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COUNTING COMPOSITES WITH TWO STRONG LIARS

ERIC BACH AND ANDREW SHALLUE

Abstract. The strong probable primality test is an important practical tool
for discovering prime numbers. Its effectiveness derives from the following fact:
for any odd composite number n, if a base a is chosen at random, the algorithm
is unlikely to claim that n is prime. If this does happen we call a a liar. In
1986, Erdős and Pomerance computed the normal and average number of liars,
over all n ≤ x. We continue this theme and use a variety of techniques to count
n ≤ x with exactly two strong liars, those being the n for which the strong
test is maximally effective. We evaluate this count asymptotically and give
an improved algorithm to determine it exactly. We also provide asymptotic
counts for the restricted case in which n has two prime factors, and for the n
with exactly two Euler liars.

1. Introduction

The strong probable primality test (studied by Selfridge, Miller, Rabin, and
others) is an important tool for discovering prime numbers in practice. Its success
relies on the scarcity of strong liars.

Definition 1.1. Let n be an odd composite integer. Write n− 1 as 2k · n′ where
n′ is the odd part of n− 1 and k = ord2(n). Then a is a strong liar with respect to
n if either

(1) a2
in′ ≡ −1 mod n for some 0 ≤ i < k or

(2) an
′ ≡ 1 mod n.

Throughout we will use this convention of writing n−1 as 2k ·n′ where n′ is odd.
We use log for the natural logarithm, and ϕ(n) for the count of 1 ≤ a ≤ n with
gcd(a, n) = 1. When using asymptotic notation, implied constants with subscripts
depend on that variable. We use the Euler constant γ defined by

γ =

∫ ∞

1

(
1

�x� − 1

x

)
dx ≈ 0.5772 .

If n is prime then the condition in Definition 1.1 holds for all a not divisible by
n. If n is an odd composite greater than 9, then n has between 2 and ϕ(n)/4 strong
liars (see Section 2). For n odd define

S(n) = {a mod n : an
′ ≡ 1 mod n or a2

in′ ≡ −1 mod n for some 0 ≤ i < k} .

As a shorthand we will refer to elements of S(n) as strong liars, even though if n
prime then a ∈ S(n) is truthfully giving us evidence that n is prime. It is useful to
define two other types of liars.
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Definition 1.2. Let n be an odd composite integer and (a | n) the Jacobi symbol.
Then a is a Fermat liar with respect to n if an−1 ≡ 1 mod n and a is an Euler liar
with respect to n if gcd(a, n) = 1 and a(n−1)/2 ≡ (a | n) mod n.

We similarly define

F (n) = {a mod n : an−1 ≡ 1 mod n},
E(n) = {a mod n : gcd(a, n) = 1 and a(n−1)/2 ≡ (a | n) mod n} ,

and an important fact is that S(n) ⊆ E(n) ⊆ F (n). While E(n) and F (n) are
always subgroups of the group of units modulo n, S(n) may not be.

Our primary interest will be in counting n where |S(n)| is an extremal value.
On the practical side, it is useful to know how often we might expect the strong
primality test to be as effective as possible or as ineffective as possible. In Section 2
we discuss what is known about the worst case, but our new contribution involves
counting best case composites. This occurs when 1,−1 are the only two strong liars,
and the happy consequence is that one trial of the strong primality test is sufficient
to prove compositeness. We show that the proportion of such composites less than
x goes to 0 as x goes to infinity, and yet more than a quarter of the numbers up to
109 are composites with exactly two strong liars.

For theoretical motivation, we will see that a key quantity is∏
p|n

gcd(p′, n′)

which is interesting in its own right. Finally, our work is complementary to that of
Erdős and Pomerance in [5], who provide upper and lower bounds on the arithmetic
and geometric mean of the size of all three sets S(n), E(n) and F (n). They also
provide some discussion of counts of n with extremal values of |F (n)|. We extend
one of those results to |S(n)|.

In addressing these questions, we prove results using both analytic and algorith-
mic techniques. Our main result is the following.

Theorem. The number of odd n ≤ x with exactly two strong liars is given by

(1 + o(1))
xe−γ

log log log x

where γ is Euler’s constant.

We also prove that the number of odd n ≤ x with exactly two Euler liars is half
that amount. In [5, Section 6] the authors prove that the number of n ≤ x with
|F (n)| = 1 is (1 + o(1))xe−δ/ log log log x. All of these results utilize an argument
from [3], where Erdős proves the number of n ≤ x with gcd(n, ϕ(n)) = 1 is also
(1 + o(1))xe−γ/ log log log x.

It would be interesting to know how many n with two strong liars have r prime
factors. A start on that project is the following theorem.

Theorem. The number of odd n ≤ x with n = pq, p, q both prime and gcd(p′, q′) =
1 is

= (1 + o(1))
Cx log log x

log x

where C :=
∏
p>2

(
1− 1

(p− 1)2

)
= 0.66016 . . .
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is the Hardy-Littlewood twin prime constant. If C is replaced by 3C/4, we get the
count of odd n ≤ x with two prime factors and |S(n)| = 2.

We have also proven an asymptotic formula for the number of n = pq with
p, q ≤ x and gcd(p′, q′) = 1, but will not discuss that result here.

For intuition on these two theorems, note that Mertens’ theorem [9, Theo-
rem 429] gives us

∏
p≤log log x

(
1− 1

p

)
= (1 + o(1))

e−γ

log log log x

and that the number of positive integers n ≤ x that are the product of two primes
is asymptotic to x(log log x)/ log x [11]. So the count in the first theorem is driven
by sieving by primes less than log log x, while the number of n ≤ x with two prime
factors drives the second theorem.

Finally, we have designed a new algorithm that exactly counts the number of
odd n ≤ x with two strong liars, and does so more quickly than simply applying a
known formula to each n.

Theorem. There is an algorithm that, given x, computes the number of positive
integers n ≤ x with two strong liars. This algorithm requires O(x(log x)(log log x))
bit operations and O(x logx) space.

2. Facts about strong liars

We collect in this section a number of facts related to strong liars, some of which
will be useful for results in later sections. Recall that n′ is the odd part of n − 1,
so that for example 10′ = 9 and 9′ = 1. We use k to denote ord2(n − 1), so that
n− 1 = 2k · n′.

First, note that if n is odd then ±1 are always strong liars, since 1n
′ ≡ 1 mod n

for all n and (−1)n
′ ≡ −1 mod n for odd n. In fact, if n is odd then a ∈ S(n)

implies −a ∈ S(n). For if an
′ ≡ ±1 mod n then (−a)n

′ ≡ ∓1 mod n which makes

−a a strong liar, and if a2
in′ ≡ −1 mod n for some 1 ≤ i < k, then (−a)2

in′
=

(−1)2
in′ · a2in′ ≡ −1 mod n, which again makes −a a strong liar. Altogether, we

see that if n is odd, then |S(n)| is even and at least 2. This means we can restrict
the strong test to choosing 1 < a < (n− 1)/2 with no loss.

More generally, we would like an explicit formula for the size of S(n). This was
accomplished by Monier.

Proposition 2.1 ([13]). For n odd and composite, let n′ be the odd part of n − 1
and let r be the number of distinct prime divisors of n. Let v = minp|nord2(p− 1).
Then

|S(n)| =
(
1 +

2rv − 1

2r − 1

)∏
p|n

gcd(n′, p′) .

It quickly follows that |S(n)| ≤ ϕ(n)/4 when n > 9 is odd and composite. Thus
by performing log2 (

1√
ε
) independent trials we can lower the probability that n is a

composite falsely reported as prime to below ε. Note that if n is prime, Proposition
2.1 correctly gives |S(n)| = (1 + 2k − 1) gcd(n′, n′) = n− 1.

We briefly address the worst case, i.e. composite n > 9 for which |S(n)| reaches
the maximum of ϕ(n)/4. Such n are fairly easy to characterize, if not quite so easy
to count. Consider the following theorem.
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Theorem 2.2 ([2]). Let C3 be the set of odd, composite integers n with |S(n)| >
ϕ(n)/8. Then C3 is composed of the following:

(1) (m+ 1)(2m+ 1), where m+ 1, 2m+ 1 are odd primes,
(2) (m+ 1)(3m+ 1), where m+ 1, 3m+ 1 are primes congruent to 3 mod 4,
(3) Carmichael numbers n with three prime factors where there exists integer s

with 2s exactly dividing p− 1 for all p | n,
(4) 9, 25, 49.

By Proposition 2.1, it follows that the n with |S(n)| = ϕ(n)/4 are exactly n in
case (1) with 2‖m and Carmichael numbers in case (3) whose three prime factors
are all congruent to 3 modulo 4 (this also appears in the proof to Theorem 2.2).

Unfortunately, an asymptotic formula for either case remains elusive, nor has it
been proven that there are infinitely many integers in either case. On the other
hand, infinitely many n of the form (m+ 1)(2m+ 1) would follow from the strong
prime tuples conjecture [1], and there is a precise conjecture on the number of
Carmichael numbers with three prime factors.

Conjecture 2.3 ([7]). The number of Carmichael numbers with three prime factors
is asymptotic to

C
x1/3

log3 x
,

where C is an absolute constant that can be given precisely.

We now shift to counting odd n with exactly two strong liars. The following
characterization will be useful.

Proposition 2.4. Suppose n is odd and composite. Then |S(n)| = 2 if and only if
1) n is divisible by p ≡ 3 mod 4 and 2) gcd(p′, (n/p)′) = 1 for all primes p dividing
n.

Proof. First notice that

(p− 1)(n/p− 1) = n− 1− (n/p− 1)− (p− 1) ,

so that gcd(p′, n′) = gcd(p′, (n/p)′).
Thus if gcd(p′, (n/p)′) = 1 for all p | n the product term in Monier’s formula

is 1. If n is odd and divisible by p ≡ 3 mod 4 then v = 1 and we conclude that
|S(n)| = 2.

If instead we assume |S(n)| = 2 then 1+ 2rv−1
2r−1 ≤ 2. If n is odd then 1+ 2rv−1

2r−1 ≥ 2,
with equality only if v = 1. Thus n is divisible by a prime congruent to 3 modulo
4 and

∏
1≤i≤r gcd(n

′, p′i) =
∏

1≤i≤r gcd(n
′, (n/pi)

′) = 1. �

Monier also proved a formula for Euler liars.

Proposition 2.5 ([13]). Let n be odd. Define e(n) =
∏

p|n gcd(n−1
2 , p− 1) and

δ(n) =

⎧⎨
⎩

2 if v = ord2(n− 1),
1/2 if there is p | n with ord2(p− 1) < ord2(n− 1) and ordp(n) odd,
1 if ordp(n) even for all p | n with ord2(p− 1) < ord2(n− 1).

Then |E(n)| = δ(n) · e(n).

If n is odd then the minimum number of Euler liars is 2 since ±1 are always
Euler liars.
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Proposition 2.6. Suppose n is odd and composite. Then |E(n)| = 2 if and only if

(1) n ≡ 3 mod 4 and
∏

p|n gcd(p′, n′) = 1, or

(2) n ≡ 1 mod 4 with n = pq, p, q ≡ 3 mod 4, and gcd(p′, n′) · gcd(q′, n′) = 1.

Proof. First suppose that
∏

p|n gcd(p′, n′) = 1. If n is equivalent to 3 modulo 4

then gcd(n−1
2 , p − 1) = 1 for all p | n. Additionally, δ(n) = 2 since ord2(p − 1)

cannot be any smaller. If instead n = pq with p, q ≡ 3 mod 4, then ord2(n− 1) = 2
and so δ(n) = 1/2, while

∏
p|n gcd(

n−1
2 , p− 1) = 4.

Now suppose that |E(n)| = 2. It is impossible to have e(n) = 2. For if n ≡
3 mod 4 then the product will be odd, while if n ≡ 1 mod 4, n odd means the
product will be divisible by at least one factor of 2 for each prime factor of n. Thus
the only two possibilities are 1) δ(n) = 2 and e(n) = 1; 2) δ(n) = 1/2 and e(n) = 4.

In case 1), e(n) = 1 implies n ≡ 3 mod 4 and
∏

p|n gcd(n′, p′) = 1, since otherwise

e(n) would be larger. With n ≡ 3 mod 4, it must be divisible by a prime congruent
to 3 modulo 4, and so it follows that δ(n) = 2.

In case 2), δ(n) = 1/2 implies n ≡ 1 mod 4 and divisible by a prime congruent
to 3 modulo 4. Then e(n) = 4 implies

∏
p|n gcd(n

′, p′) = 1 and n is the product

of two distinct prime factors, for otherwise the power of 2 dividing e(n) would be
greater. �

3. Preliminaries

The proofs of our asymptotic formulas will utilize a number of results from
analytic number theory. Our goal is to craft an account that is readable and self-
contained, and hence will not necessarily include best-possible results.

One tool will be counts of primes in arithmetic progressions. The classic result
is the prime number theorem for arithmetic progressions.

Lemma 3.1. If gcd(d, a) = 1, let π(x, d, a) denote the number of primes ≤ x that
are congruent to a mod d. Then

π(x, d, a) = (1 + od(1))
x

ϕ(d) logx
.

Next we have a version of the Brun-Titchmarsh inequality from Montgomery
and Vaughan [14]. Note that the constant is absolute for arbitrary d smaller than
x.

Lemma 3.2. For x > d ≥ 1, we have

π(x, d, a) <
2x

ϕ(d) log(x/d)
.

The Siegel-Walfisz theorem [17] gives an absolute lower bound, but the range of
possible d is much smaller.

Lemma 3.3. Assume d ≤ log x. Then

π(x, d, a) = (1 + o(1))
x

ϕ(d) logx
.

We will rely on a number of prime reciprocal sums. The most basic is a result
of Landau in [12, v. 1, p. 197].
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Lemma 3.4. We have∑
p≤x

1

p
= log log x+A+O((logx)−1)

where A is an absolute constant.

Bounds on π(x, d, a) lead to asymptotic formulas for prime reciprocal sums over
arithmetic progressions. It is doubtful the following lemma is new, but a good
reference is elusive.

Lemma 3.5. Let P (x, d) be the prime reciprocal sum over primes congruent to 1
modulo d. That is,

P (x, d) =
∑
p≤x

p≡1(d)

1

p

where the sum is over primes. Then

(1) for 1 < d ≤ x we have P (x, d) = (1 + od(1))(log log x)/ϕ(d),
(2) for 1 < d ≤ log x we have P (x, d) = (1 + o(1))(log log x)/ϕ(d),
(3) for 1 < d ≤

√
x we have P (x, d) < 2ϕ(d)−1(log log x+O(1)).

Proof. Since d ≥ 2, the smallest prime p = 1mod d is 3. Replacing the sum by a
Stieltjes integral and integrating by parts, we get

(3.1)
∑
p≤x

p≡1(d)

1

p
=

π(t, d, 1)

t

∣∣∣x
3−

+

∫ x

3

π(t, d, 1)dt

t2
.

The first two cases are easier. For general d ≤ x we apply Lemma 3.1 to get

π(x, d, 1)

x
+

∫ x

3

(1 + od(1))
1

ϕ(d)t log t
dt =

1 + od(1)

ϕ(d) log x
+O(1) +

1 + od(1)

ϕ(d)
log log x

which is equivalent to (1+ od(1))(log log x)/ϕ(d). If d ≤ log x we apply Lemma 3.3
to get the same result, except that the constant in the o(1) does not depend on d.

For part 3), the first term of (3.1) is

π(x, d, 1)

x
≤ 2x

xϕ(d) log(x/d)
= O

(
1

ϕ(d)

)
,

by Lemma 3.2 and the assumption that d ≤
√
x. We wish to push the lower bound

of the integral to 2d, which at worst costs us one term of the sum, and only if d+1
is prime. Using Lemma 3.2 again, the revised integral is bounded by∫ xd

2d

π(t, d, 1)dt

t2
≤

∫ xd

2d

2dt

ϕ(d)t log(t/d)
= 2

∫ x

2

du

ϕ(d)u log u
.

This is 2ϕ(d)−1(log log x + O(1)). The lost term of the sum makes no difference,
since 1/p = 1/(d+ 1) ≤ ϕ(d)−1. �

Next we give a brief introduction to sieve theory; interested readers are encour-
aged to peruse [8] or [10]. Sieve theory is a collection of results for estimating the
number of “survivors” that remain after we start with an interval (or other large
set) and remove elements that satisfy congruence conditions. Typically, the exact
formula for the number of survivors is of exponential complexity, and so one seeks
approximations that are easier to evaluate but still reasonably accurate.
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We use S(x,P) to denote the count of integers up to x coprime to the elements
of P, where P is a set of primes. When P is the set of primes up to z we instead
use S(x, z), and we replace x with X when our base set is a subset of the integers
up to x. Our first sieve is the Legendre sieve, an exercise in keeping track of the
errors from the Sieve of Eratosthenes.

Theorem 3.6 (Legendre sieve). Let P be a set of primes. Then

S(x,P) = x
∏
p∈P

(
1− 1

p

)
+ E

where the error term E satisfies |E| ≤ 2|P|.

Proof. Let P be the product of all primes in P, and let d be an arbitrary divisor.
Using inclusion-exclusion we obtain

S(x,P) =
∑
d|P

μ(d)
⌊x
d

⌋
≤ x

∑
d|P

(
μ(d)

d
+ 1

)
= x

∏
p∈P

(
1− 1

p

)
+ 2|P| .

For the lower bound we instead use μ(d)�x/d� ≥ μ(d)(x/d)− 1. �

Corollary 3.7. Let P be the set of primes up to z, where z ≤ log x and z → ∞.
Then

S(x,P) = S(x, z) = (1 + o(1))
e−γx

log z

where γ ≈ 0.5772 is Euler’s constant.

Proof. The product term is given by Mertens’ theorem [9, Theorem 429]. For the
error term note that for z large enough

2π(z) ≤ 2
2z

log z ≤ 2
2 log x
log z = x

2
(log2 e)(log z) = o

(
x

log z

)
. �

The asymptotic notation in this statement should be interpreted as follows. The
variables x, z lie in a region defined by f(x) ≤ z ≤ log x, where f(x) → ∞ as
x → ∞. In this way the implied constant in the o(1) term depends only on x.

Despite the logarithmic bound on z, Corollary 3.7 will be strong enough to give
the main term in Theorem 4.3. If we are willing to settle for an upper bound, we
can generalize the set of sieving primes.

Corollary 3.8. Let P be an arbitrary set of primes smaller than log x. Then

S(x,P) ≤ (1 + o(1)) · x · exp

⎛
⎝−

∑
p∈P

1

p

⎞
⎠ .

Proof. By convexity we have log(1− 1/p) ≤ −1/p. The error term is dealt with in
similar fashion to Corollary 3.7. �

The following application of the Legendre sieve will be used in the next section.

Corollary 3.9 ([3]). Let p → ∞, x → ∞ with p+ log p ≤ log x. Denote by Cp(x)
the number of integers n ≤ x for which the least prime factor of n is p. Then

Cp(x) = (1 + o(1))
xe−γ

p log p
.
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Proof. Note the least prime factor of n is p if and only if n/p is coprime to all primes
smaller than p. Since p + log p ≤ log x implies p ≤ log (x/p), we apply Corollary
3.7 to obtain

Cp(x) = S(x/p, p) = (1 + o(1))
e−γx

p log p
. �

The Legendre sieve can also be extended to other initial sets. For example, Let X
be the set of integers n ≤ x that are congruent to 3 modulo 4. Then by the Chinese
Remainder Theorem, the size of the subset of X divisible by d odd is x/(4d)+O(1).
The subset is empty if d is even.

Theorem 3.10. Assume that z ≤ log x with z → ∞, and let P be the set of odd
primes up to z. Then

S(X ,P) = (1 + o(1))
e−γx

2 log z
.

Proof. Let P be the product of all odd primes up to z. Applying the Legendre
sieve, we have

S(X ,P) =
∑
d|P

(
μ(d)

x

4d
+O(1)

)
=

x

4

∏
p|P

(
1− 1

p

)
+O(2π(z))

=
x

2

∏
p≤z

(
1− 1

p

)
+O(2π(z)) .

With z ≤ log x, Corollary 3.7 gives the result. �
For some results we will need a stronger sieve, i.e. one where z can grow larger

than log x. The following special case of the Brun sieve adapted from [8, Section
3.2.3] will suffice. For sifting density we use the simpler characterization found in
[8, Section 1.3.5].

Theorem 3.11 (Brun sieve). Let P be a set of primes all less than z and let d be
a divisor of

∏
p∈P p. Assume P has sifting density κ > 0, i.e. there is a constant

A > 1 such that∑
w≤p<z

log p

p− 1
≤ κ log

( z

w

)
+A when 2 ≤ w < z and p ∈ P .

Then

S(x,P) ∼ x
∏
p∈P

(
1− 1

p

)

as x → ∞, uniformly in z ≤ x1/(cκ log log x), where c is an absolute constant.

As an application we give an upper bound on the count of n ≤ x divisible by
only primes ≡ 1 mod 4. Despite being far from best-possible, it is adequate for our
needs in a later proof.

Corollary 3.12. The count of n ≤ x divisible by only primes ≡ 1 mod 4 is
o(x/ log log x).

Proof. The count desired can be obtained by sieving all primes p ≡ 3 mod 4, and
if we restrict the set of sieving primes the count only gets larger. So let P be the

set of primes p ≤ x1/(log log x)2 with p ≡ 3 mod 4. With x large enough we have

x1/(log log x)2 ≤ x1/(cκ log log x) and the Brun sieve applies, giving a count after sieving
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of (1+ o(1))x
∏

p∈P

(
1− 1

p

)
. Then Corollary 3.8 and part (2) of Lemma 3.5 yields

an upper bound of

(1 + o(1))x · exp

⎛
⎝−

∑
p∈P

1

p

⎞
⎠≤(1 + o(1))x · exp

(
− (1 + o(1))

2
log log x

)
. �

Finally, in Section 6 we will frequently use various measures for the average
number of prime factors of a number.

Lemma 3.13. Let ω(n) be the number of distinct prime factors of n and Ω(n) the
total number of prime factors of n. Let p be a prime. Then∑

n≤x

ω(n) = O(x log log x) ,

∑
n≤x

Ω(n) = O(x log log x) ,

∑
p≤x

Ω(p− 1) = O

(
x log log x

log x

)
.

Proof. For the first two see [9, Theorem 430]. The third is a special case of
[4, Lemma 2.1]. �

4. Two strong liars

Denote by A(x) the number of odd n ≤ x with
∏

p|n gcd(n′, p′) = 1. Let Ar(x)

be the count of such n whose least prime dividing n′ is r. Then A(x) = �log2 x�+∑
r Ar(x), where �log2 x� counts n for which n− 1 is a power of 2.
We will break

∑
r Ar(x) into three sums depending on whether r < (log log x)1−ε,

(log log x)1−ε ≤ r ≤ (log log x)1+ε, or r > (log log x)1+ε. Call these, respec-
tively,

∑
1,
∑

2,
∑

3. For ease of notation we use z1 for (log log x)1−ε and z2 for
(log log x)1+ε, while z will denote a generic bound on r. This strategy mirrors
closely an argument from [3] (thanks to Carl Pomerance for help with a partic-
ularly perplexing point). In fact, upper bounds on all three of

∑
1,
∑

2,
∑

3 are
identical to those used by Erdős. However, the new definition of Ar(x) required for
the current work does necessitate a different approach for the lower bound to

∑
3.

A new writeup is useful for other reasons: we have streamlined the discussion of
prime reciprocal sums and clarified the derivation of the upper bound to

∑
2.

Here and in the next section, we wish to prove that limx→∞ f(x) = a where
f(x) is the quotient of our target function and a simpler approximation. To prove
a sequence an has the limit a, it is sufficient to show that for every ε > 0,

a− ε ≤ lim inf an ≤ lim sup an ≤ a+ ε .

Lemma 4.1. Let 0 < ε < 1 and z1 = (log log x)1−ε. We have

∑
r<z1

Ar(x) = oε

(
x

log log x

)
.

Proof. Suppose that n is counted by Ar(x) with r an odd prime less than z1. Then
n ≡ 1 mod r, but must not be divisible by any p ≡ 1 mod r. So an upper bound
on Ar(x) is given by the count of n not divisible by any p ≡ 1 mod r, and the
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count is further enlarged if we restrict our sieving set P to primes p ≡ 1 mod r with

p < x1/(log log x)2 .
Now the Brun sieve applies. We use the upper bound from Corollary 3.8 and the

unconditional lower bound from Lemma 3.5 (note z1 is small enough so r ≤ log x).
For every ε, we can take x large enough so that

Ar(x) ∼ x
∏
p∈P

(
1− 1

p

)
≤ x · exp

⎛
⎝−

∑
p∈P

1

p

⎞
⎠ ≤ x · exp

(
− (1 + o(1)) log log x

2ϕ(r)

)
.

Since r ≤ (log log x)1−ε, that last term is o(x/(log log x)2). Then

∑
r<z1

Ar(x) ≤ (log log x)1−ε · o
(

x

(log log x)2

)
= oε

(
x

log log x

)
. �

Lemma 4.2. Let 0 < ε < 4/5, z1 = (log log x)1−ε, and z2 = (log log x)1+ε. Then
there exists a c > 0 such that∑

z1≤r≤z2

Ar(x) ≤ c
εx

log log log x

for x sufficiently large.

Proof. For z1 ≤ r ≤ z2 we use a different upper bound on Ar(x), namely the count
of n ≤ x with r as the smallest prime factor of n − 1. This is at most one away
from the count of n ≤ x whose least prime factor is r. By Corollary 3.9, for large
enough x this count is upper bounded by

2xe−γ

r log r
.

Then for x > x0 (independent of ε),

z2∑
r=z1

2xe−γ

r log r
≤ 2xe−γ

log((log log x)1−ε)

z2∑
r=z1

1

r
≤ 10xe−γ

log log log x

(
log

(
1 + ε

1− ε

)
+ o(1)

)

where the sum is resolved via Lemma 3.4. Note ε < 4/5 implies log( 1+ε
1−ε ) ≤ 3ε, and

that the o(1) term will be smaller than ε for x > x1(ε). �

The final term is the one that will have the largest magnitude. If n is counted
by

∑
r>z2

Ar(x) then n− 1 has no odd prime factor smaller than z2. We apply the
Legendre sieve.

Theorem 4.3. The number of odd n ≤ x with exactly two strong liars is given by

(1 + o(1))
xe−γ

log log log x
.

Proof. The main work is in counting odd n ≤ x with
∏

p|n gcd(n′, p′) = 1, and the

main term is
∑

r>z2
Ar(x). This is smaller than the count of n where n− 1 has no

prime divisor smaller than z2. With z2 < log x, Corollay 3.7 gives us

∑
r>z2

Ar(x) ≤ S(x, z2) = (1 + o(1))
xe−γ

log z2
=

(1 + o(1))xe−γ

(1 + ε) log log log x
.
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For a lower bound we exclude n ≡ 1 mod r that are divisible by a prime p ≡
1 mod r, and do this for all prime r > z2. For a given r the number of n excluded
is ∑

p≡1 mod r

x

pr
+O(1)

since the condition n ≡ 0 mod p and n ≡ 1 mod r repeats every pr integers by
the Chinese Remainder Theorem. Note that p ≡ 1 mod r and pr ≤ x implies that
r ≤

√
x. So applying Lemma 3.5 (uniform upper bound) and Lemma 3.2 gives

∑
z2<r<

√
x

∑
p≡1 mod r

x

pr
+O(1) ≤

∑
z2<r<

√
x

x

r

2

ϕ(r)
(log log x+ O(1)) +O

(
x

ϕ(r) logx

)

≤ O

⎛
⎝ ∑

z2<r<
√
x

x log log x

r2

⎞
⎠+O

⎛
⎝ ∑

z2<r<
√
x

x

r2

⎞
⎠+O

(
x log log x

log x

)
.

Taking the sum over integers rather than over primes, we have

∑
z2<r<

√
x

1

r2
<

∫ √
x

z2

1

r2
dr = − 1√

x
+

1

z2
<

1

(log log x)1+ε
.

So the amount we are subtracting is upper bounded by

O

(
x

(log log x)ε

)
+O

(
x

(log log x)1+ε

)
+O

(
x log log x

log x

)
= oε

(
x

log log log x

)
.

Let 0 < ε < 4/5 be arbitrary. By Lemma 4.1, for large enough x we have
Σ1

x/ log log log x < ε. Then by Lemma 4.2 and the work above, we see that

e−γ

1 + ε
− ε ≤ lim inf

A(x)

x/ log log log x
≤ lim sup

A(x)

x/ log log log x
≤ e−γ

1 + ε
+ ε+ cε .

Since 0 < ε < 4/5 was arbitrary, the limit exists and the proper constant is indeed
e−γ . As far as being divisible by at least one prime ≡ 3 mod 4, by Corollary 3.12
the number of n ≤ x only divisible by primes ≡ 1 mod 4 is o(x/ log log x). The
characterization in Proposition 2.4 now finishes the proof. �

The same proof technique can be extended to counting n with exactly two Euler
liars.

Theorem 4.4. The number of n ≤ x with exactly two Euler liars is given by

(1 + o(1))
xe−γ

2 log log log x
.

Proof. The characterization is given by Proposition 2.6; we start with the first case.
We use the same proof technique as that for Theorem 4.3. For all terms except the
main term, we can drop the condition that n ≡ 3 mod 4 at no loss. It does affect
the main term however: by Theorem 3.10 the count of n ≤ x with n ≡ 3 mod 4
and not divisible by any factor less than log log x is given by

(1 + o(1))
x

2eγ log log log x
.

The second case is asymptotically smaller, since the number of n ≤ x with two
prime factors is O((x log log x)/(log x)). �



3080 ERIC BACH AND ANDREW SHALLUE

5. Two strong liars and two prime factors

Our goal in this section is to prove the second of the three main theorems given in
the introduction, thus providing an asymptotic formula for the count of odd n ≤ x
with two strong liars and two prime factors. Before discussing this in detail, we
note that there are (1+ o(1))(x log log x)/(log x) numbers n ≤ x that are a product
of two primes (this result is due to Landau [11], see also Wright [18]). The constant

C =
∏
p>2

(
1− 1

(p− 1)2

)

is what we would expect from the following heuristic assumption: the two prime
factors of n are chosen independently, and fall into congruence classes in the “cor-
rect” proportion. The task, therefore, is to make this rigorous. The main idea of the
proof will be to approximate a count using a fixed number of terms of the inclusion-
exclusion formula, and then use a union bound to show that the approximate count
is good enough. Hooley [10] has called this strategy the “simple asymptotic sieve”.

In this section, p and q denote odd primes with p ≤ q, and d denotes a positive
integer. We now introduce several sets:

T = {pq ≤ x : gcd(p′, q′) = 1},

T ′ = {pq ≤ x : gcd(p′, q′) > 1},
S = {pq ≤ x : p, q odd },

Sd = {pq ≤ x : p ≡ q ≡ 1(d)},

S(B) = {n ∈ T ′ : gcd(p′, q′) > 1 and has no primes < B }.
Note that if d is odd, Sd = {pq ≤ x : d divides gcd(p′, q′)}.

Our first two tasks are to show that S(B) is not too large, then to approximately
count Sd. A good tool for the first job is the Brun-Titchmarsh theorem (Lemma
3.2), but the factor log(x/d) in its denominator can give trouble when d is close
to x. Our way around this is inspired by the chess player’s gambit: give up a
piece now to win later. More precisely, we will increase x, thereby bringing the log
factor under control at the price of a slightly worse upper bound that is still good
enough. For the second job, since we will only be concerned with a fixed number of
d’s (depending on B), we can rely on a non-uniform version of the prime number
theorem for arithmetic progressions (Lemma 3.1).

Lemma 5.1. We have

|S(B)| = O

(
x log log x√

B log x

)
,

where the implied constant is absolute.

Proof. Let b be an odd prime. We first find an upper bound for |Sb|, namely∑
p≤√

x
p≡1(b)

#{q : p ≤ q ≤ x/p and q ≡ 1(b)} ≤
∑
p≤√

x
p≡1(b)

#{q : q ≤ b1/2x/p and q ≡ 1(b)} .

We may assume that b ≤ √
x, since the sum vanishes otherwise (note that b2 ≤

pq = x). Then we are guaranteed that b1/2x/p > b since p
√
b < pb ≤ pq ≤ x. This
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allows us to estimate the summand using Lemma 3.2, and thereby get

|Sb| ≤
∑
p≤

√
x

p≡1(b)

2b1/2x

pϕ(b) log(x/(pb1/2))
.

We know that p ≤
√
x and

√
b ≤ x1/4, making x/(p

√
b) ≥ x1/4. Therefore,

1

log(x/(p
√
b))

≤ 4

log x

and thus

|Sb| ≤
8
√
bx

ϕ(b) log x

∑
p≤

√
x

p≡1(b)

1

p
.

By Lemma 3.5, the inner sum has an upper bound of 2ϕ(b)−1(log log x + O(1)).
Summing over all primes b ≥ B, we get the result. �

Lemma 5.2. Let d ≥ 1. Then

|Sd| = (1 + od(1))
x log log x

ϕ(d)2 log x
.

Proof. We have

|Sd| =
∑
p≤

√
x

p≡1(d)

#{q : p ≤ q ≤ x/p and q ≡ 1(d)} .

If we drop the lower bound on q, we incur an error that is no more than

∑
p≤

√
x

#{q : q ≤ p} ≤
∑
p≤

√
x

#{q : q ≤
√
x} = O

(
x

log2 x

)
.

Accordingly, we can work with the simpler sum

(5.1)
∑
p≤

√
x

p≡1(d)

#{q : q ≤ x/p and q ≡ 1(d)} .

Fix ε with 0 < ε < 1/2. We will split the sum, using the break point p = xε. The
contribution to (5.1) from the p ≤ xε is

(5.2)
∑
p≤xε

p≡1(d)

#{q : q ≤ x/p and q ≡ 1(d)} =
∑
p≤xε

p≡1(d)

(1 + od(1))
x

ϕ(d)p log(x/p)

by Lemma 3.1. The assumption p ≤ xε implies x/p ≥ x1−ε. Thus (1 − ε) log x ≤
log(x/p) ≤ log x, which gives

(1 + od(1))x

ϕ(d) log x

∑
p≤xε

p≡1(d)

1

p
≤ (5.2) ≤ (1 + od(1))x

(1− ε)ϕ(d) log x

∑
p≤xε

p≡1(d)

1

p
.

For the prime reciprocal sum we apply Lemma 3.5, which yields∑
p≤xε

p≡1(d)

1

p
= (1 + od(1))

log log xε

ϕ(d)
= (1 + od(1))

log log x+ log ε

ϕ(d)
.
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This gives

(1 + od(1))
x(log log x+ log ε)

ϕ(d)2 log x
≤ (5.2) ≤ (1 + od(1))

x(log log x+ log ε)

(1− ε)ϕ(d)2 log x

and since ε was arbitrary and x → ∞, we conclude

(5.2) = (1 + od(1))
x log log x

ϕ(d)2 log x
.

To finish off the proof, we will show that the sum over primes larger than xε

does not grow this quickly. This sum is

(5.3)
∑

xε<p≤
√
x

p≡1(d)

#{q : q ≤ x/p and q ≡ 1(d)}

and it has an upper bound of

∑
xε<p≤

√
x

#{q : q ≤ x/p} =
∑

xε<p≤
√
x

(1 + o(1))
x

p log(x/p)
≤ (1 + o(1))x

(1/2) log x

∑
xε<p≤

√
x

1

p
.

By Lemma 3.4 the inner sum is log(1/2)− log ε+O((logx)−1). So

(5.3) = Oε

(
x

log x

)

and we are done. �

We are now ready for the main event. Our strategy will be to first estimate how
many odd pq’s satisfy only condition (2) in the characterization of strong liars in
Proposition 2.4 (this is of interest by itself). Then, we make a similar estimate
under the additional requirement that at least one of p and q be 3 modulo 4.

In the next two theorems,

C :=
∏
p>2

(
1− 1

(p− 1)2

)
= 0.66016... .

Theorem 5.3. The number of odd n = pq ≤ x with gcd(p′, q′) = 1 is

(5.4) (1 + o(1))
Cx log log x

log x
.

Proof. We have ⋃
2<r<B
r prime

Sr ⊆ T ′ ⊆ S(B) ∪
⋃

2<r<B
r prime

Sr.

The set of odd primes up to B is finite, so just as with the Legendre sieve we can
use inclusion-exclusion and get∑
r

|Sr|−
∑
r,s

|Srs|+
∑
r,s,t

|Srst|+· · · ≤ |T ′| ≤ |S(B)|+
∑
r

|Sr|−
∑
r,s

|Srs|+
∑
r,s,t

|Srst|+· · ·

where r, s, t, . . . denote distinct odd primes < B. Letting P be the product of the
odd primes less than B and d a divisor of P , this can be rewritten as

(5.5)
∑
d|P
d>1

−μ(d)|Sd| ≤ |T ′| ≤ |S(B)|+
∑
d|P
d>1

−μ(d)|Sd|.
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Since S is the disjoint union of T and T ′, and S = S1, we have

|T | = |S| − |T ′| = |S1| − |T ′|.
Combining this with (5.5) we get

−|S(B)|+
∑
d|P

μ(d)|Sd| ≤ |T | ≤
∑
d|P

μ(d)|Sd|.

Since B is fixed, we can use Lemma 5.2 to express the sum over d as

(CB + oB(1))
x log log x

log x
.

where

CB =
∏

3≤p<B

(
1− 1

(p− 1)2

)
=

∑
d|P

μ(d)

ϕ(d)2
.

Combining these results with Lemma 5.1, we then get

|T |
x log log x/ log x

= CB + oB(1) +O(B−1/2).

For any δ > 0, we can choose a B for which both CB − C and the B−1/2 term are
bounded by δ/4 in absolute value. With any such choice of B, the oB(1) term will
be no more than δ/2 for sufficiently large x, so

C − δ ≤ lim inf
|T |

x log log x/ log x
≤ lim sup

|T |
x log log x/ log x

≤ C + δ.

Since δ is arbitrary, we conclude that the limit as x → ∞ exists and equals C. �

Theorem 5.4. The number of odd n = pq ≤ x with |S(n)| = 2 is

(5.6) (1 + o(1))
3C · x log log x

4 log x
.

Proof. By Proposition 2.4 we need to count odd n ≤ x with n = pq, gcd(p′, q′) = 1,
and at least one of p, q congruent to 3 modulo 4. Since we have the count of
n ≤ x with two prime factors and gcd(p′, q′) = 1, it suffices to subtract those where
p ≡ q ≡ 1 mod 4.

This is very similar to the proof of Theorem 5.3, so we only note the differences.
First, the “universe” S is no longer S1 but S4. Second, we define T4,1 and T ′

4,1

similarly to T and T ′, but with the additional requirement that p≡ q≡ 1 mod 4.
We still use P for the product of all odd primes up to B. Then, as before, a
combinatorial argument gives

−|S(B)|+
∑
d|P

μ(d)|S4d| ≤ |T4,1| ≤
∑
d|P

μ(d)|S4d| ,

where we reuse S(B) since keeping primes that are 3 mod 4 creates a larger set and
hence a smaller sum. By Lemma 5.2 we have

∑
d|P

μ(d)|S4d| =

⎛
⎝1

4

∏
3≤p<B

(
1− 1

(p− 1)2

)
+ oB(1)

⎞
⎠ x log log x

log x
.

The rest of the proof proceeds just as for Theorem 5.3. �
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In the table below, count 1 is the number of n ≤ x with n = pq and gcd(p′, q′) =
1. Count 2 adds the condition that p ≡ q ≡ 1 mod 4. As can be seen from the
first two columns, Theorem 5.3 is reasonably accurate, despite the slowly growing
log log x factor. In the last two columns the asymptotic expression can be seen to
be a bit of an overestimate. We believe this reflects “Chebyshev’s bias”, whereby
the residue class 1 mod 4 gets, among small primes, noticeably less than its fair
share.

x count 1 prediction count 2 prediction
103 166 184.70 28 46.17

5× 103 795 830.16 149 207.54
104 1544 1591.44 298 397.86

5× 104 7246 7264.91 1473 1816.23
105 14027 14011.09 2872 3502.77

5× 105 65442 64754.58 13681 16188.65
106 127207 125471.12 26792 31367.78

5× 106 595382 585478.01 126898 146369.50
107 1159409 1138603.46 248242 284650.87

5× 107 5459378 5353378.05 1178844 1338344.51
108 10653388 10441331.16 2307619 2610332.79

5× 108 50424160 49392155.46 10991685 12348038.86
109 98596968 96563937.17 21542038 24140984.29

6. Tabulation algorithm

In this section we design and analyze an algorithm that tabulates all n ≤ x with
exactly two strong liars, thus giving an exact count. This appears to be unstudied,
so we start with naive ideas and improve upon them.

First, we address the costs of basic operations. We can add two numbers with k
bits using O(k) bit operations, and we use M(k) to denote the cost of multiplying
two k bit numbers. A classic fast multiplication algorithm is that of Schönhage
and Strassen with M(k) = O(k log k log log k), but it has been recently superseded
by [6]. A good discussion along with a table comparing different multiplication
algorithms may be found in [16, Section 8.3]. Finally, for integers of k bits the best
gcd algorithm takes O(M(k) log k) bit operations [15].

Turning to tabulation algorithms, a truly naive method would be to consider
each n in turn by factoring and then applying Monier’s formula. Since factoring
is expensive for an individual n but has a cheap amortized cost when factoring a
range of n, we instead generate all factorizations first before applying Proposition
2.1.

To factor all positive integers n ≤ x, we will generate an array where the largest
prime factor of n is stored at index n. To do so, initialize the array with all zeros.
Starting with p = 2, let p be the next largest index whose value is 0. Then take
all indices that are a multiple of p and overwrite the value with p. Do this for all
p ≤ x. Each operation is an addition, and the total number of operations is∑

p≤x

x

p
= O(x log log x) ,

making the total complexity O(x log x) space and O(x(logx)(log log x)) bit opera-
tions. One can retrieve the factorization of n at an amortized cost ofM(log n) log log n
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by dividing n by p and then recursively looking up the largest prime factor of n/p
in the table. The average of log log n for the number of prime factors of n comes
from Lemma 3.13.

This then gives Algorithm 0: factor all integers n ≤ x, then apply Monier’s
formula to each n. Generating the array with the largest prime factor of each n ≤ x
costs O(x(logx)(log log x)) bit operations and uses O(x logx) space. We then have
a gcd check for each distinct prime divisor of n, which by Lemma 3.13 is a total
of O(x log log x) gcd’s at a total cost of O(xM(logx)(log log x)2) bit operations.
The total cost of the factorization retrievals is O(xM(log x)(log log x)) by the same
theorem, and doesn’t affect the asymptotic running time.

Our first improvement will be to reduce the number of gcd checks. For all
p | n, form 	 =

∏
p|n p′. Then checking Monier’s formula only requires a single gcd

application. This improvement is implemented in Algorithm 1.

Algorithm 1: Naive tabulation

1 Factor all n ≤ x using a sieve ;

/* For each n build p′ product and gcd with n′ */

2 for n ≤ x do
3 	 = 1 ;

4 for p | n do
5 	 ← 	 · p′ ;
6 if gcd(	, n′) �= 1 then
7 set 0 ;

8 if n odd and all p ≡ 1 mod 4 then
9 set 0 ;

10 set 1 ;

Note that the tabulation includes even n with
∏

p|n gcd(p′, n′) = 1, but it is

trivial to isolate the odd survivors.

Theorem 6.1. Algorithm 1 stores at most O(x log log x) integers ≤ x and runs
using O(x ·M(log x) log log x) bit operations.

Proof. As discussed, the factoring step costs O(x(log x)(log log x)) time and
O(x logx) space to generate the array and O(xM(log x)(log log x)) bit operations
to generate all the factorizations over the course of the algorithm.

Algorithm 1 then does a multiplication for every distinct prime divisor of every
n ≤ x, a total of O(x log log x) multiplications by Lemma 3.13. The algorithm also
does x gcd computations at a cost of O(xM(log x)(log log x)) bit operations, and
the multiplications have the same total cost. �

In developing a better tabulation algorithm we seek to use more of a sieve strat-
egy. Note that for a given prime p with p− 1 divisible by an odd prime r, we can
cross off any n = p · d where d ≡ 1 mod r. For in this case gcd(p′, (n/p)′) �= 1
and thus |S(n)| > 2 by Proposition 2.4. Such n are exactly those in the arithmetic
progression

{n = p+ kpr : k ∈ N}.
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In Algorithm 2, checking all prime factors for one that is congruent to 3 mod-
ulo 4 would be too expensive. Thus we add another sieving step, and introduce
three states for each integer. Integers start out labeled “2”. If they fail to have∏

p|n gcd(p′, n′) = 1 they get labeled “0”. Finally, those divisible by a prime con-

gruent to 3 modulo 4 are labeled “1” and counted.

Algorithm 2: Sieving tabulation

1 Generate an array with the largest prime factor of n for all n ≤ x ;

2 Initialize new array with 2 in each odd entry, 0 in each even ;

3 for primes p ≤ x do
4 generate factorization of p− 1 ;

5 for odd prime r | (p− 1) do
6 for n ≡ p mod pr do
7 set 0 ;

8 for primes p ≤ x with p ≡ 3 mod 4 do
9 for multiples of p with value 2 do

10 set 1 ;

11 count n with value 1 ;

Theorem 6.2. Algorithm 2 stores at most O(x) integers ≤ x and runs using
O(x(logx)(log log x)) bit operations.

Proof. Generating the array of largest prime factors takes O(x(log x)(log log x)) bit
operations and O(x logx) space, as does the final sieving at line (8). The main
difficulty of the algorithm is the loop at line (3).

With the array of largest prime factors in hand, identifying primes is easy. Then
the main loop has two components. The first is generating the factorization of p−1
for all primes up to x. Since

∑
p≤x Ω(p− 1) = O(x log log x/ log x) by Lemma 3.13,

the total cost in bit operations is

O

(
xM(log x) log log x

log x

)
.

Even using a naive multiplication algorithm with M(log x) = O(log x)2, this is no
worse than O(x(logx)(log log x)).

The second component of the main loop involves checking each element of the
sequence n = p+kpr, where p runs over primes up to x and r runs over the distinct
prime divisors of p − 1. Generating such a sequence requires x/(pr) additions,
making the total number of additions

∑
p≤x

∑
r|p−1

x

pr
.

To evaluate this sum, we reverse the order of summation. This same sum appeared
in the proof of Theorem 4.3; note that once again r | p − 1 and pr ≤ x implies
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r ≤ √
x. We have

x
∑
r≤

√
x

1

r

∑
p≤x

p≡1 mod r

1

p
= O

⎛
⎝x

∑
r≤

√
x

1

r

log log x

ϕ(r)

⎞
⎠ = O

⎛
⎝x log log x

∑
r≤

√
x

1

r2

⎞
⎠ .

The sum over primes has a constant upper bound. Thus there are O(x log log x)
additions at a cost of O(x(logx)(log log x)) bit operations. �

Algorithm 2 was implemented, giving the following values of C(x), where C(x)
is the count of odd composite n ≤ x with exactly two strong liars.

x C(x) C(x) · log log log x
x

103 242 0.1595
104 2552 0.2036
105 25954 0.2319
106 261279 0.2522
107 2616236 0.2675
108 26140022 0.2795
109 260899380 0.2893

With e−γ ≈ 0.5615, we see that convergence to the asymptotic formula is quite
slow. As Daniel Shanks once wrote, log log log x does go to infinity, but “with great
dignity”.

7. Conclusions and future work

It is interesting that counts of n ≤ x with gcd(n, ϕ(n)) = 1, with |F (n)| = 1, and
with |S(n)| = 2 all have the same asymptotic formula, and it suggests that there
might be some general class of arithmetic sets whose size can be approximated by
the set of n with no prime factor smaller than log log x. The set of n satisfying
the best case for the Lucas pseudoprime test would be well worth studying next.
It is worth remarking that the three sets {n ≤ x : gcd(n, ϕ(n)) = 1}, {n ≤ x :
|F (n)| = 1}, {n ≤ x : |S(n)| = 2} are not the same. For 9 has two strong liars,
but gcd(9, ϕ(9)) �= 1 and 9 has two Fermat liars rather than one. Also, 15 satisfies
gcd(15, ϕ(15)) = 1, but 15 has more than one Fermat liar.

The authors of [5] give a number of other results regarding the size of |F (n)|,
and it would be worth extending those results to |S(n)| and |E(n)|. Our Theorem
5.4 is in a different vein, and it would be nice to extend it to counts of n with two
strong liars and k prime factors for k > 2.

The slow rate of convergence of exact counts of n with two strong liars to the
asymptotic formula cries out for a more precise formula with a faster rate of conver-
gence. It seems that a large part of the error comes from the fact that the Mertens
bound is not very accurate when one only sieves by small primes. As for why the
count of n with two strong liars is approximated by sieving up to log log x, consider
the following heuristic argument. A typical n will have log log n prime factors p.
For a given prime r of size roughly log logn, the expected number of p with r | p−1
is one. Since we need n− 1 to not be divisible by r, we exclude all the n ≤ x with
n− 1 divisible by a prime less than log log x.
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Though asymptotically the number of n with |S(n)| = 2 is density 0, for quite
some time the proportion is more than a quarter of all integers. It would be worth
knowing at what point the proportion is less than an arbitrary constant 0 < c < 1,
as well as the proportion of n with |S(n)| = 	 for values of 	 greater than two.

Our algorithm counts odd n ≤ x with two strong liars by tabulating them. If
Theorem 4.3 could be improved by finding an explicit error bound, one could find
an approximate count much faster through the use of that formula.
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[4] P. Erdős and C. Pomerance, On the normal number of prime factors of φ(n), Rocky Moun-

tain J. Math. 15 (1985), no. 2, 343–352, DOI 10.1216/RMJ-1985-15-2-343. Number theory
(Winnipeg, Man., 1983). MR823246 (87e:11112)
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[15] D. Stehlé and P. Zimmermann, A binary recursive gcd algorithm, Algorithmic number the-
ory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 411–425, DOI
10.1007/978-3-540-24847-7 31. MR2138011 (2006e:11194)

[16] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 2nd ed., Cambridge University
Press, Cambridge, 2003. MR2001757 (2004g:68202)

[17] A. Walfisz, Zur additiven Zahlentheorie. II (German), Math. Z. 40 (1936), no. 1, 592–607,
DOI 10.1007/BF01218882. MR1545584

http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=0148632
http://www.ams.org/mathscinet-getitem?mr=1189518
http://www.ams.org/mathscinet-getitem?mr=1189518
http://www.ams.org/mathscinet-getitem?mr=0029406
http://www.ams.org/mathscinet-getitem?mr=0029406
http://www.ams.org/mathscinet-getitem?mr=823246
http://www.ams.org/mathscinet-getitem?mr=823246
http://www.ams.org/mathscinet-getitem?mr=815848
http://www.ams.org/mathscinet-getitem?mr=815848
http://www.ams.org/mathscinet-getitem?mr=2538847
http://www.ams.org/mathscinet-getitem?mr=2538847
http://www.ams.org/mathscinet-getitem?mr=1885636
http://www.ams.org/mathscinet-getitem?mr=1885636
http://www.ams.org/mathscinet-getitem?mr=1836967
http://www.ams.org/mathscinet-getitem?mr=1836967
http://www.ams.org/mathscinet-getitem?mr=568909
http://www.ams.org/mathscinet-getitem?mr=568909
http://www.ams.org/mathscinet-getitem?mr=0404173
http://www.ams.org/mathscinet-getitem?mr=0404173
http://www.ams.org/mathscinet-getitem?mr=1504359
http://www.ams.org/mathscinet-getitem?mr=0068565
http://www.ams.org/mathscinet-getitem?mr=0068565
http://www.ams.org/mathscinet-getitem?mr=582244
http://www.ams.org/mathscinet-getitem?mr=582244
http://www.ams.org/mathscinet-getitem?mr=0374060
http://www.ams.org/mathscinet-getitem?mr=0374060
http://www.ams.org/mathscinet-getitem?mr=2138011
http://www.ams.org/mathscinet-getitem?mr=2138011
http://www.ams.org/mathscinet-getitem?mr=2001757
http://www.ams.org/mathscinet-getitem?mr=2001757
http://www.ams.org/mathscinet-getitem?mr=1545584


COUNTING COMPOSITES WITH TWO STRONG LIARS 3089

[18] E. M. Wright, A simple proof of a theorem of Landau, Proc. Edinburgh Math. Soc. (2) 9
(1954), 87–90. MR0065579 (16,448e)

University of Wisconsin–Madison, 1210 W. Dayton St., Madison, Wisconsin 53706

E-mail address: bach@cs.wisc.edu

Illinois Wesleyan University, 1312 Park St., Bloomington, Illinois 61701

E-mail address: ashallue@iwu.edu

http://www.ams.org/mathscinet-getitem?mr=0065579
http://www.ams.org/mathscinet-getitem?mr=0065579

	1. Introduction
	2. Facts about strong liars
	3. Preliminaries
	4. Two strong liars
	5. Two strong liars and two prime factors
	6. Tabulation algorithm
	7. Conclusions and future work
	Acknowledgment
	References

