
Implementing and Verifying MSC Speci�cations UsingPROMELA/XSPINStefan Leue and Peter B. LadkinAbstract. We discuss a translation of Message Sequence Charts (MSCs) intothe language PROMELA (we call this translation an `implementation') thatis consistent with the formal semantics we have previously de�ned for Mes-sage Flow Graphs and Message Sequence Charts, which handled the syntacticfeatures with mathematical import from ITU-T recommendation Z.120. Wereport on experiments executing the PROMELA code using the XSPIN sim-ulator and validator. In previous work we found that potential process di-vergence and non-local choice situations impose problems on implementationsof MSCs, and we discuss how these impact our PROMELA translation andsuggest solutions. Finally, we show how to model-check liveness requirementsimposed on MSC speci�cations. We use the PROMELAmodels obtained fromour implementation, describe how to use control state propositions based onthese models, use Linear Time Temporal Logic formulas to specify the livenessproperties, and demonstrate the use of XSPIN as a model checker for theseproperties. 1. IntroductionMessage Sequence Charts (MSCs) describe sequences of message exchanges bycommunicating, concurrent processes. While other speci�cation languages like SDLor PROMELA describe the process behaviour explicitly, leaving message 
ows tobe inferred, MSCs specify explicit message 
ows while other details of process be-haviour must be inferred from the speci�cation. The syntax of MSCs is describedin the ITU-T Recommendation Z.120 [IT96]. MSCs are frequently used both for-mally and informally for the description of message 
ow amongst communicating,concurrent processes. They have found their way into many software engineeringmethodologies and toolsets, such as SDL tools and environments [OFMP+94,Lab95], Object-oriented methodologies [RBP+91, Jea92, SGW94], tools toanalyse the design of message exchanges at early stages in the software lifecycle[Hol96, AHP96], and methods describing design patterns [BMR+96].In previous work we de�ned a �nite state semantics for Message SequenceCharts [LL95b], and discussed in [LL95a] implications of the MSC notation as1991 Mathematics Subject Classi�cation. Primary 68Q60, 68Q55, 68Q10; Secondary 68N99,03B45.The �rst author was supported in part by the National Science and Engineering ResearchCouncil of Canada (NSERC). 1

http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65136
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6513/


2 STEFAN LEUE AND PETER B. LADKINde�ned in Z.120. Although Basic MSCs look simple, syntactic features such as con-ditions or branchings which are de�ned for High-level MSCs can make it harder to�gure out what these latter describe and automated help is desirable. We describea translation of MSC speci�cations into PROMELA so that they can be simulatedand validated using the XSPIN tool. We call this translation an implementation,and discuss in this paper what design choices need to be made.There are three major ways in which MSCs are used:1. to visualise actual system execution, during debugging and program under-standing (as in [Hol96, AHP96]),2. as a language to document early design decisions (as in ObjecTime [SGW94],EFD [Hol96]),3. to document test cases or functional-validation criteria that an implementa-tion must satisfy (ROOM [SGW94], SDT [AB]).Items 1 and 3 concern �nite execution scenarios in which one event node cor-responds to a single event and a single message. Z.120 calls such �nite MSCs BasicMSCs (BMSCs). For an example of a BMSC, see the left-hand side of Figure 1.The intuitive meaning of this BMSC is as follows. There are two processes P1, P2with vertical `time lines', bounded above and below. P1 sends a message of type ato P2, which (asynchronously) receives it, and then sends a message of type b toP1, which (asynchronously) receives it. This example should su�ce to understandwhat BMSCs are supposed to mean. BMSCs do not have any branching or itera-tion. In [LL95b] we described how to represent BMSCs algebraically as so-calledbasicMessage Flow Graphs (MFGs), and then translated MFGs into (global-) statemachines. We are not primarily interested in BMSCs here since their meaning isstraightforward and implementation is trivial. We concern ourselves with MSCsdescribing repeating or in�nite behavior, in which a given event `node' typicallyrepresents many repeating events in an execution sequence (as, for example, state-ments in loops in procedural programming languages).Composition of MSCs. When MSCs are used at early system design stages torepresent desired behaviour of the system, many BMSCs will typically be written,and these sets of BMSCs only make sense if some sort of relationship between in-dividual BMSCs is intended. In practice, a single BMSC often corresponds to aparticular software feature, described by a �nite message exchange scenario. In Fig-ure 12, for example, the MSC labelled MSC1 represents the scenario in which processP1 is requesting connection establishment from process P2 by sending a CR message(connect request), while MSC2 shows P2 answering by a CCmessage (connect con�rm)and MSC3 shows P2 answering by a DR message (disconnect request). Intuitively,these scenarios form the building blocks for a simple connection-establishment pro-tocol, provided their relationship is properly de�ned.Explicitly to represent this relationship formally calls for some sort of com-position operator. The latest version of the Z.120 standard introduces so-calledHigh-level MSCs (HMSCs) to specify the interrelation of MSCs1. HMSCs may rep-resent branching and iterating behaviour. Composition is described by a graph thatwe will call an HMSC graph. We use the following de�nition of HMSC. An HMSC1According to Z.120, both conditions in BMSCs and composition expressed by HMSCs can beused simultaneously. The expressive capability of HMSCs is greater because it allows expressionof the n-fold repetition of a BMSC M for a �xed, �nite n.



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 3graph is a graph with start nodes (nodes with only out-edges), end nodes (nodeswith only in-edges) and interior nodes (nodes with both out- and in-edges). Eachinterior node is labelled either with a BMSC or with another HMSC graph. Weassume that there is at least one start node and one interior node. The intuitivemeaning is that the edges of an HMSC graph indicate control 
ow between BMSCs(or other HMSCs) that are the node labels. The composition of two BMSCs is thusrepresented by an edge between the corresponding nodes in the HMSC graph2.We de�ne an MSC speci�cation to be a collection S of one or more BMSCs,plus an HMSC graph G whose nodes are labelled with members of S. The MSCSpeci�cation in Figure 1 speci�es a �nite scenario in which process P1 sends ana message to P2 which replies by sending a b message. The MSC Speci�cationin Figure 12 speci�es branching and iterating behaviour. It can be interpreted asspecifying a simple connection establishment protocol in the following way: therequest for connection establishment (node MSC1 in the HMSC on the right handside of Figure 12) can be followed either by connection con�rmation (node MSC2)which means that the protocol ends, or by request of disconnection (node MSC3)which means that a new connection establishment must be attempted (loop backto node MSC1).HMSC graphs hold out the hope for a clearer notion of MSC composition thanpossible with conditions. We are particularly interested in MSC speci�cations whichinvolve HMSCs containing cycles: it is intuitively only possible to `visit' a givenMSC node (corresponding to a communication event in the MSC) more than oncein an execution sequence if there is some control path leaving that node whichreturns to it; the control path is some (here unspeci�ed) construct of the BMSC ofwhich that node is part plus edges in the HMSC graph.Many of the problems in interpreting iteration and branching in MSCs notedin [LL95b, LL95a] occur regardless of the syntactic form in which a compositionis proposed. The current Z.120 HMSC proposal does not appear to contain syn-tactic restrictions that would avoid many of these interpretation problems. We willshow that they become apparent when pursuing PROMELA simulations of MSCspeci�cation.Motivation. Our reasons for implementing (i.e., simulating) MSCs are:1. we want to demonstrate the practical use of MSCs in behavior speci�cation;in particular,2. we want to demonstrate the practical use of our semantics;3. the synthesis of process code from MSCs requires an understanding of whatbehavior they express and the assumptions they embody, which can be mosteasily seen from simulation;4. this exercise in translating MSCs into process code reveals underspeci�edassumptions in the intended meaning of the MSCs;5. we want to generate models that can be used for model checking propertiesof MSC speci�cations.Choice of PROMELA/XSpin. We chose PROMELA/XSPIN because PRO-MELA provides all necessary concepts (sending and receiving primitives; parallel2An HMSC graph that intuitively represents a single BMSC may be constructed as follows:a single start node leads to a single interior node labelled with the BMSC, leading to a singleend node. Thus these particular HMSC graphs can be identi�ed intuitively with the BMSCs withwhich they are labelled.



4 STEFAN LEUE AND PETER B. LADKINand asynchronous composition of concurrent processes; and communication chan-nels) that were necessary to implement MSC speci�cations. Furthermore, the X-SPIN [Hol91, Hol] tool allows for randomly simulating PROMELA speci�ca-tions, which helps in debugging, and for model-checking properties expressed as LTLformulas. The availability of suitable language features and the simulation capabil-ity distinguishes PROMELA/XSPIN from other �nite-state modelling-languageand model-checker packages such as SMV [McM93]. The communication prim-itives and channels that are readily available in PROMELA would need to behand-coded into SMV speci�cations in order to obtain models identical to the oneswe obtain from our PROMELA implementation.2. A few observationsOur MSC formal semantics [LL95b] allows us to make the following observa-tions:� MSCs describe asynchronous communication, as in Z.120. However, oursemantics also deals with synchronous communication (see [LL95b]). Thusso does the PROMELA translation. We restrict ourselves to discussing theasynchronous case here.� MSCs are inherently �nite-state. The state of an MSC speci�cation is deter-mined by the state of each process (i.e., at which point the process controllies in each process), and by the \state" of each of the messages in the system(whether the message is on the way, or not). Since there are only �nitelymany processes, and each process has �nitely many control states, and thereare a �nite number of message arrows in an MSC speci�cation, and theseare all the meaningful `parts' of an MSC, there is a strong prima facie ar-gument that there are only �nitely many states. For additional argumentsfor a �nite-state interpretation, see [LL95a].� Some claim that the communication between processes in MSCs is bu�ered.If so, the behavior of the bu�ers is completely hidden. This could lead totrouble { generally, speci�cations should be explicit about everything theydeal with. We feel that for a speci�cation style based on graphics, what yousee should be what you get. If not, what you get are problems.� Liveness properties in MSCs are underspeci�ed. See [LL95b].� Even somewhat restricted use of basic MSC composition yields speci�cationswith problematic meaning. Sense may be made of them only if substantialassumptions are made about the behavior of the environment. Di�cult casesarise from message cross-over (as in Figures 3 and 7), as well as non-localchoice points as in Figure 14. See [LL95a].3. Implementation of Basic MSC speci�cations.3.1. Message Flow Graphs. MSC speci�cations are graphical objects - inkon paper, lines on a screen. To implement an MSC, one must translate the graphi-cal into a textual or mathematical representation. Z.120 proposes a textual syntax.We pointed out ambiguities in the mapping from the graphic to this textual rep-resentation in [Leu94]. The Z.120 textual syntax is therefore not suitable for ourpurposes.



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 5
MSC1

msc MSC1

P1 P2

b

a
!a ?a

?b !b

v w

x y

a

bFigure 1. MSC example 1
!a
v

x

msc MSC2

P1 P2

a

b

a

b
MSC2

y

w
?a

?b

!bFigure 2. MSC example 2
!a ?a
v w

x y

a

b

msc MSC3

P1 P2

b

a
MSC3

?b!bFigure 3. MSC example 3mtype = {a, b};chan vw = [1] of { byte };chan xy = [1] of { byte };proctype P1(){ atomic {vw!a;printf("!a\n") };atomic {xy?[b] -> xy?b;printf("?b\n")}}proctype P2(){ atomic {vw?[a] -> vw?a;printf("?a\n")};atomic {xy!b;printf("!b\n")}}init { atomic { run P1(); run P2() } }Figure 4. PROMELA code for MSC example 1



6 STEFAN LEUE AND PETER B. LADKINIn [LL95b] we de�ned the mapping of MSCs to Message Flow Graphs (MFGs),where each node in the MFG corresponds to a communication event in the corre-sponding MSC. An MFG corresponding to the MSC example 1 is given on the righthand side of Figure 1. The nodes are connected by directed arrows representingtwo relations on the set of nodes: the next-event (ne) relation representing thecontrol 
ow in a process, and the signal (sig) relation representing message 
ows.In this paper, we draw ne-relation arrows as solid lines and sig-relation arrows asdashed lines. The translation of an MSC speci�cation into a corresponding MFGis described in [LL95b]. While there the concept of conditions was used to spec-ify possible continuations of one MSC by another, in this paper we use the HMSCconcept, recently introduced into Z.120, to specify composition of basic MSCs. Thetranslation procedure from MSC speci�cations into MFGs based on HMSCs is astraightforward extension of the \unfolding" operation as de�ned in [LL95b], andwe will not elaborate on this translation here.We distinguish two types of MSC speci�cations:1. MSC speci�catios may describe �nite system executions. This is depictedin Figure 1. In this case the corresponding MFG is a �nite, cycle- andbranching-free graph.2. MSC speci�cations may represent branching and iterating behaviour, whichis re
ected by the branching and cyclic structure of the corresponding MFG(see the MFG in Figure 13 that corresponds to the MSC speci�cation inFigure 12).Note that neither the HMSC concept nor the condition concept in Z.120 im-ply any sort of synchronization between processes in an MSC speci�cation whensequential composition or branching occurs3. As we shall see later, this has bearingon our implementation choices.MFGs will be the basic underlying data structure for the implementation al-though we will in most cases not explicitly refer to them. In the remainder of thissection we discuss the implementation of basic MSC speci�cations. In Section 4 wewill discuss the implementation of iterating and branching speci�cations.3.2. Basic implementation concepts. We model an MSC speci�cation inPROMELA by instantiating a PROMELA process for each of the MSC processesat system-setup time4. This is implemented by an init clause in PROMELA.For the concurrent instantiation of two or more processes, we need to employ theatomic keyword. For example, to initialize an MSC with two processes P1 and P2we write init { atomic { run P1(); run P2() } }. Messages can have typesin PROMELA as well as in MSCs. We choose the mtype construct to specifythe message types. mtype = {a, b} generates two one-byte integer constants withnames a and b and increasing values a=1 and b=2.To model the message behaviour of MSCs in PROMELA we choose channelswith capacity 1, one for each message arrow in the chart. This represents theinvariant that any given message is either on the way (in which case there is a3C.f. [IT96]: \A sequential execution of two nodes that are related by an edge is describedbyt the seq operator." and \The seq operator denotes the weak sequencing operation where onlyevents on the same instance are ordered". Concerning the semanitcs of conditions, c.f. [IT95]:\Note that the semantics of a chart containing conditions is simply the semantics of the chartwith the conditions deleted from it."4Note that a `process' is a connected component of the ne relation of an MFG [LL95b]



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 7message of the expected type in the PROMELA channel), or not on the way[LL95b]. The channels must have type consistent with the message type. In PRO-MELA, channels are implemented as arrays of �nite length � 0. The declarationchan vw = [1] of { byte } de�nes a channel with name vw and capacity of oneelement of the message type { in this case, one byte.A PROMELA implementation of an MSC has the following overall syntacticstructure (c.f. Figure 5):� First, necessary data de�nitions, including the global channel declarationsdenoted by the keyword chan.� Next, the de�nition of the process bodies as indicated by the keywordproctype. In our examples the processes do not have parameters { allnames used (i.e., the channels) have global scope.� Finally, the instantiation of the whole system using an init statement.3.3. Basic MSC speci�cations. MSC example 1. The left hand side ofFigure 1 shows a basic MSC in which process P1 sends a message of type a to P2and P2 then sends a message of type b back to P1. Figure 4 shows the code for theMSC in Figure 1. We have de�ned two processes, as in the MSC. The core of eachprocess implements the communication behaviour, plus instructions to print outputto the screen for debugging purposes (the printf statements). The statement vw!adenotes a send of a message of type a over the channel named vw, and xy?b denotesreception of a message of type b from channel xy.The semantics in [LL95b] relies on the interleaving model with communica-tion events as atomic actions5. PROMELA requires the use of the atomic key-word to ensure that operations inside the following curly parentheses are executedas an atomic action, without other interleaved events. We therefore ensure thatthe execution of the communication statements and the related printf debuggingstatements are atomic events by use of the atomic keyword.Reception of messages in PROMELA is not blocking. Thus, when executingan xy?b statement, a message of type b will be received if there is a message ofthat type at the head of the channel xy. However, if there is no such message atthe head, the statement will nevertheless be executed, a message of unde�ned typewill be received, and process control will advance beyond the reception statement.This doesn't happen in MSCs, which block on receive of a message that isn't there.In order to implement blocking on reception we use a guard, namely a predicatewhich checks whether a message of the suitable type is ready to be received. This isthe xy?[b] statement, which is true if the �rst element of the channel xy is of typeb, and false otherwise. The -> operand serves as an enabling operator such thatthe operation on its right is only enabled if the guard on its left is true. In orderto protect the compound guarded receive statement from undesired interleaving,it needs to be embraced by an atomic statement. The execution of this exampleusing SPIN yields exactly one execution trace.MSC example 2. The MSC example 2, Figure 2, is similar to the MSC example1. However, we inverted the direction of the message arrow of type b. This MSCspeci�es a \message overtaking" { message b is sent later but received earlier than5[Sel96] chooses a receive event and a subsequent send event to be executed in one atomictransition of a ROOM actor. However, they derive code for one single test actor from an MSCspeci�cation. Interleaving semantics, however, is only relevant for systems consisting of more thanone concurrent processes.



8 STEFAN LEUE AND PETER B. LADKINmtype = {a, b};chan vw = [1] of { byte };chan xy = [1] of { byte };proctype P1(){ atomic {vw!a;printf("!a\n") };atomic {xy!b;printf("!b\n") }}proctype P2(){ atomic {xy?[b] -> xy?b;printf("?b\n")};atomic {vw?[a] -> vw?a;printf("?a\n")}}init { atomic { run P1(); run P2() } }Figure 5. PROMELA code for MSC example 2mtype = {a, b};chan vw = [1] of { byte };chan xy = [1] of { byte };proctype P1(){ atomic {vw!a;printf("!a\n") };atomic {xy!b;printf("!b\n") }}proctype P2(){ atomic {vw?[a] -> vw?a;printf("?a\n")};atomic {xy?[b] -> xy?b;printf("?b\n")}}init { atomic { run P1(); run P2() } }Figure 6. PROMELA code for MSC example 3message a. This gives rise to the use of per-message dedicated channels in PRO-MELA because message-overtaking within a PROMELA channel is not possible.As for MSC example 1, execution using SPIN yields exactly one execution trace.MSC example 3. Example 3 allows two execution sequences: <!a, !b, ?a, ?b>or <!a, ?a, !b, ?b>. After the !a event has occurred, two independent eventsare enabled: the !b and the ?a event. The PROMELA semantics speci�es anondeterministic choice in this situation. Spin implements the nondeterministicchoice in PROMELA by using a random (non-repeating) choice. As expected,experimentation with the SPINsimulator shows that two di�erent traces will begenerated (see also [LL96]).



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 9
!a

x

msc MSC4

P1 P2

a

a

a

a
MSC4

y

w
?a!a

?a
v

!a
v w

x y

a
msc MSC5

P1 P2
a

MSC5
a

a
!a ?a

?aFigure 7. MSC example 4 (top) and 5 (bottom)mtype = {a};chan vw = [1] of { byte };chan xy = [1] of { byte };proctype P1(){ atomic {vw!a;printf("!a, 1\n") };atomic {xy!a;printf("!a, 2\n") }}proctype P2(){ atomic {vw?[a] -> vw?a;printf("?a, 1\n")};atomic {xy?[a] -> xy?a;printf("?a, 2\n")}}init { atomic { run P1(); run P2() } }Figure 8. PROME-LA code for ex. 4
mtype = {a};chan vw = [1] of { byte };chan xy = [1] of { byte };proctype P1(){ atomic {vw!a;printf("!a, 1\n") };atomic {xy!a;printf("!a, 2\n") }}proctype P2(){ atomic {xy?[a] -> xy?a;printf("?a, 2\n")};atomic {vw?[a] -> vw?a;printf("?a, 1\n")}}init { atomic { run P1(); run P2() } }Figure 9. PROME-LA code for ex. 5MSC examples 4 and 5. Examples 4 and 5 in Figure 7 are similar to Exam-ples 2 and 3, except that both message arrows are of the same type (a). ThePROMELA implementation generates similar outputs to those in examples 2 and3 except for !b replaced by !a and ?b replaced by ?a. Example 4 generates<!a, !a, ?a, ?a> as trace, whereas example 5 generates <!a, !a, ?a, ?a> or<!a, ?a, !a, ?a> as traces, randomly chosing between them. In [LL95a] we dis-cussed an anomaly arising with these two examples. Both speci�cations stand forthe same \code" with respect to the communication events, namely for two consec-utive statements of type !a for the left and of type ?a for the right process. In otherwords, the left and the right processes in both examples are code-identical. How-ever, they do not allow the same set of traces. We conclude that there must be animplicit assumption about the environment which distinguishes the speci�cations.What would this be?



10 STEFAN LEUE AND PETER B. LADKIN
a ?a!a

msc MSC6

a
MSC6Figure 10. MSC example 6The implementations given here support this conclusion. In order properlyto implement the desired behaviour we needed to de�ne that both messages areimplemented by di�erent channels. The channels belong to the environment. Theprocesses thus receive the messages from distinct environment entities, which allowsfor modeling the faster delivery of one message than of the other. This indicatesthat in an implementation we indeed need to exploit the environment to get the\expected" behavior.4. Iterating and branching MSC speci�cationsAs discussed above, HMSCs may specify a composition of basic MSCs suchthat an iterating or branching system is described; iterating and branching MSCspeci�cations translate into iterating and branching MFGs (Figure 10).4.1. Iteration. Figure 10 shows an HMSC which allows MSC6 to be followedby MSC6. In PROMELA, we model the iteration in the process code by a goto{label construct. We must consider one aspect of the semantics of PROMELAmorethoroughly. We see that a process may reach a send statement repeatedly. Thesending primitive in PROMELA is blocking, i.e. when the channel vw is full, thestatement vw!a blocks. MSCs according to Z.120, on the other hand, do not havethe notions of channels and capacities. It would therefore be counterintuitive if anMSC could block on sending. This means that we need to add a void operationwhich is carried out if the send operation blocks. We use the PROMELA predicatefull(vw) as a guard which is true if and only if the actual send operation vw!ablocks. We use the dummy vw?[a]; printf("full, ") statement to indicate thata write operation to a full channel was attempted.In the following pre�x of a (supposedly) in�nite execution trace of this examplenote that in conformance with our semantics the execution of one receive statement?a may disable n � 1 send operations !a.swen12:/swen12/u/sleue/spin/specs/workshop.366 % spin msc6a.prm!a, ?a, !a, full, !a, ?a, !a, full, !a, ?a, !a, full, !a, full, !a,?a, !a, ?a, !a, ?a, !a, ?a, !a, ?a, !a, full, !a, full, !a, ?a, !a,It is worth noting that there is nothing in the MSC speci�cation which wouldmake an in�nite sequence of !a events an illegal trace. In other words, there isnothing in the MSC speci�cation which would ever require a ?a event to occur[LL95b]. However, the algorithm which resolves nondeterminism in PROME-LA (based on a random number generator, we believe) appears to ensure somefairness condition on the nondeterministic choice alternatives.4.2. Branching. The MSC example in Figure 12 speci�es branching behaviour.It may be interpreted to specify a very lightweight connection establishment proto-col: process P1 requests establishment of a connections by means of a CR protocol



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 11mtype = {a};chan vw = [1] of { byte };chan xy = [1] of { byte };proctype P1(){ C:atomic {if:: vw!a:: full(vw) -> printf("full, ")fi;printf("!a, "); goto C}}proctype P2(){ C:atomic {vw?[a] -> vw?a; printf("?a, "); goto C}}init { atomic { run P1(); run P2() } }Figure 11. PROMELA code for MSC example 6data unit (PDU); depending on a non-deterministic decision, P2 either acknowl-edges the establishment by a CC PDU, or refuses connection establishment by a DRPDU. In the �rst case the system execution is assumed to go into a data-transferphase (here indicated by a triangular symbol indicating an HMSC end-node), inthe latter case the system returns to a state from which connection establishmentcan be re-initiated.In [LL95b] we suggested an operation called unfolding to translate an MSCspeci�cation into a branching and iterating MFG. We'll adopt that constructionhere. In order to adapt the unfolding operation for an HMSC, we shall assumethat each BMSC in the HMSC has the same processes (i.e., the same number ofprocesses with the same process labels). The unfolding is a single graph that isintended to re
ect exactly the behavior intended by the HMSC. For example, whenP1 in Figure 12 has sent the CR message, it will have to decide whether to move left(i.e. to continue with the MSC labeled \MSC2"), or to move right. The right processis expected to make the same decision after receiving CR. Intuitively, the choice ofeach processes of which `branch' to follow at the decision point must correspondwith the choice (to be) made by the other process at the same point, during thesame iteration. These choices can di�er from iteration to iteration, as long as theprocesses make corresponding choices.Our semantics speci�es a non-deterministic decision for both processes, but itdoes not specify how to implement the decision-making. Let's assume the followingstrategy: P2 makes a random decision whether to send CC or DR. We call this therandom-choice strategy. P1, we assume, remains in its post-CR state in MSC1, beforethe `choice point', monitoring the incoming messages. Depending on whether itsees a CC or a DR it will react accordingly and continue with either moving throughMSC2 to the `triangle' or through MSC3 and back to the beginning of MSC1. Let'scall this the wait-and-see strategy. Obviously, for a consistent implementation ofthe branching there has to be one process that performs a random choice betweensending di�erent messages, and all other processes follow suit by implementinga wait-and-see strategy. We will later see MSC speci�cations for which such aconsistent implementation is impossible.



12 STEFAN LEUE AND PETER B. LADKIN
msc MSC1

CC DR

P1 P2

P1 P2 P1 P2

CR

msc MSC2 msc MSC3

MSC1

MSC2 MSC3Figure 12. MSC Speci�cation example 7.
T1 T2

v w x y

ut

CC DR

CRFigure 13. Message Flow Graph for example 7.In the corresponding PROMELA example in Figure 20, the random-choicestrategy is implemented by a do ... od construct embracing two vacuously en-abled guarded commands, namely vw!CC and xy!DR. We rely on the randomnessof the choice between both to be implemented by spin. The wait-and-see is imple-mented by a do ... od construct which embraces two complementarily enabledstatements, namely vw?CC and xy?DR. In other words, P1 follows faithfully thedecision made by P2.Executing the example with branching control. The following execution tracesshow that the system runs in iterations until P2 decides to send a CC which leads thesystem into a terminating state. Again, there is nothing in the MSC speci�cationwhich would keep it from repeating a CC { DR loop forever. (We used a variant ofthe code in Figure 20 with debugging printf statements to generate the followingoutput).swen12:/swen12/u/sleue/spin/specs/workshop.406 % spin msc9.prm!CR, ?CR, !DR, ?DR, !CR, ?CR, !CC, ?CC, 3 processes createdswen12:/swen12/u/sleue/spin/specs/workshop.408 % spin msc9.prm!CR, ?CR, !DR, ?DR, !CR, ?CR, !DR, ?DR, !CR, ?CR, !CC, ?CC, 3 processes created4.3. Summary of implementation choices. We summarise the implemen-tation decisions discussed so far. First, the graphical-object MSC speci�cation istranslated into a corresponding Message Flow Graph, using unfolding. Then:� Every process (Z.120 terminology: `instance') in an MSC speci�cation ismapped to exactly one PROMELA process. The PROMELA processesare instantiated concurrently when the whole PROMELA speci�cation be-comes incarnated, see the { atomic { run P1(); run P2() } } statementin Figure 20.



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 13
MSC1

MSC2 MSC3

P1 P2

P1 P2 P1 P2
msc MSC2 msc MSC3

msc MSC1

RCDC

DAFigure 14. MSC speci�cation with non-local choice
MSC1

MSC2 MSC3

P1 P2

P1 P2 P1 P2
msc MSC2 msc MSC3

msc MSC1

DC RC

DAFigure 15. MSC example with non-local choice and explicitlyrepresented channels� Message arrows are represented by PROMELA channels. This allowed formodeling so-called \message crossing". Also, as messages in MSCs can beexclusively either on-the-way or not, the capacity of these channels is de�nedto be 1.� Message send and receive events are modeled by the corresponding PRO-MELA statements (e.g., tu!CR and tu?CR, respectively).� Branching in MSCs is modeled using PROMELA labels and goto state-ments.� It is necessary to ensure that certain sequences of PROMELA statementswere executed atomically using the atomic clause.� There is no notion of `channel' explicit in MSCs, therefore there can be noblocking-send statement in the corresponding PROMELA code. We usefull(..) -> skip statements to model the non-blocking send of an MSC.� Receive statements, however, are blocking. This is implemented using aPROMELA guard-statement pair, see for an example the vw?[CC] -> vw?CCstatement pair in Figure 20. It is particularly important to guarantee atom-icity of these guard-statement pairs.5. Implementing Non-Local ChoiceThe MSC in Figure 14 is similar to the example in Figures 12 and 13. Itdescribes a simple data exchange protocol. P1 transmits data by a DA PDU. Then,two scenarios are possible: either P2 con�rms receipt with a DC PDU or, due tosome unspeci�ed internal decision, P1 requests explicit acknowledgement from P2through an RC PDU.The implementation of this MSC in PROMELA (Figure 16) illustrates someof the intricacies of using HMSCs (or `conditions') to compose BMSCs to formMSC speci�cations: the \n-th-cycle-same-choice" condition seems to be what users



14 STEFAN LEUE AND PETER B. LADKINintuitively understand this MSC to express. This condition says that when P1has gone through n iterations of the cycle described by the MSCs MSC1 and MSC2,and if P1 is ahead of P2, then later when P2 reaches the n-th cycle it will makethe same left-right decision in a post-DA state that P1 made in its n-th cycle. Ifin an implementation P1 were to decide to \go left" (continue with MSC MSC2),and P2 were to decide to go right (MSC3) at the same choice point on the sameiteration, then the system would block (it would either dead- or livelock dependingon the implementation) because both processes would be waiting for a signal tobe sent by the other process. This is not what users understand this MSC toexpress. Such an \n-th-cycle-same-choice" branching was called a `non-local choice'in [LL95b, LL95a] because these choices somehow have to be synchronised by bothprocesses despite the fact they occur at di�erent points in the execution sequence.It turns out that the synchronisation required by this kind of MSC cannot beimplemented in a local, non-coordinated, fashion, in contrast to the situation forMSCs in which a process may branch control without synchronising with otherchoices, as for example in Figure 12. [LL95c] discussed two somewhat unsatisfac-tory variants of the implementation of the example in Figure 14.Executing Non-local Choice with history variables. As described in [LL95a],existence of a history variable that records the left-right choices is implied by theintuitive meaning of the choice-synchronizing processes P1 and P2. We arguedthat the length of this variable is �nite but potentially unbounded. As PROME-LA only allows for the description of �nite-state systems, we must bound the sizeof the history variable, thereby only approximating the history variable algorithminformally described in [LL95a].We use N + 1 global history variables: variables i1 ... iN and variable hist.In our example, N = 2. Process Pk keeps track of the iteration it is on by settinghistory variable ik. However, the choice history only recordsM previous choices (Mis thus the bound on the size of the choice-history variable), so ik is approximatedby nk = ik modM . Let 0::N = fx j x 2 Naturals & 0 � x � Ng. The choice-history variable is hist: 0::(M � 1) ! f0; 1g, initialised to 0. (There is onlyone choice-point per iteration in this example and only a two-way choice { histwould generally be a doubly-indexed array hist: 0::(M�1)�choice-point-labels!branch-labels.)A value hist[k] = 0 indicates that the process �rst reaching this branch pointin the k'th cycle went `left'; a value of 1 indicates that it went `right'. (Sincethe initial value of hist also has a meaning as a branch choice, Pj checks whetherhist[k] has been previously set by checking whether some other nk is greaterthan nj, which must be done in any case, as we see next.) Pk is the only processsetting ik and nk and may only set hist[m] if n m � n j for k 6= j when ik= k,otherwise it must follow the decision indicated by the value of hist[k].Figure 16 shows the suggested implementation of the non-local choice example.P1 sends DA as an atomic event. In the next atomic step, P1 checks whether it isallowed to set the history variable, or whether it has to follow the path determinedby P2 as recorded in the history variable. If P1 may determine which branch totake in the n-th cycle, it will make a nondeterministic decision.Implications of the History Variable length. We saw that the capacity of thehistory variable determines the amount by which processes P1 and P2 can `diverge'.The PROMELA code will only correctly simulate the MSC speci�cation if at alltimes the di�erence between the number of the cycle that P1 is on and the number of



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 15/* Length of history variable */#define M 8/* Channel capacities */#define Ctu 3#define Cvw 1#define Cxy 3mtype = {DA, DC, RC};chan tu = [Ctu] of { byte };chan vw = [Cvw] of { byte };chan xy = [Cxy] of { byte };int hist[M]; /* history variable */int n1; /* # of iterations through non-local choice by P1 */int n2; /* # of iterations through non-local choice by P1 */int i1; /* act index to hist for P1 */int i2; /* act index to hist for P2 */proctype P1(){ C1:tu!DA;atomic{if:: (n1 < n2) && (n2 - n1) <= M -> /* P1 lacks behind */if /* Decide according to hist */:: hist[i1] == 0 -> goto C20 /* go `left' */:: hist[i1] == 1 -> goto C21 /* go `right' */fi:: (n1 >= n2) && (n1 - n2) < M -> /* P1 is ahead */if /* Random choice betw 0 and 1 */:: hist[i1] = 0; goto C20:: hist[i1] = 1; goto C21fifi;C20:n1 = n1 + 1; i1 = n1 % M;vw?[DC] -> vw?DC;goto END;C21:n1 = n1 + 1; i1 = n1 % M;xy!RC; goto C1}END: skip}proctype P2(){ C1:atomic{tu?[DA] -> tu?DA};atomic{if:: (n2 < n1) && (n1 - n2) <= M ->if:: hist[i2] == 0 -> goto C20:: hist[i2] == 1 -> goto C21fi:: (n2 >= n1) && (n2 - n1) < M ->if:: hist[i2] = 0; goto C20:: hist[i2] = 1; goto C21fifi;C20:n2 = n2 + 1; i2 = n2 % M;vw!DC; goto END;C21:n2 = n2 + 1; i2 = n2 % M;xy?[RC] -> xy?RC; goto C1}END: skip}init { n1 = 0; n2 = 0; i1 = n1 % M; i2 = n2 % M;atomic { run P1(); run P2() } }Figure 16. Implementing non-local choice using a history variablewith bounded length and channels with bounded capacity



16 STEFAN LEUE AND PETER B. LADKINthe cycle that P2 is on is �M . If one process runs ahead of the other by more thanM cycles, the PROMELA code will not correctly simulate the MSC speci�cation.A bound on the `cycle di�erence' may currently not be speci�ed in MSCs. In fact,as we have noted in previous work, liveness properties such as requiring that a sentmessage is eventually received are underdetermined by the current standard. It iseasy to see that a `cycle-di�erence' bound ensures progress of both processes andtherefore that this requirement entails a liveness property.Experimental results. The experimental simulation with XSPIN shows thatthis implementation of the history variable algorithm satis�es the n-th-cycle- same-choice condition but does not prevent the system from blocking. This is in accor-dance with our semantics and has the following explanation. Consider the followingscenario: the system in Figure 14 starts executing, P1 makes n consecutive rightdecisions, and P2 is in its m-th cycle (n > m+1). Now, P2 queries the global historyvariable and follows the right decision that P1 made in the m'th cycle and receivesRC. In the m+ 1'st cycle, P2 will again perform a right decision, as determined bythe global history variable, but �nd no message RC to be received. This is because,as we argued in op. cit., communication in MSCs in non-bu�ered and thereforen > 1 repeated sendings of a message by a given `MSC arrow' (= message instance)can be received by one receive event. (We retain in the system state a single copy ofa message instance that has been sent but not received, and remove this copy whenthe message is received. A second message-send of an unreceived message instancedoes not change the system state because the instance is already recorded in thestate. One must also be careful to distinguish the contents of a message, whichmay be identi�ed with message type in MSCs, from a message instance. An MSCmay contain multiple arrows representing the sending of a single contents. Thesemultiple arrows are di�erent instances of the contents and the MSC state retains acopy of the instance in our semantics.)6. Introduction of Channels with CapacitiesThe example in the previous section shows that recording the history of choicesthat the system makes with respect to non-local choice situations does not su�ceto provide a non-blocking interpretation (i.e., a set of execution sequences, noneof whom block) of the speci�cation. To provide a non-blocking interpretation,we may add another history variable, a counter variable recording the number ofsendings and receivings of message instances. [LL95b] contains simple examples ofpotential MSC execution sequences during which this variable would be unbounded;this happens when repeated message instances are continually sent faster than theyare received, throughout a non-terminating execution. Employing such countingvariables while continuing to admit such executions yields an in�nite-state system.However, [LL95a] argued for the inherent �nite-stateness of MSC speci�cations. Soadding such counter variables is not obviously consistent with other requirementson the interpretation of MSCs.Making Channels explicit. A chief argument against the use of message queuesfor the interpretation of the communication mechanism in MSCs follows from thewhat-you-see-is-what-you-get (WYSIWYG) requirement on speci�cations and spec-i�cation languages. For a visual graphical speci�cation style like MSCs, this meanseither not adding information that is not explicit in the diagram, or extending the



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 17language to capture such information. (We argued in [LL95b, LL95a] for an ex-tension to capture underdetermined liveness properties, but for omitting historiessince they weren't already explicit. We also noted, and again above, that historieswere required in any case reasonably to interpret some already-standardised MSCsyntactic constructs.)This WYSIWYG requirement on speci�cation languages entails that when in-troducing history variables for messages in MSCs their existence should be madeexplicit in the graphical representation of MSCs, which means an extension to thesyntax de�ned in the Z.120 standard. Figure 15 shows a possible syntactic rep-resentation of channels. We map each message arrow onto one channel. In somesituations it may be useful to require di�erent messages to be sent across one chan-nel. This may syntactically be done by attributing channel symbols with namelabels, and to understand messages crossing channel symbols with the same namelabel to be passed along the same channel.Some Suggested Criteria for Introducing Channels.1. Channels serve messages following a �rst-in-�rst-out strategy.2. Channels should be free of loss: this requirement may be weakened later.3. Channels have a speci�c (�nite or in�nite) capacity.4. The semantics of the MSC send primitive should be changed from non-blocking to blocking. Z.120 MSCs have no notion of channels and capacities,therefore there was no point to de�ning the send primitive as blocking.However, with the introduction of channels and capacities this now makesmore sense. Channels with in�nite capacity never block on a send, but theblocking becomes important as we introduce channels with �nite capacity.5. The de�nitions in [LL95b] would no longer be appropriate for MSCs-with-channels. However, a semantics can easily be given, in particular by trans-lating an MSC speci�cation into a collection of Communicating Finite StateMachines [BZ83]. Furthermore, a formal operational semantics for PRO-MELA is currently under development [NH96], hence MSCs-with-channelscould inherit a formal semantics from the PROMELA translation once thisPROMELA semantics is given.6. The MSCs obtained by introducing unbounded channels cannot be im-plemented using PROMELA, whose expressive capabilities are limited to�nite-state systems.Bene�ts. The suggested introduction of channels with �nite capacities doesnot guarantee deadlock-freedom for MSCs6. However, we conjecture that blockingdue to non-local choices can be avoided by this mechanism. We do not have spacehere for a more-detailed study of how one might introduce channels, and whatproperties those channels should have. We wished mainly to note how introducingthem would solve a problem with `anomalous' blocking execution sequences. Theproblem could also be solved by simply accepting the blocking execution sequencesas valid executions of the MSC speci�cation.7. Finite State ImplementationTwo of the constructs we have suggested lead to an in�nite-state model: non-local-choice history variable(s), and channels associated with message arrows. How-ever, �nite-state-space validation techniques as well as an implementation using6For necessary and su�cient criteria for MSCs to be deadlock-free see [LS].



18 STEFAN LEUE AND PETER B. LADKIN
31

3

8

P1 P2

P1 P2 P1 P2
msc MSC2 msc MSC3

msc MSC1

DC RC

DA

MSC1

MSC2 MSC3Figure 17. MSC example with non-local choice, explicitly rep-resented channels, and explicit capacities for the non-local choicehistory variable (=8) and channels (=3, 3 and 1)PROMELA require a �nite-state-space model. Any PROMELA implementationmust therefore limit both the capacities of the channels and the length of the his-tory variables for all non-local choice situtations to �nite values. We represent theserestrictions using appropriate labels on channel symbols and the �nal-conditionsymbol leading into a non-local choice situation, as seen in Figure 17. Figure 16shows the corresponding PROMELA source code.Making the History Variable Length explicit. Following the WYSIWYG re-quirement discussed earlier, not only the existence of channels and their capacitiesshould be made explicit in MSC speci�cations, but also the existence of a historyvariable and its capacity. Figure 17 shows a possible representation for the pres-ence of a history variable (the diamond shaped connector) and the limitation of itslength to 8 (the number in the diamond's interior).Experiment and limitations. Limiting the capacity of history variables andchannel capacities leads to a number of limitations when executing the PROME-LA implementation.1. Figure 18 shows an execution trace generated by XSPIN based on the im-plementation of the MSC speci�cation in Figure 17 as given in Figure 16.Events in a trace generated by XSPIN are totally ordered (by virtue oftheir absolute distance to the top of the beginning of each process axis).The left axis corresponds to the PROMELA process generated as a fatherto processes P1 (middle axis) and P2 (right axis). Note that the maximumdivergence between the P1 and P2 is 3 as a consequence of the capacity ofthe now-blocking communication channel xy, which is 3.2. As the send primitive is now blocking, processes will not send to a full chan-nel. This excludes a number of interleavings as possible traces of the system.Note that in the implementation without bounded channel capacities a sub-trace (!DA, !RC)4 could be part of an admissible execution sequence, this isnot the case for the example in Figure 17.3. As argued eralier, the size of the history variable limits the divergence ofprocesses P1 and P2. In the example in Figures 16 P1 could be at most 8cycles ahead of P2. However, the limitation of the capacity of channel xyis more constraining, limiting the maximal divergence to 3. Both channelcapacity as well as history variable length determine the potential divergenceof the processes.



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 19
P1:1

7

14

P2:2

17

1!3

25

2!1

27

34

36

38

1!3

47

2!1

54

57

1!3

65

2!1

67

74

77

1!3

85

2!1

87

94

96

99

1!3

107

2!1

110

1!3

117

126

3!2

128

128

:init::0

128Figure 18. Trace of MSC speci�cation generated by random sim-ulation using XSPIN8. Verifying Temporal Properties.The translation of MSCs into a language like PROMELA can prove helpfulin two main ways. First, as mentioned above, the translated PROMELA modelallows simulation and animation of an MSC speci�cation, which may help in de-bugging early system designs. Second, as we argued in [LL95a, LL95b] MSCsunderspecify liveness properties, and temporal logic can be used to specify the ad-ditional liveness properties. Desired liveness properties speci�able in linear-timetemporal logic (LTL) may be checked in PROMELA, thus PROMELA can sup-port this extension of the MSC language.It is possible using LTL to specify properties on the PROMELA model gen-erated from an MSC speci�cation that this model cannot guarantee. For example,consider MSC 1 in Figure 12. Suppose we wish to assert that process P2 will alwayseventually send a message of type DR. XSPIN is a state-based, and not an event-based veri�er, so we need to de�ne state predicates specifying the control-state ofthe process with respect to the events de�ned in the MSC. De�ne a state predicateta (for `taken') such that ta x holds i� the last state transition was a sending of amessage of type x. The desired assertion is expressed by the LTL formula23ta DR:(We also de�ne and use references to the control state of individual processes inthe PROMELA code as XSPIN-LTL propositions.) The property that a messageof type DR will always eventually be sent cannot hold, because P2 may eventuallydecide to execute the left path that describes transmission of a CC message followed



20 STEFAN LEUE AND PETER B. LADKIN
Figure 19. MSC showing trace leading to a state violating [] <> aftsDR.by termination, along which path the system cannot ever again reach a state inwhich ta DR holds.The XSPIN environment allows model checking of LTL formulas based onPROMELA models [GPVW95, Hol]. LTL formulas can be entered in XSPIN,and a preprocessor translates them into so-called never claims [Hol91, Hol95].How can a basic proposition like ta x be de�ned as a basic proposition in PROME-LA? We make use of a prede�ned PROMELA predicate of the format processname[pid]@label name. process name is the name of a process as de�ned in theproctype clause; pid is a process identi�cation number, generated by increment-ing a counter starting at 1 each time a new process of any type is incarnated;label name is a statement label in the PROMELA code. In order to refer to sucha predicate, it is assigned a name pred name by a #define clause.In [LL95c], the communication event as well as the control-
ow branching wasincluded inside a PROMELA atomic clause. In order to implement the ta pred-icate properly using PROMELA labels, we removed the the control-
ow branchstatement from within the atomic clause and labeled it. Figure 21 shows the PRO-MELA code implementing the MSC in Figure 12. Labels aftersCR, aftersCC andaftersDR denote points in the process control 
ow as needed to de�ne ta 7.As expected, the XSPIN veri�er detects a violation of the LTL claim [] <>aftsDR which is the translation of the LTL formula 23ta DR. For debugging,XSPIN can run a guided simulation into the state that violated the claim, andthe violating trace is illustrated using an MSC (see Figure 19). The online use ofthis MSC enhances debugging because placing the mouse on individual MSC eventshighlights the PROMELA code (in another window) corresponding to those events;and it attempts to indicate how the temporal property is violated.We ran a few more temporal properties through the XSPIN veri�er to exper-iment. Table 1 lists the results. In particular, Property 3 expresses an importantconsistency condition for the protocol represented by the original MSC. This prop-erty basically states that once a CC (connect con�rmation) has been sent it is notpossible to send a DR (disconnect request) afterwards.9. Summary and OutlookWe noted that simulating MSC speci�cations had advantages for system de-signers. We have considered the simulation of MSC speci�cations in PROMELA,7XSPIN automatically generates a `never'-claim from an LTL and allows for adding the claimto the speci�cation (see [LL96] for the code of the `never'-claim of the LTL formula number 3 inTable 1)



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 21mtype = {CR, CC, DR};chan tu = [1] of { byte };chan vw = [1] of { byte };chan xy = [1] of { byte };proctype P1(){ C1:atomic {if:: tu!CR:: full(tu) -> skipfi; goto C2};C2:do:: atomic {vw?[CC] -> vw?CC;goto END}:: atomic {xy?[DR] -> xy?DR; goto C1}od;END: skip}proctype P2(){ C1:atomic {tu?[CR] -> tu?CR; goto C2};C2:do:: atomic {if:: vw!CC:: full(vw) -> skip;fi; goto END }:: atomic {if:: xy!DR:: full(vw) -> skipfi; goto C1 }od;END: skip}init { atomic { run P1(); run P2() } }Figure 20. PRO-MELA code forexample 7

mtype = {CR, CC, DR};#define aftsCR P1[1]@aftersCR#define aftsCC P2[2]@aftersCC#define aftsDR P2[2]@aftersDRchan tu = [1] of { byte };chan vw = [1] of { byte };chan xy = [1] of { byte };proctype P1(){ C1:atomic {if:: tu!CR:: full(tu) -> skipfi; }aftersCR: goto C2;C2:do:: atomic {vw?[CC] -> vw?CC;goto END}:: atomic {xy?[DR] -> xy?DR;goto C1}od;END: skip}proctype P2(){ C1:atomic {tu?[CR] -> tu?CR;goto C2};C2:do:: atomic {if:: vw!CC:: full(vw) -> skipfi; }aftersCC: goto END:: atomic {if:: xy!DR:: full(vw) -> skipfi; }aftersDR: goto C1od;END: skip}init { atomic { run P1(); run P2() } }Figure 21. PRO-MELA code includingstate labels.and noted how the questions on the MSC semantics considered in [LL95b, LL95a]are re
ected directly in the PROMELA executions. We considered in particu-lar verifying properties expressed in LTL. Some liveness properties of MSCs areunderdetermined by the standard but any simulation must either allow or avoideach questionable execution sequence, therefore these decisions had to be made.Questions about non-local choice in MSC branching, which originally arose withconditions but is also present for HMSCs were also considered, and implementedfollowing the development in [LL95a]. To avoid imposing over-stringent livenessconditions (that the executing processes may only lag each other by a bounded



22 STEFAN LEUE AND PETER B. LADKINProperty Outcome1. [] <> aftsCC not satis�ed2. <> aftsCC not satis�ed3. [] (aftsCC -> ! <> aftsDR) satis�ed4. [] (aftsCR -> <> aftsCC) not satis�ed5. aftsCR -> <> (aftsCC \/ aftsDR) satis�ed6. ([]<>aftsDR) -> !<> aftsCC satis�edTable 1. Temporal Properties veri�ed using XSPINamount), we considered introducing message-instance-channels and discussed theirimplementation in PROMELA and some consequences.Current work includes a formalisation of the MSC-to-PROMELA translation(see [LL95c] for a preliminary version) and the development of a tool support-ing this translation. Furthermore, we investigate the syntactic analysis of MSCspeci�cations. We have de�ned syntactic conditions for the occurrence of non-local choices, process divergence and deadlocks in MSC speci�cations [BAL96b].Combined with the analysis of MSC speci�cations as discussed in this paper theresulting tool can provide software engineers with substantial support in providingunambiguous �rst design speci�cations [BAL96a].References[AB] Telelogic AB, SDT, Participant's Proceedings of the 8th International Conference onFormal Description Techniques FORTE'95, List of tools for demonstrations (G. vonBochmann, R. Dssouli, and O. Ra�q, eds.), p. 455.[AHP96] R. Alur, G. J. Holzmann, and D. Peled, An analyzer for message sequence charts,Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notesin Computer Science, Vol. 1055 (T. Margaria and B. Ste�en, eds.), Springer Verlag,1996, pp. 35{48.[BAL96a] H. Ben-Abdallahand S. Leue,Architecture of a requirements and design tool based onmessage sequence charts, Tech. Report 96-13, Department of Electrical & ComputerEngineering, University of Waterloo, October 1996, 18 p., submitted for publication.[BAL96b] H. Ben-Abdallah and S. Leue, Syntactic analysis of message sequence chart spec-i�cations, Tech. Report 96-12, Department of Electrical & Computer Engineering,University of Waterloo, October 1996, 32 p., submitted for publication.[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-oriented software architecture - a system of patterns, Wiley and Sons Ltd., 1996.[BZ83] D. Brand and P. Za�ropulo,On communicating �nite-state machines, Journal of theACM 30 (1983), no. 2, 323{342.[GPVW95] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, Simple on-the-
y automatic veri-�cation of linear temporal logic, Protocol Speci�cation, Testing and Veri�cation XV(P. Dembi�nski and M �Sredniawa, eds.), Chapmann & Hall, 1995, pp. 1{18.[Hol] G. J. Holzmann, What's new in SPIN version 2.0,http://netlib.att.com/netlib/spin/index.html, Version April 17, 1996.[Hol91] G. J. Holzmann, Design and validation of computer protocols, Prentice-Hall Inter-national, 1991.[Hol95] G. J. Holzmann, The veri�cation of concurrent systems, AT&T Bell Laboratories,to be published by Prentice-Hall, 1995.[Hol96] G. J. Holzmann, Early fault detection tools, Tools and Algorithms for the Con-struction and Analysis of Systems, Lecture Notes in Computer Science, Vol. 1055(T. Margaria and B. Ste�en, eds.), Springer Verlag, 1996, pp. 1{13.



IMPLEMENTING AND VERIFYING MSC SPECIFICATIONS USING PROMELA/XSPIN 23[IT95] ITU-T, Recommendation Z.120, Annex B: Algebraic Semantics of Message SequenceCharts, ITU - Telecommunication Standardization Sector, Geneva, Switzerland,1995.[IT96] ITU-T, Recommendation Z.120, ITU - Telecommunication Standardization Sector,Geneva, Switzerland, May 1996, Review Draft Version.[Jea92] I. Jacobson and et al., Object-oriented software engineering - a use-case driven ap-proach, Addison-Wesley, 1992.[Lab95] NTT Software Laboratories, SDE technical tour, Dec. 1995, Presentation slides.[Leu94] S. Leue, Methods and semantics for telecommunications systems engineering, Doc-toral dissertation, University of Berne, Switzerland, December 1994.[LL95a] P. B. Ladkin and S. Leue, Four issues concerning the semantics of Message FlowGraphs, , Proceedings of the Seventh InternationalConference on Formal DescriptionTechniques, Chapman & Hall, 1995.[LL95b] P. B. Ladkin and S. Leue, Interpreting Message Flow Graphs, Formal Aspects ofComputing 7 (1995), no. 5, 473{509.[LL95c] S. Leue and P. B. Ladkin, Implementing message sequence charts in PROMELA,Proceedings of the First SPIN Workshop (J.-Ch. Gr�egoire, ed.), INRST�el�ecommunications, Montr�eal, Canada, 1995.[LL96] S. Leue and P. B. Ladkin, Implementing and verifying scenario-based speci�cationsusing Promela/XSpin, Participants Proceedings of the 2nd International Workshopon the SPIN Veri�cation System, DIMACS/Bell Labs/INRS-T�el�ecommunications,1996, pp. 129{146.[LS] P. B. Ladkin and B. B. Simons, Static analysis of communicating processes, Toappear, Springer Lecture Notes in Computer Science.[McM93] K. L. McMillan, Symbolic model checking: An approach to the state-explosion prob-lem, Kluwer Academic Publishers, 1993.[NH96] V. Natarajan and G. J. Holzmann,Outline for an operational-semantics de�nition ofPromela, Participants Proceedings of the 2nd International Workshop on the SPINVeri�cation System, DIMACS/Bell Labs/INRS-T�el�ecommunications, 1996, pp. 175{191.[OFMP+94] A. Olsen, O. F�rgemand, B. M�ller-Pedersen, R. Reed, and J.R.W. Smith, Systemsengineering using SDL-92, Elsevier Science B.V. (North-Holland), 1994.[RBP+91] J. Rumbaugh,M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,Object-orientedmodeling and design, Prentice Hall International, 1991.[Sel96] B. Selic, Automatic generation of test drivers from MSC specs, Tech. Report TR960514 - Rev. 01, ObjecTime Limited, Kanata, Ontario, Canada, 1996.[SGW94] B. Selic, G. Gullekson, and P.T. Ward, Real-time object-oriented modelling, JohnWiley & Sons, Inc., 1994.Department of Electrical and Computer Engineering, University of Waterloo,Waterloo, Ontario N2L 3G1, CanadaE-mail address: sleue@swen.uwaterloo.caTechnische Fakult�at, Universit�at Bielefeld, D-33501 Bielefeld, GermanyE-mail address: ladkin@techfak.uni-bielefeld.de


	Text9: First publ. in: The SPIN verification system : proceedings of a DIMACS workshop, August 5, 1996, the Second Workshop on the SPIN Verification System / Eds:Jean-Charles Grégoire ... Providence : American Mathematical Society, 1997
	Text10: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6513/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65136


