fam: TSI, — dLATS is a coreflection, i.eTSl,, is coreflectivan dLATS.

Concerning the coreflection described in the previous@egitiis immediate to verify
that the functors obtained by composimg andamwith the inclusiontm: TSI < TSI,
and with the obvious inclusion @&LATS into dLATS coincide, respectively, witka fol-
lowed byelLATS — dLATS and withat followed by tm, as illustrated in the following
diagram.

TS| /%

m____dLATS
|
ta
TSIZ__ elATS
at

This supports our claim of S, being aconservativeandminimalextension ofT SI, since
regardingsi,, aslats, the extension corresponds exactly to removing the cansfit).
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To complete our analysis, we identify tmepleteimage ofmain LATS, i.e., the
full subcategorymdLATS of dLATS consisting of the objects isomorphic maa(T), for
someT € TSly,.

Recall from basic category theory thatlLATS is determined by the coreflection: it
consists of thosé € dLATS for which the corresponding componemntof the counit of
ma-| amis iso. Applying standard categorical results to degivm (—)T andn, we find
that it is the natural transformation

e = {(ids,,V,idL,): macamA) — A}AedLATS: mao am=> 14| aTs,

where, for(s,€%,s) € Tranyya), Y([(S,€%,5)]) = e. Clearly,ea is iso if and only ify is
such, i.e.,

(Sa elasl)a (825 e2753) S TranA7 61 =6 = (Sa e]_,Sg_) ~ (82762753) € Tranam(A)v

which means that two transitions carry the same event if arygl ibthey belong to the
same~-class ofA (viewed as asin,). Expressed purely in terms @fATS, this is, as it
was the case fof S, exactly the event-maxim&lATS. Observe that in Definition 2.5 the
interesting, nontrivial choices far are those such that C T C Tg, i.e., those in which at
least oneetransition is added and at least om&ansition is kept irA[T].

PROPOSITION3.9 (mdLATS = TSI,,). mdLATS is equivalenttorSl,,.

PROOF LetAbe adiamond-extensionats. We prove that the coundl, is iso if and
only if A belongs tandLATS. To this purpose, lef be the event component ef.

If yis iso, i.e., for all(s,e1,s1), (s, €,53) € Trany we have thate; = e implies
(s,e1,51) ~ (92,€2,%3), for any choice ok € Ep and any C T C Tg, then the condition in
Definition 2.5 is satisfied, since, by the diamond-extersionof A, eitherA3 or A4 must
fail for A[T]. In fact, in order forA[T] to be aLATS, diamond-extensionality implies that
we must haves e;,s;) € T whenever s e1,51) ~ (S,€,53) for some(s;,e,%3) € T,
i.e., by the hypothesis on T should beTs. SoA is event-maximal.

If yis notiso, i.e., if there exigs, e, 1) and(sy,e,s3) such that(s,e s;) # (s,€,S3),
thenT ={(s,€,9) | (s,¢,5) ~ (s,e,51)} C Te is a nonempty set for which the ‘splitting’
of eyields alats, i.e.,Ais not event-maximal. O

4. Conclusion

Based on a comparison between the model of asynchronoustimansystems (a
model with explicitly defined events) and the model of tréiosi systems with indepen-
dence (a more abstract model, with a derived notion of eyeatsied out by the authors
in [10], we have introduced th&ansition systems with independence and multi-ares
a conservativeand minimal extension of transition systems with independence that fea
tures multi-arcs — showing that the ability of asynchrontassition systems to model
multi-arcs does not depend inherently on the choice of lggeiplicitly given events.

Adding multi-arcs to transition systems with independermestitutes a valuable en-
hancement to the model, which allows to model importantasibms in which multiple
transitions between the same states represent differentsewith different causal histo-
ries.

Investigating the relationship between the category afsition systems with inde-
pendence and multi-arcs and the category of labeled asyncbs transition systems that
matches the one ir)], we have shown that the formerésreflectiven the category of
diamond-extension#hbeled asynchronous transition systems, which intuitigee those



TRANSITION SYSTEMS, INDEPENDENCE, AND MULTI-ARCS 15

transition systems that make no confusion about the idestf the events carried by tran-
sitions facing each other in independence-diamonds. Trflection provides a way to
translate semantics forth and back between the two modelsllys we have identified the
event-maximalabeled asynchronous transition systems as the largesst ofaasynchro-
nous transition systems for which the coreflection cuts dmnanequivalencgso provid-
ing a precise characterisation of transition systems wittependence and multi-arcs in
terms of labeled asynchronous transition systems.

The analysis carried outin this paper helps in deciding whismecessary to move to
a more ‘intensional’ framework (a lower level of abstran)iin which further distinctions
of events are introduced by assigning them explicitly. Tafngtion of transition systems
with independence and multi-arcs raises the thresholdbyialg a derived notion of event
also when multi-arcs are required.
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