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A COMPUTABLE ABSOLUTELY NORMAL

LIOUVILLE NUMBER

VERÓNICA BECHER, PABLO ARIEL HEIBER, AND THEODORE A. SLAMAN

Abstract. We give an algorithm that computes an absolutely normal Liou-
ville number.

1. The main result

The set of Liouville numbers is

{x ∈ R \Q : ∀k ∈ N, ∃q ∈ N, q > 1 and ||qx|| < q−k}

where ||x|| = min{|x−m| : m ∈ Z} is the distance of a real number x to the nearest
integer and other notation is as usual. Liouville’s constant,

∑
k≥1 10

−k!, is the
standard example of a Liouville number. Though uncountable, the set of Liouville
numbers is small, in fact, it is null, both in Lebesgue measure and in Hausdorff
dimension (see [6]).

We say that a base is an integer s greater than or equal to 2. A real number
x is normal to base s if the sequence (sjx : j ≥ 0) is uniformly distributed in the
unit interval modulo one. By Weyl’s Criterion [11], x is normal to base s if and
only if certain harmonic sums associated with (sjx : j ≥ 0) grow slowly. Absolute
normality is normality to every base.

Bugeaud [6] established the existence of absolutely normal Liouville numbers by
means of an almost-all argument for an appropriate measure due to Bluhm [3, 4].
The support of this measure is a perfect set, which we call Bluhm’s fractal, all
of whose irrational elements are Liouville numbers. The Fourier transform of this
measure decays quickly enough to ensure that those harmonic sums grow slowly on
a set of measure one. Thus, Bugeaud’s proof exhibits a nonempty set but does not
provide a construction of an absolutely normal Liouville number.

A real number x is computable if there is a base s and an algorithm to output
the digits for the base-s expansion of x, one after the other. In this note we show
the following:

Theorem. There is a computable absolutely normal Liouville number.
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We regard this result as a step into the ancient problem posed by Émile Borel [5]
on exhibiting a natural instance of an absolutely normal number. Borel’s under-
standing of “natural” may have been towards numbers that can be described ge-
ometrically (as π), analytically (as e), or algebraically (as

√
2). To our mind,

algorithmic descriptions are also explicit, immediate and worthy of investigation.
We give an algorithm that determines a real number in the unit interval by

recursively constructing a nested sequence of dyadic intervals. At each step the
algorithm obtains a new subinterval containing sufficiently many points that satisfy,
simultaneously, a better approximation to the Liouville condition, and a better
approximation to absolute normality. The number obtained by the algorithm is
the unique point in the intersection of these intervals.

The discrepancy of a finite sequence of real numbers is a quantitative indicator
of whether its elements are uniformly distributed modulo one in the unit interval.
We translate between bounds on harmonic sums and bounds on discrepancy using
a discrete version of LeVeque’s Inequality (Theorem 2.4 in [9]), proved in Lemma 7.

Like Bugeaud, we use the ingredients of Bluhm’s measure. However, we combine
those ingredients differently so as to work within subintervals of the unit interval
and make explicit the Liouville exponent and the level in Bluhm’s fractal. By
adapting an argument of Davenport, Erdős and LeVeque [8], we prove that the set
of points in a given interval having small harmonic sums has large measure. See
Lemma 10.

Our algorithm relies on the fact that the Fourier transform of Bluhm’s measure
decays not only quickly but also uniformly quickly over all intervals. For any given
positive ε there is an extension length L with the following property. Consider
any interval the form [p2−a, (p + 1)2−a), for some nonnegative integer p. So, the
endpoints have a finite expansion in base 2, requiring at most a digits. Let b be
the counterpart number of digits in the expansion of the left endpoint in base s
(precisely, b = �a/ log2 s�). Then, there is a level in Bluhm’s fractal such that for
the corresponding measure and for every � as large as L, the set of reals x in this
interval whose harmonic sum associated with (sjx : b ≤ j < b + �) is below ε, has
large measure. We prove this in Lemma 11.

In addition, we exploit another feature of discrepancy: as a function of finite
sequences (sjx : a ≤ j < b), it is continuous in two ways. One is with respect
to the real variable x. That is, for any real numbers such that |x − y| is small,
if (sjx : a ≤ j < b) has small discrepancy then (sjy : a ≤ j < b) also has small
discrepancy. Lemma 12 formalizes this idea giving quantitative estimates. The
second way is with respect to the length of the sequence, given by the variables a
and b. That is, for any c such that c − a is nonnegative and c/(b − a) is small,
if (sjx : a ≤ j < b) has small discrepancy, then both (sjx : a ≤ j < b + c) and
(sjx : a− c ≤ j < b) also have small discrepancy. Lemma 13 formalizes this feature
in a way that is conveniently applicable.

The algorithm constructs a real number x as the point in the intersection of a
nested sequence of dyadic intervals. At each step, the algorithm determines one such
dyadic interval, ensuring that the set of real numbers in it has small discrepancy and
meets a designated Liouville exponent. However, at each step we do not consider
the discrepancy of the entire sequence but the discrepancy of the current extension.
Using the mentioned continuity of discrepancy, we conclude that the discrepancy
of the limit point x output by the algorithm converges to zero.
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We do not provide bounds on the time complexity for our algorithm. With-
out the Liouville condition, it is possible to compute absolutely normal numbers
efficiently. Specifically, there are algorithms that output the first n digits of an
absolutely normal number in time polynomial in n. The most efficient of these
algorithms requires time just above quadratic [1], where speed is achieved by con-
trolling, at each step, the size of the subinterval and how much progress is done
towards absolute normality. The algorithm we present here is not consistent with
such a strategy because it does not control the size of the subinterval at each step.
So, the estimations of harmonic sums, which are inherently costly, are associated
with necessarily long sequences. Constructing Liouville numbers that are normal
to a given base, but not necessarily absolutely normal, as done in [10], admits a
much simpler approach and can be done in linear time.

2. Bluhm’s measure for computing Liouville numbers

We write e(z) to denote ez. We write the Fourier transform of a real function
f as

f̂(x) =

∫
R

f(t)e(−2πixt) dt.

Recall that the Fourier transform of a positive bounded measure ν is defined, for
x ∈ R, by

ν̂(x) =

∫
R

e(−2πixt) dν(t).

We write log without subscript for the logarithm in base e, and add a subscript for
other bases.

2.1. Continuous replacements for step functions. We make use of measures
which are supported by subintervals I of [0, 1] and have Fourier transforms which
decay quickly. Bluhm [3] gives examples of such and we employ them here.

Definition 1. Let R be a real number less than 1/2. Define the function FR on
[−1/2, 1/2] by

FR(x) =
15

16
R−5(R2 − x2)2 when |x| ≤ R, and FR(x) = 0 otherwise.

Let the Fourier series for FR(x) be denoted by∑
n∈Z

c(R)
n e(2πinx).

Notice that the definition is such that∫
R

FR(x)dx = 1.

As Bluhm points out, the Fourier coefficients

c(R)
n =

∫ 1/2

−1/2

FR(t) e(−2πint) dt

satisfy

c
(R)
0 = 1, |c(R)

n | ≤ 1, and |c(R)
n | ≤ n−2R−2.
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Definition 2. For a subinterval I of [0, 1], let RI be such that 4RI is equal to the
length of I. Let b be the center point of the interval I and let FI be the translation
of FRI

by b, defined as

FI(x) =
15

16
RI

−5(RI
2 − (x− b)2)2 when |x− b| ≤ RI , and

FI(x) = 0, otherwise.

The support of FI is contained in I and the analogous inequalities hold for the
coefficients of the Fourier series for FI ,

c
(I)
0 = 1, |c(I)n | ≤ 1, and |c(I)n | ≤ n−2RI

−2.

2.2. Bluhm-style measures. Bluhm [3, 4] showed that the set of Liouville num-
bers supports a Rajchman measure, that is, a positive measure whose Fourier trans-
form vanishes at infinity. Bluhm’s measure is the limit of a sequence of measures
μk, for k ∈ N. The measure μk is supported by a set of real numbers x such that
there is at least one rational number p/q such that 0 < |x − p/q| < 1/qk. Here,
rather than taking a limit of measures, we perform a sequence of finite steps to
compute a real x in the limit and argue that for each step there is an appropriate
action to take by appealing to an appropriate Bluhm-style measure.

Definition 3 ([3]). For every pair of integers m and k such that k ≥ 1, let

E(m, k) =
⋃

m ≤ q < 2m
prime q

{x ∈ R : ||qx|| ≤ q−1−k}.

As usual, we write C2 for the class of functions whose first and second derivative
both exist and are continuous.

Lemma 4 ([3, Lemma 3.2]). There is a family of C2 functions gm,k, parametrized
by the pairs of positive integers m and k, such that the support of gm,k is included
in E(m, k), ĝm,k(0) = 1, and such that for every function Ψ in C2 of compact
support, for every positive integer k and for every positive real δ, there is an integer
M = M(Ψ, k, δ) such that for every m ≥ M and for every x ∈ R,

| ̂(Ψgm,k)(x)− Ψ̂(x)| ≤ δ(1 + |x|)−1/(2+k) log(e+ |x|) log log(e+ |x|).
Bluhm defines gm,k by taking the sum of functions FI for appropriate subintervals

of those comprising E(m, k) and then normalizing so that ĝm,k(0) = 1.

Definition 5. We let νI be the measure on [0, 1] obtained by integrating FI . For m
and k positive integers, we let νI,m,k be the measure on [0, 1] obtained by integrating
FIgm,k.

Lemma 6. For every subinterval I of [0, 1] and every positive integer k, there is a
positive integer M such that for all m ≥ M , νI,m,k(I) = 1.

Proof. By definition of νI,m,k,

νI,m,k(I) =

∫
I

FIgm,k dt

=

∫
I

FIgm,k e−2πi0tdt

= F̂Igm,k(0).
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By Lemma 4, for each positive integer k and each positive real δ, there is an integer
M = M(FI , k, δ) such that for every m ≥ M ,

νI,m,k(I) ≥ F̂I(0)− δ(1 + |0|)−1/(2+k) log(e+ |0|) log log(e+ |0|)
= 1− δ 1−1/(2+k) log(e+ 0) log log(e+ 0)

= 1− δ log(e) log(log(e))

= 1− δ log(1)

= 1− 0

= 1. �

Observe that the support of νI,m,k is included in the support of gm,k, which in
turn is included in E(m, k).

3. Lemmas

We say an interval is s-adic if it is of the form (ps−a, (p+1)s−a) for nonnegative
integers a and p. We use 〈a; s〉 to denote �a/ log2 s�. We write {x} to denote the
nonintegral part of a real x. The cardinality of a set S is denoted by #S.

The discrepancy of a finite sequence (x1, . . . , xn) of reals in the unit interval with
respect to a fixed interval [u, v] is

D([u, v], (x1, . . . , xn)) =
∣∣∣#{j : 1 ≤ j ≤ n and u ≤ xj < v}

n
− (v − u)

∣∣∣.
If we consider its discrepancy with respect to every subinterval in the unit interval,
we have

D(x1, . . . , xn) = sup
0≤u<v≤1

D([u, v], (x1, . . . , xn))

Thus, a real number x is normal to base s exactly when the sequence ({sjx} : j ≥ 0)
is uniformly distributed in the unit interval, that is,

lim
n→∞

D({sjx} : 0 ≤ j < n) = 0.

Lemma 7 ([2, Lemma 3.8]). For any positive real ε there is a finite set of positive
integers T and a positive real δ such that for any sequence of reals in the unit
interval (x1, . . . , xn),

if for all t ∈ T,
1

n2

∣∣∣ n∑
j=1

e(txj)
∣∣∣2 < δ, then D(x1, . . . , xn) < ε.

Furthermore, such T and δ can be computed from ε.

Proof. By LeVeque’s Inequality (see Theorem 2.4 [9])

D(x1, . . . , xn) ≤
( 6

π2

∞∑
t=1

1

t2

∣∣∣ 1
n

n∑
j=1

e(txj)
∣∣∣2) 1

3

.

Since ∣∣∣ 1
n

n∑
j=1

e(txj)
∣∣∣2 ≤ 1,
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we get for each positive integer h,
∞∑

t=h+1

1

t2

∣∣∣ 1
n

n∑
j=1

e(txj)
∣∣∣2 ≤

∞∑
t=h+1

1

t2
≤

∫ ∞

h+1

x−2dx ≤ 1

h+ 1
.

Assume
1

n2

∣∣∣ n∑
j=1

e(txj)
∣∣∣2 <

ε3

2

for all positive integers t less than or equal to h. Thus,

h∑
t=1

1

t2

∣∣∣ 1
n

n∑
j=1

e(txj)
∣∣∣2 + ∞∑

t=h+1

1

t2

∣∣∣ 1
n

n∑
j=1

e(txj)
∣∣∣2

≤
h∑

t=1

1

t2
ε3

2
+

1

h+ 1
≤ ε3π2

12
+

1

h+ 1
.

We can computably choose h so that (6/π2)
(
ε3π2/12 + 1/(h + 1)

) 1
3 < ε. Then,

D(x1, . . . , xn) < ε. This proves the lemma with T = {1, . . . , h} and δ = ε3/2. �

Lemma 8. Let I be a dyadic interval with length 2−a and let k be a positive integer.
Let s be a base and let t be a positive integer. Then, there is an integer M such
that for every m ≥ M and every positive integer �,

∫
1

�2

∣∣∣∣∣∣
〈a;s〉+�∑

n=〈a;s〉+1

e(2πitsnx)

∣∣∣∣∣∣
2

dνI,m,k(x) <
100

�
.

Moreover, M is uniformly computable from I, k, s and t.

Proof. Let

Z =

∫
1

�2

∣∣∣∣∣∣
〈a;s〉+�∑

n=〈a;s〉+1

e(2πitsny)

∣∣∣∣∣∣
2

dνI,m,k(y).

Then,

Z =

∫
1

�2

�∑
n,q=1

e(2πits〈a;s〉+ny − 2πits〈a;s〉+qy)dνI,m,k(y)

=
1

�2

⎛
⎝∫ �∑

n=1

1dνI,m,k(y) +

∫ ∑
n	=q

e(2πits〈a;s〉+ny − 2πits〈a;s〉+qy)dνI,m,k(y)

⎞
⎠

=
1

�
+

1

�2

∑
n	=q

ν̂I,m,k(ts
〈a;s〉+n − ts〈a;s〉+q).

We now give upper bounds for the values of ν̂I,m,k. Since R is one-fourth of the
length of I, which is 2−a, by the above

F̂I(x) ≤ x−2R−2 =
22a+4

x2
.

According to Lemma 4, for sufficiently large m,∣∣∣ĝm,kFI(x)− F̂I(x)
∣∣∣ ≤ δθk(x),
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where δ is a constant and can be made arbitrarily small by choice of m, and

θk(x) = (1 + |x|)−1/(2+k) log(e+ |x|) log log(e+ |x|).
Let c be such that

θk(x) ≤ c(1 + |x|)−1/k.

Notice c is uniformly computable from k. Thus,

|ν̂I,m,k(ts
〈a;s〉+n − ts〈a;s〉+q)|

= |ĝmFI(ts
〈a;s〉+n − ts〈a;s〉+q)|

≤ F̂I(ts
〈a;s〉+n − ts〈a;s〉+q) + δc(1 + |ts〈a;s〉+n − ts〈a;s〉+q|)−1/k

≤ 22a+4

|ts〈a;s〉+n − ts〈a;s〉+q|2 + δc
1

|ts〈a;s〉+n − ts〈a;s〉+q|1/k .

≤ 24

t2|sn − sq|2 +
δc

t1/ks〈a;s〉/k
1

(sn − sq)1/k
.

From which it follows,

Z ≤ 1

�
+

2

�2

�−1∑
q=1

�∑
n=q+1

(
16

t2|sn − sq|2 +
δc

t1/ks〈a;s〉/k
1

(sn − sq)1/k

)
.

Now, for positive p, analyze the sum

�−1∑
q=1

�∑
n=q+1

1

(sn − sq)1/p
≤

�−1∑
q=1

�∑
n=q+1

1

(sn/2)1/p

≤21/p
�−1∑
q=1

�∑
n=q+1

s−n/p

≤21/p
�−1∑
q=1

∫ �

q

s−x/pdx

≤21/p
�−1∑
q=1

p

log(s)
s−q/p

≤21/p
p

log(s)

∫ �

0

s−x/pdx

≤21/p
(

p

log(s)

)2

.

Hence,

Z ≤1

�
+

2

�2
16

t2
22

(
1/2

log(s)

)2

+
2

�2
δc

t1/ks〈a;s〉/k
21/k

(
k

log(s)

)2

.

By noting that t is a positive integer and choosing M so that for every m ≥ M , δ
is sufficiently small,

Z ≤ 1

�
+

32

�2 log(s)2
+

1

�2
<

100

�
.

By [3, page 314], M is uniformly computable from the other parameters of the
construction. �
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Definition 9. Let s be a base. Let I be a dyadic interval of length 2−a. Let �
and t be positive integers, and ε be a positive real. We define

A(I, �, s, t, ε) =

⎧⎨
⎩x ∈ I :

∣∣∣∣∣∣
1

�

〈a;s〉+�∑
n=〈a;s〉+1

e(2πitsnx)

∣∣∣∣∣∣ ≥ ε

⎫⎬
⎭ .

The following is an adaptation of an argument due to Davenport, Erdős and
LeVeque in [8] reproduced as Lemma 1.8 in [7].

Lemma 10. Let s be a base, I be a dyadic interval of length 2−a and k a positive
integer. Let t be a positive integer. Let ε and δ be positive reals with ε less than
1/2. Then there are positive integers M and L such that for all m greater than or
equal to M ,

νI,m,k

⎛
⎝⋃

�≥L

A(I, �, s, t, ε)

⎞
⎠ < δ.

Furthermore, L is uniformly computable from k, ε, δ, s and t, and does not depend
upon I. On the other hand, M is uniformly computable from I, k, s and t.

Proof. By the definition of A(I, �, s, t, γ),

γ2 νI,m,k(A(I, �, s, t, γ)) ≤
∫

1

�2

∣∣∣∣∣∣
〈a;s〉+�∑

n=〈a;s〉+1

e(2πitsnx)

∣∣∣∣∣∣
2

dνI,m,k(x).

By Lemma 8, there is an M such that for all m ≥ M and all positive integers �,

∫
1

�2

∣∣∣∣∣∣
〈a;s〉+�∑

n=〈a;s〉+1

e(2πitsnx)

∣∣∣∣∣∣
2

dνI,m,k(x) <
100

�
.

We fix this value of M and let m be greater than or equal to it. Then,

νI,m,k(A(I, �, s, t, γ)) <
100

γ2 �
.

Note that the above inequality holds for any real number γ. For the rest of the
proof we fix parameters I, s, t, γ = ε/7 and abbreviate A(I, �, s, t, ε/7) by writing
A�, for varying values of �. Set �1 = 1 and �j+1 = ��j/(1− ε/7)�+ 1 for j ≥ 1 such
that

�j+1 − �j
�j+1

>
ε

7
and

�j+1 − �j
�j

< 2
ε

7
+

2

�j
.

For each j, let hj be the integer in [�j , �j+1) that minimizes νI,m,k(Ahj
)/hj . Hence,

�j+1−1∑
�=�j

νI,m,k(A�)

�
≥ (�j+1 − �j)

νI,m,k(Ahj
)

hj
≥ ε

7
νI,m,k(Ahj

).

Thus,

100
73

ε3

�j+1−1∑
�=�j

1

�2
> νI,m,k(Ahj

),

and so for every j,

100
73

ε3
1

�j − 1
>

∞∑
p=j

νI,m,k(Ahp
).
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Let j0 be minimal such that

�j − 1 ≥ 100

δ

73

ε3
and

2

�j0
<

ε

7
.

Note that j0 does not depend on I. Then, by the first inequality,

δ >
∞∑

j=j0

νI,m,k(Ahj
).

Now, consider an x ∈ I such that for all j ≥ j0, x �∈ Ahj
, or equivalently,∣∣∣∣∣∣

1

hj

〈a;s〉+hj∑
�=〈a;s〉+1

e(2πits�x)

∣∣∣∣∣∣ <
ε

7
,

and let � be a positive integer greater than or equal to �j0 . Let j be such that
�j ≤ � < �j+1. Note that,

1

�

〈a;s〉+�∑
n=〈a;s〉+1

e(2πitsnx)− 1

hj

〈a;s〉+hj∑
n=〈a;s〉+1

e(2πitsnx)

=
1

�

⎛
⎝ 〈a;s〉+�∑

n=〈a;s〉+1

e(2πitsnx)−
〈a;s〉+hj∑
n=〈a;s〉+1

e(2πitsnx)

⎞
⎠

+

(
1

�
− 1

hj

) 〈a;s〉+hj∑
n=〈a;s〉+1

e(2πitsnx).

It follows that for such x,∣∣∣∣∣∣
1

�

〈a;s〉+�∑
n=〈a;s〉+1

e(2πitsnx)− 1

hj

〈a;s〉+hj∑
n=〈a;s〉+1

e(2πitsnx)

∣∣∣∣∣∣
<

(
�j+1 − �j

�j

)
+

(
�j+1 − �j

�j

)

<

(
2
ε

7
+

2

�j

)
+

(
2
ε

7
+

2

�j

)
< 6

ε

7
and by the triangle inequality, for this x,∣∣∣∣∣∣

1

�

〈a;s〉+�∑
�=〈a;s〉+1

e(2πits�x)

∣∣∣∣∣∣ <
∣∣∣∣∣∣
1

hj

〈a;s〉+hj∑
�=〈a;s〉+1

e(2πits�x)

∣∣∣∣∣∣+ 6
ε

7
<

ε

7
+ 6

ε

7
= ε.

Then, x �∈ A(I, �, s, t, ε). So,
⋃

�≥�j0
A(I, �, s, t, ε) is contained in

⋃
j≥j0

Ahj
and

thereby νI,m,k

(⋃
�≥�j0

A(I, �, s, t, ε)
)
< δ. This proves the lemma for M as above

and L is equal to �j0 , with the observation that since j0 did not depend on I neither
does L. �
Lemma 11. Let S be a set of bases, I be a dyadic interval of length 2−a and k a
positive integer. Let ε be a positive real number. Then, there are positive integers
M and L such that for every m ≥ M ,
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νI,m,k(I) = 1, and
νI,m,k

(
{y ∈ I : ∀s ∈ S, ∀� ≥ L,D({sjy} : 〈a; s〉 ≤ j < 〈a+ �; s〉) < ε}

)
≥ 1

2 .

Furthermore, L is uniformly computable from k, S and ε, and does not depend on I;
M is uniformly computable from I, k, S and ε.

Proof. Let T and γ be, respectively, the set of positive integers and the real number
determined by Lemma 7 with input ε.

For each s ∈ S and t ∈ T apply Lemma 10 with ε equal to γ, and with δ equal
to 1/(2#T#S). Let M0 and L0 be, respectively, the maximum of the values of M
and L output by Lemma 10 in each case. Then, for every m ≥ M0,

∑
t∈T

∑
s∈S

νI,m,k

⎛
⎝ ⋃

�≥L0

A(I, �, s, t, γ)

⎞
⎠ <

∑
t∈T

∑
s∈S

1

2#T#S
=

1

2
.

The proof is completed by taking L to be the minimum integer such that for every
s ∈ S, 〈a+ L; s〉 ≥ 〈a; s〉+ L0, and by taking M to be the maximum between M0

and the value M determined by Lemma 6. �

Lemma 12. For every base s and for every positive real ε there is an integer L
with the following property. Let [u, v] be any subinterval of [0, 1] such that

2ε < v − u, 2ε < u in case u �= 0, and 2ε < 1− v in case v �= 1.

For all � ≥ L and for all real numbers x and y satisfying |x− y| < 2−�, if for each
interval J ⊆ [0, 1] with endpoints in {0, u±ε, v±ε, 1}, D(J, ({sjx} : j < 〈�; s〉)) < ε,
then

D([u, v], ({sjy} : j < 〈�; s〉)) < 8ε.

Proof. Let s, [u, v] and ε be fixed as above. Let L be an integer such that �| logs(ε)|�
is less than ε〈L; s〉. Suppose that � is greater than or equal to L and that x and y
are real numbers such that |x − y| < 1/2� and for each interval J with endpoints
contained in {0, u± ε, v ± ε, 1} D(J, ({sjx} : j < 〈�; s〉)) < ε.

We first show that #{j : {sjy} ∈ [u, v] and 0 ≤ j < 〈�; s〉} is greater than
(|v − u| − 8ε)〈�; s〉. Consider the interval [u+ ε, v − ε]. By assumption,

#{j : {sjx} ∈ [u+ ε, v − ε] and 0 ≤ j < 〈�; s〉}
>

((
(v − ε)− (u+ ε)

)
− ε

)
〈�; s〉

> ((v − u)− 3ε)〈�; s〉.

If sj2−� is less than ε and x ∈ [u+ ε, v− ε], then y ∈ [u, v]. Further, sj2−� > ε only
when j > 〈�; s〉 − | logs(ε)| and, by choice of L, there are at most ε〈�; s〉 many such
integers j less than or equal to 〈�; s〉. Then,

#{j : {sjy} ∈ [u, v] and 0 ≤ j < 〈�; s〉} > ((v − u)− 3ε)〈�; s〉 − ε〈�; s〉
> ((v − u)− 4ε)〈�; s〉.

Similarly, regarding only the fully nontrivial case in which 0 < u and v < 1,

#{j : {sjy} ∈ [0, u] and 0 ≤ j < 〈�; s〉} > (u− 4ε)〈�; s〉,
#{j : {sjy} ∈ [v, 1] and 0 ≤ j < 〈�; s〉} > ((1− v)− 4ε)〈�; s〉,
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and so

((v − u) + 8ε)〈�; s〉
> #{j : {sjy} ∈ [u, v] and 0 ≤ j < 〈�; s〉}
> ((v − u)− 8ε)〈�; s〉,

as required. �

Lemma 13. Let ε be a positive real. Let any sequence of reals in the unit interval
(x1, . . . , x�) of length � be such that D(x1, . . . , x�) < ε. Let (y1, . . . , yn) be any
sequence of reals in the unit interval, of length n such that n < ε�. Then for all
k ≤ n, D(x1, . . . , x�, y1, . . . , yk) < 2ε and D(y1, . . . , yk, x1 . . . , x�) < 2ε.

Proof. Immediate from the definition. �

4. Proof of the Theorem

For n an integer greater than or equal to 2 and ε a positive real number, let
L11(n, ε) and L12(n, ε) be the supremum of the output numbers L in Lemmas 11
and 12, respectively, for inputs s, a base less than or equal to n, Liouville exponent k
equal to n, and ε, a positive real number. Without loss of generality, we assume that
L11 and L12 increase as the first argument increases and as the second argument
decreases.

Definition 14. An interval I ⊆ [0, 1] meets the Liouville condition for exponent k
if for any real x ∈ I there is an integer q > 1 such that ||qx|| < q−k.

Then, a real number is Liouville when for each exponent k there is an interval
that contains x and meets the Liouville condition for exponent k.

4.1. Algorithm. We proceed by recursion to define a sequence of dyadic intervals
[xn, xn+2−an), that is to say that an is a nonnegative integer and xn is of the form
p/2an with 0 ≤ p < 2an . To simplify notation, let εn = 1/8n.

Let x0 = 0 and a0 = 0. Given [xn, xn + 2−an) from the previous step, let
[xn+1, xn+1 +2−an+1) be the dyadic interval minimizing an+1 and breaking ties by
minimizing xn, with the following conditions:

• [xn+1, xn+1 + 2−an+1) ⊆ [xn, xn + 2−an).
• [xn+1, xn+1 + 2−an+1 ] meets the Liouville condition for exponent n+ 1.
• an+1 > L12(n+ 1, εn+1/16).
• For every base s less than or equal to n+ 1,

〈an+1; s〉εn+1/16 > 〈L11(n+ 2, εn+2/16); s〉.

• For every base s less than or equal to n, for all nontrivial intervals J ⊆ [0, 1]
with rational endpoints of the form [p1/8

n−2, p2/8
n−2] and for all integers

� ∈ [an, an+1),

D(J, ({sjxn+1} : j < 〈�; s〉)) < 128εn.

• For every base s less than or equal to n + 1, for all nontrivial intervals
J ⊆ [0, 1] with rational endpoints of the form [p1/8

n+1, p2/8
n+1],

D(J, ({sjxn+1} : j < 〈an+1; s〉)) < εn+1.
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4.2. Verification. We first check by induction that the sequence (xn : n ≥ 0) is
well defined. We have specified x0 and a0 explicitly. It is immediate that for step
n = 1 there is a suitable choice for x1 and a1. Assume that the sequence is defined up
to and including [xn, xn+2−an), where n ≥ 1. Let I be the interval [xn, xn+2−an ]
and let S be the set of bases less than or equal to n + 1. Apply Lemma 11 for
ε = εn+1/16, k = n + 1, I, a = an and S. Obtaining L11(n + 1, εn+1/16) = L
and m = M .

Let a be a positive integer with the following properties:

• a > (n+ 3) log2 m.
• a > L12(n+ 1, εn+1/16).
• For every base s less than or equal to n+ 1,

〈a; s〉εn+1/16 > 〈L11(n+ 2, εn+2/16); s〉.
• For every base s less than or equal to n+ 1,(

〈a; s〉 − 〈an; s〉
)
εn+1/16 > 〈an; s〉.

Let Y be the set of reals y ∈ I such that ∀s ∈ S, ∀� ≥ L11(n+ 1, εn+1/16),

D({sjy} : 〈an; s〉 ≤ j < 〈an + �; s〉) < εn+1/16.

By definition, Y satisfies

νI,m,n+1(Y ) ≥ 1

2
.

Fix a real number y ∈ Y , which implies y ∈ E(m,n + 1) ∩ I and for every s ∈ S
and every � ≥ L11(n+ 1, εn+1/16),

D({sjy} : 〈an; s〉 ≤ j < 〈an + �; s〉) < εn+1/16.

By inductive hypothesis, an > L12(n, εn/16) ≥ L12(n, εn) and for every base
s ≤ n and all nontrivial intervals J ⊆ [0, 1] with rational endpoints of the form
[p1/8

n, p2/8
n],

D(J, ({sjxn} : j < 〈an; s〉)) < εn.

Let J∗ be a subinterval of [0, 1] of the form [p1/8
n−1, p2/8

n−1]. Then, Lemma 12
applies to the pair xn and y and the interval J∗ to conclude that

D(J∗, ({sjy} : j < 〈an; s〉)) < 8εn.

By inductive hypothesis again, for all s ≤ n, we have

〈an; s〉εn/16 > 〈L11(n+ 1, εn+1/16); s〉,
and so by Lemma 13, for all � ≤ L11(n+ 1, εn+1/16) and all s ≤ n,

D(J∗, ({sjy} : j < 〈an + �; s〉)) < 16εn.

If � is such that L11(n + 1, εn+1/16) < � ≤ a − an, then ({sjy} : j < 〈an + �; s〉)
is the concatenation of ({sjy} : j < 〈an; s〉) and ({sjy} : 〈an; s〉 ≤ j < 〈an + �; s〉),
both of which have discrepancy, with respect to interval J∗, less than 8εn, and so
it has discrepancy less than 8εn. Thus, for every � between an and a,

D(J∗, ({sjy} : j < 〈�; s〉)) < 16εn.

Let [y, y+2−a) be a dyadic interval such that y− y < 2−a. As above for xn and y,
Lemma 12 applies to the pair y and y to conclude that for every � between an and
a and every subinterval J of [0, 1] of the form [p1/8

n−2, p2/8
n−2],

D(J, ({sjy} : j < 〈�; s〉)) < 8 · 16εn = 128εn.
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Further, for every s ≤ n + 1, since D({sjy} : 〈an; s〉 ≤ j < 〈a; s〉) ≤ εn+1/16
(obtained above) and (〈a; s〉 − 〈an; s〉)εn+1/16 ≥ 〈an; s〉, for any interval J ⊆ [0, 1],

D(J, ({sjy} : j < 〈a; s〉)) < 2 · εn+1/16 = εn+1/8,

and so, by Lemma 13,

D(J, ({sjy} : j < 〈a; s〉)) < 8 · εn+1/8 = εn+1.

Finally, since y ∈ E(m,n + 1), let q be a positive prime such that m ≤ q and
||qy|| < q−n−2. Let y∗ ∈ [y, y + 2−a). We verify that ||qy∗|| < q−n−1.

Since y − y < 2−a, then, y − y∗ < 2−a.
Since a > (n+ 3) log2 m, then, 2−a < m−n−3 < q−n−3(q − 1).
Thus,

q 2−a < q−n−2(q − 1),

q−n−2 + q 2−a < q−n−1,

||qy||+ |qy − qy∗| < q−n−1,

||qy∗|| < q−n−1, as required.

Hence, [y, y + 2−a) satisfies all requirements to be a dyadic interval for step n+ 1.
Now, let x be the limit of the sequence (xn : n ≥ 0). By virtue of the second

condition in the specification of xn+1 from xn, x is a Liouville number. To check
that x is absolutely normal, let s be a base, ε a real number and J an interval. By a
continuity argument, we may fix positive integer m and assume that the endpoints
of J are dyadic rational numbers of the form p/8m. Consider N so large that s ≤ N ,
m < N − 3 and ε > 8εN . Let � be a positive integer greater than or equal to aN .
Let n be such that an ≤ � < an+1. By the choice of xn+1, Lemma 12 applies to
xn+1 and x to conclude that

D(J, ({sjx} : j < 〈�; s〉)) < 8 · 128εn.
Since the sequence εn goes to zero as n goes to infinity, the discrepancy of

({sjx} : j < 〈�; s〉)
goes to zero as � goes to infinity. Hence, x is absolutely normal. This completes
the proof.
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[8] H. Davenport, P. Erdős, and W. J. LeVeque, On Weyl’s criterion for uniform distribution,
Michigan Math. J. 10 (1963), 311–314. MR0153656 (27 #3618)

[9] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Dover, 2006.
[10] Satyadev Nandakumar and Santhosh Kumar Vangapelli, Normality and finite-state dimen-

sion of Liouville numbers, preprint, arXiv:1204.4104, 2012.
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