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Abstract

Let F be Boolean formulas in conjunctive normal form with n variables,

r clauses, every clause has length s. We show that if F is split into two

subformulas F

v

and F

v

by setting v true and false in F , then the expected

number of solutions of one of the two subformulas F

v

and F

v

is signi�cantly

higher than that in the other subformula, when dealing with classes of

formulas where the great majority of formulas is satis�able. We discuss

practical consequences of this result.

1 Introduction

Testing Boolean formulas in conjunctive normal form (CNF) for satis�ability is

known to be a very time consuming problem, in general. The NP{completeness

of the satis�ability (SAT){problem, see [4], leaves little hope that this situation

might change some day. Therefore, when faced with the SAT{problem, we may

exploit the special structure of the formula to be solved, like 2{CNF [7], or

extended Horn [8], or we may use randomized algorithms if we know in advance

that the formula under consideration contains many solutions, see [6, 9], in order

to get a quick answer to the problem. But often we have no idea whether we

can advantageously exploit the structure of an instance to be solved. In this

case we have to resort to a general algorithm like the wellknown Davis Putnam

Procedure (DPP). All formulas F considered in this paper are in CNF with r

clauses, F = c

1

^c

2

^: : :^c

r

. A clause c = (x

1

_: : :_x

s

) is a disjunction of s literals

and a literal x is either a Boolean variable v or its negation v. v belongs to a set V

of n Boolean variables. Denote by cl(n; s) the set of clauses of length s over V and

by cl(n; s)

r

the space of CNF{formulas with r clauses from cl(n; s). A clause of

length 1 is called a unit clause and a literal x occuring in F such that x doesn't

occur in F is called a pure literal. The Davis Putnam Procedure (DPP) then

tests F for satis�ability as given below. Most implementations of good algorithms

for solving CNF formulas are of DPP-type, see [2]. The implementations di�er in

the data structures for representing formulas, as well as in the selection heuristic

for choosing a literal x.

The question for a convenient choice of a variable x according to which F is

split into F

x

and F

x

, depends upon whether we expect F to be satis�able or not.
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procedure DPP (F : CNF-formula)

begin

push F onto the stack;

repeat

pop top formula F from the stack;

while F contains a unit clause c = (x) but no two

complementary unit clauses c

1

= (x) and c

2

= (x) do

choose a unit clause c = (x) and set F := fc� fxg : c 2 F; x 62 cg

end;

while F contains a pure literal x do

F := fc : c 2 F; x 62 cg

end;

if empty (F ) then

report \F satis�able" and exit

else if F contains no complementary unit clauses or the empty clause then

select a literal x 2 F according to some heuristic;

set F

x

:= fc� fxg : c 2 F; x 62 cg;

push F

x

;

set F

x

= fc� fxg : c 2 F; x 62 cg;

push F

x

endif

until stack is empty;

return \F unsatis�able";

end;

In case of unsatis�ability of F , x should be chosen such that F

x

as well as F

x

are

signi�cantly smaller than F , because in this case we have to visit the search tree

corresponding to F completely, therefore its size should be as small as possible.

For satis�able formulas F , however, it is su�cient to detect a satisfying truth

assignment of F and we want to visit as little as necessary of the search tree.

In the latter case we would like to determine a literal x , s. t. F

x

is satis�able.

For if F

x

is satis�able then the second subformula F

x

will be ignored by DPP.

Determining some x with this property is a hard problem, in fact it is NP{hard.

For this reason, a good heuristic selection rule for determining x, such that x

hopefully ful�lls the desired property is used in many implementations of SAT{

solvers. Typically the heuristic consists of a more or less sophisticated strategy

of selecting x from F such that the number of clauses in F

x

diminishes as far as

possible compared to F under a weighted measure, ranking short clauses which

are deleted from F higher than long clauses, see [1, 2].

In [3] it is shown that by the unit clause rule and a maximum occuring literal
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rule alone (without backtracking in the search tree) a satisfying truth assignement

will be found with probability tending to one for formulas in the class cl(n; 3)

r

,

if r < 2:9n:

In section 2 we investigate the question what happens to solutions of CNF

formulas F , if F is split into F

v

and F

v

. The classes cl(n; s)

r

of formulas that we

have in mind here mainly contain satis�able formulas. Under the assumption of a

uniform instance distribution we can show that the expected number of satisfying

truth assignments of one of the two subformulas F

v

and F

v

of F 2 cl(n; s)

r

is

signi�cantly higher than that of the other subformula, see theorem 1. We show,

e. g., for the classes of cl(n; 3)

4n

that the expected number of satisfying truth

assignments in the shorter of the two subformulas F

v

and F

v

of F 2 cl(n; 3)

4n

, is

at least

11

5

times higher than the corresponding number for the longer subformula.

These results give additional theoretical support to the commonly used selection

heuristics.

The results of section 2 suggest that solutions are distributed imbalanced

among the subformulas into which F is split during the computation of DPP and

that there are more and less promizing subformulas. This phenomenon has been

exploited in a mathematical model for explaining the superlinear speedup be-

haviour of parallel algorithms for solving the satis�ability problem, when applied

to classes of formulas mainly containing satis�able instances, [10]. This imbalance

suggests a sequential DPP{based algorithm for the SAT{problem simulating a

parallel SAT{solver with k processors, using k threads. Every thread performs

the steps of a sequential DPP{based SAT{solver, described in [1]. In some �xed

order the k threads are activated. Every activated thread visits a �xed number

l = 500 of leaves, until the next thread is activated. If a thread runs out of work

in the search tree, it is restarted at a node on a smallest possible level that has

not yet been visited. This k{thread{satis�ability solver has been implemented

in C and tested on a SUN Ultrasparc with a 167 MHz Ultrasparc CPU. The

experimental results are reported in section 3.

2 The Imbalance of Distributions of Solutions

of CNF Formulas

We will show that splitting formulas F 2 cl(n; s)

r

into two subformulas by as-

signing both truth values to some Boolean variable v 2 V , and evaluating F

according to these assignments yields two subformulas with signi�cantly di�ering

numbers of solutions in the average.

First we will introduce some notations which are convenient for our considera-

tion. A formula F 2 cl(n; s)

r

will be represented by an ordered multiset of clauses

c 2 cl(n; s), where cl(n; s) = fx

i

1

_: : :_x

i

s

: 1 � i

1

< : : : < i

s

� n; x

i

j

2 fv

i

j

; v

i

j

gg

denotes the set of clauses of length s over the set of literals L = fv

1

; v

1

; : : : ; v

n

; v

n

g.
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The formulas F 2 cl(n; s)

r

are considered to be distributed uniformly. A

truth assignment (t.a.) is a mapping t : V ! L, satisfying t(v

i

) 2 fv

i

; v

i

g, and

we identify t and t(V ): t(v

i

) = v

i

(v

i

) means that v

i

is assigned by true (false)

under t. By t = L�t we denote the complementary t.a. of t. A t.a. t is a solution

of F , if for all c 2 F , t \ c 6= ; holds.

Set v = v

n

. For x 2 fv; vg and F 2 cl(n; s)

r

; F

x

:= fc � fxg : c 2 F; x 62 cg

denotes the subformula resulting from F by assigning t(v) = x (As usual, we have

v = v.) Note that a solution t of F satis�es jtj = n, and a solution t

1

of F

x

satis�es

jt

1

j = n�1. By �(F ); �(F

x

), we denote the number of solutions of F;F

x

, resp. For

� 2 fmin;maxg, we de�ne �

�

(F ) = �f�(F

v

); �(F

v

)g. Obviously, the equation

�(F ) = �

empty

(F ) = �

min

(F ) + �

max

(F ) holds. For � 2 fmin;max; emptyg,

E(�

�

(n; s; r)) := jcl(n; s)j

�r

X

F2cl(n;s)

r

�

�

(F )

denotes the expectation of the random variable �

�

in the uniformly distributed

class cl(n; s)

r

.

Proposition 1 [5] E(�(n; s; r)) = 2

n

(1 � 2

�s

)

r

.

2

Obviously the following holds:

E(�(n; s; r)) = E(�

min

(n; s; r)) + E(�

max

(n; s; r));

and

E(�

min

(n; s; r) � E(�

max

(n; s; r)):

We are looking for the ratio of

�(n; s; r) :=

E(�

max

(n; s; r))

E(�

min

(n; s; r))

:

By de�nition, �(n; s; r) � 1, and the greater the value of �(n; s; r) will be, the

more unbalanced the solutions of formulas F 2 cl(n; s)

r

will be distributed in the

average among the subformulas F

v

and F

v

of F . We will derive a (nontrivial)

lower bound for �(n; s; r).

When thinking about this problem, one may �rst conjecture that for growing

values of �(n; s; r), �(n; s; r) < 1 + � asymptotically holds for every � > 0. More

precisely, one may expect that �

max

(n; s; r) =

1

2

�(n; s; r) +O(

q

�(n; s; r)).

This (wrong) argument is as follows. A solution t of F uniquely corre-

sponds to a solution of F

v

or F

v

, depending on the value of t(v). Further-

more a randomly chosen solution of an arbitrary formula F 2 cl(n; s)

r

satis�es

Prob(t(v) = v) = Prob(t(v) = v) =

1

2

. Thus assuming all formulas F 2 cl(n; s)

r

to have exactly �(n; s; r) solutions, each one corresponding to a solution of F

v

; F

v

,
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resp., which independently holds with probability

1

2

, implies that the average

number of solutions of F

v

is

1

2

�(n; s; r) with a standard deviation of

1

2

q

�(n; s; r).

F

v

however, does not belong to cl(n; s)

r

, so the expected number of solutions for

F

v

is not

1

2

q

�(n; s; r).

We now disprove this incorrect argument. Denote by short(F ) (long(F )) the

shorter (longer) of the two subformulas F

v

and F

v

, for F 2 cl(n; s)

r

, and in case

where jF

v

j = jF

v

j, we �x short(F ) = F

v

and long(F ) = F

v

. Then

E(�

short

(n; s; r)) = jcl(n; s)j

�r

X

F2cl(n;s)

r

�(short(F ))

denotes the expected number of solutions in the shorter subformula of F , for F 2

cl(n; s)

r

. E(�

long

(n; s; r)) is de�ned the same way. Obviously E(�

min

(n; s; r)) �

E(�

long

(n; s; r)) and E(�

max

(n; s; r)) � E(�

short

(n; s; r)), therefore we have the

following lower bound on �(n; s; r):

�(n; s; r) � '(n; s; r);

where

'(n; s; r) :=

E(�

short

(n; s; r))

E(�

long

(n; s; r))

:

Theorem 1 For w 2 fshort, longg let m

w

= min (max), if w = short (long).

Then

E(�

w

(n; s; r)) =

2

n�1

r

X

i=0

 

r

i

!

(

s

n

)

i

(1�

s

n

)

r�i

2

�i

(1� 2

�s

)

r�i

i

X

j=0

 

i

j

!

(1� 2

1�s

)

m

w

fj;i�jg

:

Proof: For 0 � j � i � r we de�ne K(i; j) := fF 2 cl(n; s)

r

: v occurs in

exactly j clauses and v in excactly i� j clauses of Fg. By de�nition the subsets

K(i; j); 1 � j � i � r, partition the formula set cl(n; s)

r

. For all F 2 K(i; j), we

have F

v

2 cl(n�1; s)

r�i

�cl(n�1; s�1)

j

and F

v

2 cl(n�1; s)

r�i

�cl(n�1; s�1)

i�j

.

Conversely, for any two formulas F

1

; F

2

2 cl(n� 1; s)

r�i

� cl(n� 1; s� 1)

j

the

following holds: if F

1

6= F

2

, then the sets C

#

= fF 2 cl(n; s)

r

: F

v

= F

#

g, # = 1; 2,

satisfy C

1

\ C

2

= ;, C

1

; C

2

� K(i; j), and jC

1

j = jC

2

j. This means that by the

operator F ! F

v

the uniform distribution de�ned on K(i; j) is transferred into a

uniform distribution on cl(n�1; s)

r�i

�cl(n�1; s�1)

j

. Thus the average number

of solutions of the formulas from the multiset fF

v

: F 2 K(i; j)g is equal to the

average number of solutions of the formulas from cl(n�1; s)

r�i

�cl(n�1; s�1)

j

,

which is 2

n�1

(1 � 2

�s

)

r�i

(1 � 2

1�s

)

j

, because of proposition 1. In the same way

it can be seen that the formulas from the multiset fF

v

: F 2 K(i; j)g have

2

n�1

(1� 2

�s

)

r�i

(1� 2

1�s

)

i�j

solutions in the average. If we restrict the functions

\short" and \long" to formulas from K(i; j), we obtain

short(K(i; j)) =

(

fF

v

: F 2 K(i; j)g; if j � i� j

fF

v

: F 2 K(i; j)g; else,
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and

long(K(i; j)) =

(

fF

v

: F 2 K(i; j)g; if j � i� j

fF

v

: F 2 K(i; j)g; else.

Therefore the average number of solutions of the shorter (longer) subformula of

the formulas in K(i; j), denoted by E(�

short

jK(i; j)) (E(�

long

jK(i; j))), are given

by

E(�

short

jK(i; j)) = 2

n�1

(1� 2

�s

)

r�i

(1 � 2

1�s

)

minfj;i�jg

and

E(�

long

jK(i; j)) = 2

n�1

(1 � 2

�s

)

r�i

(1� 2

1�s

)

maxfj;i�jg

:

Since v (v) must occur in exactly i�j (j)of the r clauses of F and the probability

that a clause c 2 F contains v or v is

s

n

, we get the following probability that a

randomly chosen formula F 2 cl(n; s)

r

belongs to K(i; j):

Prob(F 2 K(i; j)) =

 

r

i

!

(

s

n

)

i

(1 �

s

n

)

r�i

 

i

j

!

2

�i

:

Thus we obtain

E(�

short

(n; s; r)) =

r

X

i=0

i

X

j=0

E(�

short

jK(i; j))Prob(F 2 K(i; j)):

E(�

long

(n; s; r)) is calculated the same way. 2 Next we derive asymptotic lower

bounds on '(n; s; r), for classes of formulas satisfying r = cn; c > 0

An Asymptotic Lower Bound for '(n; s; cn)

Let s; c be constant and n � 4s. By theorem 1 and proposition 1 the following

estimation holds

E[�

short

(n; s; cn)]

E[�(n; s; cn)]

�

1

2

4sc

X

i=0

 

cn

i

!

�

s

n

�

i

�

1�

s

n

�

cn

2

�i

(1 � 2

�s

)

�i

i

X

j=0

 

i

j

!

(1� 2

1�s

)

min(j;i�j)

�

!

1

2

4sc

X

i=0

(sc)

i

i!

e

�sc

2

�i

(1� 2

�s

)

�i

i

X

j=0

 

i

j

!

(1� 2

1�s

)

min(j;i�j)

=: r(s; c):

In (�) we have used the limit (1 �

s

n

)

cn

! e

�sc

. Now we express a lower bound

for '(n; s; cn) in terms of r(s; c). We have

'(n; s; cn) �

E[�

short

(n; s; cn)]

E[�

long

(n; s; cn)]

6



=

E[�

short

(n; s; cn)]

E[�(n; s; cn)]� E[�

short

(n; s; cn)]

=

1

E[�(n;s;cn)]

E[�

short

(n;s;cn)]

� 1

�

1

1

r(s;c)

� 1

(for n!1):

Since n is not part of r(s; c) we can calculate asymptotic lower bounds of '(n; s; cn)

for �xed s and c, see table 1 for s = 3 and table 2 for s = 4 (we have done this

calculation with Mathematica).

c 1 2 3 4 5

'(n; 3; cn) 1.460 1.734 1.977 2.208 2.434

Table 1: Lower bounds of the ratio '(n; 3; cn).

c 6 7 8 9 10 11

'(n; 4; cn) 1.684 1.757 1.829 1.890 1.967 2.035

Table 2: Lower bounds of the ratio '(n; 4; cn).

3 Experimental Results

To demonstrate the e�ect of the imbalanced distribution of solutions on the run-

time behaviour of a SAT-solver we applied our k-thread-satis�ability-solver de-

scribed in section 1 to 500 randomly generated formulas from cl(400; 3)

1600

. Note

that for k = 1 the algorithm is identical to the sequential SAT-solver described in

[1]. The algorithm performs the Davis Putnam Procedure as described in section

1. The pure literal rule was not included in the algorithm since it slightly slowed

down the runtime in our experiments. In the branching step a literal x 2 F is

chosen according to the lexicographic heuristic, i.e. with lexicographic maximal

vector

(H

1

(x);H

2

(x); : : : ;H

n

(x))

where

H

i

(x) := jfc 2 F j (x 2 c _ x 2 c) ^ jcj = igj

The algorithm proceeds with F

x

�rst, i� jF

x

j � jF

x

j. The implementation consists

of highly optimized C code and uses e�cient data structures. A single formula

is kept in memory and modi�ed in place to avoid copying. The modi�cation

of a formula F into F

x

and vice versa (traversing an edge in the searchtree) is

performed in time proportional to size(F )� size(F

x

) where size(F ) :=

P

c2F

jcj.

7



In case of random formulas F 2 cl(n; s)

r

size(F ) � size(F

x

) is expected to be

rs(s+ 1)=(2n).

To exploit the imbalanced distribution of solutions in order to speed up the

SAT-solver, our SAT-Solver generated a (predetermined) number of threads on

a SUN with a 167MHz UltraSparc CPU. This way we were able to simulate a

parallel computation with 1, 2, 4, 8, 16, 32 and 64 CPUs. The threads are

scheduled round robin. After having visited 500 branch nodes a context switch

is forced. The average runtimes and the average number of nodes that were

expanded during the search are given in table 3 together with their standard

deviation �. From �g. 1 and 2 follows that the k-thread-satis�ability solver

generates virtually no overhead, since the program always generates about 1800{

2000 branch nodes per second.

Threads Time (sec) �(Time) Nodes �(Nodes)

1 370 1352 750169 2705539

2 304 1235 612274 2467132

4 225 986 441116 1929252

8 177 782 352990 1554555

16 154 752 291392 1446803

32 144 874 263199 1450585

64 182 1354 326946 2169765

Table 3: Runtimes and Branch Nodes
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