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Abstract. The discrete binary hierarchy (DBH) is a concept underlyingmany

important issues in analysis of complex systems: knowledge structures, test-
and-search organization, evolutionary trees, taxonomy, data handling, etc. It

appears that any DBH corresponds to an orthonormal basis of the Euclidean
space related to the hierarchy leaves. The properties of these bases form a

mathematical framework which can be applied to such problems as cluster-
ing and multiresolution image/signal processing. Clustering applications are

based on a DBH-based analogue of the singular-value-decomposition of data
matrices. A theoretical support for a method in divisive clustering is provided

along with some decomposition-based interpretation aids. Data processing
applications appear parallel to those involving the concepts of wavelets and

quadtrees. However, DBH-based techniques seem to offer some potential im-
provements based on relaxing “continuity and homogeneity” restrictions of

classical theories.

1. Introduction

The discrete binary hierarchy is a nested set of subsets (“clusters”) of a finite
N -element set such that any nonsingleton cluster is split in exactly two smaller
clusters. It appears that any discrete binary hierarchy (in its ordered form) one-to-
one corresponds to an orthonormal basis of the N −1-dimensional Euclidean space.
The properties of these bases form a mathematical framework which is applied here
to the problems of clustering and multiresolution image and signal processing.

In clustering, a divisive clustering strategy is substantiated as a method for the
fitting of an approximation clustering model. The binary hierarchy provides for
decompositions of the variance, covariance and the entries themselves via clusters,
which gives additional interpretation aids to those usually employed in clustering.
In image analysis, the binary hierarchy framework appears closely connected with
some most exploited concepts, as wavelets and quadtrees, that correspond to “ho-
mogeneous and continouous” hierarchies. It should be expected that the binary
hierarchies can lead to further advances in signal and image data processing by
relaxing some restrictions of the classical approaches.

The remainder of the paper is arranged as follows. In Section 2, a linear
embedding theory is outlined for discrete hierarchies: the concepts of hierarchy
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and ordered hierarchy are introduced in 2.1; three-value nest indicator functions
and bases for binary and non-binary hierarchies are introduced in 2.2 and 2.3;
the decompositions of the data via binary hierarchies are analyzed in 2.4; between-
hierarchy transformations are considered in 2.5. Section 3 is devoted to hierarchical
clustering: a binary-hierarchy based approximation clustering model is analyzed
in 3.1 where a sequentially fitting approach is discussed as a method of divisive
clustering. Two algorithms for splitting steps of the method are introduced in 3.2.
An illustrative example is treated in 3.3, accompanied with many interpretation
aids derived in Section 2. In Sections 4 and 5, potential applications for processing
spatial data, both uni- and two-dimensional, are considered. In 4.1, the concepts
of hierarchy layers and corresponding linear subspaces are introduced and used for
data compression/decompression along the hierarchy. In 4.2, parallel concepts of
wavelet-based multiresolution analysis theories are described. In 5.1, a concept of
bihierarchy is introduced as a device for treating planar objects such as digitalized
images. Its applications to clustering and fast compression/decompression on the
plane are considered in 5.2 and 5.3, respectively. In Section 6, the main issues
raised in the paper are outlined.

2. Hierarchies and Corresponding Orthonormal Bases

2.1. Hierarchies and Ordered Hierarchies. Hierarchies can be repre-
sented both in graph-theoretic and in set-theoretic terms. In this paper, only
set-theoretic representation will be considered. Let I be a finite set consisting
of N entities. A set of its subsets SW = {Sw : Sw ⊆ I, w ∈ W} called clusters is a
hierarchy if it satisfies the following properties:

1. For any i ∈ I, {i} ∈ SW ;
2. I ∈ SW ;
3. The clusters Sw, w ∈ W , are nested, that is, Sw ∩ Sw′ ∈ {∅, Sw Sw′}, for

every w, w′ ∈ W ;
A hierarchy is a binary hierarchy if it satisfies the following additional condition:
4. For every non-singleton cluster Sw, w ∈ W , there exist two clusters

Sw1, Sw2 ∈ SW which are its proper subsets, such that Sw1 ∪ Sw2 = Sw .
The definition implies that the clusters Sw1, Sw2 ∈ SW in item 4 are defined

in a unique way; sometimes they are referred to as children of cluster Sw which is
considered their parent.

In graph-theoretic terms, a hierarchy is a leaf-labeled rooted tree; its nodes
correspond to the clusters, and edges join the parents with their children. The
root corresponds to I while the singletons to the leaves, each labeled with an entity
i ∈ I. Every interior node, except for the root, is adjacent to at least three other
nodes. In the binary hierarchies, every non-trivial cluster (that is, not a singleton
or the root) is adjacent to exactly three nodes: its parent and children.

Obviously, the number of leaves equals N while the number of edges N − 1.
For any binary hierarchy, N − 1 is also the number of its non-singleton clusters.

Three rooted trees in Fig.1 present two binary hierarchies because the clusters
corresponding to the nodes of trees (a) and (c) are the same. A drawn (with no
intersections) tree of a binary hierarchy is what can be called an ordered hierarchy:
the children of every internal cluster are ordered with regard to each other so
that, say, the left child “precedes” the right one, according to this order. For any
binary hierarchy, SW , there are exactly N −1 non-singleton clusters and thus 2N−1
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Figure 1. Three trees presenting two binary hierarchies on I = {1, 2, 3}.

possible ordered versions, each corresponding to a drawn (with no edge crossings)
representation of the hierarchy. Obviously, an ordered hierarchy corresponds with a
linear ordering, PW of I, defined so that iPW j iff in the minimum cluster Sw ∈ SW

containing both i and j, the child containing i precedes (is drawn to the left of) the
child containing j. All the ordered hierarchy clusters are intervals of this unique
linear ordering, PW , of I; that is, for any S ∈ SW , i, j ∈ S and iPW kPW j implies
k ∈ S. The tree in Fig.1(a) corresponds to the natural order, 123, and that in
Fig.1(b) to the order 231. Conversely, given a linear ordering, P of I, such that
all clusters of SW are its intervals, implies that a corresponding tree can be drawn
with no edge crossing. This can be put as follows.

Statement 1. A hierarchy, SW , is ordered if and only if there exists a uniquely
defined linear ordering, PW , of I such that all the hierarchy clusters are its intervals
and the hierarchy order is PW trivially extended to clusters.

2.2. Bases for Binary Hierarchies. Let SW be an ordered binary hierarchy.
For any nonsingleton cluster Sw = Sw1 ∪ Sw2 (w, w1, w2 ∈ W ) of SW , its three-
valued nest indicator function φw is defined as:

φiw =




aw if i ∈ Sw1

−bw if i ∈ Sw2

0 if i �∈ Sw

(2.1)

where the reals aw and bw are well defined by the following conditions: (1) vector
φw is centered; that is the sum of its components is zero; (2) vector φw has its
norm, that is, the square root of the sum of its components squared, equal to 1,
(3) Sw1 precedes Sw2 in the hierarchy order. To be more precise, let us denote by
nw, nw1, nw2 the cardinalities of clusters Sw , Sw1 and Sw2, respectively. Obviously,
nw1 + nw2 = nw. Then, (1) means that nw1aw − nw2bw = 0 while (2) gives
nw1a

2
w + nw2b

2
w = 1. These two equations lead to the following values of aw and

bw:

aw =
√

nw2

nw1nw
, bw =

√
nw1

nw2nw
(2.2)

It turns out, the set of the vectors ΦW = (φw), w ∈ W, is an orthonormal basis
of the (N-1)-dimensional space of all the N−dimensional centered vectors. Since
the vectors φw are centered and normed by definition, it is sufficient to prove that
these vectors are mutually orthogonal.

Statement 2. Every two vectors φw and φw′ from the set ΦW = (φw), w ∈ W,
defined for a binary hierarchy SW by formula (2.1) are orthogonal; that is, their
scalar product equals zero, (φw, φw′) = 0 (w �= w′).
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Proof: Let us consider the scalar product (φw, φw′) =
∑

i∈I φiwφiw′. If Sw ∩
Sw′ = ∅ then φiwφiw′ = 0 for any i ∈ I since either i �∈ Sw or i �∈ Sw′ . Otherwise,
one of the sets includes the other, say, Sw′ ⊂ Sw , which implies that Sw′ is included
in one of the children Sw1, Sw2 of Sw, say, Sw′ ⊆ Sw1. Then, φiw = aw for any
i ∈ Sw′ , which implies that

∑
i∈I φiwφiw′ = aw

∑
i∈I φiw′ = 0, since vector φw′ is

centered. �

In matrix terms, the statement means that

ΦT Φ = IN−1(2.3)

where In is the diagonal n×n identity matrix having all the diagonal entries equal
to 1 and non-diagonal entries to 0.

It is not difficult also to prove that

ΦΦT = IN − U/N(2.4)

where U is the matrix having all its entries equal to 1 and, thus, each entry of U/N
is equal to 1/N . Equation (2.4) means that ΦΦT is the orthogonal projector onto
the subspace of all centered vectors.

The basis ΦW can be considered as assigned to an unordered binary hierarchy.
Since ordering subclusters, Sw1 and Sw2, in this case is arbitrary, the matrix Φ
corresponding to a binary hierarchy, SW , is defined up to a right matrix factor, E,
which is a diagonal matrix having its diagonal entries eii equal to 1 or -1 for any
i ∈ I. The matrix ΦE corresponds to the same binary hierarchy as Φ, for any E
defined above. This implies that every binary hierarchy can be ordered in 2N−1

ways.

2.3. Bases for Arbitrary Hierarchies. An orthonormal (N − 1)-
dimensional basis can be similarly defined for any hierarchy SW . If Sw ∈ SW

has q ≥ 3 children Swp ∈ SW , p = 1, ...q, so that Sw = Sw1 ∪ ... ∪ Swq , a ternary
nest indicator function can be defined for each of the children, Swp (that is, for the
edge between Sw and Swp), as follows:

φiwp =




awp if i ∈ Swp

−bwp if i ∈ Sw − Swp

0 if i �∈ Sw

(2.5)

where the reals awp and bwp satisfy the same conditions as above:
∑

i∈I φiwp = 0,∑
i∈I φ2

iwp = 1, and Swp is considered preceding Sw − Swp. It is not difficult to
prove that

awp =

√
nw − nwp

nwpnw
, bwp =

√
nwp

(nw − nwp)nw
(2.6)

Let us define a subset Φ of the nest indicator functions as follows. For every
non-singleton Sw ∈ SW , take in Φ all except one its nest indicator functions. It is
not difficult to prove that Φ consists of exactly N − 1 vectors.

Statement 3. The set Φ is a basis of the (N − 1)-dimensional space of N -
dimensional centered vectors. The nest indicator functions in Φ corresponding to
non-siblings are mutually ortogonal.

Proof: The same argument as in the proof of Statement 2 is applicable here
except for the analysis of siblings which are absent from Φ, in the binary case.
Let S ∈ SW consist of q children, S1, ..., Sq, of which the functions φ1, ..., φq−1
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are in Φ and φq is not. Let
∑q−1

p=1 αpφp = 0 for some reals, α1,..., αq−1. This

sum, for an i ∈ Sq, equals (−1/n)
∑q−1

p=1 αp

√
np

n−np
. For an i ∈ S1, the sum differs

by the first term only, which makes difference between these two values equal to
α1(

√
n−n1

n1
−

√
n1

n−n1
)/
√

n = 0. This implies that α1 = 0 if n1 �= n/2. The same

is true for every coefficient αp, p = 1, ..., q − 1. Now let n1 = n/2, which implies
that equation np = n/2 is not true for any other p < q. Then α2 = 0. Considering
difference of the sum values for i ∈ S1 and j ∈ S2 implies in this case that α1 must
be zero, too. Thus vectors φ1, ..., φq−1 are linear independent. �

2.4. Decomposition of a Data Matrix via a Binary Hierarchy. Let us
consider a N ×n data matrix Y = (yik). Let us suppose all the columns yk = (yik),
i ∈ I, centered, that is, all the averages ȳk =

∑
i∈I yik/N preliminarily subtracted

from the components of corresponding column-vectors yk, k = 1, ..., K.
Since every column-vector yk, k = 1, ..., K can be decomposed by the elements

of basis ΦW (for any ordered SW ), the following matrix equality holds:

Y = ΦC(2.7)

where Φ = (φiw) is the N × (N −1) matrix of values of the nest indicator functions
in (2.1) and C = (cwk) is a (N − 1) ×K matrix.

Since ΦT Φ is the identity matrix, multiplying the equality in (2.7) by ΦT leads
to

C = ΦT Y(2.8)

which gives the value of every entry of matrix C expressed through the data as
follows:

cwk =
∑
i∈I

φiwyik =
√

nw1nw2

nw
(yw1k − yw2k) =

√
nw1nw

nw − nw1
(yw1k − ywk)(2.9)

where ywk, yw1k and yw2k are the averages of the k-th variable in Sw, Sw1 and Sw2,
respectively.

It should be noted that this expression depends on the order of clusters in SW :
if Φ is changed for ΦE, then C is changed for EC. The latter expression in (2.9) is
also valid for the basis corresponding to a non-binary hierarchy, as defined above.

Now consider a K-dimensional vector of the averages of the variables in a
subset Sw , w ∈ W , and denote it by yw . Then, the equality in (2.9) implies that
the Euclidean norm

√
(cw, cw) of the vector cw = (cwk) is equal to

µw =
√

nw1nw2

nw
d(yw1, yw2)(2.10)

where d(x, y) is the Euclidean distance between vectors x, y. The value µw is
positive if x �= y, and zero if x = y. The norm is invariant to the between-cluster
ordering and thus is well defined for nonordered binary hierarchies.

Defining M to be a diagonal (N − 1)× (N − 1) matrix with µw, w ∈ W , as its
diagonal entries, and considering vectors cw as being normed, the equation in (2.7)
becomes an analogue of the singular-value decomposition (SVD) of the matrix Y
(see Golub and Van Loan (1989)) since, in this case, Y = ΦMC where Φ is matrix
of an orthonormal vector set and M is a diagonal matrix with nonnegative diagonal
entries. The weighted distances in (2.10) are analogues to the singular values; they
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will be referred to as the cluster values and the entries of C can be referred to
as cluster loadings (by the analogy with the principal component anlysis loadings,
Jolliffe, 1986).

For the sake of simplicity, the vectors cw, w ∈ W , will not be considered
normed, thus holding all the formulas above as they are.

On the other hand, the expression in (2.10) holds for any norm ‖‖ as a func-
tion defined for the vectors cw, w ∈ W , if the distance is accordingly defined as
d(yw1, yw2) = ‖yw1 − yw2‖. Moreover, the function ‖‖ suffices to be any monotone
function thus defining d as a dissimilarity measure which might fail to satisfy some
metric properties (as the triangle inequality).

Another useful property of the equation (2.7) is that

Y T Y = CT C(2.11)

which is proved by multiplying (2.7) with its transposed version since ΦT Φ is the
identity matrix.

Equations (2.7) and (2.11) provide us with useful decompositions of the major
data characteristics via the binary hierarchy clusters. This relates to: (a) variances
of the variables, (b) between-variable covariations, and (c) the entries themselves.
Since the columns of Y are centered, the elements (yk, yl) of the matrix Y T Y have
the meaning of covariance (or even correlation) coefficients between the variables k
and l (multiplied by N). This allows equation (2.11) to be rewritten using formula
(2.9) as follows:

(yk, yl) =
∑

w∈W

nw1nw2

nw
(yw1k − yw2k)(yw1l − yw2l).(2.12)

When k = l, we have the variance of the variable k decomposed by the clusters:

(yk, yk)/N =
∑

w∈W

pw1pw2

pw
(yw1k − yw2k)2.(2.13)

Summing up equations (2.13) and employing (2.10), we arrive at an equation

Tr(Y T Y )/N =
∑
i,k

y2
ik/N =

∑
w∈W

pw1pw2

pw
d2(yw1, yw2) =

∑
w∈W

µ2
w(2.14)

decomposing the squared data scatter (the total data variance) into the sum of
cluster contributions which are the cluster values squared. The last decomposition
(2.7) of the entries can be expressed using (2.9), as follows:

yik =
∑

{w1:i∈w1}
(yw1k − ywk)(2.15)

where summing is applied to all filter of proper clusters, Sw1, containing i (Sw is
the parent of Sw1).

According to (2.15), it is the between-center difference, yw1k − ywk, which
characterizes the contribution of a cluster, Sw1, to the entries of all i ∈ Sw1.

All the four decompositions, (2.12) – (2.15), do not depend on an ordering of
SW . The decomposition (2.14) has been employed in clustering and (2.13), (2.15)
in analysis of variance (ANOVA).
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2.5. Transformation Matrices. Let Φ and Φ′ be basis matrices correspond-
ing to two ordered binary hierarchies on I. According to (2.7) and (2.8),

Φ′ = ΦC

where

C = C(Φ, Φ′) = ΦT Φ′.

The matrix C(Φ, Φ′) can be referred to as the transformation matrix (transforming
Φ into Φ′). Exploiting the latter equation in (2.9), its entries can be expressed as:

cww′ =

√
nn1n′

1

n′n2n′
2

(
n′

2

n′
1

∆(w1′) − ∆(w2′))(2.16)

where ∆(w′) is the difference between the probability of S′
w′ in Sw1 and that in Sw ,

and n, n1, n2 refer to the cardinalities of the cluster Sw and its subclusters (in the
Φ-hierarchy) while n′, n′

1, n
′
2 relate to those of the cluster S′

w′ and its subclusters
(in the Φ′-hierarchy). More precisely,

∆(w′) = p(S′
w′/Sw1) − p(S′

w′/Sw)

where the conditional probability, p(S/T ), S ⊆ T ⊆ I, is defined, as usual, as
|S ∩ T |/|T |.

For any three binary hierarchies (not necessarily distinct), equation (2.4) im-
plies

C(Φ, Φ′′) = C(Φ, Φ′)C(Φ′, Φ′′)(2.17)

which makes the set of all the ordered binary hierarchy bases {Φ} a finite group
since the transformation matrices are normal (that is, they “rotate” the space
having their determinants equal to unity) and thus nonsingular.

Let us call two transformation matrices, C and D, as order-equivalent if

cww′ =
{

dww′ if (w, w′) ∈ S1 × S2 ∪ (I − S1) × (I − S2)
−dww′ if (w, w′) ∈ (I − S1) × S2 ∪ S1 × (I − S2)

for some S1, S2 ⊆ I. Order-equivalence is obviously an equivalence relation. Its
equivalence classes correspond to transformations between nonordered binary hier-
archies.

Statement 4. For any two binary hierarchies, the set of all transforma-
tion matrices between their ordered versions, is an equivalence class of the order-
equivalence relation.

Statement 4 implies that the group of transformation matrices between ordered
hierarchies factored with regard to the order-equivalence is not a group. Specifically,
the order-equivalence classes are not closed with regard to multiplication. Let
us consider, for example, hierarchies presented in Figure 1. Depending on their
orderings, we may have the following transformations between them:

A =
(

−1/2
√

3/2√
3/2 1/2

)
, B =

(
−1/2 −

√
3/2

−
√

3/2 1/2

)
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Matrix A corresponds to the orders (123) in (a) and (213) in (b) while the orders
for B are (132) and (231), respectively. Obviously, AT A = A2 and BT B = B2 are
equal to the identity matrix while

AT B = AB =
(

−1/2
√

3/2
−
√

3/2 1/2

)

which is not the identity matrix. Neither does it belong to the group of transfor-
mation matrices: its determinant is 1/2, and so it is not normal.

However, the absolute values of the entries in all order-equivalent matrices
are equal. This implies that transformation matrices can be used, for instance, to
analyze the differences between hierarchies. It should be noted that the value (2.16)
can be considered as a rather non-standard way for evaluation of between-cluster
similarity. To illustrate the transformation matrices as an “analitical” device for
representing geometrical differences, let us consider three hierarchies presented in
Figure 2.

1 2 3 4 1 2 3 4 1 3 2 4

A B C

Figure 2. Three binary hierarchies over a four-element set.

The transformation matrices between them:

C(A, B) =




√
1/3

√
2/3 0√

2/3 −
√

1/3 0
0 0 1


 , C(A, C) =




√
1/3

√
2/3 0

−
√

1/6
√

1/3/2
√

3/2√
1/2 −1/2 1/2


 ,

and

C(B, C) =


 0

√
1/2

√
1/2√

1/2 1/2 −1/2√
1/2 −1/2 1/2


 .

Obviously, the first matrix is somewhat simpler: hierarchies A and B in Figure
2 have a common cluster, {3, 4}.

It seems quite natural to evaluate the overall between-hierarchy difference by
a norm of the transformation matrix. However, the Euclidean norm, Tr(CTC) =∑

w,w′ c2
ww′ cannot do the job, because it is constantly equal to N − 1, for any

two hierarchies, as follows from (2.11) and the definition of Φ. Moreover, it can
be easily proven that the matrices of squared entries of transformation matrices,
(c2

ww′), are doubly stochastic: the sum of elements in every column or row of such
a matrix equal to 1.

The other norms are still available. In our example, the sums of the entries’
absolute values (norm L1) are equal to 3.79, 4.66, and 4.83, respectively, which
seems in line with our intution in pair-wise comparisons of the trees in Figure 2.
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3. Application to Hierarchical Clustering

3.1. Approximation Clustering Model. Traditionally, clustering is con-
sidered a discipline devoted to finding “cohesive” groups of points in a geometric
space. Such a direct goal can be underlied with theoretical considerations of which
we are interested in approximating. In this approach, the observed data is consid-
ered as a noisy information on the underlying discrete cluster structure. In such a
setting the clustering problem is a problem of approximation of the noisy data with
an adequate clustering structure (Hartigan (1972), Shepard and Arabie (1979), De
Sarbo (1982), Mirkin (1990, 1994), Chaturvedi and Carroll (1994), Mirkin, Arabie,
and Hubert (1995), etc.).

Let us refer to a set of subsets, SW ′ , as a hierachical cluster structure if it
satisfies requirement (3) in the definition of binary hierarchy so that clusters in
SW ′ are nested, though (some) singletons or/and the root, I, may be not in SW ′ .
A graph corresponding to a hierachical cluster structure is a forest being only a part
of a binary hierarchy tree; the leaves of the forest correspond to inclusion-minimal
clusters in SW ′ . The matrix of the nest indicator functions of non-leaf clusters in
SW ′ will be denoted by Φ′. Obviously, any hierachical cluster structure can be
completed into a binary hierarchy by further partitioning its minimal non-singleton
clusters and pair-wise merging its maximal clusters.

Representing hierachical cluster structures with nest indicator functions, we
arrive at the following approximation clustering model:

Y = Φ′C ′ + E(3.1)

where Φ′ stands for a current hierachical cluster structure, C ′ is an unknown matrix
of cluster loadings and E is the matrix of residuals to be minimized with regard to
arbitrary C ′ and admissible Φ′.

The least-squares criterion,

D(Φ′, C ′) = Tr[(Y −Φ′C ′)T (Y −Φ′C ′)] =
N∑

i=1

M∑
k=1

(yik −
∑

w∈W ′

φiwcwk)2(3.2)

will be the only scalar measure of the residuals considered in this paper.

Statement 5. Given a hierachical cluster structure, Φ, the least-squares esti-
mate for C ′ is determined by formula C ′(Φ′) = Φ

′T Y which is analogous to (2.8).
The minimum value of D(Φ′, C ′) equals

D(Φ′, C ′(Φ′)) = Tr(Y T Y ) −
∑

w∈W ′

µ2
w(3.3)

where cluster values µw for non-leaf clusters are defined by formula (2.9) and are
zeros for the leaf (minimal) clusters.

Proof: The equation C ′ = Φ
′T Y is derived as a necessary condition for min-

imality of (3.2). Putting this into (3.2), the equality D(Φ′, C ′(Φ′)) = Tr(Y T Y −
C

′T C ′) follows. Equations Tr(C
′T C ′) =

∑
w∈W ′

∑
k c2

wk and (2.14) prove the
statement. �

In fact, formula (2.14) gives decomposition of the squared data scatter,
Tr(Y T Y ), in two parts: explained,

∑
w∈W ′ µ2

w and non-explained, D(Φ′, C ′(Φ′)),
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by the cluster structure Φ′. An important feature of the formula C ′(Φ′) = Φ
′T Y

is that it holds only when the least-squares approximation is considered while the
generic equality (2.8) holds always.

Let us define a set, A, of admissible hierachical cluster structures SW ′ by the
following two conditions: (a) I ∈ SW ′ , so that the structure is a tree, not forest,
and (b) the number of clusters, |W ′| is fixed. When |W ′| = 2N − 1, the set A
consists of all binary hierarchies, so we consider |W ′| < 2N − 1.

According to equation (3.3), any least-squares fit to the model (3.1) must max-
imize the criterion ∑

w∈W ′

µ2
w =

∑
w∈W ′

pw1pw2

pw
d2(yw1, yw2)

so that the problem is to find |W ′| consecutive divisions of I maximizing the sum
of the weighted between-center distances d2(yw1, yw2).

The author has no nontrivial suggestions on globally resolving the problem. A
major issue here is that it is unknown whether the optimal structures satisfy the
so-called minimal distance rule or not. The minimal distance rule requires that the
distance from any point in any cluster to the cluster’s center is smaller than to the
center of any other cluster. This rule drastically reduces the number of potential
cluster structures to check.

Thus we suggest a greedy-wise procedure of sequential extraction of clusters
from the data according to the least-squares criterion. This procedure is analo-
gous to the standard one-by-one extraction procedure of the principal component
analysis and described, in a general form called the SEFIT algorithm, in Mirkin,
1990.

At each iteration of SEFIT, w, the input information includes the subtree S′
W

available (initially, S′
W = {I}) and a data matrix, Y , updated. There are two steps

at the iteration, according to the general procedure: (1) updating S′
W by splitting

a leaf-cluster to maximize the cluster contribution, µ2
w, added; (2) updating Y by

subtracting the item found, yik ← yik − cwkφiw. The computation ends when w
reaches a pre-specified number of clusters.

Curiously, there is no need in step (2) of updating the data matrix since the
value maximized at step (1),

µ2
w =

nw1nw2

nw
d2(yw1, yw2)(3.4)

is invariant with respect to subtracting cluster values from larger clusters, because
d(x, y) = d(x − a, y − a) for any real a.

Thus, SEFIT in this context reduces to what has been known in the clustering
discipline as the divisive clustering with splitting criterion (3.4). This criterion is
well known in clustering. Ward (1963) is credited for introducing it in the agglom-
erative clustering context; Edwards and Cavalli-Sforza (1965) have considered the
same criterion for divisive clustering. Gower (1967) provided an example demon-
strating a peculiarity of the criterion reflecting the fact that factor nw1nw2/nw in
(3.4) favors equal distribution of the entities among the clusters and, thus, the crite-
rion may fail to immediately separate some outliers. Though for a long time treated
as a shortcoming, the peculiarity does not appear to actually be so. Moreover, in
many clustering studies, tendency of the cluster cardinalities to the same number
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has been suggested as a good criterion of clustering (see, for example, Braverman
and Muchnik, 1983).

Let us consider how the criterion (3.4) can be applied in the case when all the
variables are binary descriptors of qualitative categories represented by zero-one
columns (one for Yes, zero for No).

Let us compute the within-cluster average of a zero-one variable k. Do not
forget, that the variable has been centered initially, which means that the entries
1 − pk and −pk stand for 1 and 0, respectively, where pk denotes the relative
frequency of ones in column k.

Thus, the average is ywk = (1− pk)pwk/pw − pk(1 − pwk/pw) where pwk is the
frequency of simultaneously observing descriptor k and cluster Sw and pw is the
frequency of Sw. This leads to:

ywk = pwk/pw − pk.(3.5)

which implies

c2
wk =

nw1nw2

nw
(
pw1k

pw1
− pw2k

pw2
)2(3.6)

This looks quite natural: the first factor “takes care” to get the split closer to
halving (which corresponds to the information concepts of the search theory) while
the second follows the difference between the frequencies of ones in the subclusters.
It should be noted that this measure closely resembles the so-called “twoing rule”
measure used in CART techniques for conceptual clustering; see Breiman et al.
(1984), p. 38, 107, 127-129.

The criterion (3.4) in this case is just the weighted distance between within-
cluster probability profiles:

µ2
w =

nw1nw2

nw
d2(p(w1), p(w2))(3.7)

where p(w) is the vector of (conditional) probabilities of categories k in cluster Sw .
This shows that the least-squares criterion can be employed for clustering not

only when all the variables are quantitative, but also when there are nominal vari-
ables present. Curiously, the formulas above fit into the problem of (multiple)
alignment of biological sequences in the so-called continuous sequence space (Vin-
gron and Sibbald, 1993). Basically, this space can be considered as a nominal data
table where variables correspond to sequence positions and the categories are letters
of a biomolecular alphabet.

3.2. Splitting Algorithms. Let us consider the step of splitting of a cluster
Sw, in the divisive strategy, in more detail. Depending on the formula for cwk in
(2.9), the value of the maximized criterion µ2 can be expressed by formula (3.4) or

µ2
w =

nwnw1

nw2
d2(yw1, yw)(3.8)

Computationally, criterion (3.4)/(3.8) leads to a difficult, though not NP-
complete splitting task. Indeed, as is well known, the optimal splits must satisfy
the mimimal distance rule, which means that the convex halls of the subclusters
are linearly separated. The number of splits generated by hyperplanes is known to
be less than NK (Bock, 1974) where K is the dimensionality of the variable space,
which shows the complexity of the problem. Still no further reduction of complexity
of the problem has been achieved.
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We describe now two local search algorithms, for each of the two formulas for
µ2

w.
Formula (3.4) implies an algorithm which is just a version of the moving-center

(K-Means) technique.

Splitting by Maximizing (3.4)
Initially, the most distant points y1 and y2 in Sw are determined
to be used as the initial centers of the clusters.
Then, sequentially, the usual next two steps are performed it-
eratively: (a) assigning the entities to the clusters (the nearest
center wins) and (b) recomputing the centers (as the centers of
gravity of the clusters obtained in (a)). The computation ends
when step (a) leaves the clusters unchanged.

Evidently, this version of the K-Means technique is nothing but the alternating
minimization of the square-error clustering criterion (Jain and Dubes, 1988) by two
groups of the variables, those related to membership of the entities to the clusters
(a) and to the cluster centers (b). Simultaneously, it is an alternating maximization
algorithm for the criterion (3.4).

The second algorithm, based on formula (3.8), is a seriation algorithm.

Splitting by Maximizing (3.8)
Initially, a point y1 is found maximizing its distance to yw , the
center of Sw, to set Sw1 = {y1}. On a general step, a current
Sw1 along with its center yw1 is considered and an entity-point
yj, closest to yw1 by Euclidean distance, is sought. It is added to
Sw1 if the quotient q = d2(yw1, yw)/d2, where d is the distance
between yw and the center of Sw ∪ {yj}, satisfies the inequality

q <
n1n2 + n2

n1n2 − n1
,

and the process ends if not.

The inequality involved is equivalent to the fact that value of µ2
w (3.8) increases

when yj is added to Sw . Basically, there is a trade-off between an increase of the
coefficient nw1/nw2 and correponding decrease of the distance d2(yw1, yw). The
distance may only decrease in the adding process.

Though the analogy between the one-by-one strategy of principal component
analysis and the square-error divisive clustering seems rather deep, any binary hi-
erarchy defines a different SVD-like basis while there is only one genuine SVD basis
consisting of the singular vectors employed in the principal component analysis.

The algorithms described can be extended to any dissimilarity function d and,
thus, amount to a family of divisive clustering algorithms which overlap but not
coincide with that of Lance and Williams (1967).

A computational strategy for divisive clustering, based on the theory above,
can be set as follows:

1. Standardize the entity-to-variable data by shifting the origin into the point
of the variable averages and norming the variables by a chosen norm.
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2. Choose a dissimilarity function (it may be different from the distance driven
by the norm chosen for standardizing).

3. Choose a clustering strategy (only the divisive one has been discussed above)
and create a cluster hierarchy SW with the strategy.

4. Draw a tree hierarchy representation reflecting the cluster values µw by the
heights of the corresponding division nodes.

5. Interpret the hierarchy designed using:
1) the drawn pattern of clustering;
2) contributions of the clusters and cluster–variable pairs to the square

scatter of the data as reflected in values of
∑n

k=1 c2
wk and c2

wk (2.9), respec-
tively (w ∈ W, k = 1, ..., K);

3) the cluster variable-to-variable covariance/correlations,
Nw1Nw2(yw1k − yw2k)(yw1l − yw2l)/Nw, as items in the additive de-
composition of the overall covariance (2.12);

4) decompositions (2.15) of the entries yik by clusters.

3.3. An Illustrative Example. Let us consider data on sorting of terms re-
lated to the human body collected by G.A. Miller (1968) and reported in Rosenberg
(1982). The natural hierarchy of the body parts should be reflected in the underly-
ing cluster structure. The four variables represent dissimilarities of 16 body terms
with “Head”, “Arm”, “Chest”, and “Leg”, respectively, as presented in Table 1.
The hierarchical classification found with the divisive clustering algorithm at each

Table 1. An extract from Miller’s sorting data (1968): number
of subjects (out of 50) who did not put any given row-terms into
the same category with 4 column-terms presented

i Term Head Arm Chest Leg

1 Body 45 50 37 50
2 Cheek 19 50 49 50
3 Ear 18 49 50 49
4 Elbow 49 8 50 47
5 Face 14 48 47 48
6 Hand 48 14 50 46
7 Knee 49 47 50 8
8 Lip 18 49 50 49
9 Lung 48 49 17 49

10 Mouth 19 49 50 49
11 Neck 31 45 38 45
12 Palm 50 16 49 48
13 Thigh 47 45 48 5
14 Toe 49 47 50 13
15 Trunk 42 46 19 45
16 Waist 44 45 26 46

step maximizing the contribution to the total variance is presented in Figure 3 as
indexed with the corresponding cluster values (reflected in the heights of the verti-
cal edges). The squared cluster values µ2

t , which are equal to contributions of the
cluster divisions to the total variance, are presented (per cent) for contributing the
most.
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Figure 3. Binary hierarchy found for the data from Table 1 with
the first splitting method for the least-squares criterion; the num-
bers show contributions of the major splits to the data variance.

The classification also leads to a decomposition of all the variances and correla-
tions between the original variables. The general pattern of correlation is pair-wise
negative as is seen in the correlation matrix:

1 1.00
2 −0.48 1.00
3 −0.24 −0.27 1.00
4 −0.45 −0.15 −0.24 1.00

1 2 3 4

.
Its decomposition by the first three separations, due to formula (2.12), is pre-

sented by the following respective matrix terms:

1 0.44
2 −0.43 0.42
3 0.32 −0.31 0.23
4 −0.42 0.41 −0.30 0.40

1 2 3 4

(first division),

1 0.00
2 −0.01 0.56
3 0.00 −0.01 0.00
4 0.01 −0.57 0.01 0.58

1 2 3 4

(second division),
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1 0.43
2 −0.02 0.00
3 −0.54 0.02 0.60
4 −0.01 0.00 0.02 0.00

1 2 3 4

(third division).
These three items take into account most part of the variance and correlation.

It can be seen, that all the variables are important for the first separation, although
the third variable is somewhat less important (with its only 23% of the variance
accounted) while the contribution of the first variable is some higher (44% of the
variance). The second separation is due to the variables 2 and 4 while the third
separation is made by the variables 1 and 3 (since the other variables in either case
do not contribute to the variance at all).

Decomposition of the correlation coefficients confirms and details this conclu-
sion. In particular, the negative correlations between the variables 1 and 3, as well
as between 2 and 4, become positive at the first separation and sharper at the third
and second separations, respectively. All the other correlations disappear in the
clusters. The variance of variable 3 is not exhausted by the three first separations:
this variable contributes to the separation of the smaller Head cluster.

The last interpretation aid concerns decomposition of all the standardized data
entries yik by the clusters due to equation (2.15). Let us demonstrate the decom-
position for the 16-th entity, Waist, belonging to the four clusters nested shown by
the bold nodes in Figure 3:

1 0.52 = −0.52+ 1.09− 0.01− 0.05
2 0.28 = 0.50− 0.04− 0.06− 0.12
3 −1.46 = −0.37− 1.20− 0.36+ 0.47
4 0.36 = 0.49− 0.03− 0.05− 0.04

Every single column of the decomposition relates to its cluster reflecting the fea-
tures of the cluster: the smaller values of the variables 1 and 3 in the first cluster
correspond to its Head–Chest nature while the next cluster shows a split between
these variables: enlarged 1 and reduced 3 correspond to the Chest membership of
the entity. The last column represents individual traits of the entity.

Another tree (Figure 4) is generated with the divisive strategy when the cri-
terion is changed for the so-called Chebyshev (uniform) metric and the second
splitting algorithm has been applied. The data had been standardized as follows:
the origin was shifted into the point of the average values of the variables, norming
of the variables was performed by Chebyshev norm (the maximal absolute deviation
from the average became one after norming was completed).

Contribution of the first split to the total variance in Figure 4 (44.9 %) is much
higher than that in Figure 3 (37.3%)). This seems strange. How it could occur
that the maximized contribution (in Figure 3) turned out less than the contribution
achieved when another (Chebyshev) criterion was optimized (Figure 4)? To answer
the question, let us consider decomposition of the variances of the variables by the
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Figure 4. Binary hierarchy found for the data from Table 1 with
the Chebyshev norm; the numbers show relative contributions of
the major splits to the data variance.

clusters:

1 0.36 = 0.33+ 0.00+ 0.00 + ...
2 0.18 = 0.03+ 0.02+ 0.12 + ...
3 0.20 = 0.02+ 0.15+ 0.00 + ...
4 0.19 = 0.03+ 0.03+ 0.07 + ...

Again, only three major splits are represented in the decomposition. The variances
(and, thus, the contributions to the square data scatter) of the variables now are
different from the very beginning, which seems to determine the order they are
involved in the division process: the most contributing variable 1 turns out to be
the principal base of the first division; variable 3 having the second-large variance
contributes mostly to the second division; the less contributing variables 3 and 4 are
serving at the following divisions. Such a sequential involvement of the variables
may generate a more complete account of the variance in splitting, which is reflected
in the higher level of the variance extracted in the upper splits in Figure 4 as
compared to those in Figure 3. This conclusion is supported by the results of
the Euclidean-norm-based divisive clustering applied to the data standardized with
Chebyshev norm (Figure 5). The variance contributions in the upper splits there
are even greater (since the criterion is proper, in this instance); evidently, it is the
left four-element cluster in Figure 4 disappearance which makes that increasing of
the variances in Figure 5 possible. The contents of the clusters in the latter figure
also seem quite satisfactory.

It looks that a general regularity is manifested in the example: Chebyshev
norming generates a difference in the variances of the variables influencing the order
of their involvement in splits (fusions) and thus increasing the contributions of the
higher splits. This principle might cause the empirically observed facts that norming
by range (which is quite similar to Chebyshev norming) made after centering by
the average allows a best fit into Monte-Carlo generated cluster structures (Milligan
and Cooper, 1988).
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Figure 5. Binary hierarchy found with the least-squares criterion
for the data from Table 1 normed by the Chebyshev norm

4. Application to Analysis of Spatial Data

4.1. Layered Hierarchies. The concept of ordered hierarchy fits into the so-
called spatial data structures: digitalized intervals, rectangles or hyper-rectangles
consisting of one-, two- or three- dimensional pixels ordered according to the coor-
dinate axes (Samet, 1990). Let us initially consider I a unidimensional pixel set.
An ordered binary hierarchy will be referred to as a spatial binary hierarchy if its
order coinsides with the spatial ordering of I so that all clusters are unidimensional
intervals as in the hierarchies A and B presented in Figure 6.

Any binary hierarchy can be equivalently represented by its decomposition
into what will be called here layered hierarchy. A set of nested partitions of I,
L={L0, L1, ..., Ln}, will be referred to as a layered hierarchy if (a) L0 = {I}, (b)
Ln = {{i} : i ∈ I}, (c) Lm ⊂ Lm−1, and (d) there exists a binary hierarchy, SW ,
such that if S is a nonsingleton class of partition Lm−1 then S ∈ SW and the
children of S in SW are classes of Lm (m = 1, ..., n). Obviously, all classes in L
are clusters of SW and, moreover, there is an obvious one-to-one correspondence
between the hierarchy SW and layered hierarchy L. The partitions Lm ∈ L will be
called layers of the hierarchy.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0

1

2

3

4

0

1

2

3

A B

Figure 6. Two layered spatial binary hierarchies on an eight-
element set.

The layers of hierarchies A and B in Figure 6 are presented by dashed lines.
The number of layers in tree B is smaller than in A because B is a complete
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hierarchy. A binary hierarchy is referred to as a complete binary hierarchy if every
interior cluster has children splitting it into parts of equal cardinality so that the
total number of entities (pixels) is a power of two, |I| = 2n, and each layer Lm has
exactly 2m classes consisting of 2n−m elements each (m = 0, 1, ..., n). Obviously, for
|I| = 2n, the minimum number of layers, n + 1, is achieved only if SW is complete
(as B in Figure 6).

In the problems of data compression, the layers of a layered hierarchy can be
exploited for approximate compression of the data. More specifically, with a layer
Lm = {Lmt} taken, a data vector f = (fi), i ∈ I, can be substituted by the vector
of within class averages fmt =

∑
i∈Lmt

fi/|Lmt|, which is considered as the data at
m-th level of resolution. The smaller m, the coarser the resolution; the larger m,
the finer the resolution. Taking into account the spatial character of the data, a
different averaging operator can be employed, giving, say, smaller weights to entities
which are farther from the middle.

The layers can be used also for recalculating the averages while running along
the hierarchy bottom-to-up since, obviously,

nfmt = n1fmt1 + n2fmt2

where fmt1 and fmt2 are the averages within children of Lmt, and n, n1, n2 are
cardinalities of Lmt and its respective children. The children obviously belong in
Lm+1. It is not difficult also to exploit the hierarchy for recalculating the averages
running up-down along the hierarchy. Let us save, for every cluster Sw, in addition
to fw, the between-split difference dw = fw1 − fw2, where fw1 and fw2 are the
averages of f within respective children of Sw . The formulas

fw1 = fw +
nw2

nw
dw, fw2 = fw − nw1

nw
dw(4.1)

provide for calculating the average values in Lm+1 by the averages of Lm. This
allows to make decompression of the data in a fast way: to recalculate all the
averages starting from any upper layer, as for instance from the grand mean f0 =∑

i∈I fi/|I|. The price for that: values dw kept along the hierarchy. The cluster
cardinalities kept is a part of “hard” information about the hierarchy; they do not
depend on data. Formula (4.1) becomes especially simple for a complete binary
hierarchy:

fw1 = fw + dw/2, fw2 = fw − dw/2(4.2)

In Figure 7, the A and B hierarchies from Figure 6 are exploited for compressing
a vector f whose values are the boxed digits: F version keeps all the averages, D all
the differences. It can be seen that hierarchy A provides for a safe data compression:
only one average, f0 in F , and two differences, 1.6 and 1, are needed to decompress
the data entirely: the other differences are zero and thus can be dropped out of
consideration. This is because hierarchy A fits into data, f , better than B does.

This methodology can be put in the linear space framework as follows.
Let us consider a layered hierarchy L corresponding to a binary hierarchy SW

on I. Let us define, for any Lm ∈ L and Lmt ∈ Lm, normed binary indicator
vector χmt where χmt(i) = 1/

√
|Lmt| if i ∈ Lmt and = 0 otherwise. The χ vectors

corresponding to different classes of Lm are, obviously, mutually orthogonal. Let us
denote by Vm the subspace in |I|-dimensional space generated by the normed binary
indicator vectors of m-th layer, Lm. Let us denote by Dm the subspace generated
by the nest indicator vectors, φmt(i), of the nonsingleton classes Lmt ∈ Lm.
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Figure 7. Compression and decompression of the boxed data with
hierarchies A and B from Figure 6.

It is quite evident that the vectors χmt and φmt are pair-wise orthogonal, which
implies that the spaces Vm and Dm are orthogonal too. Moreover, the following
statement holds.

Statement 6. For any m (m = 1, ..., n), the subspace Dm−1 is the orthogonal
complement of Vm−1 in Vm so that

Vm−1 ⊕ Dm−1 = Vm.(4.3)

Consider a |I|-dimensional vector f projected into the subspace Vm:

fi =
∑

t

vmtχmt(i) + ei(4.4)

where ei is the residual value. Due to equation (4.3), this can also be written as

fi =
∑

t

vm−1,tχm−1,t(i) +
∑

t

cm−1,tφm−1,t(i) + ei(4.5)

with the same residuals.
The coefficients in (4.4) and (4.5) corresponding to a cluster Sw ∈ SW are:

vw = fw
√

nw and cw =
√

nw1nw/nw2(fw1 − fw) where nw, nw1, nw2 are the cardi-
nalities and fw, fw1, fw2 the within class averages for Sw and its children, Sw1, Sw2,
respectively. The latter expression is the scalar product of f and φw and coincides
with that in (2.9) while the former is equal to the scalar product of f and χw. These
lead to the following formulas for fast recalculating the coefficient values along the
hierarchy bottom-up:

vw = vw1

√
nw1/nw + vw2

√
nw2/nw, cw = vw1

√
nw2/nw − vw2

√
nw1/nw(4.6)

and up-down

vw1 = cw

√
nw2/nw + vw

√
nw1/nw, vw2 = −cw

√
nw1/nw + vw

√
nw2/nw(4.7)

These formulas are especially simple for complete hierarchies where all the
coefficients in (4.6) and (4.7) become equal to 1/

√
2.
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4.2. Wavelets and Multiresolution Analysis. The contents of the previ-
ous section parallels some developments in data processing based on the so-called
wavelet transformations. The concept of wavelet became quite popular immediately
after it was introduced some ten years ago; it associates the most profound results
of the theories of real-valued functions with the most urgent problems of image and
other huge data compression and decompression (see, for example, reviews by Mal-
lat (1989), Kay (1994), and Jawerth and Sweldens (1994)). The (discrete) wavelet
theory involves two basic constructions: a multiresolution approximation of the
space of all square-integrable real-valued functions L2 and a dilation/translation
family of functions χmt = 2m/2χ(2mx − t) obtained from a so-called scale func-
tion χ(x) (which integrates to unity) with m “doubling” dilations of the space and
translation of the origin by t. A basic function χ for the theory is the so-called box
function χ(x) = χ[0,1](x), that is, the indicator function of the interval [0, 1] which
is equal to 1 within the interval and 0 outside the interval.

The dilation/translation family may yield the functional approximation

f(x) = limm→∞
∑

t

amtχmt

to allow the sum
∑

t amtχmt to be considered as an approximation of any function
f ∈ L2 at resolution m for any fixed m. Here and below in this section, m and t
are arbitrary integers.

A multiresolution approximation of L2 is a sequence {Vm} of closed subspaces
of L2 satisfying the following properties:

M1 Vm ⊂ Vm+1;
M2 The union of all Vms is dense in L2, and the intersection of them consists of

0 only;
M3 f(x) ∈ Vm if and only if f(2x) ∈ Vm+1;
M4 f(x) ∈ Vm → f(x − 2−mt) ∈ Vm;
M5 V0 is isomorphic to the set of all integer sequences that are square-summable.

The meaning of the properties are as follows: Vm are approximation subspaces
which are nested, thus every finer resolution m+1 contains all the information nec-
essary to find the coarser resolution m (M1); the approximation can be as complete
or as rough as necessary (M2); every resolution level doubles the scale (M3, M4);
there is a one-to-one correspondence between the representation of f at resolution
m and the coefficients amt (M5).

Let us define the subspace Dm to be the orthogonal complement of Vm in
Vm+1. Thus, it contains all the detail lost in moving from an approximation at
the finer resolution m + 1 to the coarser resolution m, and satisfies the equality
Vm+1 = Vm ⊕Dm.

It appears, given a multiresolution approximation {Vm}, there exists a unique
scaling function χ ∈ V0 and an associated φ ∈ D0 = V1 −V0 (called a wavelet) such
that {χmt} forms an orthonormal basis for Vm and {φmt} forms an orthonormal
basis for Dm. Thus, for any f ∈ Vm, there are two orthonormal decompositions
holding:

f(x) =
∑

t

amtχmt(x)(4.8)
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and

f(x) =
∑

t

am−1,tχm−1,t(x) +
∑

t

bm−1,tφm−1,t(x)(4.9)

Decomposition (4.9) is interpreted as the reconstruction of a finer resolution
involving both the coarser resolution decomposition and the “lost detail” decompo-
sition through wavelets. The decompositions are obvious parallels to those in (4.4)
and (4.5).

The pair of the scale and wavelet functions can be taken to satisfy the following
equations:

χ(x) =
∑

t

ctχ(2x − t), φ(x) =
∑

t

(−1)tc1−tχ(2x − t)(4.10)

which implies that the wavelet function corresponding to the box function is the
so-called Haar wavelet φ(x) which is equal to 1 for 0 ≤ x < 1/2, -1 for 1/2 ≤ x < 1,
and 0 for all other x.

Graphs of the box and Haar functions are shown in Figure 8.

0 1 2 0 1 2

Figure 8. Graphs of the box and Haar functions.

The equations (4.8) to (4.10) are used to define the so-called fast wavelet trans-
form allowing calculation of every coefficient at a finer resolution through the coef-
ficients of a coarser resolution, and vice versa.

To apply these to image/signal processing, the following framework is em-
ployed. Let there be a pixellated unidimensional image at resolution m being a
2m-dimensional vector vm. This can be represented by a function f(x) ∈ Vm de-
fined as f(x) =

∑
t vm

t χmt(x) where non-zero coefficients are from vm. To calculate
a coarser data sequence vm−1 which has half as many non-zero entries as vm, the
equations (4.8) and (4.9) are used; decompression of the data also can be done
based on these equations. Moreover, the following holds.

Statement 7. The formulas (4.6) and (4.7) applied for a complete spatial
binary hierarchy are a computational implementation of the fast wavelet transform
based on the box scale and Haar wavelet functions.

Sticking to the simplest box and wavelet functions restricts flexibility of the bi-
nary hierarchy approach. However, the discreteness of binary hierarchies makes up
for that allowing compression and decompression of information without requiring
any continuity or/and smoothness conditions which are mandatory in the classical
case. Moreover, none of the “spatial” restrictions of the quantitative theories holds
here: the hierarchy may be incomplete, the cluster cardinalities different, and the
clusters may be spatially disconnected.
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5. Extension onto Rectangle Objects

5.1. Bihierarchies and Quad-trees. The constructions above can be ex-
tended onto two-dimensional pixellated images via the following concept. A hier-
archy SW defined on I = I

′ × I
′′

will be referred to as a bihierarchy if any of its
clusters, Sw, is a Cartesian rectangle, that is, Sw = A × B for some A ⊆ I

′
and

B ⊆ I
′′
, and the children of Sw are A1 ×B1, A1 ×B2, A2× B1, and A2× B2 for

some partitions, {A1, A2} and {B1, B2}, of A and B, respectively. (To allow more
freedom in handling “one-dimensional” strip clusters, {i′} ×B or A×{i′′}, we can
admit some of the subsets as being empty.) The sets, A and B, can be referred to
as the ranges of Sw in I

′
and I

′′
, respectively. A bihierarchy will be called spatial

if I
′

and I
′′

are ordered and the ranges of all clusters are intervals of these orders.
A specific case of a bihierarchy is the Cartesian product of two binary hierarchies,
SW = S′

W ′ × S′′
W ′′ , the clusters of which are all possible Cartesian products of

clusters of S′
W ′ and S′′

W ′′ .
A (divisive) bihierarchical cluster structure is an “upper” part of a bihierarchy

(defined by relaxing the condition that every singleton (i′, i′′) ∈ I′ × I′′ belongs to
the bihierarchy).

a b

Figure 9. Higher splits of a Cartesian product of two spatial bi-
nary hierarchies (a) and a quad-tree (b).

A well-known structure in image data analysis, the quad-tree (see, for exam-
ple, Burt and Adelson, 1983, Samet, 1990) fits into the concepts introduced. In
our terms, a quadtree is a bihierarchical cluster structure for a complete spatial
bihierarchy (see Figure 9, (b)).

For a cluster Sw in a bihierarchy, SW , with its ranges A and B subdivided in
A1, A2 and B1, B2, respectively, three nest indicator functions are needed according
to the general description in section 2.3. A natural way of defining the indicators
would be by considering the four children as produced via double dichotomy. In
such a double dichotomy cluster Sw = A ×B can be divided, firstly, in two strips,
say, A1×B and A2×B, and secondly, each of the strips is further split into the final
children Ak × Bj, k, j = 1, 2. The three splits can be assigned with corresponding
nest indicator functions. The bihierarchy can be regarded as a contracted version
of the binary hierarchy involving the double dichotomy described.

However, we’ll consider here another triple of nest indicator functions (also
different from those defined in section 2.3). Each of the ranges implies its nest
indicator function, φA(i′) and φB(i′′), defined with correspondingly modified for-
mulas (2.1) and (2.2). The three cluster nest indicator functions, φA, φB, and φAB ,
then, can be defined for all (i′, i′′) ∈ Sw = A ×B as (1) φA(i′, i′′) = φA(i′)χB(i′′),
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(2) φB(i′, i′′) = χA(i′)φB(i′′), and (3) φAB(i′, i′′) = φA(i′)φB(i′′) where χS(i) =
1/

√
(|S|) when i ∈ S and = 0 when i �∈ S. (When A or B is a singleton, only one of

these three functions remains valid.) These functions, obviously, are centered and
normed (with regard to all (i′, i′′) ∈ I′ × I′′) and, moreover, are mutually orthog-
onal. Thus, the nest indicator functions of all interior clusters Sw ∈ SW form an
orthonormal basis, Φ, of the space of |I′ × I′′|-dimensional centered matrices (con-
sidered as vectors). The coefficients of decomposition of a matrix vector y(i′, i′′)
defined on I′ × I′′ by the fragment of Φ related to a cluster Sw = SAB are scalar
products of y(i′, i′′) and corresponding nest indicator functions that can be shown
to have the following format:

cA =
√

nA1nA2

nA

√
nB(y1. − y2.),

cB =
√

nA

√
nB1nB2

nB
(y.1 − y.2)(5.1)

cAB =
√

nA1nA2

nA

√
nB1nB2

nB
(y11 − y12 − y21 + y22)

where ykj, yk., or y.j is the average of y(i′, i′′) on Ak × Bj, Ak × B or A × Bj,
respectively (k, j = 1, 2).

These expressions can be easily extended to the situation of three-way data
Y = (y(i′ , i′′, k)) by adding an index k where necessary.

Applications to analysis of rectangle data can be done by extending the devel-
opments above to bihierarchies.

5.2. Bihierarchical Clustering. Following the sequential extraction strat-
egy SEFIT discussed in section 3, we arrive at the problem of splitting the ranges
of a given rectangle A×B ⊆ I′ × I′′ to maximize µ2

AB = c2
A + c2

B + c2
AB where the

items are defined in (5.1):

µ2
AB =

nA1nA2

nA

nB1nB2

nB
(y11 − y12 − y21 + y22)2 +

nA1nA2

nA
nB(y1. − y2.)2 + nA

nB1nB2

nB
(y.1 − y.2)2

(5.2)

This can be done with a local search algorithm. For instance, to find an initial
partition, let us split A to maximize c2

A and, in parallel, B to maximize c2
B . This can

be done with an algorithm for splitting a cluster described in section 3.2. Then, the
partition found can be iteratively updated by exchanging rows between A1 and A2
or columns between B1 and B2 (one item in a time) until µ2

AB cannot be increased
anymore.

5.3. Up-to-Bottom Decompression. A bihierarchy can be employed for
data compression and decompression in the same fashion as it was described above
for hierarchies. We will not maintain here the linear subspace terminology since it
does not much differ from that described above. Let us just show how the data
compressed as within cluster averages can be decompressed up-down employing the
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three differences involved in (5.1) and kept as coefficients of the “wavelet” bases
consisting of those parts of Φ that correspond to layers of a bihierarchy SW :

dAB = y11 − y12 − y21 + y22, dA = y1. − y2., dB = y.1 − y.2.

Statement 8. In a bihierarchy, the children’s averages can be expressed
through the within cluster Sw average, yw, and the d-coefficients above as follows:

y11 = yw +
nA2

nA

nB2

nB
dAB +

nA2

nA
dA +

nB2

nB
dB,

y12 = yw − nA2

nA

nB1

nB
dAB +

nA2

nA
dA − nB1

nB
dB,

y21 = yw − nA1

nA

nB2

nB
dAB − nA1

nA
dA +

nB2

nB
dB,

y22 = yw +
nA1

nA

nB1

nB
dAB − nA1

nA
dA − nB1

nB
dB.

Proof: The proof follows with a little arithmetic from the basic equations
connecting yw, yk. and y.j with ykj, k, j = 1, 2, as, for instance nAnByw =
nA1nB1y11 + nA1nB2y12 + nA2nB1y21 + nA2nB2y22, and definitions of dAB, dA, dB.
�

These formulas can be converted into the language of Vm and Dm spaces as it
was done in the case of hierarchies.

6. Conclusion

The following issues discussed in the paper seem of an interest:
1. Every binary cluster hierarchy is associated with an orthonormal basis of

the centered variable space providing a SVD-like decomposition of the data
matrix by the elements of the cluster structure.

2. The set of interpretation aids based on the SVD-like decomposition adds
the decompositions of the single variable variances, variable-to-variable co-
variances/correlations, and entity-to-variable entries by the clusters to the
known decomposition of the overall variance.

3. An existing divisive clustering strategy can be explained as a “greedy” one-
by-one fitting strategy for a clustering approximation model in terms of the
SVD-like decomposition.

4. Norming of the data with norms which are different from the Euclidean one
(like Chebyshev’s norm related to the range of a variable rather than to its
density) might lead to better clustering results because of a natural ordering
of the variables emerging.

5. The binary hierarchies, applied to spatial data processing, are very closely
related to wavelets and quadtrees which correspond to the so-called complete
(spatially and numerically) hierarchies and bihierarchies, respectively.

6. Bottom-up and up-down computations along the binary hierarchies are par-
allel to the so-called fast wavelet transforms, and can be used in data com-
pression/decompression problems.

7. The discrete character of binary hierarchies allows relaxing many restrictions
of the wavelet-based techniques since the hierarchy clusters may be split into
parts which are neither of equal sizes nor spatially continuous. Still, fast
recalculation formulas hold for such general hierarchies and bihierarchies,
which should be exploited in data processing.
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8. Combining hierarchy-based clustering with the follow-up data processing
may be an adequate tool for processing sets of data that have a steady
structure (as documents of a kind or images of a body organ).
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