
http://wrap.warwick.ac.uk/

Original citation:
Amos, M., Gibbons, A. M. and Hodgson, D. (1996) Error-resistant implementation of
DNA computations. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). (Unpublished) CS-RR-298

Permanent WRAP url:
http://wrap.warwick.ac.uk/60985

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60985
mailto:publications@warwick.ac.uk

Error-resistant Implementation of DNA Computations �Martyn Amos y Alan GibbonsDepartment of Computer Science, University of Warwick, Coventry CV4 7AL, EnglandDavid HodgsonDepartment of Biological Sciences, University of Warwick, Coventry CV4 7AL, EnglandAbstractThis paper introduces a new model of computation that employs the tools ofmolecular biology whose in vitro implementation is far more error-resistant thanextant proposals. We describe an abstraction of the model which lends itself tonatural algorithmic description, particularly for problems in the complexity classNP . In addition we describe a number of linear-time algorithms within our model,particularly for NP -complete problems. We describe an in vitro realisation of themodel and conclude with a discussion of future work.1 IntroductionThe idea that living cells and molecular complexes can be viewed as potential ma-chinic components dates back to the late 1950s, when Richard Feynman delivered hisfamous paper [4] describing \sub-microscopic" computers. More recently, several pa-pers [1, 10, 16] (also see [7, 13]) have advocated the realisation of massively parallelcomputation using the techniques and chemistry of molecular biology. Adleman de-scribes how a computationally intractable problem, known as the directed HamiltonianPath Problem (HPP) might be solved using molecular methods. Recall that the HPPinvolves �nding a path through a graph that visits each vertex exactly once. Adleman'smethod employs a simple, massively parallel random search. The algorithm is not ex-ecuted on a traditional, silicon-based computer, but instead employs the \test-tube"technology of genetic engineering. By representing information as sequences of bases inDNA molecules, Adleman shows how existing DNA-manipulation techniques may beused to quickly detect and amplify desirable solutions to a given problem.A recent attempt [9] to repeat Adleman's experiment has cast doubt upon thee�cacy of extant models of DNA computation. The researchers performed Adleman'sexperiment twice; once on the original graph as a positive control, and again on agraph containing no Hamiltonian path as a negative control. The results obtained wereinconclusive. The researchers state that \At this time we have carried out every stepof Adleman's experiment, but have not gotten an unambiguous �nal result."�Partially supported by the University of Warwick Research and Teaching Innovations Sub-Committee.ymartyn@dcs.warwick.ac.uk 1

The main purpose of this paper is to describe an alternative, but importantly,feasible model of DNA computation. The problem with extant proposals is that theyassume that certain proposed biological operations are error-free. An operation centralto most models is extraction of DNA strands containing a certain sequence. There aretwo problems with extraction. The �rst, and most important problem is that removalby DNA hybridization of strands containing the sequence is not 100% e�cient1, andmay at times inadvertently remove strands that do not contain the speci�ed sequence.Adleman did not encounter problems with extraction because only a few operationswere required. However, for a large problem instance, the number of extractions re-quired may run into hundreds, or even thousands. For example, a particular DNA-basedalgorithm may rely upon repeated \sifting" of a \soup" containing many strands, someencoding legal solutions to the given problem, but most encoding illegal ones. At eachstage, we may wish to extract only strands that satisfy certain criteria (i.e., they containa certain sequence). Only strands that satisfy the criteria at one stage go through tothe next. At the end of the sifting process, we are hopefully left only with strands thatencode legal solutions, since they satisfy all criteria. However, assuming 95% e�ciencyof the extraction process, after 100 extractions the probability of us being left with asoup containing (a) a strand encoding a legal solution, and (b) no strands encoding il-legal solutions is about 0.006. Repetitive extraction will not guarantee 100% e�ciency,since it is impossible to achieve the conditions whereby only correct hybridization oc-curs. Furthermore, as the length of the DNA strands being used increases, so does theprobability of incorrect hybridization.Clearly, for any non-trivial problem, reliance on the extraction operation must beminimised, or, ideally, removed entirely. In this paper we describe a novel model ofDNA computation that obviates the need for hybridization extraction within the mainbody of the computation.The rest of the paper is organised as follows. In Section 3 we describe a DNAimplementation for which none of the problems described above exist, and which istherefore truly scalable. In Section 2 we describe an abstraction of the model whichlends itself to natural algorithmic description. In addition we describe a number ofalgorithms within our model and discuss its computational power.2 The Model of ComputationHere we describe an abstract model of computation which, as we show in Section 3, hasa clean implementation in DNA chemistry. We note the initial contribution of Lipton[10] to the construction of such models.Our model is particularly e�ective for algorithmic description. Moreover, it is suf-�ciently strong to solve any of the problems in the class NC which includes, of course,the notoriously intractable NP -complete problems. As we shall see, these problemsnaturally have polynomial-time (often linear-time) parallel solutions within the model.This usually comes with expense of exponentially large data sets.Within the model, a computation consists of a sequence of operations on �nite setsof strings. It is normally the case that a computation begins and terminates with asingle set. Within the computation, by applying legal operations of a computation,1The actual e�ciency depends on the concentration of the reactants.2

several sets may exist at the same time. We de�ne legal operations on sets shortly but�rst consider the nature of an initial set.An initial set consists of strings which are typically of length O(n) where n isthe problem size. As a subset, the initial set should include all possible solutions(each encoded by a string) to the problem to be solved. The point here is that thesuperset is supposed, in any implementation of the model, to be relatively easy togenerate as a starting point for a computation. The computation then proceeds by�ltering out strings which cannot be a solution. For example, if the problem is togenerate a permutation of the integers 1 : : :n then the initial set might include allstrings of the form p1i1p2i2 : : :pnin where each ik may be any of the integers in therange [1 : : :n] and pk encodes the information \position k". Here, as will be typical formany computations, the set has cardinality which is exponential in the problem size.For our example of �nding a permutation, we should �lter out all strings in which thesame integer appears in at least two locations pk. Any of the remaining strings is then alegal solution to the problem. We return to this problem (whose solution, incidentally,may be regarded as a very useful standard operation within our model for the solutionof other problems) after de�ning some basic legal operations on strings.2.1 Basic set operationsHere we de�ne the basic legal operations on sets within the model. Our choice is deter-mined by what we know can be e�ectively implemented by very precise and completechemical reactions within the DNA implementation. The operation set de�ned hereprovides the power we claim for the model but, of course, it might be augmented byadditional operations in the future to allow greater conciseness of computation.� remove(U; fSig). This operation removes from the set U , in parallel, any stringwhich contains at least one occurrence of any of the substrings Si.� union(fUig; U). This operation, in parallel, creates the set U which is the setunion of the sets Ui.� copy(U; fUig). In parallel, this operation produces a number of copies, Ui, of theset U .� select(U). This operation selects an element of U uniformly at random, if U isthe empty set then empty is returned.From the point of view of establishing the parallel time-complexities of algorithmswithin the model, these basic set operations will be assumed to take constant-time.This is certainly what the DNA implementation described in Section 3 provides.2.2 A First AlgorithmWe now provide our �rst algorithmic description within the model. The problem solvedis that of generating the set of all permutations of the integers 1 to n. The initial setand the �ltering out of strings which are not permutations were essentially describedearlier. Although not NP -complete, the problem does of course have exponential-sizedinput and output.The algorithmic description below introduces a format that we utilise elsewhere.The particular device of copying a set (as in copy(U; fU1; U2; : : : ; Ung)) followed by3

parallel remove operations (as in the employment of remove(Ui; fpj:i; pkig)) is a veryuseful compound operation as we shall see in several later algorithmic descriptions.Indeed, it is precisely this use of Parallel Filtering that is at the core of most algorithmswithin the model. The only non-selfevident notation employed below is :i to mean (inthis context) any integer in the range i=1, 2, : : : , n which is not equal to i.� Problem: PermutationsGenerate the set Pn of all permutations of the integers f1; 2; : : : ; ng.� Solution� Input: The input set U consists of all strings of the form p1i1p2i2 : : : pninwhere, for all j, pj uniquely encodes \position j" and each ij is in f1; 2; : : : ; ng.Thus each string consists of n integers with (possibly) many occurences ofthe same integer.� Algorithmfor j = 1 to n dobegincopy(U; fU1; U2; : : : ; Ung)for i=1, 2, : : : , n and all k > jin parallel do remove(Ui; fpj:i; pkig)union(fU1; U2; : : : ; Ung; U)endPn U� Complexity: O(n) parallel-time.After the jth iteration of the for loop, the computation ensures that in the survivingstrings the integer ij is not duplicated at positions k > j in the string. The integerij may be any in the set f1; 2; : : : ; ng (which one it is depends in which of the sets Uithe containing string survived). At the end of the computation each of the survivingstrings contains exactly one occurence of each integer in the set f1; 2; : : : ; ng and sorepresents one of the possible permutations. Given the speci�ed input, it is easy to seethat Pn will be the set of all permutations of the �rst n natural numbers. As we shallsee, production of the set Pn can be a useful subprocedure for other computations.2.3 Algorithms for a selection of NP -complete problems.We now describe a number of algorithms for graph-theoretic NP -complete problems(see [6], for example). Problems in the complexity class NP seem to have a naturalexpression and ease of solution within the model. We describe linear-time solutionsalthough, of course, there is frequently an implication of an exponential number ofprocessors available to execute any of the basic operations in unit time.2.3.1 3-vertex-colourabilityOur �rst problem concerns proper vertex colouring of a graph. In a proper colouring,colours are assigned to the vertices in such a way that no two adjacent vertices aresimilarly coloured. The problem of whether 3 colours are su�cient to achieve such acolouring for an arbitrary graph is NP -complete [6].4

� Problem: Three colouringGiven a graph G = (V;E), �nd a 3-vertex-colouring if one exists, otherwise returnthe value empty.� Solution� Input: The input set U consists of all strings of the form p1c1p2c2 : : : pncnwhere n = jV j is the number of vertices in the graph. Here, for all i, piuniquely encodes \position i" and each ci is any one of the \colours" 1, 2or 3. Each such string represents one possible assignment of colours to thevertices of the graph in which, for each i, colour ci is assigned to vertex i.� Algorithmfor j = 1 to n dobegincopy(U; fU1; U2; U3g)for i=1, 2 and 3, and all k such that (j; k) 2 Ein parallel do remove(Ui; fpj:i; pkig)union(fU1; U2; U3g; U)endselect(U)� Complexity: O(n) parallel time.After the jth iteration of the for loop, the computation ensures that in the remainingstrings vertex j (although it may be coloured 1, 2 or 3 depending on which of the setsUi it survived in) has no adjacent vertices that are similarly coloured. Thus, when thealgorithm terminates, U only encodes legal colourings if any exist. Indeed, every legalcolouring will be represented in U .2.3.2 Hamiltonian pathA Hamiltonian path between any two vertices u, v of a graph is a path that passesthrough every vertex in V � fu; vg precisely once [6].� Problem: Hamiltonian pathGiven a graph G = (V;E) with n vertices, determine whether G contains aHamiltonian path.� Solution� Input: The input set U is the set Pn of all permutations of the integers from1 to n as output from Problem: Permutations. An integer i at positionpk in such a permutation is interpreted as follows: the string represents acandidate solution to the problem in which vertex i is visited at step k.� Algorithmfor 2 � i � n � 1 and j; k such that (j; k) =2 Ein parallel do remove (U; fjpikg)select(U) 5

� Complexity: Constant parallel time given Pn.In surviving strings there is an edge of the graph for each consecutive pair of verticesin the string. Since the string is also a permutation of the vertex set it must also be aHamiltonian path. Of course, U will contain every legal solution to the problem.2.3.3 Subgraph isomorphismGiven two graphs G1 and G2 the following algorithm determines whether G2 is asubgraph of G1.� Problem: Subgraph isomorphismIs G2 = (V2; E2) a subgraph of G1 = (V1; E1)? By fv1; v2; : : : ; vsg we denote thevertex set of G1, similarly the vertex set of G2 is fu1; u2; : : : ; utg where, withoutloss of generality, we take t � s.� Solution� Input: The input set U is the set Ps of permutations output from thePermutations algorithm. For 1 � j � t an element p1i1p2i2 : : :psis ofPs is interpreted as associating vertex pj 2 fu1; u2; : : : ; utg with vertexij 2 fv1; v2; : : : ; vsg. The algorithm is designed to remove any element whichmaps vertices in V1 to vertices in V2 in a way which does not re
ect the re-quirement that if (ps; pt) 2 E1 then (is; it) 2 E2.� Algorithmfor j=1 to t dobegincopy(U; fU � 1; U2; : : : ; Utg)for all l; j < l � t such that (pj ; pl) 2 E2 and (ij; il) =2 E1in parallel do remove(Uj; fplilg)union(fU � 1; U2; : : : ; Utg; U)endselect(U)� Complexity: O(jVsj) parallel time.For any remaining strings, the �rst t pairs plil represent a one-to-one association of thevertices of G1 with the vertices of G2 indicating the subgraph of G1 which is isomorphicto G2. If select(U) returns the value empty then G2 is not a subgraph of G1.2.3.4 Maximum clique and maximum independent setA clique Ki is the complete graph on i vertices [6]. The problem of �nding a maximumindependent set is closely related to the maximum clique problem.� Problem: Maximum cliqueGiven a graph G = (V;E) determine the largest i such that Ki is a subgraph ofG. Here Ki is the complete graph on i vertices.6

� Solution� In parallel run the subgraph isomorphism algorithm for pairs of graphs(G;Ki) for 2 � i � n. The largest value of i for which a non- emptyresult is obtained solves the problem.� Complexity: O(jV j) parallel time.A maximum independent set is a subset of vertices of a graph such that notwo members of the set are adjacent [6].� Problem: Maximum independent setGiven a graph G = (V;E) determine the largest i such that there is a set of ivertices in which no pair are adjacent.� SolutionRun the maximum clique algorithm on the complement of G.� Complexity: O(jV j) parallel time.2.4 Computational power of the modelIt is clear that a lower bound on the computational power of the model is that it cansolve any problem in the complexity class NP . This follows from the fact that we wereable to encode solutions for various NP -complete problems for it and, of course, anyinstance of any problem in NP may be described as an instance of any NP -completeproblem. Our examples also demonstrate that individual NP -complete problems seemto have a natural and direct encoding for the model.It might be that the Parallel Random Access Machine (P-RAM [5]) or the TuringMachine can be directly simulated within the model which would establish that anyalgorithm can be realised by it. We have yet to pursue this line of research.3 Implementation of the model in DNA chemistryNotice that the algorithms of the previous section work perfectly well if the basic datastructure, set, is replaced by multiset. The permutation algorithm now outputs amultiset in which each permutation appears as many times as it was represented in theinput set. However, since the select operation returns a single element, the output ofthe other algorithms is exactly as before.In the proposed implementation outlined below, the algorithms are realised by mul-tisets of single-stranded DNA. In practice, to a very good approximation, there wouldbe the same number of copies of each element in any such multiset.3.1 The structure and enzyme manipulation of DNADNA (deoxyribonucleic acid) [3] encodes the genetic information of cellular organisms.It consists of polymer chains, commonly referred to as DNA strands. Each strandmay be viewed as a chain of nucleotides, or bases. An n-letter sequence of consecutivebases is known as an n-mer or an oligonucleotide of length n. The four DNA nucleotidesare adenine, guanine, cytosine and thymine, commonly abbreviated to A, G, C and Trespectively. Each strand has, according to chemical convention, a 50 and a 30 end, thus7

T C T C3’ 5’

5’ A T A G A G T T

 A T

 3’

 A AFigure 1: Structure of double-stranded DNA
5’ A T A G A G T T 3’

T C3’ 5’ A

T C T C3’ 5’ A T A

5’ A T A G A G T T 3’

(a)

(b)Figure 2: (a) Primer anneals to longer template (b) Polymerase extends primer in the50 to 30 directionany single strand has a natural orientation. The classical double helix of DNA is formedwhen two separate strands bond. Bonding occurs by the pairwise attraction of bases;A bonds with T and G bonds with C. The pairs (A,T) and (G,C) are therefore knownas complementary base pairs. In what follows we adopt the following convention: if xdenotes an oligonucleotide, then x denotes the complement of x. The bonding process,known as annealing, is fundamental to our implementation. A strand will only annealto its complement if they have opposite polarities. Therefore, one strand of the doublehelix extends from 50 to 30, and the other from 30 to 50, as, for example, in Figure 1.In order to manipulate DNA strands and thus implement our operations we usespeci�c classes of enzymes, each of which performs one or more speci�c tasks:1. The DNA polymerases perform several functions, including the repair and du-plication of DNA. Given a short primer oligonucleotide, p in the presence ofnucleoside triphosphates, the polymerase extends p if and only if p is bound toa longer template oligonucleotide, t. For example, in Figure 2(a)), p is theoligonucleotide TCA which is bound to t, ATAGAGTT . In the presence of thepolymerase, p is extended by a complementary strand of bases to the 30 end of t(Figure 2(b)).2. Restriction enzymes [17, page 33] recognize a speci�c sequence of DNA, knownas a restriction site. Any double-stranded DNA that contains the restriction sitewithin its sequence is cut by the enzyme at that point2 For example, the double-stranded DNA in Figure 3(a) is cut by restriction enzyme Sau3AI, which recog-nizes the restriction site GATC. The resulting DNA is depicted in Figure 3(b).In our implementation we use Sau3AI.2In reality, only certain enzymes cut speci�cally at the restriction site, but we take this factor intoaccount when selecting an enzyme. 8

5’ G G A T G A T C G G T A 3’

C C T A C T A G C C A T3’ 5’

G A T C G G T A 3’

C C A T 5’

Sau 3AI

5’ G G A T

C C T A C T A G3’

(a)

(b)Figure 3: (a) Double-stranded DNA being cut by Sau3AI (b) The result3. In double-stranded DNA, if one of the single strands contains a discontinuity (i.e.,one nucleotide is not bonded to its neighbour) then this may be repaired by DNAligase [2]. This allows us to create a uni�ed strand from several bound togetherby their respective complements.Another useful method of manipulating DNA is the Polymerase Chain Reaction,or PCR [11, 12]. PCR is a process that quickly ampli�es the amount of DNA in agiven solution. Each cycle of the reaction doubles the quantity of each strand, givingan exponential growth in the number of strands.3.2 Implementation of the modelHere we �rst describe how an initial multiset within the model may be constructed inDNA, and then how the set operations may be implemented.An essential di�culty in the model is that initial multisets generally have a cardinal-ity which is exponential in the problem size. It would be too costly in time, therefore,to generate these individually. What we do in practice is to construct an initial so-lution, or tube, containing a polynomial number of distinct strands. The design ofthese strands ensures that the exponentially large initial multisets of our model will begenerated automatically. The following paragraph describes this process in detail.Consider an initial set of all elements of the form p1k1; p2k2; : : : ; pnkn. This maybe constructed as follows. We generate an oligo uniquely encoding each possible sub-sequence piki where 1 � i � n and 1 � ki � k. Embedded within the sequencerepresenting pi is our chosen restriction site. There are thus nk distinct oligos of thisform. The task now is how to combine these to form the desired initial multiset. Thisis achieved as follows. For each pair (piki; pi+1ki+1) we construct an oligo which is theconcatenation of the complement of the second half of the oligo representing piki andthe complement of the �rst half of the oligo representing pi+1ki+1. We also constructoligos that are the complement of the �rst half of the oligo representing p1k1 and thelast half of the oligo representing pnkn. There is therefore a total of nk+(nk/2)+2oligos in solution. The in vitro e�ect of adding adding these new oligos is that the tubewill now contain double-strands of DNA, one strand in each will be an element of thedesired initial set. The new oligos have, through annealing, acted as \splints" to jointhe �rst oligos in the desired sequences. What we really require in solution are only thesingle strands encoding elements of the initial set. This is achieved as follows. We ligate9

the double strands and then heat the tube to break the hydrogen bonds between theencoding strands and the splint strands. The splint strands are created with magneticbeads attached to them in order to facilitate their removal at this stage.It remains in our implementation to describe how the set operations are realized.This is achieved as follows:� Removeremove is implemented as a composite operation, comprised of the following:{ mark(U; S). This operation marks all strings in the set U which contains atleast one occurrence of the substring S.{ destroy(U). This operation removes all marked strings from U .mark is implemented by adding to U many copies of a primer correspondingto S. This primer only anneals to single strands containing the subsequence S.We then add DNA polymerase to extend the primers once they have annealed,making double-stranded only the single strands containing S.We may then destroy strands containing S by adding the restriction enzymeSau3AI. Double-stranded DNA (i.e. strands marked as containing S) is cut atthe restriction sites embedded within, single strands remaining intact. We maythen remove all intact strands by separating on length using gel electrophoresis[2]. However, this is not strictly necessary, and leaving the fragmented strands insolution will not a�ect the operation of the algorithm.� UnionWe may obtain the union of two or more tubes by simply mixing them together,forming a single tube.� CopyWe obtain i \copies" of the set U by splitting U into i tubes of equal volume.We assume that, since the initial tube contains multiple copies of each candidatestrand, each tube will also contain many copies.� SelectWe can easily detect remaining DNA using PCR and then sequence strands toreveal the encoded solution to the given problem. One problem with this methodis that there are often multiple correct solutions left in the soup which mustbe sequenced using nested PCR. A possible solution is to utilise cloning. Thestrands are designed such that they can be ligated into a double stranded DNAvector which, upon DNA transfection of a suitable bacterial host, generates singlestranded DNA bacteriophage clones, each of which encodes a single solution. Eachclone is represented as a single bacteriophage plaque on a lawn of the bacterialhost. Tens of thousands of plaques can be present on a single lawn of bacteriaand a hundred such lawns can be prepared from a single ligation.The plaques are pooled and single stranded DNA isolated. These single strandsprovide the substrate for oligonucleotide primer annealing, subsequent DNA poly-merase extension of double strands and restriction enzyme digestion of any such10

double stranded DNA. This removes any illegal solutions, as described previ-ously. Legal solutions are collected by retransfecting host bacteria, and again in-dividual plaques represent one possible solution. Only intact bacteriophage DNAmolecules are capable of transfecting the host bacterium. The \legal" plaques areagain pooled and single stranded DNA isolated and subjected to further roundsof DNA extension and restriction and host transfection. The �nal collection ofplaques are individually picked, then the DNA is isolated and subjected to stan-dard DNA sequencing reactions.Although the initial tube contain multiple copies of each strand, after many removeoperations the volume of material may be depleted below an acceptable empirical level.This di�culty can be avoided by periodic ampli�cation by PCR.4 Advantages of the modelAs we have shown, algorithms within our model perform successive \�ltering" opera-tions, keeping good strands (i.e., strands encoding a legal solution to the given problem)and destroying bad strands (i.e., those that do not). So long as the operations workcorrectly, the �nal set of strands will only consist of good solutions. However, as wehave already stated, errors can take place. If either good strands are accidentally de-stroyed or bad strands are left to survive through to the �nal set then the algorithm willfail. The main advantage of our model is that it doesn't repeatedly use the notoriouslyerror-prone separation by DNA hybridization method to extract strands containing acertain subsequence. Restriction enzymes are guaranteed to cut any double- strandedDNA containing the appropriate restriction site, whereas hybridization separation isnever 100% e�cient. Instead of extracting most strands containing a certain subse-quence we simply destroy all of them with absolute certainty, without harming thosestrands that do not contain the subsequence.5 Fundamental limitations on DNA computationsAlthough our implementation is much less error-prone than those previously proposed,there still exists at least one barrier to scalable DNA computation. This concernsthe sheer weight of DNA required to solve any problems of large size in the modeldescribed in this paper. As Hartmanis points out in [8], if Adleman's experimentwere scaled up to 200 vertices the weight of DNA required would exceed that of theEarth. DNA computations, like all others, cannot escape the \exponential curse". Theapproach of generating all possible solutions to a given problem and then gradually�ltering out illegal solutions seems impractical for problem sizes beyond a moderatethreshold. It is interesting to note, however, that estimates lead us to believe thatour model will perform more rapid computations than conventional computers on arange of feasible problem sizes. One possible way around the weight problem is tolook for implementation of existing computing paradigms in DNA. Reif [14] points toone possible way forward, describing a method for simulating a CREW P-RAM invitro. However, Reif uses the error-prone hybridization separation method describedearlier, which we believe may be avoided by our methodology. Another developmentis the proposed [15] DNA and restriction enzyme implementation of Turing Machines.11

The Turing Machine is, however, sequential in nature, and so the implementation ofthis does not exploit the inherent parallelism of DNA computation. It does howeverestablish formally that any algorithm can be realised through DNA.6 ConclusionsRecent work in DNA computation has cast serious doubt on the reliability of extantmodels. The use of error-prone operations such as DNA hybridization separation canlead to inconclusive �nal results. In this paper we described a feasible model of DNAcomputation that avoids the problems of those previously proposed. An abstract modelof computation was introduced, and we showed that it is su�ciently strong to solve anyof the problems in the class NC (which includes the NP -complete problems.) We thendescribed a number of algorithms within the model for graph-theoretic NP -completeproblems. A description of the proposed implementation of our model in DNA wasthen presented before we concluded with a discussion of some of the factors limitingscalable DNA computation. Although this paper is theoretical in nature, we expect totest our model in the laboratory in the near future. Future work is expected to focuson an in vitro P-RAM simulation with error � free operations.References[1] Leonard Adleman. Molecular computation of solutions to combinatorial problems.Science, 266:1021{1024, 1994.[2] T.A. Brown. Genetics: A molecular approach. Chapman and Hall, 1993.[3] James D. Watson et al. Recombinant DNA. Scienti�c American Books, 1992.[4] Richard P. Feynman. Miniaturization, pages 282{296. Reinhold, 1961.[5] A. Gibbons and W. Rytter. E�cient Parallel Algorithms. Cambridge UniversityPress, 1988.[6] A. M. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.[7] David K. Gi�ord. On the path to computation with DNA. Science, 266:993{994,1994.[8] Juris Hartmanis. On the weight of computations. Bulletin of the European Asso-ciation For Theoretical Computer Science, 55:136{138, 1995.[9] Peter Kaplan, Guillermo Cecchi, and Albert Libchaber. Molecular computation:Adleman's experiment repeated. Technical report, NEC Research Institute, 1995.[10] Richard J. Lipton. DNA solution of hard computational problems. Science,268:542{545, 1995.[11] Kary B. Mullis. The unusual origin of the polymerase chain reaction. Scienti�cAmerican, 262:36{43, 1990.[12] Kary B. Mullis, Fran�cois Ferr�e, and Richard A. Gibbs, editors. The polymerasechain reaction. Birkhauser, 1994.[13] Robert Pool. A boom in plans for DNA computing. Science, 268:498{499, 1995.12

[14] John H. Reif. Parallel molecular computation: Models and simulations. In Pro-ceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Ar-chitectures (SPAA), Santa Barbara, June 1995.[15] Paul W. K. Rothemund. A DNA and restriction enzyme implementation of TuringMachines. Unpublished manuscript, 1995.[16] Warren D. Smith and Allan Schweitzer. DNA computers in vitro and vivo. Tech-nical report, NEC, 1995. Manuscript of 3/20/95, presented at DIMACS Workshopon DNA Based Computing, Princeton, 4/4/95.[17] J. Williams, A. Ceccarelli, and N. Spurr. Genetic Engineering. �ios Scienti�cPublishers, 1993.

13

