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FINITE DIFFERENCES OF THE LOGARITHM

OF THE PARTITION FUNCTION

WILLIAM Y. C. CHEN, LARRY X. W. WANG, AND GARY Y. B. XIE

Abstract. Let p(n) denote the partition function. DeSalvo and Pak proved

that
p(n−1)
p(n)

(
1 + 1

n

)
>

p(n)
p(n+1)

for n ≥ 2. Moreover, they conjectured that a

sharper inequality
p(n−1)
p(n)

(
1 + π√

24n3/2

)
>

p(n)
p(n+1)

holds for n ≥ 45. In this

paper, we prove the conjecture of Desalvo and Pak by giving an upper bound
for −Δ2 log p(n− 1), where Δ is the difference operator with respect to n. We
also show that for given r ≥ 1 and sufficiently large n, (−1)r−1Δr log p(n) >
0. This is analogous to the positivity of finite differences of the partition
function. It was conjectured by Good and proved by Gupta that for given
r ≥ 1, Δrp(n) > 0 for sufficiently large n.

1. Introduction

A partition of a positive integer n is a nonincreasing sequence of positive integers
λ1, λ2, . . . , λr such that

∑r
i=1 λi = n. Let p(n) denote the number of partitions of

n. In particular, we set p(0) = 1. The Hardy-Ramanujan-Rademacher formula for
p(n) states that

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

μ(n)

)
eμ(n)/k +

(
1 +

k

μ(n)

)
e−μ(n)/k

]

+R2(n,N),

where Ak(n) is an arithmetic function, R2(n,N) is the remainder term and

(1.1) μ(n) =
π

6

√
24n− 1;

see, for example, Hardy and Ramanujan [11], Rademacher [18]. Note that A1(n) =
1 and A2(n) = (−1)n for n ≥ 1. Lehmer [14, 15] gave the error bound

|R2(n,N)| < π2N−2/3

√
3

[(
N

μ(n)

)3

sinh
μ(n)

N
+

1

6
−
(

N

μ(n)

)2
]
,

which is valid for all positive integers n and N .
Employing Rademacher’s convergent series and Lehmer’s error bound, DeSalvo

and Pak [8] proved the following inequality conjectured by Chen [6].
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Theorem 1.1. For n ≥ 2, we have

(1.2)
p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
.

The above relation has been improved by DeSalvo and Pak [8].

Theorem 1.2. For n ≥ 7, we have

(1.3)
p(n− 1)

p(n)

(
1 +

240

(24n)3/2

)
>

p(n)

p(n+ 1)
.

They also proposed the following conjecture.

Conjecture 1.3. For n ≥ 45, we have

(1.4)
p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
.

It should be mentioned that by using Lehmer’s error bound for the remainder
term of p(n), Bessenrodt and Ono [5] proved the following inequality.

Theorem 1.4. For any integers a, b satisfying a, b > 1 and a+ b > 9, we have

p(a)p(b) > p(a+ b).

In this paper, we shall prove Conjecture 1.3 by giving an upper bound for
−Δ2 log p(n− 1) for n ≥ 5000. Moreover, for any given r, we give an upper bound
for (−1)r−1Δr log p(n).

In 1977, Good [9] conjectured that Δrp(n) alternates in sign up to a certain
value n = n(r), and then it stays positive. Using the Hardy-Rademacher series [19]
for p(n), Gupta [10] proved that for any given r, Δrp(n) > 0 for sufficiently large
n. In 1988, Odlyzko [16] proved the conjecture of Good and obtained the following
asymptotic formula for n(r):

n(r) ∼ 6

π2
r2 log2 r as r → ∞.

Knessl and Keller [12, 13] obtained an approximation n(r)′ for n(r) for which
|n(r)′ − n(r)| ≤ 2 up to r = 75. Almkvist [2, 3] proved that n(r) satisfies cer-
tain equations.

By using the bounds of the modified Bessel function of the first kind, we shall
prove that for any given r ≥ 1, there exists a positive integer n(r) such that
(−1)r−1Δr log p(n) > 0 for n ≥ n(r).

2. Proof of Conjecture 1.3

In this section, we give a proof of Conjecture 1.3 by using an inequality of DeSalvo
and Pak [8]. Letting

p2(n) = 2 log p(n)− log p(n− 1)− log p(n+ 1),

DeSalvo and Pak have shown that for n ≥ 50,

p2(n)<
24π

(24(n− 1)− 1)3/2
+

288π(−3 + π
√
24(n− 1)− 1)

(24(n− 1)− 1)3/2(−6 + π
√
24(n− 1)− 1)2

− 864

(24(n+ 1)− 1)2
+ 2e−

π
10

√
2n
3 .(2.1)
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We shall give an estimate of the right hand side of (2.1), leading to a proof of the
conjecture.

Proof of Conjecture 1.3. The conjecture can be restated as follows:

(2.2) p2(n) < log

(
1 +

π√
24n3/2

)
,

where n ≥ 45. We proceed to give an estimate of each term of the right hand side
of (2.1).

We begin with the first term. We claim that for n ≥ 50,

(2.3)
24π

(24(n− 1)− 1)3/2
<

24π

(24n)3/2
−
(

24π

(24n)3/2

)2

+
3

2n5/2
.

For 0 < x ≤ 1
48 , it can be easily checked that

(2.4)
1

(1− x)3/2
< 1 +

3

2
x+

3

8
x3/2.

For n ≥ 50, we have 25
24n ≤ 1

48 , and hence we can apply (2.4) to deduce that

24π

(24(n− 1)− 1)3/2
=

24π

(24n)3/2
(
1− 25

24n

)3/2
<

24π

(24n)3/2

(
1 +

75

48n
+

3

8

(
25

24n

)3/2
)
.(2.5)

For n ≥ 50, we have

3

8

(
25

24n

)3/2

<
3

8

(
25

24

)3/2
1

501/2n
,

24π

(24n)3/2
<

24π

(24)3/2501/2n
.

It follows that

24π

(24n)3/2

(
75

48n
+

3

8

(
25

24n

)3/2

+
24π

(24n)3/2

)

≤ 24π

(24n)3/2n

(
25

16
+

3

8

(
25

24

)3/2
1

501/2
+

24π

(24)3/2501/2

)

<
3

2n5/2
.(2.6)

Combining (2.5) and (2.6), we obtain (2.3).
As for the second term of the right hand side of (2.1), it can be shown that for

n ≥ 50,

(2.7)
288π(−3 + π

√
24(n− 1)− 1)

(24(n− 1)− 1)3/2(−6 + π
√
24(n− 1)− 1)2

<
1

2n2
+

1

n5/2
.
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To this end, we need the following inequality for α ≥ 1
2 and 0 < x ≤ c < 1:

(2.8)
1

(1− x)α
≤ 1 +

(
1

1− c

)α+1

αx.

Let

f(x) =
1

(1− x)α
− 1−

(
1

1− c

)α+1

αx.

For α ≥ 1
2 and 0 ≤ x ≤ c < 1, we see that

f ′(x) =
α

(1− x)α+1
−
(

1

1− c

)α+1

α ≤ 0.

Since f(0) = 0, we obtain that f(x) ≤ 0 under the above assumption. This yields
that f(x) < 0 for 0 < x ≤ c < 1 and α ≥ 1

2 , and hence (2.8) is proved.
The left hand side of (2.7) can be rewritten as

144π2
√
24n− 25

(24n− 25)3/2(−6 + π
√
24n− 25)2

+
288π(−3 + π

2

√
24n− 25)

(24n− 25)3/2(−6 + π
√
24n− 25)2

,

which can be simplified to

(2.9)
1

4n2
(
1− 25

24n

)2 (
1− 6

π
√
24n−25

)2 +
1

4n2
(
1− 25

24n

)2 (
1− 6

π
√
24n−25

) .
Setting x = 25

24n , α = 2 and c = 1
48 , for n ≥ 50, we have 0 < x < c < 1 and α ≥ 1

2 .
By (2.8), we find that for n ≥ 50,

(2.10)
1(

1− 25
24n

)2 ≤ 1 +

(
48

47

)3
25

12n
.

Setting x = 6
π
√
24n−25

, α = 2 and c = 1
15 , for n ≥ 50, we also have 0 < x < c < 1

and α ≥ 1
2 . Again, using (2.8), we see that for n ≥ 50,

(2.11)
1(

1− 6
π
√
24n−25

)2 < 1 +

(
15

14

)3
6

π
√
24n− 25

< 1 +
24

π
√
24n− 25

.

Combining (2.10) and (2.11), we deduce that for n ≥ 50,

1

4n2
(
1− 25

24n

)2 (
1− 6

π
√
24n−25

)2

≤ 1

4n2

(
1 +

(
48

47

)3
25

12n

)(
1 +

24

π
√
24n− 25

)
.(2.12)

It is easily seen that

(2.13)
24

π
√
24n− 25

=
24

π(24n)1/2
1(

1− 25
24n

)1/2 .
Setting x = 25

24n , α = 1
2 and c = 1

48 , for n ≥ 50, we have 0 < x < c < 1 and α ≥ 1
2 .

By (2.8), for n ≥ 50, we get

(2.14)
1(

1− 25
24n

)1/2 < 1 +

(
48

47

)3/2
25

48n
.
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Combining (2.12), (2.13) and (2.14), we find that for n ≥ 50,

1

4n2
(
1− 25

24n

)2 (
1− 6

π
√
24n−25

)2

≤ 1

4n2

(
1 +

(
48

47

)3
25

12n

)(
1 +

24

π(24n)1/2

(
1 +

(
48

47

)3/2
25

48n

))
.(2.15)

The right hand side of (2.15) can be expanded as follows:

1

4n2
+

√
6

2πn5/2
+

25

48n3

(
48

47

)3

+
25
√
6

96πn7/2

(
48

47

)3/2

+
25
√
6

24πn7/2

(
48

47

)3

+
252

√
24

482πn9/2

(
48

47

)9/2

.(2.16)

Clearly, for α > 5
2 and n ≥ 50,

1

nα
≤ 1

50α−5/2n5/2
,

which implies that for n ≥ 50,

(2.17)
1

n3
≤ 1

501/2n5/2
,

(2.18)
1

n7/2
≤ 1

50n5/2
,

(2.19)
1

n9/2
≤ 1

502n5/2
.

Applying (2.17), (2.18) and (2.19) to the last four terms of (2.16), we obtain that
for n ≥ 50,

(2.20)
1

4n2
(
1− 25

24n

)2 (
1− 6

π
√
24n−25

)2 <
1

4n2
+

1

2n5/2
.

Setting x = 6
π
√
24n−25

, α = 1 and c = 1
15 , for n ≥ 50, we have 0 < x < c < 1 and

α ≥ 1
2 . By (2.8), we see that for n ≥ 50,

(2.21)
1

1− 6
π
√
24n−25

< 1 +

(
15

14

)2
6

π
√
24n− 25

< 1 +
12

π
√
24n− 25

.

Using (2.21) and the same argument as in the derivation of (2.20), it can be shown
that for n ≥ 50,

(2.22)
1

4n2
(
1− 25

24n

)2 (
1− 6

π
√
24n−25

) <
1

4n2
+

1

2n5/2
.

In view of (2.20) and (2.22), we arrive at (2.7).
To estimate the third term of the right hand side of (2.1), we aim to show that

for n ≥ 50,

(2.23) − 864

(24(n+ 1)− 1)2
<

1

2n5/2
− 3

2n2
.
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It is easily verified that for α ≥ 1/2 and 0 ≤ x ≤ 1,

(2.24) 1 ≥ 1

(1 + x)α
≥ 1− αx.

So for n ≥ 50, we have
1(

1 + 23
24n

)2 ≥ 1− 23

12n
.

Consequently, for n ≥ 50,

− 864

(24(n+ 1)− 1)2
= − 3

2n2
(
1 + 23

24n

)2 ≤ 23

8n3
− 3

2n2
≤ 1

2n5/2
− 3

2n2
.

Utilizing the above upper bounds (2.3), (2.7) and (2.23) for the three terms of
the right hand side of (2.1), we conclude that for n ≥ 50,

p2(n) <
24π

(24n)3/2
−
(

24π

(24n)3/2

)2

− 1

n2
+

3

n5/2
+ 2e−

π
10

√
2n
3 .

Next we show that for n ≥ 5000,

(2.25) p2(n) <
24π

(24n)3/2
−
(

24π

(24n)3/2

)2

.

Clearly, for n ≥ 100,

− 1

n2
+

3

n5/2
< − 2

3n2
.

To prove that for n ≥ 5000,

(2.26) − 2

3n2
+ 2e−

π
10

√
2n
3 < 0,

let

g(x) = − 2

3x2
+ 2e−

π
10

√
2x
3 .

The equation g(x) = 0 has two solutions:

x1 =
2400

π2

(
W0

(
− π

√
2

40 · 33/4

))2

,

x2 =
2400

π2

(
W−1

(
− π

√
2

40 · 33/4

))2

,

where W0(z) and W−1(z) are two branches of Lambert W function W (z); see
Corless, Gonnet, Hare, Jeffrey and Knuth [7]. More explicitly, we have x1 ≈ 0.64
and x2 ≈ 4996.47. It can be checked that g(5000) < 0. Thus for x ≥ 5000,

g(x) < 0.

This proves (2.26). Hence (2.25) holds.
Using (2.25), we shall show that inequality (2.2) holds for n ≥ 5000. It is easily

verified that for x > 0,

(2.27) x(1− x) < log(1 + x).

Let

h(x) = log(1 + x)− x+ x2.
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For x ≥ 0, we see that

h′(x) =
x+ 2x2

1 + x
≥ 0.

Since h(0) = 0, we have h(x) > 0 for x > 0. Combining (2.25) and (2.27), we
deduce that for n ≥ 5000,

p2(n) < log

(
1 +

π√
24n3/2

)
.

Since DeSalvo and Pak [8] have verified the above relation for 45 ≤ n ≤ 8000, we
reach the conclusion that inequality (2.2) holds for n ≥ 45, and hence the proof is
complete. �

3. An upper bound for (−1)r−1Δr log p(n)

The conjecture of DeSalvo and Pak can be formulated as an upper bound for
2 log p(n)− log p(n− 1)− log p(n+ 1); namely, for n ≥ 45,

(3.1) −Δ2 log p(n− 1) < log

(
1 +

π√
24n3/2

)
,

where Δ is the difference operator as given by Δf(n) = f(n+ 1)− f(n).
In this section, we give an upper bound for (−1)r−1Δr log p(n). When r = 2,

this upper bound reduces to the above relation (3.1). In the following theorem,
we adopt the notation (a)k for the rising factorial, namely, (a)0 = 1 and (a)k =
a(a+ 1) · · · (a+ k − 1) for k ≥ 1.

Theorem 3.1. For each r ≥ 1, there exists a positive integer n(r) such that for
n ≥ n(r),

(−1)r−1Δr log p(n) < log

(
1 +

√
6π

6

(
1

2

)
r−1

1

(n+ 1)r−
1
2

)
.

In the proof of the above theorem, we shall use the Hardy-Ramanujan-Rademacher
series for n ≥ 1,

(3.2) p(n) = 2π
( π

12

)3/2 ∞∑
k=1

Ak(n)k
−5/2L3/2

(
π2

6k2

(
n− 1

24

))
,

and the estimate for Ak(n),

(3.3) |Ak(n)| ≤ 2k3/4;

see Rademacher [19]. Note that Ak(n) = 1 in (3.2) are the same as the Hardy-
Ramanujan-Rademacher formula in the previous section. The function Lν(x) in
(3.2) is defined by

(3.4) Lν(x) =
∞∑

m=0

xm

m!Γ(m+ ν + 1)
,

where Γ(m+ ν + 1) is the Gamma function.
With the notation of μ(n) as in (1.1), we have

π2

6

(
n− 1

24

)
=

μ2(n)

4
,
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and so (3.2) can be rewritten as

(3.5) p(n) = 2π
( π

12

)3/2 ∞∑
k=1

Ak(n)k
−5/2L3/2

(
μ2(n)

4k2

)
.

Denote the kth summand in (3.5) by fk(n), namely,

(3.6) fk(n) = 2π
( π

12

)3/2

Ak(n)k
−5/2L3/2

(
μ2(n)

4k2

)
.

Then (3.5) can be restated as

(3.7) p(n) = f1(n)

(
1 +

f2(n)

f1(n)

)(
1 +

∑∞
k≥3 fk(n)

f1(n) + f2(n)

)
.

It is known that

L3/2(x) =
1√
π

d

dx

(
sinh 2

√
x√

x

)
;

see Abramowitz and Stegun [1] or Almkvist [2]. Since A1(n) = 1, f1(n) can be
expressed as

(3.8) f1(n) =

√
12

24n− 1

[(
1− 1

μ(n)

)
eμ(n) +

(
1 +

1

μ(n)

)
e−μ(n)

]
.

Recalling A2(n) = (−1)n, by (3.4) and (3.6) we obtain that for n ≥ 1,

f1(n)− |f2(n)| = 2π
( π

12

)3/2 ∞∑
m=0

(
1

4m
− 1

25/216m

)
μ2m(n)

m!Γ(m+ 5/2)
.

Clearly, 1
4m − 1

25/216m
> 0 for m ≥ 0. Hence for n ≥ 1,

(3.9) f1(n)− |f2(n)| > 0,

which implies that for n ≥ 1, f1(n) is positive and

f1(n) + f2(n) > 0.

It is also clear that for n ≥ 1, both μ(n) − 1 and 1 +
∑∞

k≥3 fk(n)

f1(n)+f2(n)
are positive.

Applying (3.8) to (3.7), we obtain that for n ≥ 1,

log p(n) = log
π2

6
√
3
− 3 logμ(n) + log(μ(n)− 1) + μ(n)

+ log

(
1 +

μ(n) + 1

μ(n)− 1
e−2μ(n)

)
+ log

(
1 +

f2(n)

f1(n)

)

+ log

(
1 +

∑∞
k≥3 fk(n)

f1(n) + f2(n)

)
.

Hence

(3.10) (−1)r−1Δr log p(n) = Hr + F1 + F2 + F3,
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where

Hr = (−1)r−1Δr (−3 logμ(n) + log(μ(n)− 1) + μ(n)) ,

F1 = (−1)r−1Δr log

(
1 +

μ(n) + 1

μ(n)− 1
e−2μ(n)

)
,

F2 = (−1)r−1Δr log

(
1 +

f2(n)

f1(n)

)
,

F3 = (−1)r−1Δr log

(
1 +

∑∞
k≥3 fk(n)

f1(n) + f2(n)

)
.

Let

(3.11) Gr = F1 + F2 + F3.

To estimate (−1)r−1Δr log p(n), we shall give upper bounds for Hr and Gr. We
first consider Gr.

Theorem 3.2. For n ≥ 50, we have

(3.12) |Gr| < 5 · 2r+ 1
2 e−

μ(n)
2 .

To prove Theorem 3.2, we recall a monotone property of the ratio of two power
series; see Ponnusamy and Vuorinen [17]. We also need a lower bound and an upper
bound on the ratio of Lν(x) and Lν(y), which can be deduced from known bounds
on the ratio of two modified Bessel functions of the first kind.

Proposition 3.3. Suppose that the power series

f(x) =

∞∑
m=0

αmxm and g(x) =

∞∑
m=0

βmxm

both converge for |x| < ∞ and βm > 0 for all m > 0. Then the function f(x)
g(x) is

strictly decreasing for x > 0 if the sequence {αm/βm}∞m=0 is strictly decreasing.

Let Iν(x) be the modified Bessel function of the first kind as given by

Iν(x) =
(x
2

)ν ∞∑
m=0

(
x2

4

)m

m!Γ(m+ ν + 1)
;

see Watson [20]. It is known that for ν ≥ 1/2 and 0 < x < y, Iν(x) increases with
x and

ex−y

(
x

y

)ν

<
Iν(x)

Iν(y)
< ex−y

(y
x

)ν

;

see Baricz [4, inequalities 2.2 and 2.4]. For x > 0, from (3.4) we see that Lν(x) can
be expressed by Iν(x):

Lν(x) = x−ν/2Iν(2
√
x).

Thus the above properties of Iν(x) can be restated in terms of Lν(x).

Proposition 3.4. For ν ≥ 1/2 and 0 < x < y, we have

e2
√
x−2

√
y <

Lν(x)

Lν(y)
< e2

√
x−2

√
y
(y
x

)ν

.
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We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Since |Gr| ≤ |F1|+ |F2|+ |F3|, in order to estimate Gr, we
shall estimate |F1|, |F2| and |F3|. By the definition of fk(n), we have

|fk(n)| = 2π
( π

12

)3/2

|Ak(n)|k−5/2L3/2

(
μ(n)2

4k2

)
.

It follows from (3.3) that for n ≥ 1,

|fk(n)| ≤ 4π
( π

12

)3/2

k−7/4L3/2

(
μ(n)2

4k2

)
,

which yields that

(3.13)

∞∑
k=3

|fk(n)| ≤ 4π
( π

12

)3/2

ζ(7/4)L3/2

(
μ(n)2

36

)
,

where ζ(x) is the Riemann zeta function. For convenience, we denote by g(n) the
right hand side of the above inequality, so that (3.13) becomes

(3.14)
∞∑
k=3

|fk(n)| ≤ g(n).

To estimate F1, F2 and F3, we shall make use of the monotonicity of μ(n)+1
μ(n)−1e

−2μ(n),
|f2(n)|
f1(n)

and g(n)
f1(n)−|f2(n)| . It is easily seen that μ(n)+1

μ(n)−1e
−2μ(n) decreases with n for

n ≥ 1, since y+1
y−1e

−2y decreases with y for y > 0 and μ(n) increases with n. By

(3.6), we have

|f2(n)|
f1(n)

=
L3/2(μ

2(n)/16)

25/2L3/2(μ2(n)/4)
.

The ratio of the coefficients of xm in L3/2(μ
2(n)/16) and L3/2(μ

2(n)/4) is 4m

16m .

By Proposition 3.3, we see that
L3/2(y/16)

L3/2(y/4)
decreases with y for y > 0. Notice that

μ2(x) increases with x for x ≥ 1. So
L3/2(μ

2(x)/16)

L3/2(μ2(x)/4) decreases with x for x ≥ 1. This

implies that |f2(n)|
f1(n)

decreases with n.

Next we prove the monotonicity of g(n)
f1(n)−|f2(n)| . Recall that

g(n)

f1(n)− |f2(n)|
=

2ζ(7/4)L3/2(μ
2(n)/36)

L3/2(μ2(n)/4)− 2−5/2L3/2(μ2(n)/16)
.

The ratio of the coefficients of xm in L3/2(y/36) and L3/2(y/4)− 2−5/2L3/2(y/16)
equals

1
36m

1
4m − 1

25/216m

,

which decreases with m for m ≥ 0. By Proposition 3.3, we deduce that for y > 0,

L3/2(y/36)

L3/2(y/4)− 2−5/2L3/2(y/16)

decreases with y. Hence g(n)
f1(n)−|f2(n)| decreases with n for n ≥ 1.
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Using the above monotone properties, we proceed to derive upper bounds for
|F1|, |F2| and |F3|. It is known that for 0 < x < 1,

(3.15) log(1− x) ≥ −x

1− x
,

(3.16) | log(1± x)| ≤ − log(1− x);

see DeSalvo and Pak [8].
We first estimate F1. Since

Δrf(n) =
r∑

k=0

(−1)r−k

(
r

k

)
f(n+ k),

we have

F1 =

r∑
k=0

(−1)k+1

(
r

k

)
log

(
1 +

μ(n+ k) + 1

μ(n+ k)− 1
e−2μ(n+k)

)
.

It follows that

(3.17) |F1| ≤
r∑

k=0

(
r

k

)
log

(
1 +

μ(n+ k) + 1

μ(n+ k)− 1
e−2μ(n+k)

)
.

By the monotonicity of μ(n)+1
μ(n)−1e

−2μ(n), we see that for n ≥ 1 and 0 ≤ k ≤ r,

(3.18) log

(
1 +

μ(n+ k) + 1

μ(n+ k)− 1
e−2μ(n+k)

)
≤ log

(
1 +

μ(n) + 1

μ(n)− 1
e−2μ(n)

)
.

Applying (3.18) to (3.17), we find that for n ≥ 1,

|F1| ≤ 2r log

(
1 +

μ(n) + 1

μ(n)− 1
e−2μ(n)

)
.

Since log(1 + x) ≤ x for x ≥ 0, we see that for n ≥ 1,

(3.19) |F1| ≤ 2r
μ(n) + 1

μ(n)− 1
e−2μ(n).

To estimate F2, we begin with the following expression:

(3.20) F2 =

r∑
k=0

(−1)k+1

(
r

k

)
log

(
1 +

f2(n+ k)

f1(n+ k)

)
.

It follows from (3.9) that

0 < 1− |f2(n)|
f1(n)

< 1.

Using (3.16), we find that for n ≥ 1,

(3.21)

∣∣∣∣log
(
1 +

f2(n+ k)

f1(n+ k)

)∣∣∣∣ ≤ − log

(
1− |f2(n+ k)|

f1(n+ k)

)
.

Combining (3.20) and (3.21), we obtain that for n ≥ 1,

|F2| ≤ −
r∑

k=0

(
r

k

)
log

(
1− |f2(n+ k)|

f1(n+ k)

)
.

In view of the monotonicity of |f2(n)|
f1(n)

, we see that for n ≥ 1,

|F2| ≤ −2r log

(
1− |f2(n)|

f1(n)

)
.
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Hence, by (3.15), we obtain that for n ≥ 1,

(3.22) |F2| ≤ 2r
|f2(n)|

f1(n)− |f2(n)|
.

To estimate F3, we use the following expression:

(3.23) F3 =

r∑
k=0

(−1)k+1

(
r

k

)
log

(
1 +

∑∞
k≥3 fk(n+ k)

f1(n+ k) + f2(n+ k)

)
.

By Proposition 3.4, we find that for n ≥ 1,

(3.24) 2−
5
2 e−

μ(n)
2 <

|f2(n)|
f1(n)

<
√
2e−

μ(n)
2

and

(3.25) 2ζ(7/4)e−
2μ(n)

3 <
g(n)

f1(n)
< 54ζ(7/4)e−

2μ(n)
3 .

Consequently, for n ≥ 1,

(3.26)
|f2(n)|
f1(n)

+
g(n)

f1(n)
<

√
2e−

μ(n)
2 + 54ζ(7/4)e−

2μ(n)
3 .

For n ≥ 50, it can be checked that

(3.27)
√
2e−

μ(n)
2 + 54ζ(7/4)e−

2μ(n)
3 < 1.

Combining (3.26) and (3.27), we obtain that for n ≥ 50,

|f2(n)|
f1(n)

+
g(n)

f1(n)
< 1,

or equivalently,

(3.28) f1(n)− |f2(n)| − g(n) > 0.

Combining (3.14) and (3.28), we see that for n ≥ 50,

f1(n)− |f2(n)| − |
∞∑
k≥3

fk(n)| > 0,

which can be rewritten as

1 ≥ 1−

∣∣∣∑∞
k≥3 fk(n)

∣∣∣
f1(n)− |f2(n)|

> 0.

Thus, we can use (3.16) to deduce that for n ≥ 50,

(3.29)

∣∣∣∣∣log
(
1 +

∑∞
k≥3 fk(n)

f1(n) + f2(n)

)∣∣∣∣∣ ≤ − log

(
1−

|
∑∞

k≥3 fk(n)|
f1(n)− |f2(n)|

)
.

Since − log(1 − x) is increasing for x > −1, according to (3.14) and (3.29), we
deduce that for n ≥ 50,

(3.30) − log

(
1−

|
∑∞

k≥3 fk(n)|
f1(n)− |f2(n)|

)
< − log

(
1− g(n)

f1(n)− |f2(n)|

)
.
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Combining (3.29) and (3.30), we see that for n ≥ 50,

(3.31)

∣∣∣∣∣log
(
1 +

∑∞
k≥3 fk(n)

f1(n) + f2(n)

)∣∣∣∣∣ ≤ − log

(
1− g(n)

f1(n)− |f2(n)|

)
.

It follows from (3.23) and (3.31) that for n ≥ 50,

|F3| ≤ −
r∑

k=0

(
r

k

)
log

(
1− g(n+ k)

f1(n+ k)− |f2(n+ k)|

)
.

Based on the monotonicity of g(n)
f1(n)−|f2(n)| , we find that for n ≥ 50,

|F3| ≤ −2r log

(
1− g(n)

f1(n)− |f2(n)|

)
.

Hence, by (3.15), we obtain that for n ≥ 50,

(3.32) |F3| ≤ 2r
g(n)

f1(n)− |f2(n)| − g(n)
.

By Proposition 3.4, we see that for n ≥ 1,

(3.33) 2
7
2 ζ(7/4)e−

μ(n)
6 <

g(n)

|f2(n)|
< 27

√
2ζ(7/4)e−

μ(n)
6 .

In view of (3.19) and (3.24), we deduce that for n ≥ 50,

(3.34)
|F1|
F4

< 2
5
2
μ(n) + 1

μ(n)− 1
e−

3
2μ(n),

where F4 is defined by

F4 = 2r
|f2(n)|
f1(n)

.

As a consequence of (3.22) and (3.24), it can be checked that for n ≥ 50,

(3.35)
|F2|
F4

<
1

1−
√
2e−

μ(n)
2

.

Applying (3.24), (3.25) and (3.33) to (3.32), we obtain that for n ≥ 50,

(3.36)
|F3|
F4

<
27
√
2ζ(7/4)

e
μ(n)

6 −
√
2e−

μ(n)
3 − 54ζ(7/4)e−

μ(n)
2

.

Combining (3.34), (3.35) and (3.36), we conclude that for n ≥ 50,

(3.37) |F1|+ |F2|+ |F3| < 5F4.

It follows from (3.24) that for n ≥ 1,

(3.38) F4 < 2r+
1
2 e−

μ(n)
2 .

Thus (3.37) and (3.38) lead to an upper bound for |F1|+ |F2|+ |F3|. This completes
the proof. �

To prove Theorem 3.1, we still need to estimate Hr and we shall use two in-
equalities due to Odlyzko [16] on the relations between the higher order differences
and derivatives.
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Proposition 3.5. Let r be a positive integer. Suppose that f(x) is a function with
infinite continuous derivatives for x ≥ 1, and (−1)k−1f (k)(x) > 0 for k ≥ 1. Then
for r > 1,

(−1)r−1f (r)(x+ r) ≤ (−1)r−1Δrf(x) ≤ (−1)r−1f (r)(x).

Proof of Theorem 3.1. First, we treat the case r = 1, which states that for n ≥ 12,

(3.39) Δ log p(n) < log

(
1 +

√
6π

6 (n+ 1)1/2

)
.

Since we have estimated |Gr|, we only need to estimateHr for r = 1. By Proposition
3.5, we have

(3.40) H1 ≤ 2π√
24n− 1

− 36

24(n+ 1)− 1
+

12

(24n− 1)(1− 6
π
√
24n−1

)
.

We claim that for n ≥ 50,

(3.41) H1 <

√
6π

6 (n+ 1)1/2
− 1

n+ 1
+

5

4 (n+ 1)3/2
.

We proceed to estimate each term of the right hand side of (3.40). For the first
term, we need to show that for n ≥ 50,

(3.42)
2π√

24n− 1
<

√
6π

6 (n+ 1)
1/2

− 3

2(n+ 1)
.

Setting x = 25
24(n+1) , α = 1/2 and c = 1

48 , for n ≥ 50, we have 0 < x < c < 1 and

α ≥ 1
2 . It follows from (2.8) that for n ≥ 50,

2π√
24n− 1

=
2π

√
24 (n+ 1)

1/2
(
1− 25

24(n+1)

)1/2

≤ 2π
√
24 (n+ 1)

1/2

(
1 +

(
48

47

)3/2
25

48(n+ 1)

)
.

This proves (3.42).
For the second term of the right hand side of (3.40), for n ≥ 50, we have

(3.43) − 36

24(n+ 1)− 1
< − 3

2(n+ 1)
.

For the last term of the right hand side of (3.40), using the same argument as in
the proof of (2.20), we obtain that for n ≥ 50,

(3.44)
12

(24n− 1)(1− 6
π
√
24n−1

)
<

1

2(n+ 1)
+

1

2 (n+ 1)
3/2

.

Combining (3.42), (3.43) and (3.44), we arrive at (3.41).
By the estimate of H1 in (3.41) and the estimate of G1 in (3.12), we find that

for n ≥ 50,

Δ log p(n) <

√
6π

6 (n+ 1)1/2
− 1

n+ 1
+

5

4 (n+ 1)3/2
+ 10

√
2e−

π
12

√
(24n−1).
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Notice that for n ≥ 200,

5

4 (n+ 1)
3/2

<
12− π2

24(n+ 1)
,

and for n ≥ 50,

10
√
2e−

π
12

√
(24n−1) <

12− π2

24(n+ 1)
.

Hence, for n ≥ 200,

(3.45) Δ log p(n) <

√
6π

6 (n+ 1)1/2
− π2

12(n+ 1)
.

Moreover, it can be easily checked that for x > 0,

x
(
1− x

2

)
< log(1 + x).

Thus, for n ≥ 1,
√
6π

6 (n+ 1)
1/2

− π2

12(n+ 1)
< log

(
1 +

√
6π

6 (n+ 1)
1/2

)
.

Combining the above relation and (3.45), we reach (3.39) for n ≥ 200.
It can be checked that (3.39) is valid for 12 ≤ n ≤ 200, and so Theorem 3.1 holds

for r = 1.
We now turn to the case r ≥ 2. We proceed to show that there exists an integer

n(r) such that for n ≥ n(r),

(3.46) (−1)r−1Δr log p(n) < Ur,

where

Ur =

√
6π

6

(
1

2

)
r−1

1

(n+ 1)r−
1
2

(
1−

√
6π

6

(
1

2

)
r−1

1

(n+ 1)r−
1
2

)
.

Since x(1− x) < log(1 + x) for x > 0, we have that for n ≥ 1,

Ur < log

(
1 +

√
6π

6

(
1

2

)
r−1

1

(n+ 1)r−
1
2

)
.

Thus (3.46) implies Theorem 3.1 for r ≥ 2.
By (3.10), we see that for n ≥ 1,

(−1)r−1Δr log p(n) ≤ Hr + |Gr|.
To prove (3.46), it suffices to show that for n ≥ n(r),

(3.47) Hr + |Gr| < Ur.

Since Theorem 3.2 gives an upper bound for |Gr|, we need an upper bound for Hr.
Recall that for n ≥ 1,

(3.48) Hr = (−1)r−1Δr (−3 logμ(n) + log(μ(n)− 1) + μ(n)) .

For x ≥ 1, write

log(μ(x)− 1) = log μ(x)−
∞∑
k=1

1

kμ(x)k
.
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By exchanging the order of summations, it can be seen that for x ≥ 1,

Δr log(μ(x)− 1) = Δ log μ(n)−
∞∑
k=1

Δr

(
1

kμ(n)k

)
.

Hence (3.48) implies that for n ≥ 1,

Hr = (−1)r−1Δr (μ(n)− 2 logμ(n))−
∞∑
k=1

(−1)r−1Δr

(
1

kμ(n)k

)
.

The rth derivatives of μ(x) = π
6

√
24x− 1, log μ(x) and μ(x)−k are given as follows:

μ(r)(x) =
(−1)r−1( 12 )r−124

rπ

12(24x− 1)r−
1
2

,

log(r)(μ(x)) =
(−1)r−1(r − 1)!24r

(24x− 1)r
,

(
1

μk

)(r)

=

(
k

2

)
r

(−144)r

πk(24x− 1)
k
2+r

.

Therefore, the functions μ(x) = π
6

√
24x− 1, log μ(x) and −μ(x)−k satisfy the con-

ditions of Proposition 3.5 for r ≥ 1 and k ≥ 1. Hence,

Hr ≤
( 12 )r−124

rπ

12(24n− 1)r−
1
2

− (r − 1)!24r

(24(n+ r)− 1)r

+

∞∑
k=1

(
k

2

)
r

144r

kπk(24n− 1)
k
2+r

.(3.49)

To bound the first term of (3.49), we note that

( 12 )r−124
rπ

12(24n− 1)r−
1
2

=
(
√
6π 1

2 )r−1

(n+ 1)r−
1
2

(
1− 25

24(n+1)

)r− 1
2

.

We claim that for n ≥ 48r − 3,

(3.50)

√
6π( 12 )r−1

6(n+ 1)r−
1
2

(
1− 25

24(n+1)

)r− 1
2

≤ Ur +
a1

(n+ 1)r+
1
2

,

where

a1 =

(
1

2

)
r−1

(
48

47

)r+ 1
2

(2r − 1)
25π

24
3
2

+
π2

6

((
1

2

)
r−1

)2
1

(48r − 2)r−
3
2

.

Setting x = 25
24(n+1) , α = r−1/2 and c = 1

48 , for n ≥ 48r−3, we have 0 < x < c < 1

and α ≥ 1
2 . Invoking (2.8), we find that for n ≥ 48r − 3,

1(
1− 25

24(n+1)

)r−1/2
≤ 1 +

(
48

47

)r+1/2
25(2r − 1)

48(n+ 1)
.
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It follows that for n ≥ 48r − 3,
√
6π( 12 )r−1

6(n+ 1)r−
1
2

(
1− 25

24(n+1)

)r− 1
2

≤ Ur +
π2

((
1
2

)
r−1

)2

6(n+ 1)2r−1
+

25π(2r − 1)
(
1
2

)
r−1

(
48
47

)r+ 1
2

243/2 (n+ 1)
r+1/2

.

It is easily seen that for n ≥ 48r − 3,

1

(n+ 1)2r−1 ≤ 1

(n+ 1)r+1/2 (48r − 2)r−3/2
.

So we arrive at (3.50).
As for the second term of (3.49), notice that

(r − 1)!24r

(24(n+ r)− 1)r
=

(r − 1)!

(n+ 1)r
(
1− 24r−25

24(n+1)

)r ,

and for n ≥ 48r − 3,

0 <
24r − 25

24(n+ 1)
< 1.

Consequently, for n ≥ 48r − 3,

(3.51)
(r − 1)!24r

(24(n+ r)− 1)r
≥ (r − 1)!

(n+ 1)r
.

Next we estimate the last term of (3.49). It can be checked that
∞∑
k=1

(
k

2

)
r

144r

kπk(24n− 1)
k
2+r

=

∞∑
k=1

(
k

2

)
r

6r

kπk24
k
2 (n+ 1)

k
2+r

(
1− 25

24(n+1)

) k
2+r

.

We aim to show that for n ≥ 48r − 3,

(3.52)

∞∑
k=1

(
k

2

)
r

6r

kπk24
k
2 (n+ 1)

k
2+r

(
1− 25

24(n+1)

) k
2+r

≤ a2 + a3

(n+ 1)r+
1
2

,

where

a2 =

∞∑
k=1

(
k

2

)
r

(
1

48r − 2

) k−1
2 6k

kπk24
k
2

,

a3 =

∞∑
k=1

(
k

2

)
r+1

(
1

48r − 2

) k+1
2

(
48

47

) k
2+r+1 25 · 6k(r + k

2 )

kπk24
k
2+1

.

Note that for any given r, it can be shown that a2 + a3 are convergent. Setting
x = 25

24(n+1) , α = k/2 + r and c = 1
48 , for n ≥ 48r − 3, we have 0 < x < c < 1 and

α ≥ 1
2 . By (2.8), we find that for n ≥ 48r − 3,

(3.53)
1(

1− 25
24(n+1)

)r−1/2
≤ 1 +

(
48

47

)k/2+r+1
25(2r + k)

48(n+ 1)
.
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Clearly, for n ≥ 48r − 3 and k ≥ 1,

1

(n+ 1)
k/2+r

≤ 1

(n+ 1)
r+1/2

(48r − 2)
k−1
2

,(3.54)

1

(n+ 1)k/2+r+1
≤ 1

(n+ 1)r+1/2 (48r − 2)
k+1
2

.(3.55)

Thus, (3.52) follows from (3.53), (3.54) and (3.55).
Combining (3.50), (3.51) and (3.52), we obtain that for n ≥ 48r − 3,

Hr(n) < Ur −
(r − 1)!

(n+ 1)r
+

a1 + a2 + a3

(n+ 1)r+
1
2

.

Let

u1 =
4(a1 + a2 + a3)

2

((r − 1)!)
2 .

Notice that for given r, a1 + a2 + a3 is finite. It can be verified that for n ≥ u1 +1,

a1 + a2 + a3

(n+ 1)r+
1
2

<
(r − 1)!

2(n+ 1)r
.

Thus, for n ≥ max{48r − 3, u1 + 1},

Hr(n) < Ur −
(r − 1)!

2(n+ 1)r
.

Employing the above inequality and (3.12), we deduce that for n ≥ max{50,
48r − 3, u1 + 1},

Hr + |Gr| < Ur −
(r − 1)!

2(n+ 1)r
+ 5 · 2r+ 1

2 e−
μ(n)

2 .

Observe that for n ≥ 1,

1

(n+ 1)r
≥

(
23
48

)r(
n− 1

24

)r .
It follows that for n ≥ max{50, 48r − 3, u1 + 1},

(3.56) Hr + |Gr| < Ur −
(
23
48

)r
(r − 1)!

2
(
n− 1

24

)r + 5 · 2r+ 1
2 e−

μ(n)
2 .

To deduce (3.47) from (3.56), we consider the equation

(3.57)

(
23
48

)r
(r − 1)!

2
(
x− 1

24

)r = 5 · 2r+ 1
2 e−

μ(x)
2 .

Keep in mind that μ(x) is defined for x ≥ 1/24. We claim that equation (3.57)
has two real roots. Recall that the Lambert W function W (z) is defined to be a
function satisfying

(3.58) W (z)eW (z) = z,

for any complex number z; see Corless, Gonnet, Hare, Jeffrey and Knuth [7]. So a
solution of (3.57) has the form

x =
1

24
+

6r2

π2

(
W

(
−
√
46π

48r

(
(r − 1)!

10
√
2

) 1
2r

))2

.
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It is known that W (z) is a multi-valued function. In particular, W (z) has two real
values, W0(z) and W−1(z), for − 1

e < z < 0. Using the inequality (see Abramowitz
and Stegun [1])

(3.59) m! <
√
2πmm+ 1

2 e−m+ 1
12m ,

we see that for r ≥ 2,
√
46π

48r

(
(r − 1)!

10
√
2

) 1
2r

<
1

e
.

Hence (3.57) has two real roots. Let u2 be the larger real root. Clearly, for suffi-
ciently large x,

5 · 2r+ 1
2 e−

μ(x)
2 <

(
23
48

)r
(r − 1)!

2
(
x− 1

24

)r .

It follows that for n ≥ u2 + 1,

(3.60) 5 · 2r+ 1
2 e−

μ(n)
2 <

(
23
48

)r
(r − 1)!

2
(
n− 1

24

)r .

Combining (3.56) and (3.60), we conclude that (3.47) holds for n ≥ n(r), where

n(r) = max{50, 48r − 3, u1 + 1, u2 + 1}.

This completes the proof for the case r ≥ 2. �

4. The positivity of (−1)r−1Δr log p(n)

In this section, we prove the positivity of (−1)r−1Δr log p(n) for r ≥ 1 and
sufficiently large n. This is analogous to the positivity of the differences of the
partition function conjectured by Good [9] and proved by Gupta [10]. The proof
relies on the estimates of Hr and Gr in the previous section.

Theorem 4.1. For each r ≥ 1, there exists a positive integer n(r) such that for
n ≥ n(r),

(4.1) (−1)r−1Δr log p(n) > 0.

Proof. The case r = 1 is obvious since p(n + 1) > p(n) for n ≥ 1. For r = 2,
DeSalvo and Pak [8] have shown that the sequence p(n) is log-concave for n > 25,
or equivalently, for n ≥ 25,

−Δ2 log p(n) > 0.

We now consider the case r ≥ 3. Recall that

(−1)r−1Δr log p(n) = Hr +Gr,

where Hr and Gr are given in (3.10) and (3.11). Hence, we see that for r ≥ 1,

(4.2) (−1)r−1Δr log p(n) ≥ Hr − |Gr|.

An upper bound for |Gr| has been given in Theorem 3.2, so we only need a suitable
lower bound for Hr. By the definition of Hr, we find that

(4.3) Hr = (−1)r−1Δr

(
μ(n)− 2 log μ(n)−

∞∑
k=1

1

kμ(n)k

)
.
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Applying Proposition 3.5 to the right hand side of the above equation, we get

Hr ≥
( 12 )r−124

rπ

12(24(n+ r)− 1)r−
1
2

− (r − 1)!24r

(24n− 1)r

+

∞∑
k=1

(
k

2

)
r

144r

kπk(24(n+ r)− 1)
k
2+r

.(4.4)

The first term of the right hand side of (4.4) has the following lower bound for
n ≥ 48r − 2:

(4.5)
( 12 )r−124

rπ

12(24(n+ r)− 1)r−
1
2

≥ b1

nr− 1
2

− b2
nr

,

where

b1 =

√
6π

6

(
1

2

)
r−1

,

b2 =
π
√
48r − 2

24
3
2

(
1

2

)
r

.

Setting x = 24r−1
24n and α = r− 1/2, for n ≥ 48r− 2, we have 0 < x < 1 and α ≥ 1

2 .
It follows from (2.24) that for n ≥ 48r − 2,

1(
1 + 24r−1

24n

)r− 1
2

≥ 1− 24r − 1

24n

(
r − 1

2

)
,

or equivalently,

( 12 )r−124
rπ

12(24(n+ r)− 1)r−
1
2

≥
√
6π

6

(
1

2

)
r−1

1

nr− 1
2

−
√
6π

6

(
1

2

)
r

24r − 1

24nr+ 1
2

.

Observing that for n ≥ 48r − 2,

1

nr+ 1
2

≤ 1√
48r − 2nr

,

we obtain (4.5) for n ≥ 48r − 2.
For the second term of the right hand side of (4.4), we claim that for n ≥ 48r−2,

(4.6)
(r − 1)!24r

(24n− 1)r
≤ b3

nr
,

where

b3 = (r − 1)!

(
1 +

r

24

(
1

48r − 2

)(
48

47

)r+1
)
.

Setting x = 1
24n , α = r and c = 1

48 , for n ≥ 48r − 2, we have 0 < x < c < 1 and

α ≥ 1
2 . By (2.8), we see that for n ≥ 48r − 2,

1(
1− 1

24n

)r ≤ 1 +

(
48

47

)r+1
r

24n
.

So we obtain (4.6) for n ≥ 48r − 2.
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Since the last term of the right hand side of (4.4) is positive, combining (4.5)
and (4.6), we deduce that for n ≥ 48r − 2,

(4.7) Hr ≥ b1

nr− 1
2

− b2 + b3
nr

.

To derive a simpler expression for a lower bound of Hr, let

m1 =
4(b2 + b3)

2

b21
.

Thus, for n ≥ m1 + 1, it can be checked that

b2 + b3
nr

<
b1

2nr− 1
2

.

It follows that for n ≥ max{48r − 2,m1 + 1},

(4.8) Hr(n) >
b1

2nr− 1
2

.

Combining (4.2) and (4.8), we find that for n ≥ max{50, 48r − 2,m1 + 1},

(4.9) (−1)r−1Δr log p(n) >
b1

2nr− 1
2

− 5 · 2r+ 1
2 e−

μ(n)
2 .

Notice that for r ≥ 1 and n ≥ 1,

1

nr− 1
2

≥
(
23
24

)r− 1
2(

n− 1
24

)r− 1
2

.

Thus, for n ≥ max{50, 48r − 2,m1 + 1},

(4.10) (−1)r−1Δr log p(n) >

(
23

24

)r− 1
2 b1

2nr− 1
2

− 5 · 2r+ 1
2 e−

μ(n)
2 .

To prove that the right hand side of (4.10) is positive for sufficiently large n, consider
the following equation:

(4.11)

(
23

24

)r− 1
2 b1

2xr− 1
2

= 5 · 2r+ 1
2 e−

μ(x)
2 .

The solution of (4.11) can be expressed in terms of the LambertW function, namely,

(4.12) x =
1

24
+

6 (2r − 1)2

π2
W

⎛
⎝−

√
46π

24(2r − 1)

(
π
(
1
2

)
r−1

20
√
6

) 1
2r−1

⎞
⎠

2

.

For r ≥ 1, we have
(
1
2

)
r
< r!. Using the estimate of r! as given by (3.59), we obtain

that for r ≥ 3,

−1

e
< −

√
46π

24(2r − 1)

(
π
(
1
2

)
r−1

20
√
6

) 1
2r−1

< 0.

Thus (4.11) has two real roots. Let m2 be the larger real root of equation (4.11).
Clearly, for sufficiently large x,

(4.13)

(
23

24

)r− 1
2 b1

2xr− 1
2

− 5 · 2r+ 1
2 e−

μ(x)
2 > 0.
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It follows that for n ≥ m2 + 1,

(4.14)

(
23

24

)r− 1
2 b1

2nr− 1
2

− 5 · 2r+ 1
2 e−

μ(n)
2 > 0.

Let

n(r) = max{50, 48r − 2,m1 + 1,m2 + 1}.
Combining (4.9) and (4.14), we conclude that for n ≥ n(r),

(4.15) (−1)r−1Δr log p(n) > 0.

This completes the proof. �
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