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Implementing and Verifying MSC Specifications Using
PROMELA /XSPIN

Stefan Leue and Peter B. Ladkin

ABSTRACT. We discuss a translation of Message Sequence Charts (MSCs) into
the language PROMELA (we call this translation an ‘‘mplementation’) that
is consistent with the formal semantics we have previously defined for Mes-
sage Flow Graphs and Message Sequence Charts, which handled the syntactic
features with mathematical import from ITU-T recommendation Z.120. We
report on experiments executing the PROMELA code using the XSPIN sim-
ulator and validator. In previous work we found that potential process di-
vergence and non-local choice situations impose problems on implementations
of MSCs, and we discuss how these impact our PROMELA translation and
suggest solutions. Finally, we show how to model-check liveness requirements
imposed on MSC specifications. We use the PROMELA models obtained from
our implementation, describe how to use control state propositions based on
these models, use Linear Time Temporal Logic formulas to specify the liveness
properties, and demonstrate the use of XSPIN as a model checker for these
properties.

1. Introduction

Message Sequence Charts (MSCs) describe sequences of message exchanges by
communicating, concurrent processes. While other specification languages like SDL
or PROMELA describe the process behaviour explicitly, leaving message flows to
be inferred, MSCs specify explicit message flows while other details of process be-
haviour must be inferred from the specification. The syntax of MSCs is described
in the ITU-T Recommendation Z.120 [IT96]. MSCs are frequently used both for-
mally and informally for the description of message flow amongst communicating,
concurrent processes. They have found their way into many software engineering
methodologies and toolsets, such as SDL tools and environments [OFMP194,
Lab95], Object-oriented methodologies [RBPT91, Jea92, SGW94], tools to
analyse the design of message exchanges at early stages in the software lifecycle
[Hol96, AHP96], and methods describing design patterns [BMR1986].

In previous work we defined a finite state semantics for Message Sequence
Charts [LL95b], and discussed in [LL95a] implications of the MSC notation as
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defined in Z.120. Although Basic MSCs look simple, syntactic features such as con-
ditions or branchings which are defined for High-level MSCs can make it harder to
figure out what these latter describe and automated help is desirable. We describe
a translation of MSC specifications into PROMELA so that they can be simulated
and validated using the XSPIN tool. We call this translation an implementation,
and discuss in this paper what design choices need to be made.

There are three major ways in which MSCs are used:

1. to visualise actual system execution, during debugging and program under-
standing (as in [Hol96, AHP96]),

2. as alanguage to document early design decisions (as in ObjecTime [SGW94],
EFD [Hol96)),

3. to document test cases or functional-validation criteria that an implementa-
tion must satisfy (ROOM [SGW94], SDT [AB]).

Items 1 and 3 concern finite execution scenarios in which one event node cor-
responds to a single event and a single message. Z.120 calls such finite MSCs Basic
MSCs (BMSCs). For an example of a BMSC, see the left-hand side of Figure 1.
The intuitive meaning of this BMSC is as follows. There are two processes P1, P2
with vertical ‘time lines’, bounded above and below. P1 sends a message of type a
to P2, which (asynchronously) receives it, and then sends a message of type b to
P1, which (asynchronously) receives it. This example should suffice to understand
what BMSCs are supposed to mean. BMSCs do not have any branching or itera-
tion. In [LL95b] we described how to represent BMSCs algebraically as so-called
basic Message Flow Graphs (MFGs), and then translated MFGs into (global-) state
machines. We are not primarily interested in BMSCs here since their meaning is
straightforward and implementation is trivial. We concern ourselves with MSCs
describing repeating or infinite behavior, in which a given event ‘node’ typically
represents many repeating events in an execution sequence (as, for example, state-
ments in loops in procedural programming languages).

Composition of MSCs. When MSCs are used at early system design stages to
represent desired behaviour of the system, many BMSCs will typically be written,
and these sets of BMSCs only make sense if some sort of relationship between in-
dividual BMSCs is intended. In practice, a single BMSC often corresponds to a
particular software feature, described by a finite message exchange scenario. In Fig-
ure 12, for example, the MSC labelled MSC1 represents the scenario in which process
P1 is requesting connection establishment from process P2 by sending a CR message
(connect request), while MSC2 shows P2 answering by a CC message (connect confirm)
and MSC3 shows P2 answering by a DR message (disconnect request). Intuitively,
these scenarios form the building blocks for a simple connection-establishment pro-
tocol, provided their relationship is properly defined.

Explicitly to represent this relationship formally calls for some sort of com-
position operator. The latest version of the Z.120 standard introduces so-called
High-level MSCs (HMSCs) to specify the interrelation of MSCs!. HMSCs may rep-
resent branching and iterating behaviour. Composition is described by a graph that

we will call an HMSC graph. We use the following definition of HMSC. An HMSC

L According to Z.120, both conditions in BMSCs and composition expressed by HMSCs can be
used simultaneously. The expressive capability of HMSCs is greater because it allows expression

of the n-fold repetition of a BMSC M for a fixed, finite n.
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graph is a graph with start nodes (nodes with only out-edges), end nodes (nodes
with only in-edges) and interior nodes (nodes with both out- and in-edges). Each
interior node is labelled either with a BMSC or with another HMSC graph. We
assume that there is at least one start node and one interior node. The intuitive
meaning is that the edges of an HMSC graph indicate control flow between BMSCs
(or other HMSCs) that are the node labels. The composition of two BMSCs is thus
represented by an edge between the corresponding nodes in the HMSC graph?.

We define an MSC specification to be a collection S of one or more BMSCs,
plus an HMSC graph G whose nodes are labelled with members of S. The MSC
Specification in Figure 1 specifies a finite scenario in which process P1 sends an
a message to P2 which replies by sending a b message. The MSC Specification
in Figure 12 specifies branching and iterating behaviour. It can be interpreted as
specifying a simple connection establishment protocol in the following way: the
request for connection establishment (node MSC1 in the HMSC on the right hand
side of Figure 12) can be followed either by connection confirmation (node MSC2)
which means that the protocol ends, or by request of disconnection (node MSC3)
which means that a new connection establishment must be attempted (loop back
to node MSC1).

HMSC graphs hold out the hope for a clearer notion of MSC composition than
possible with conditions. We are particularly interested in MSC specifications which
involve HMSCs containing cycles: it is intuitively only possible to ‘visit’ a given
MSC node (corresponding to a communication event in the MSC) more than once
in an execution sequence if there is some control path leaving that node which
returns to it; the control path is some (here unspecified) construct of the BMSC of
which that node is part plus edges in the HMSC graph.

Many of the problems in interpreting iteration and branching in MSCs noted
in [LL95b, LL95a] occur regardless of the syntactic form in which a composition
is proposed. The current Z.120 HMSC proposal does not appear to contain syn-
tactic restrictions that would avoid many of these interpretation problems. We will
show that they become apparent when pursuing PROMELA simulations of MSC
specification.

Motivation. Our reasons for implementing (i.e., simulating) MSCs are:

1. we want to demonstrate the practical use of MSCs in behavior specification;
in particular,

2. we want to demonstrate the practical use of our semantics;

3. the synthesis of process code from MSCs requires an understanding of what
behavior they express and the assumptions they embody, which can be most
easily seen from simulation;

4. this exercise in translating MSCs into process code reveals underspecified
assumptions in the intended meaning of the MSCs;

5. we want to generate models that can be used for model checking properties
of MSC specifications.

Choice of PROMELA /X Spin. We chose PROMELA /XSPIN because PRO-

MELA provides all necessary concepts (sending and receiving primitives; parallel

2An HMSC graph that intuitively represents a single BMSC may be constructed as follows:
a single start node leads to a single interior node labelled with the BMSC, leading to a single
end node. Thus these particular HMSC graphs can be identified intuitively with the BMSCs with
which they are labelled.
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and asynchronous composition of concurrent processes; and communication chan-
nels) that were necessary to implement MSC specifications. Furthermore, the X-
SPIN [Hol91, Hol] tool allows for randomly simulating PROMELA specifica-
tions, which helpsin debugging, and for model-checking properties expressed as LTL
formulas. The availability of suitable language features and the simulation capabil-
ity distinguishes PROMELA /XSPIN from other finite-state modelling-language
and model-checker packages such as SMV [McM93]. The communication prim-
itives and channels that are readily available in PROMELA would need to be
hand-coded into SMV specifications in order to obtain models identical to the ones
we obtain from our PROMELA implementation.

2. A few observations

Our MSC formal semantics [LL95b] allows us to make the following observa-
tions:

e MSCs describe asynchronous communication, as in Z.120. However, our
semantics also deals with synchronous communication (see [LL95b]). Thus
50 does the PROMELA translation. We restrict ourselves to discussing the
asynchronous case here.

e MSCs are inherently finite-state. The state of an MSC specification is deter-
mined by the state of each process (i.e., at which point the process control
lies in each process), and by the “state” of each of the messages in the system
(whether the message is on the way, or not). Since there are only finitely
many processes, and each process has finitely many control states, and there
are a finite number of message arrows in an MSC specification, and these
are all the meaningful ‘parts’ of an MSC, there is a strong prima facie ar-
gument that there are only finitely many states. For additional arguments
for a finite-state interpretation, see [LL95a].

e Some claim that the communication between processes in MSCs is buffered.
If so, the behavior of the buffers is completely hidden. This could lead to
trouble — generally, specifications should be explicit about everything they
deal with. We feel that for a specification style based on graphics, what you
see should be what you get. If not, what you get are problems.

e Liveness properties in MSCs are underspecified. See [LL95b].

e Even somewhat restricted use of basic MSC composition yields specifications
with problematic meaning. Sense may be made of them only if substantial
assumptions are made about the behavior of the environment. Difficult cases
arise from message cross-over (as in Figures 3 and 7), as well as non-local
choice points as in Figure 14. See [LL95a].

3. Implementation of Basic MSC specifications.

3.1. Message Flow Graphs. MSC specifications are graphical objects - ink
on paper, lines on a screen. To implement an MSC, one must translate the graphi-
cal into a textual or mathematical representation. Z.120 proposes a textual syntax.
We pointed out ambiguities in the mapping from the graphic to this textual rep-
resentation in [Leu94]. The Z.120 textual syntax is therefore not suitable for our
purposes.
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msc MSC1
noml Y @@
e
L I
F1GURE 1. MSC example 1
msc MSC2

P1 P2

msc MSC3

Figure 3. MSC example 3
mtype = {a, b};

chan vw
chan xy

= [1] of { byte };
= [1] of { byte };
proctype P1()
{ atomic {
ve'!a;
printf("ta\n") };
atomic {
xy?[b] -> xy7b;
printf("?b\n")}
3

proctype P2()
{ atomic {
ve?[al -> vu?a;
printf("?a\n")};
atomic {
xy'b;
printf("!b\n")}
3

init { atomic { run P1(); run P2() } }

FicURE 4. PROMELA code for MSC example 1
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In [LL95b] we defined the mapping of MSCs to Message Flow Graphs (MFGs),
where each node in the MFG corresponds to a communication event in the corre-
sponding MSC. An MFG corresponding to the MSC example 1 is given on the right
hand side of Figure 1. The nodes are connected by directed arrows representing
two relations on the set of nodes: the next-event (ne) relation representing the
control flow in a process, and the signal (sig) relation representing message flows.
In this paper, we draw ne-relation arrows as solid lines and sig-relation arrows as
dashed lines. The translation of an MSC specification into a corresponding MFG
is described in [LL95b]. While there the concept of conditions was used to spec-
ify possible continuations of one MSC by another, in this paper we use the HMSC
concept, recently introduced into Z.120, to specify composition of basic MSCs. The
translation procedure from MSC specifications into MFGs based on HMSCs is a
straightforward extension of the “unfolding” operation as defined in [LL95b], and
we will not elaborate on this translation here.

We distinguish two types of MSC specifications:

1. MSC specificatios may describe finite system executions. This is depicted
in Figure 1. In this case the corresponding MFG is a finite, cycle- and
branching-free graph.

2. MSC specifications may represent branching and iterating behaviour, which
is reflected by the branching and cyclic structure of the corresponding MFG
(see the MFG in Figure 13 that corresponds to the MSC specification in
Figure 12).

Note that neither the HMSC concept nor the condition concept in Z.120 im-
ply any sort of synchronization between processes in an MSC specification when
sequential composition or branching occurs®. As we shall see later, this has bearing
on our implementation choices.

MFGs will be the basic underlying data structure for the implementation al-
though we will in most cases not explicitly refer to them. In the remainder of this
section we discuss the implementation of basic MSC specifications. In Section 4 we
will discuss the implementation of iterating and branching specifications.

3.2. Basic implementation concepts. We model an MSC specification in
PROMELA by instantiating a PROMELA process for each of the MSC processes
at system-setup time*. This is implemented by an init clause in PROMELA.
For the concurrent instantiation of two or more processes, we need to employ the
atomic keyword. For example, to initialize an MSC with two processes P1 and P2
we write init { atomic { run P1(); run P2() } }. Messages can have types
in PROMELA as well as in MSCs. We choose the mtype construct to specify
the message types. mtype = {a, b} generates two one-byte integer constants with
names a and b and increasing values a=1 and b=2.

To model the message behaviour of MSCs in PROMELA we choose channels
with capacity 1, one for each message arrow in the chart. This represents the
invariant that any given message is either on the way (in which case there is a

3C.f. [IT96]: “A sequential execution of two nodes that are related by an edge is described
byt the seq operator.” and “The seq operator denotes the weak sequencing operation where only
events on the same instance are ordered”. Concerning the semanitcs of conditions, c.f. [IT95]:
“Note that the semantics of a chart containing conditions is stmply the semantics of the chart
with the conditions deleted from it.”

1Note that a ‘process’ is a connected component of the ne relation of an MFG [LL95b]
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message of the expected type in the PROMELA channel), or not on the way
[LL95b]. The channels must have type consistent with the message type. In PRO-
MELA, channels are implemented as arrays of finite length > 0. The declaration
chan vw = [1] of { byte } defines a channel with name vw and capacity of one
element of the message type — in this case, one byte.

A PROMELA implementation of an MSC has the following overall syntactic
structure (c.f. Figure 5):

e First, necessary data definitions, including the global channel declarations
denoted by the keyword chan.

e Next, the definition of the process bodies as indicated by the keyword
proctype. In our examples the processes do not have parameters — all
names used (i.e., the channels) have global scope.

e Finally, the instantiation of the whole system using an init statement.

3.3. Basic MSC specifications. MSC example 1. The left hand side of
Figure 1 shows a basic MSC in which process P1 sends a message of type a to P2
and P2 then sends a message of type b back to P1. Figure 4 shows the code for the
MSC in Figure 1. We have defined two processes, as in the MSC. The core of each
process implements the communication behaviour, plus instructions to print output
to the screen for debugging purposes (the printf statements). The statement vw'a
denotes a send of a message of type a over the channel named vw, and xy?b denotes
reception of a message of type b from channel xy.

The semantics in [LL95b] relies on the interleaving model with communica-
tion events as atomic actions®. PROMELA requires the use of the atomic key-
word to ensure that operations inside the following curly parentheses are executed
as an atomic action, without other interleaved events. We therefore ensure that
the execution of the communication statements and the related printf debugging
statements are atomic events by use of the atomic keyword.

Reception of messages in PROMELA is not blocking. Thus, when executing
an xy7b statement, a message of type b will be received if there is a message of
that type at the head of the channel xy. However, if there is no such message at
the head, the statement will nevertheless be executed, a message of undefined type
will be received, and process control will advance beyond the reception statement.
This doesn’t happen in MSCs, which block on receive of a message that isn’t there.

In order to implement blocking on reception we use a guard, namely a predicate
which checks whether a message of the suitable type is ready to be received. This is
the xy?[b] statement, which is true if the first element of the channel xy is of type
b, and false otherwise. The -> operand serves as an enabling operator such that
the operation on its right is only enabled if the guard on its left is {rue. In order
to protect the compound guarded receive statement from undesired interleaving,
it needs to be embraced by an atomic statement. The execution of this example
using SPIN yields exactly one execution trace.

MSC example 2. The MSC example 2, Figure 2, is similar to the MSC example
1. However, we inverted the direction of the message arrow of type b. This MSC
specifies a “message overtaking” — message b is sent later but received earlier than

5[Sel96] chooses a receive event and a subsequent send event to be executed in one atomic
transition of a ROOM actor. However, they derive code for one single test actor from an MSC
specification. Interleaving semantics, however, is only relevant for systems consisting of more than
one concurrent processes.
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mtype = {a, b};

chan vw
chan xy

= [1] of { byte };
= [1] of { byte };
proctype P1()
{ atomic {
ve'!a;
printf("ta\n") };
atomic {
xy'b;
printf("!b\n") }
3
proctype P2()
{ atomic {
xy?[b] -> xy7b;
printf("?b\n")};
atomic {
ve?[al -> vu?a;
printf("?a\n")}

init { atomic { run P1(); run P2() } }

FicUrE 5. PROMELA code for MSC example 2

mtype = {a, b};

chan vw
chan xy

= [1] of { byte };
= [1] of { byte };
proctype P1()
{ atomic {
ve'!a;
printf("ta\n") };
atomic {
xy'b;
printf("!b\n") }
3
proctype P2()
{ atomic {
ve?[al -> vu?a;
printf("?a\n")};
atomic {
xy?[b] -> xy7b;
printf("?b\n")}

init { atomic { run P1(); run P2() } }

F1cURE 6. PROMELA code for MSC example 3

message a. This gives rise to the use of per-message dedicated channels in PRO-
MELA because message-overtaking within a PROMELA channel is not possible.
As for MSC example 1, execution using SPIN yields exactly one execution trace.

MSC example 3. Example 3 allows two execution sequences: <'!a, !b, 7a, 7b>
or <'a, 7a, !b, 7b>. After the 'a event has occurred, two independent events
are enabled: the !'b and the 7a event. The PROMELA semantics specifies a
nondeterministic choice in this situation. Spin implements the nondeterministic
choice in PROMELA by using a random (non-repeating) choice. As expected,
experimentation with the SPINsimulator shows that two different traces will be
generated (see also [LL96]).
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msc MSC4

moork Y (D AD
a MSC4 \L $
a /a %

/\

msc MSC5

P1 P2 V D2 =D
a MSC5 \L l/
; L @@

FiGUrRE 7. MSC example 4 (top) and 5 (bottom)

mtype = {a}; mtype = {a};
chan ve = [1] of { byte }; chan ve = [1] of { byte };
chan xy = [1] of { byte }; chan xy = [1] of { byte };
proctype P1() proctype P1()
{ atomic { { atomic {
ve'!a; ve'!a;
printf("ta, 1\n") }; printf("ta, 1\n") };
atomic { atomic {
xy'a; xy'a;
printf("!a, 2\n") } printf("!a, 2\n") }
3
proctype P2() proctype P2()
{ atomic { { atomic {
ve?[al -> vu?a; xy?lal -> xy?a;
printf("?a, 1\n")}; printf("7a, 2\n")};
atomic { atomic {
xy?[al -> xy7a; ve?[al -> ve?a;
printf("?a, 2\n")} printf("7a, 1\n")}
3 3
init { atomic { run P1(); run P2() } } init { atomic { run P1(); run P2() } }
Ficure 8. PROME- Ficure 9. PROME-
LA code for ex. 4 LA code for ex. 5

MSC examples 4 and 5. Examples 4 and 5 in Figure 7 are similar to Exam-
ples 2 and 3, except that both message arrows are of the same type (a). The
PROMELA implementation generates similar outputs to those in examples 2 and
3 except for !'b replaced by !'a and 7b replaced by 7a. Example 4 generates
<la, l'a, 7a, 7a> as trace, whereas example 5 generates <!a, 'a, 7a, 7a> or
<la, ?7a, 'a, 7a> as traces, randomly chosing between them. In [LL95a] we dis-
cussed an anomaly arising with these two examples. Both specifications stand for
the same “code” with respect to the communication events, namely for two consec-
utive statements of type !a for the left and of type 7a for the right process. In other
words, the left and the right processes in both examples are code-identical. How-
ever, they do not allow the same set of traces. We conclude that there must be an
implicit assumption about the environment which distinguishes the specifications.

What would this be?
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\/

msc MSC6

Figure 10. MSC example 6

The implementations given here support this conclusion. In order properly
to implement the desired behaviour we needed to define that both messages are
implemented by different channels. The channels belong to the environment. The
processes thus receive the messages from distinct environment entities, which allows
for modeling the faster delivery of one message than of the other. This indicates
that in an implementation we indeed need to exploit the environment to get the
“expected” behavior.

4. Iterating and branching MSC specifications

As discussed above, HMSCs may specify a composition of basic MSCs such
that an iterating or branching system is described; iterating and branching MSC
specifications translate into iterating and branching MFGs (Figure 10).

4.1. Iteration. Figure 10 shows an HMSC which allows MSC6 to be followed
by MSC6. In PROMELA, we model the iteration in the process code by a goto—
label construct. We must consider one aspect of the semantics of PROMELA more
thoroughly. We see that a process may reach a send statement repeatedly. The
sending primitive in PROMELA is blocking, i.e. when the channel vw is full, the
statement vw!a blocks. MSCs according to Z.120, on the other hand, do not have
the notions of channels and capacities. It would therefore be counterintuitive if an
MSC could block on sending. This means that we need to add a void operation
which is carried out if the send operation blocks. We use the PROMELA predicate
full(vw) as a guard which is true if and only if the actual send operation vu'a
blocks. We use the dummy vw?[al; printf("full, ") statement to indicate that
a write operation to a full channel was attempted.

In the following prefix of a (supposedly) infinite execution trace of this example
note that in conformance with our semantics the execution of one receive statement
7a may disable n > 1 send operations !a.
swen12:/swen12/u/sleue_/spin/specs/workshop.366 % spin mscéa.prm
‘ta, ?a, 'a, full, 'a, ?a, 'a, full, 'a, ?a, 'a, full, 'a, full, 'a,

?a, 'a, ?%a, 'a, %a, 'a, %a, 'a, ?%a, 'a, full, 'a, full, 'a, %a, !a,

It is worth noting that there is nothing in the MSC specification which would
make an infinite sequence of !'a events an illegal trace. In other words, there is
nothing in the MSC specification which would ever require a 7a event to occur
[LL95b]. However, the algorithm which resolves nondeterminism in PROME-
LA (based on a random number generator, we believe) appears to ensure some
fairness condition on the nondeterministic choice alternatives.

4.2. Branching. The MSC example in Figure 12 specifies branching behaviour.
It may be interpreted to specify a very lightweight connection establishment proto-
col: process P1 requests establishment of a connections by means of a CR protocol
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mtype = {a};
chan v¥ = [1] of { byte };
chan xy = [1] of { byte };

proctype P1()
{c:
atomic {
if
i1 vela
:: full(ve) -> printf("full, ")
fi;
printf("ta, "); goto C}
3
proctype P2()
{c:
atomic {
ve?[al -> ve?a; printf("7a, "); goto C}
3
init { atomic { run P1(); run P2() } }

Ficure 11. PROMELA code for MSC example 6

data unit (PDU); depending on a non-deterministic decision, P2 either acknowl-
edges the establishment by a CC PDU, or refuses connection establishment by a DR
PDU. In the first case the system execution is assumed to go into a data-transfer
phase (here indicated by a triangular symbol indicating an HMSC end-node), in
the latter case the system returns to a state from which connection establishment
can be re-initiated.

In [LL95b] we suggested an operation called unfolding to translate an MSC
specification into a branching and iterating MFG. We’ll adopt that construction
here. In order to adapt the unfolding operation for an HMSC, we shall assume
that each BMSC in the HMSC has the same processes (i.e., the same number of
processes with the same process labels). The unfolding is a single graph that is
intended to reflect exactly the behavior intended by the HMSC. For example, when
P1 in Figure 12 has sent the CR message, it will have to decide whether to move left
(i.e. to continue with the MSC labeled “MSC2”), or to move right. The right process
is expected to make the same decision after receiving CR. Intuitively, the choice of
each processes of which ‘branch’ to follow at the decision point must correspond
with the choice (to be) made by the other process at the same point, during the
same 1teration. These choices can differ from iteration to iteration, as long as the
processes make corresponding choices.

Our semantics specifies a non-deterministic decision for both processes, but it
does not specify how to implement the decision-making. Let’s assume the following
strategy: P2 makes a random decision whether to send CC or DR. We call this the
random-choice strategy. P1, we assume, remains in its post-CR state in MSC1, before
the ‘choice point’, monitoring the incoming messages. Depending on whether it
sees a CC or a DR 1t will react accordingly and continue with either moving through
MSC2 to the ‘triangle’ or through MSC3 and back to the beginning of MSC1. Let’s
call this the wait-and-see strategy. Obviously, for a consistent implementation of
the branching there has to be one process that performs a random choice between
sending different messages, and all other processes follow suit by implementing
a wait-and-see strategy. We will later see MSC specifications for which such a
consistent implementation is impossible.
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msc MSC1 v
PL P2
%
2 MSC3

msc MSC2 msc MSC3 £
P1 P2 Pl P2

Lo ]| [on]| w2 T J
I A

Ficure 12. MSC Specification example 7.

F1GURE 13. Message Flow Graph for example 7.

In the corresponding PROMELA example in Figure 20, the random-choice
strategy is implemented by a do ... od construct embracing two vacuously en-
abled guarded commands, namely vw!CC and xy!DR. We rely on the randomness
of the choice between both to be implemented by spin. The wait-and-see is imple-
mented by a do ... od construct which embraces two complementarily enabled
statements, namely vw?CC and xy?DR. In other words, P1 follows faithfully the
decision made by P2.

Ezxecuting the example with branching control. The following execution traces
show that the system runs in iterations until P2 decides to send a CC which leads the
system into a terminating state. Again, there is nothing in the MSC specification
which would keep it from repeating a CC — DR loop forever. (We used a variant of
the code in Figure 20 with debugging printf statements to generate the following
output).
sWenl2:/swen12/u/sleue/spin/specs/workshop.406 % spin msc9.prm
'CR, ?CR, !'DR, ?DR, !CR, ?CR, !CC, ?CC, 3 processes created

sWenl2:/swen12/u/sleue/spin/specs/workshop.408 % spin msc9.prm
'CR, ?CR, !'DR, ?DR, !CR, ?CR, !DR, ?DR, !CR, 7?CR, !CC, 7CC, 3 processes created

4.3. Summary of implementation choices. We summarise the implemen-
tation decisions discussed so far. First, the graphical-object MSC specification is
translated into a corresponding Message Flow Graph, using unfolding. Then:

e Every process (Z.120 terminology: ‘instance’) in an MSC specification is
mapped to exactly one PROMELA process. The PROMELA processes
are instantiated concurrently when the whole PROMELA specification be-
comes incarnated, see the { atomic { run P1(); run P2() } }statement
in Figure 20.
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msc MSC1 v
PL P2

FicUure 14. MSC specification with non-local choice

msc MSC1 v
P1 P2

P1
T T) | s X o
FicUure 15. MSC example with non-local choice and explicitly
represented channels

e Message arrows are represented by PROMELA channels. This allowed for
modeling so-called “message crossing”. Also, as messages in MSCs can be
exclusively either on-the-way or not, the capacity of these channels is defined
to be 1.

o Message send and receive events are modeled by the corresponding PRO-
MELA statements (e.g., tu!CR and tu?CR, respectively).

e Branching in MSCs is modeled using PROMELA labels and goto state-
ments.

e It is necessary to ensure that certain sequences of PROMELA statements
were executed atomically using the atomic clause.

e There is no notion of ‘channel’ explicit in MSCs, therefore there can be no
blocking-send statement in the corresponding PROMELA code. We use
full(..) -> skip statements to model the non-blocking send of an MSC.

e Receive statements, however, are blocking. This is implemented using a
PROMELA guard-statement pair, see for an example the vw?[CC] -> vw?CC
statement pair in Figure 20. It is particularly important to guarantee atom-
icity of these guard-statement pairs.

5. Implementing Non-Local Choice

The MSC in Figure 14 is similar to the example in Figures 12 and 13. It
describes a simple data exchange protocol. P1 transmits data by a DA PDU. Then,
two scenarios are possible: either P2 confirms receipt with a DC PDU or, due to
some unspecified internal decision, P1 requests explicit acknowledgement from P2
through an RC PDU.

The implementation of this MSC in PROMELA (Figure 16) illustrates some
of the intricacies of using HMSCs (or ‘conditions’) to compose BMSCs to form
MSC specifications: the “n-th-cycle-same-choice” condition seems to be what users
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intuitively understand this MSC to express. This condition says that when P1
has gone through n iterations of the cycle described by the MSCs MSC1 and MSC2,
and if P1 is ahead of P2, then later when P2 reaches the n-th cycle it will make
the same left-right decision in a post-DA state that P1 made in its n-th cycle. If
in an implementation P1 were to decide to “go left” (continue with MSC MSC2),
and P2 were to decide to go right (MSC3) at the same choice point on the same
iteration, then the system would block (it would either dead- or livelock depending
on the implementation) because both processes would be waiting for a signal to
be sent by the other process. This is not what users understand this MSC to
express. Such an “n-th-cycle-same-choice” branching was called a ‘non-local choice’
in [LL95b, LL95a] because these choices somehow have to be synchronised by both
processes despite the fact they occur at different points in the execution sequence.

It turns out that the synchronisation required by this kind of MSC cannot be
implemented in a local, non-coordinated, fashion, in contrast to the situation for
MSCs in which a process may branch control without synchronising with other
choices, as for example in Figure 12. [LL95¢| discussed two somewhat unsatisfac-
tory variants of the implementation of the example in Figure 14.

Ezecuting Non-local Choice with history variables. As described in [LL95a],
existence of a history variable that records the left-right choices is implied by the
intuitive meaning of the choice-synchronizing processes P1 and P2. We argued
that the length of this variable is finite but potentially unbounded. As PROME-
LA only allows for the description of finite-state systems, we must bound the size
of the history variable, thereby only approximating the history variable algorithm
informally described in [LL95a].

We use N + 1 global history variables: variables i1 ... iN and variable hist.
In our example, N = 2. Process Pk keeps track of the iteration it is on by setting
history variable ik. However, the choice history only records M previous choices (M
is thus the bound on the size of the choice-history variable), so ik is approximated
by nk = ik mod M. Let 0..N = {z | z € Naturals & 0 < z < N}. The choice-
history variable is hist: 0..(M — 1) — {0, 1}, initialised to 0. (There is only
one choice-point per iteration in this example and only a two-way choice — hist
would generally be a doubly-indexed array hist: 0..(M — 1) x choice-point-labels —
branch-labels.)

A value hist[k] = 0 indicates that the process first reaching this branch point
in the k’th cycle went ‘left’; a value of 1 indicates that it went ‘right’. (Since
the initial value of hist also has a meaning as a branch choice, Pj checks whether
hist[k] has been previously set by checking whether some other nk is greater
than nj, which must be done in any case, as we see next.) Pk is the only process
setting ik and nk and may only set hist[m] if nom > n_j for k # j when ik=k,
otherwise it must follow the decision indicated by the value of hist [k].

Figure 16 shows the suggested implementation of the non-local choice example.
P1 sends DA as an atomic event. In the next atomic step, P1 checks whether it is
allowed to set the history variable, or whether it has to follow the path determined
by P2 as recorded in the history variable. If P1 may determine which branch to
take in the n-th cycle, it will make a nondeterministic decision.

Implications of the History Variable length. We saw that the capacity of the
history variable determines the amount by which processes P1 and P2 can ‘diverge’.
The PROMELA code will only correctly simulate the MSC specification if at all
times the difference between the number of the cycle that P1 is on and the number of
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/* Length of history variable #/
#define H 8

/* Channel capacities */

#define Ctu 3

#define Cve 1

#define Cxy 3

mtype = {D4, DC, RC};

chan tu = [Ctul of { byte };
chan ve = [Cvel of { byte };
chan xy = [Cxyl of { byte };

int hist[H]; /# history variable */

int ni; /* # of iterations through non-local choice by P1 %/
int n2; /* # of iterations through non-local choice by P1 %/
int i1; /% act index to hist for P1 #/
int i2; /% act index to hist for P2 #/

proctype P1()

{ c1:
tu!D4a;
atomic{
if
(n1 < n2) & (n2 - n1) <= H -> /% P1 lacks behind */
if /* Decide according to hist */
:: hist[i1]l == 0 -> goto €20 /% go ‘left’ */
:: hist[i1]l == 1 -> goto C21 /* go ‘right’ */
fi
(n1 >= n2) &% (n1 - n2) < H -> /% P1 is ahead */
if /* Random choice betw 0 and 1 #*/
: hist[i1]l = 0; goto €20
: hist[i1]l = 1; goto C21
fi
fi;
C20:
nl =nl + 1; i1 = nl % H;
ve?[DC] -> vw?DC;
goto END;
Cc21:
nl =nl + 1; i1 = nl % H;
xy!RC; goto C1}
END: skip}
proctype P2()
{ c1:
atomic{
tu?[DA] -> tu?DA};
atomic{
if
(n2 < nl1) &% (n1 - n2) <= H ->
if
:: hist[i2] == 0 -> goto C20
:: hist[i2] == 1 -> goto C21
fi
(n2 >=n1) &% (n2 - n1) < H ->
if
: hist[i2] = 0; goto €20
: hist[i2] = 1; goto C21
fi
fi;
C20:

n2 = n2 + 1; i2 = n2 ¥ H;
ve!DC; goto END;
Cc21:
n2 = n2 + 1; i2 = n2 ¥ H;
xy?[RC] -> xy7RC; goto C1}
END: skip}
init { n1 = 0; n2 = 0; i1l = nl1 % H; i2 = n2 % H;
atomic { run P1(); run P2() } }

FI1GURE 16. Implementing non-local choice using a history variable
with bounded length and channels with bounded capacity

15
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the cycle that P2 is on is < M. If one process runs ahead of the other by more than
M cycles, the PROMELA code will not correctly simulate the MSC specification.
A bound on the ‘cycle difference’ may currently not be specified in MSCs. In fact,
as we have noted in previous work, liveness properties such as requiring that a sent
message is eventually received are underdetermined by the current standard. It is
easy to see that a ‘cycle-difference’ bound ensures progress of both processes and
therefore that this requirement entails a liveness property.

Ezxperimental results. The experimental simulation with XSPIN shows that
this implementation of the history variable algorithm satisfies the n-th-cycle- same-
choice condition but does not prevent the system from blocking. This is in accor-
dance with our semantics and has the following explanation. Consider the following
scenario: the system in Figure 14 starts executing, P1 makes n consecutive right
decisions, and P2 is in its m-th cycle (n > m+1). Now, P2 queries the global history
variable and follows the right decision that P1 made in the m’th cycle and receives
RC. In the m+ 1’st cycle, P2 will again perform a right decision, as determined by
the global history variable, but find no message RC to be received. This is because,
as we argued in op. cit., communication in MSCs in non-buffered and therefore
n > 1 repeated sendings of a message by a given ‘MSC arrow’ (= message instance)
can be received by one receive event. (We retain in the system state a single copy of
a message instance that has been sent but not received, and remove this copy when
the message is received. A second message-send of an unreceived message instance
does not change the system state because the instance is already recorded in the
state. Omne must also be careful to distinguish the contents of a message, which
may be identified with message type in MSCs, from a message instance. An MSC
may contain multiple arrows representing the sending of a single contents. These
multiple arrows are different instances of the contents and the MSC state retains a
copy of the instance in our semantics.)

6. Introduction of Channels with Capacities

The example in the previous section shows that recording the history of choices
that the system makes with respect to non-local choice situations does not suffice
to provide a non-blocking interpretation (i.e., a set of execution sequences, none
of whom block) of the specification. To provide a non-blocking interpretation,
we may add another history variable, a counter variable recording the number of
sendings and receivings of message instances. [LL95b] contains simple examples of
potential MSC execution sequences during which this variable would be unbounded;
this happens when repeated message instances are continually sent faster than they
are recelved, throughout a non-terminating execution. Employing such counting
variables while continuing to admit such executions yields an infinite-state system.
However, [LL95a] argued for the inherent finite-stateness of MSC specifications. So
adding such counter variables is not obviously consistent with other requirements
on the interpretation of MSCs.

Making Channels explicit. A chief argument against the use of message queues
for the interpretation of the communication mechanism in MSCs follows from the
what-you-see-is-what-you-get (WYSIWY G) requirement on specifications and spec-
ification languages. For a visual graphical specification style like MSCs, this means
either not adding information that is not explicit in the diagram, or extending the
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language to capture such information. (We argued in [LL95b, LL95a] for an ex-
tension to capture underdetermined liveness properties, but for omitting histories
since they weren’t already explicit. We also noted, and again above, that histories
were required in any case reasonably to interpret some already-standardised MSC
syntactic constructs.)

This WYSIWYG requirement on specification languages entails that when in-
troducing history variables for messages in MSCs their existence should be made
explicit in the graphical representation of MSCs, which means an extension to the
syntax defined in the Z.120 standard. Figure 15 shows a possible syntactic rep-
resentation of channels. We map each message arrow onto one channel. In some
situations it may be useful to require different messages to be sent across one chan-
nel. This may syntactically be done by attributing channel symbols with name
labels, and to understand messages crossing channel symbols with the same name
label to be passed along the same channel.

Some Suggested Criteria for Introducing Channels.

1. Channels serve messages following a first-in-first-out strategy.

2. Channels should be free of loss: this requirement may be weakened later.

3. Channels have a specific (finite or infinite) capacity.

4. The semantics of the MSC send primitive should be changed from non-
blocking to blocking. Z.120 MSCs have no notion of channels and capacities,
therefore there was no point to defining the send primitive as blocking.
However, with the introduction of channels and capacities this now makes
more sense. Channels with infinite capacity never block on a send, but the
blocking becomes important as we introduce channels with finite capacity.

5. The definitions in [LL95b] would no longer be appropriate for MSCs-with-
channels. However, a semantics can easily be given, in particular by trans-
lating an MSC specification into a collection of Communicating Finite State
Machines [BZ83]. Furthermore, a formal operational semantics for PRO-
MELA is currently under development [NH986], hence MSCs-with-channels
could inherit a formal semantics from the PROMELA translation once this
PROMELA semantics is given.

6. The MSCs obtained by introducing unbounded channels cannot be im-
plemented using PROMELA, whose expressive capabilities are limited to
finite-state systems.

Benefits. The suggested introduction of channels with finite capacities does
not guarantee deadlock-freedom for MSCs®. However, we conjecture that blocking
due to non-local choices can be avoided by this mechanism. We do not have space
here for a more-detailed study of how one might introduce channels, and what
properties those channels should have. We wished mainly to note how introducing
them would solve a problem with ‘anomalous’ blocking execution sequences. The
problem could also be solved by simply accepting the blocking execution sequences
as valid executions of the MSC specification.

7. Finite State Implementation

Two of the constructs we have suggested lead to an infinite-state model: non-
local-choice history variable(s), and channels associated with message arrows. How-
ever, finite-state-space validation techniques as well as an implementation using

8For necessary and sufficient criteria for MSCs to be deadlock-free see [LS].
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msc MSC1 v
P1 P2
DA
MSC1 ]
3
msc MSC2 msc MSC3 0

F1GURE 17. MSC example with non-local choice, explicitly rep-
resented channels, and explicit capacities for the non-local choice
history variable (=8) and channels (=3, 3 and 1)

PROMELA require a finite-state-space model. Any PROMELA implementation
must therefore limit both the capacities of the channels and the length of the his-
tory variables for all non-local choice situtations to finite values. We represent these
restrictions using appropriate labels on channel symbols and the final-condition
symbol leading into a non-local choice situation, as seen in Figure 17. Figure 16
shows the corresponding PROMELA source code.

Making the History Variable Length explicit. Following the WYSIWYG re-
quirement discussed earlier, not only the existence of channels and their capacities
should be made explicit in MSC specifications, but also the existence of a history
variable and its capacity. Figure 17 shows a possible representation for the pres-
ence of a history variable (the diamond shaped connector) and the limitation of its
length to 8 (the number in the diamond’s interior).

Ezxperiment and limitations. Limiting the capacity of history variables and
channel capacities leads to a number of limitations when executing the PROME-
LA implementation.

1. Figure 18 shows an execution trace generated by XSPIN based on the im-
plementation of the MSC specification in Figure 17 as given in Figure 16.
Events in a trace generated by XSPIN are totally ordered (by virtue of
their absolute distance to the top of the beginning of each process axis).
The left axis corresponds to the PROMELA process generated as a father
to processes P1 (middle axis) and P2 (right axis). Note that the maximum
divergence between the P1 and P2 is 3 as a consequence of the capacity of
the now-blocking communication channel xy, which is 3.

2. As the send primitive is now blocking, processes will not send to a full chan-
nel. This excludes a number of interleavings as possible traces of the system.
Note that in the implementation without bounded channel capacities a sub-
trace (!DA, !'RC)* could be part of an admissible execution sequence, this is
not the case for the example in Figure 17.

3. As argued eralier, the size of the history variable limits the divergence of
processes P1 and P2. In the example in Figures 16 P1 could be at most 8
cycles ahead of P2. However, the limitation of the capacity of channel xy
is more constraining, limiting the maximal divergence to 3. Both channel
capacity as well as history variable length determine the potential divergence
of the processes.
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F1GURE 18. Trace of MSC specification generated by random sim-
ulation using XSPIN

8. Verifying Temporal Properties.

The translation of MSCs into a language like PROMELA can prove helpful
in two main ways. First, as mentioned above, the translated PROMELA model
allows simulation and animation of an MSC specification, which may help in de-
bugging early system designs. Second, as we argued in [LL95a, LL95b] MSCs
underspecify liveness properties, and temporal logic can be used to specify the ad-
ditional liveness properties. Desired liveness properties specifiable in linear-time
temporal logic (LTL) may be checked in PROMELA, thus PROMELA can sup-
port this extension of the MSC language.

It is possible using LTL to specify properties on the PROMELA model gen-
erated from an MSC specification that this model cannot guarantee. For example,
consider MSC 1 in Figure 12. Suppose we wish to assert that process P2 will always
eventually send a message of type DR. XSPIN is a state-based, and not an event-
based verifier, so we need to define state predicates specifying the control-state of
the process with respect to the events defined in the MSC. Define a state predicate
ta_ (for ‘taken’) such that ta_z holds iff the last state transition was a sending of a
message of type . The desired assertion is expressed by the LTL formula O0<¢a DR.
(We also define and use references to the control state of individual processes in
the PROMELA code as XSPIN-LTL propositions.) The property that a message
of type DR will always eventually be sent cannot hold, because P2 may eventually
decide to execute the left path that describes transmission of a CC message followed
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Ficure 19. MSC showing trace leading to a state violating [1 <> aftsDR.

by termination, along which path the system cannot ever again reach a state in
which £a DR holds.

The XSPIN environment allows model checking of LTL formulas based on
PROMELA models [GPVW95, Hol|. LTL formulas can be entered in XSPIN,
and a preprocessor translates them into so-called never claims [Hol91, Hol95].
How can a basic proposition like ta_z be defined as a basic proposition in PROME-
LA? We make use of a predefined PROMELA predicate of the format process._
name[pid]@label name. process_name is the name of a process as defined in the
proctype clause; pid is a process identification number, generated by increment-
ing a counter starting at 1 each time a new process of any type is incarnated;
label name is a statement label in the PROMELA code. In order to refer to such
a predicate, it is assigned a name pred name by a #define clause.

In [LL95¢], the communication event as well as the control-flow branching was
included inside a PROMELA atomic clause. In order to implement the {a_ pred-
icate properly using PROMELA labels, we removed the the control-flow branch
statement from within the atomic clause and labeled it. Figure 21 shows the PRO-
MELA code implementing the MSC in Figure 12. Labels aftersCR, aftersCC and
aftersDR denote points in the process control flow as needed to define ta_".

As expected, the XSPIN verifier detects a violation of the LTL claim []1 <>
aftsDR which is the translation of the LTL formula OOte DR, For debugging,
XSPIN can run a guided simulation into the state that violated the claim, and
the violating trace is illustrated using an MSC (see Figure 19). The online use of
this MSC enhances debugging because placing the mouse on individual MSC events
highlights the PROMELA code (in another window) corresponding to those events;
and it attempts to indicate how the temporal property is violated.

We ran a few more temporal properties through the XSPIN verifier to exper-
iment. Table 1 lists the results. In particular, Property 3 expresses an important
consistency condition for the protocol represented by the original MSC. This prop-
erty basically states that once a CC (connect confirmation) has been sent it is not
possible to send a DR (disconnect request) afterwards.

9. Summary and Outlook

We noted that simulating MSC specifications had advantages for system de-
signers. We have considered the simulation of MSC specifications in PROMELA,

"XSPIN automatically generates a ‘never’-claim from an LTL and allows for adding the claim
to the specification (see [LL986] for the code of the ‘never’-claim of the LTL formula number 3 in
Table 1)
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mtype = {CR, CC, DR};
chan tu = [1] of { byte };
chan v¥ = [1] of { byte };
chan xy = [1] of { byte }

proctype P1()

mtype = {CR, CC, DR};

#define aftsCR Pi[1]@aftersCR
#define aftsCC P2[2]@aftersCC
#define aftsDR P2[2]@aftersDR

{ C1: chan tu = [1] of { byte };
atomic { chan v¥ = [1] of { byte };
if chan xy = [1] of { byte };

:: tu!CR
:: full(tu) -> skip

proctype P1()

£i; goto C2}; { C1:
c2: atomic {
do if
: atomic { :: tu!CR
va?[CC] -> vw?CC; : full(tu) -> skip
goto END} fi; }
:: atomic { aftersCR: goto C2;
xy?[DR] -> xy?DR; goto C1} C2:
od; do
END: skip : atomic {
X ve?[CC] -> vw?CC;
proctype P2() goto END}
{cC1: :: oatomic {
atomic { xy?[DR] -> xy?DR;
tu?[CR] -> tu?CR; goto C2}; goto C1}
C2: od;
do END: skip}
: atomic { proctype P2()
if { C1:
c:ovR!CC atomic {
:: full(ve) -> skip; tu?[CR] -> tu?CR;
fi; goto END } goto C2};
:: oatomic { C2:
if do
:: xy!'DR :: oatomic {
:: full(ve) -> skip if
fi; goto C1 } :: ve!CC
od; :: full(ve) -> skip
END: skip fi; 3
X aftersCC: goto END
: atomic {
init { atomic { run P1(); run P2() } } if
: xy!DR
¢ full(ve) -> skip
fi; }
aftersDR: goto C1
od;
END: skip}

init { atomic { run P1(); run P2() } }

FIGURE 20. PRO- FIGURE 21. PRO-
MELA  code  for MELA code including

example 7 state labels.

and noted how the questions on the MSC semantics considered in [LL95b, LL95a]
are reflected directly in the PROMELA executions. We considered in particu-
lar verifying properties expressed in LTL. Some liveness properties of MSCs are
underdetermined by the standard but any simulation must either allow or avoid
each questionable execution sequence, therefore these decisions had to be made.
Questions about non-local choice in MSC branching, which originally arose with
conditions but is also present for HMSCs were also considered, and implemented
following the development in [LL95a]. To avoid imposing over-stringent liveness
conditions (that the executing processes may only lag each other by a bounded
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| Property | Outcome |
1. [1 <> aftsCC not satisfied
2. <> aftsCC not satisfied
3. [1 (aftsCC -> ! <> aftsDR) satisfied
4. [1 (aftsCR —> <> aftsCC) not satisfied
5. aftsCR -> <> (aftsCC \/ aftsDR) satisfied
6. ([I<>aftsDR) -> !'<> aftsCC satisfied

TABLE 1. Temporal Properties verified using XSPIN

amount), we considered introducing message-instance-channels and discussed their
implementation in PROMELA and some consequences.

Current work includes a formalisation of the MSC-to-PROMELA translation
(see [LL95c] for a preliminary version) and the development of a tool support-
ing this translation. Furthermore, we investigate the syntactic analysis of MSC
specifications. We have defined syntactic conditions for the occurrence of non-
local choices, process divergence and deadlocks in MSC specifications [BAL96b].
Combined with the analysis of MSC specifications as discussed in this paper the
resulting tool can provide software engineers with substantial support in providing
unambiguous first design specifications [BAL96a].
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