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Abstract

Developed from constraint satisfaction as well as operations research ideas, Guided Local
Search (GLS) and Fast Local Search are novel meta-heuristic search methods for constraint
satisfaction and optimisation. GLS sits on top of other local-search algorithms. The basic
principle of GLS is to penalise features exhibited by the candidate solution when a local-
search algorithm settles in a local optimum. Using penalties is an idea used in operations
research before. The novelty in GLS is in the way that features are selected and penalised.
FLS is a way of reducing the size of the neighbourhood. GLS and FLS together have been
applied to a non-trivial number of satisfiability and optimisation problems and achieved
remarkable result. One of their most outstanding achievements is in the well-studied
travelling salesman problem, in which they obtained results as good as, if not better than the
state-of-the-art algorithms. In this paper, we shall outline these algorithms and describe
some of their discrete optimisation applications.

1.  Introduction

Constraint satisfaction [Tsang 1993, Freuder & Mackworth 1994, Marriott & Stuckey 1998]

is a very general problem that is required in many real life problems. Due to its generality,

much research effort has been spent in this area in recent years. This has led to technological

break-through as well as commercial exploitation. Sound commercially-available systems

have been built, e.g. see ILOG Solver [Puget 1995], CHIP [Simonis 1995], ECLiPSe [Lever

el. al. 1995] and Prolog IV [Colmerauer 1990]. Constraint programming is now a multi-
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million Pounds business; see [Cras 1993] [Wallace 1996] [Zweben & Fox 1994] for some of

their applications.

Most real life constraint optimisation problems are too complex for systematic search

methods. In recent years, stochastic methods have received great attention [Freuder et. al.

1995]. This paper describes the results of a research programme which has led to successful

applications of stochastic constraint satisfaction techniques to optimisation.

2. Constraint satisfaction related to discrete optimisation

Many problems involve constraint satisfaction. A constraint satisfaction problem (CSP)

comprises three elements:

(Z, D, C)

where Z is a finite set of variables; D is a function that maps every variable x in Z to a set of

objects (of any type), which is called the domain of x. Most research in constraint satisfaction

deal with discrete and finite domains. Z is a set of constraints, which may take any form,

which restricts the values that variables may take simultaneously. The task is to assign one

value to each variable satisfying all the constraints [Tsang 1993]. Constraint satisfaction is a

general problem which has been applied to a wide variety of problems [Freuder &

Mackworth 1994, Wallace 1996].

In many constraint satisfaction problems, some solutions are "better" than others, where

"better" is defined by some domain-dependent objective functions. The task in such problems

is to find the optimal (minimum or maximum) solution. In other problems, constraints are

classified as hard and soft constraints. Hard constraints are not to be violated in any case.

Soft constraints can be violated at certain costs. In some problems, assigning different values

to different variables involve different utilities. The task is to minimise the cost of maximise

utilities of the solution. Finite constraint satisfaction problems that involve optimisation are

basically discrete optimisation problems traditionally studied in Operations Research. There
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has been cross-fertilisation between the two fields. The work described in this paper started

from constraint satisfaction and benefited from ideas in operations research.

3. Background: Hill-climbing

3.1. Basic Principles of Hill-climbing

Due to their combinatorial explosion nature, many real life constraint optimisation problems

are hard to solve using complete methods such as branch & bound [Hall 1971, Reingold et.

al. 1977]. One way to contain the combinatorial explosion problem is to sacrifice

completeness. Some of the best known methods that use this strategy are local search

methods, the basic form of which are often referred to as hill-climbing.

To perform hill-climbing, one must define the following:

(a) a representation for candidate solutions;

(b) an objective function: given any candidate solution, this function returns a numerical

value. The problem is seen as an optimisation problem according to this objective

function (which is to be minimized or maximized);

(c) a neighbourhood function that maps every candidate solution x (often called a state) to a

set of other candidate solutions (which are called neighbours of x).

Hill-climbing works as follows: starting from a candidate solution, which may be randomly

or heuristically generated, the search moves to a neighbour which is ‘better’ according to the

objective function (in a minimization problem, a better neighbour is one which is mapped to

a lower value by the objective function). The search terminates if no better neighbour can be

found, or resources run out. The whole process can be repeated from different starting points.

One of the main problems with hill-climbing is that it may settle in local optima — states that

are better than all their neighbours but not necessarily the best possible solution. To over-

come that, methods such as Simulated Annealing [Aarts & Korst 1989, Davis 1987, Otten &

van Ginneken 1977] and Tabu Search [Glover et. al. 1989, 1990, 1993] have been proposed.
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3.2. Example of hill-climbing: the travelling salesman problem

The travelling salesman problem (TSP) is a well-known optimisation problem. Given a

number of cities and the distances between them, the task is to find a tour that visits all cities.

The objective is to find the tour with the shortest distance travelled.

One way to hill-climb on a TSP with n cities is to represent a candidate solution by a

sequence of n variables where variable i represents the i-th city to be visited in the tour.  For

example, a tour through 10 cities may be:

1 4 5 8 2 7 6 9 3 10

The objective function is the total distances to be travelled in a given tour. One simple but

reasonably effective neighbourhood function is 2-Opt. Effectively what it does is to pick a

subsequence and reverse the order of the cities. For example, applying 2-Opt to the above

tour, may get:

1 4 5 9 6 7 2 8 3 10

In other words, the subsequence 8-2-7-6-9 is reversed. This tour qualifies to be accepted by

hill-climbing if the total travelling distance incurred is shorter than that in the previous tour.

When many neighbours are 'better' than the previous tour, one may choose a random one.

Alternatively, heuristics may be applied to select among the qualified neighbours. For

example the steepest descent heuristic will select the neighbour that incurs the least travelling

distance.

4. Fast Local Search (FLS)

One factor which limits the efficiency of a hill-climbing algorithm is the size of the

neighbourhood. If there are many neighbours to consider, then if the search takes many steps

to reach a local optima, and/or each evaluation of the objective function requires a nontrivial
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amount of computation, then the search could be very costly. Bentley [1992] presented the

approximate 2-Opt method to reduce the neighbourhood of 2-Opt in the TSP. We generalised

this method to a method that we call Fast Local Search (FLS). The intention is to, guided by

heuristics, ignore neighbours that are unlikely to lead to fruitful hill-climbs in order to

improve the efficiency of a search.

Here we shall use the TSP to show how FLS can be applied to the 2-Opt neighbourhood

function. An activation bit is associated to each transition position in the tour (e.g. transition

between the third and fourth positions in the tour). All activation bits are switched on at start.

Only positions with an on activation bit will be examined to see if it can make an

improvement move. If no improvement is possible, then this bit is switched off. It will only

be switched on again under two conditions:

(1) if a 2-Opt step (initiated by another position) is made which inverts a subsequence which

ends in this position. For example, if the subsequence between the fourth and the sixth

cities were reversed, then the activation bit for both transitions third-to-fourth and sixth-

to-seventh will be switched on.

(2) if this transition is a feature that is penalised (to be explained when we introduce GLS

later).

To generalise this to neighbourhood functions other than the 2-Opt, one may define features

for candidate solutions. Selecting such features in an application is not difficult because the

objective function is often made up of a number of features in the candidate solutions.

By reducing the size of the neighbourhood, one may significantly reduce the amount of

computation involved in each hill-climbing step. The hope is to enable more hill-climbing

steps in a fixed amount of time. The danger of ignoring certain neighbours is that some

improvements may be missed. The hope is that the gain out-weighs the loss. We found that

FLS combined extremely well with GLS.
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5. Guided Local Search (GLS)

Guided local search (GLS) is a meta-heuristic algorithm which aim is (like simulated

annealing and tabu search) to help hill-climbing to escape local optima. The basic idea is to

augment the objective function with penalties, which directs the search away from local

optimum. GLS was built upon our experience in a connectionist method called GENET

(which stands for "Generic Network") [Wang & Tsang 1991, Tsang & Wang 1992,

Davenport et. al. 1994] as well as penalty ideas from operations research [Koopman 1957,

Stone 1983, Luenberger 1984].

GLS is an algorithm for modifying the behaviour of hill-climbing. To apply GLS, one has to

define features for the candidate solutions. For example, in the travelling salesman problem,

a feature could be "whether the candidate tour travels immediately from city A to city B".

GLS associates costs and penalty to each feature. The costs should normally take their values

from the objective function. For example, in the travelling salesman problem, the cost of the

above feature is the distance between cities A and B. The penalties are initialized to 0 and

will only be increased when the local search reaches local optimum. This will be elaborated

below.

Given an objective function g that maps every candidate solution s to a numerical value, we

define a function h which will be used by hill-climbing (replacing g).

h(s) = g(s) + l ´ S(pi ´ Ii(s)) (1)

where s is a candidate solution, l is a parameter to the GLS algorithm, i ranges over the

features, pi is the penalty for feature i (all pi 's are initialized to 0) and Ii is an indication of

whether s exhibits feature i:

Ii(s) = 1 if s exhibits feature i; 0 otherwise. (2)

When the local search settles on a local optimum, the penalty of some of the features associ-

ated to this local optimum is increased (to be explained below). This has the effect of
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changing the objective function (which defines the “landscape” of the local search) and

driving the search towards other candidate solutions. The key to the effectiveness of GLS is

in the way that penalties are imposed. It is worth pointing out that a slight variation in the

way that penalties are managed could make all the difference to the effectiveness of a local

search.

Our intention is to penalize “bad features”, or features which “matter most”, when a local

search settles in a local optima. The feature that has high cost affects the overall cost more.

Another factor that should be considered is the current penalty value of that feature. We

define the utility of penalizing feature i, utili, under a local optimum s*, as follows:

utili(s*) = Ii (s*) ´ ci / (1 + pi) (3)
where ci is the cost and pi is the current panelty value of feature i. In other words, if a feature

is not exhibited in the local optimum, then the utility of penalizing it is 0. The higher the cost

of this feature (ci), the greater the utility of penalizing it. Besides, the more times that it has

been penalized, the lower the utility of penalizing it again.

In a local optimum, the feature(s) with the greatest util value will be penalized. This is done

by incrementing its penalty value by 1:

pi = pi + 1 (4)

By taking cost and the current penalty into consideration in selecting the feature to penalize,

we are distributing the search effort in the search space. Candidate solutions which exhibit

“good features”, i.e. features involving lower cost, will be given more effort in the search, but

penalties help to prevent all effort be directed to the best features. The idea of distributing

search effort, which plays an important role in the success of GLS, is borrowed from

Operations Research, e.g. see Koopman [1957] and Stone [1983]. Following we shall

describe the general GLS procedure:

Procedure GLS (input: an objective function g; a local search strategy LL; features
and their costs; parameter ll )
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1. Generate a starting candidate solution randomly or heuristically;

1. Initialize all the penalty values (pi) to 0;

2. Repeat the following until a termination condition (e.g. a maximum number
of iterations or time limit) has been reached:

3.1. Perform local search (using LL) according to the function h (which is g
plus the penalty values, as defined in (1) above) until a local optimum
M has been reached;

3.2. For each feature i which is exhibited in M compute utili = ci / (1 + pi)

3.3. Penalize every feature i such that utili is maximum: pi = pi + 1;

4. Return the best candidate solution found so far according to the objective
function g.

6.  Applications of GLS and FLS in discrete optimisation problems

GLS and FLS have been applied to a number of discrete optimisation problems. They have

been applied to radio link frequency assignment problem (RLFAP) [Bouju et. al. 1995] and

British Telecom's work force scheduling problem (WFS) [Baker 1993, Azarmi & Abdul-

Hameed 1995]. In the RLFAP, the task is to assign available frequencies to communication

channels satisfying constraints that prevent interference. In some RLFAPs, the goal is to

minimize the number of frequencies used. GLS+FLS reported the best results when it was

published [Voudouris & Tsang 1996].

In British Telecom's WFS, the task is to assign technicians from various bases to serve

various jobs, which may include customer requests and repairs, at various locations.

Customer requirements and working hours restrict the times that certain jobs can be served

by certain technicians. The objective is to minimize a function which take into consideration

the travelling cost, overtime cost and unserved jobs. In the WFS, GLS+FLS still holds the

best-published results in the benchmark problem known to the authors [Tsang & Voudouris

1997].

The most significant results of GLS and FLS are probably in their application to the

travelling salesman problem (TSP). The Lin-Kernighan algorithm (LK) is a specialised
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algorithm for TSP that has long been perceived as the champion of this problem [Lin &

Kernighan 1973, Martin & Otto 1996]. We tested GLS+FLS+2Opt against LK in a set of

benchmark problems from the public TSP library [Reinelt 1991]. Given the same amount of

time (we tested 5 cpu minutes and 30 cpu minutes on a DEC Alpha 3000/600),

GLS+FLS+2Opt found better results than LK in average. GLS+FLS+2Opt also out-

performed the best Simulated Annealing [Johnson], Tabu Search [Knox 1994] and Genetic

Algorithm [Freisleben & Merz 1996] methods reported on TSP so far. One must be cautious

when interpreting such empirical results as they could be affected by many factors, including

implementation issues [Hooker 1995]. But given that the TSP is an extensively studied

problem, it takes something special for an algorithm to out-perform the champions under any

reasonable measure (“find me the best results within a given amount of time” must be a

realistic requirement). It must be emphasized that LK is specialized for TSP but GLS and

FLS are much simpler general-purpose algorithms. Details of GLS+FLS applied to the TSP

can be found in [Voudouris & Tsang 1998].

GLS has also been applied to general function optimisation problems to illustrate that

artificial features can be defined for problems in which the objective function suggests no

obvious features. Results show that, as expected, GLS spreads its search effort across

solution candidates depending on their quality (as measured by the objective function).

Besides, GLS consistently found solutions in a landscape with many local sub-optimals

[Voudouris & Tsang 1995].

7. Guided Genetic Algorithm: an extension of GLS

GLS is developed as a meta-heuristic algorithm. Apart from sitting it on top of local search

algorithms, one can put it into Genetic algorithms (GAs). GAs borrow their ideas from

evolution [Holland 1975, Davis 1987, 1991, Goldberg 1989]. The idea is to maintain a set of

candidate solutions. Individuals are given different chances to produce offspring depending

on their "fitness". Applied to optimisation, fitness is measured by the objective function. GAs
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have been applied to constraint satisfaction [Eiben et. al. 1994, Ruttkay et. al. 1995] and

demonstrated promising in discrete optimisation [Warwick & Tsang 1994, 1995].

Guided Genetic Algorithm (GGA) is a hybrid of GA and GLS. It can be seen as a GA with

GLS to bring it out of local optimum: if no progress has been made after a number of

iterations (this number is a parameter to GGA), GLS modifies the fitness function (which is

the objective function) by means of penalties. GA will then use the modified fitness function

in future generations. The penalties are also used to bias crossover and mutation in GA –

genes that are involved in more penalties are made more susceptive to changes by these two

GA operators. This allows GGA to be more focussed in its search.

On the other hand, GGA can roughly be seen as a number of GLS searches from different

starting points running in parallel, exchanging material in a GA manner. The difference is

that only one set of penalties is used in GGA whereas parallel GLS would have used one

independent set of penalties per run. Besides, learning in GGA is more selective than GLS:

the updating of penalties is only based on the best chromosome found at the point of

penalization.

GGA has been found to be robust, in the sense that solutions found by GGA were as good as

GLS (not surprising, as GGA was built upon GLS), but solution costs fall into a narrower

range. GGA has been applied to the Processors Configuration Problem [Lau & Tsang 1997,

1998a], General Assignment Problem [Lau & Tsang 1998b] and the Radio Length Frequency

Assignment Problem [Lau & Tsang, to appear] with excellent results. Details of GGA and its

applications will be reported in another occasion.
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