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Abstract

We report the results of a computer investigation of sets of mutually orthogonal
latin squares (MOLS) of small order. For n 6 9 we

1. Determine the number of orthogonal mates for each species of latin square of
order n.

2. Calculate the proportion of latin squares of order n that have an orthogonal mate,
and the expected number of mates when a square is chosen uniformly at random.

3. Classify all sets of MOLS of order n up to various different notions of equivalence.

We also provide a triple of latin squares of order 10 that is the closest to being a
set of MOLS so far found.

1 Introduction

A latin square of order n is an n×n matrix in which n distinct symbols are arranged so that
each symbol occurs once in each row and column. Two latin squares A = [aij ] and B = [bij ]
of order n are said to be orthogonal if the n2 ordered pairs (aij , bij) are distinct. A set of
MOLS (mutually orthogonal latin squares) is a set of latin squares in which each pair of latin
squares is orthogonal. The primary aim of this paper is a thorough computational study of
all sets of MOLS composed of latin squares of order at most 9.

We use k-MOLS(n) as shorthand for k MOLS of order n. If A and B are orthogonal
then B is an orthogonal mate of A, and vice versa. A latin square with no orthogonal mate
is called a bachelor square [33]. A set of k-maxMOLS(n) is a set of k-MOLS(n) that is
maximal in the sense that it is not contained in any set of (k + 1)-MOLS(n). The existence
problem for 1-maxMOLS(n) (i.e. bachelor latin squares) was solved in [11, 37]. For the most
recent progress on the existence of 2-maxMOLS(n), see [4]. For k > 2 our knowledge is quite
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patchy; see [3] for a summary. However, for 1 6 k < n 6 9, the question of whether or not
there exists a set of k-maxMOLS(n) is completely answered due to the collective works of
Drake [7], Jungnickel and Grams [15], and Drake and Myrvold [8]. In [3, p190] there is a
table of values of k for which k-maxMOLS(n) are known to exist for n 6 61, but missing
from it is the case (k, n) = (4, 9) due to [8].

A transversal in a latin square of order n is a selection of n distinct entries in which each
row, column and symbol has exactly one representative. A partition of a latin square of order
n into n disjoint transversals is called a 1-partition. A latin square has an orthogonal mate
if and only if it possesses a 1-partition [5, p155]. More generally, a p-plex is a selection of pn
distinct entries in which each row, column and symbol has exactly p representatives [35]. A
partition of a latin square into disjoint p-plexes is called a p-partition. We discuss algorithms
for finding p-plexes and p-partitions in Section 3.

For a latin square L of order n, we define θ = θ(L) to be the number of 1-partitions of L.
Put another way, θ(L) is the number of orthogonal mates of L that have their first row equal
to [1, 2, . . . , n]. The number of transversals in a latin square is well known to be a species
invariant and it follows from the same reasoning that θ(L) is also a species invariant. The
definition of species (also known as “main class”) will be given in Section 2.

The results in [10] include a classification of the species of orders up to 9 by whether or
not they possess an orthogonal mate (see [35] for an earlier table, giving similar data for
orders up to 8). In Section 5 we report data on the number of mates for all species of orders
up to 9. We then calculate the expected value of θ(L) for L selected uniformly at random
from the latin squares of order 9. For orders n 6 8 this information is available in [9].

A set of (n − 1)-MOLS(n) is also known as a complete set of MOLS and is equivalent
to an affine plane of order n [1]. In 1896, Moore showed that the maximum cardinality of
a set of MOLS of order n is n − 1, and that this upper bound is achieved if n is a prime
power [27]. The converse, whether (n − 1)-MOLS(n) exist only if n is a prime power, is a
prominent open problem. Further information and partial results can be found in [3, 5, 20].
We use the name planar latin square for any latin square that is a member of some set of
(n−1)-MOLS(n). We will refer to the species of planar latin squares of order 9 by the labels
a, b, . . . , k given to them by Owens and Preece [31]. In Section 6 we will investigate the role
that these squares play in forming sets of maxMOLS that are not complete.

For excellent general references on enumeration problems of the type we undertake, see
[16, 29]. For recent related work on enumerating mutually orthogonal latin cubes, see [18].

The outline of the paper is as follows. In Section 2 we define our basic terminology and
establish the different notions of equivalence that we want to use when counting MOLS. In
Section 3 we describe the basic algorithms that we used for counting MOLS, as well as pro-
viding the mathematical theory that underpins those algorithms. The case of 2-MOLS(9) is
the most difficult that we treat and it requires some special considerations that are described
in Section 4. In the process we give our first data from the computations, which is a classi-
fication of the 2-MOLS(9) according to how many symmetries they possess. In Section 5 we
provide data on how many orthogonal mates each latin square of order up to 9 possesses and
identify the squares with the most mates. We also calculate the probability that a random

2



latin square will have a mate and the expected number of mates. The main data is provided
in Section 6, where we provide counts of MOLS and maxMOLS classified according to the
many notions of equivalence defined in Section 2. We also provide information on many other
matters such as the number of disjoint common transversals, which species of latin squares
are most prevalent in the sets of MOLS, how many MOLS contain planar latin squares and
so on. In Section 7 we describe a number of ways in which we have crosschecked our data
in order to reduce the chances of errors. Finally, in Section 8 we give three latin squares of
order 10 that are closer to being a set of 3-MOLS(10) than any previously published.

There are numerous tables in this paper which report counts of different types of MOLS.
In every table we use the convention that a blank entry should be interpreted as zero, meaning
there are definitely no MOLS in that category.

2 Symmetries and notions of equivalence

The number of latin squares of order n grows rapidly as n grows and is only known [26, 14]
for n 6 11. Little is known about the number of sets of MOLS, although it is clear that
it too increases very quickly [6]. To cope with this “combinatorial explosion” it is vital to
use a notion of equivalence to classify the different possibilities. Several different notions of
equivalence are outlined in this section. We used the weakest notion (that is, the one that
considers the most things equivalent) in the first instance to compile a list of representatives
from equivalence classes. From these we can then infer the number of equivalence classes
using stronger notions of equivalence. With this strategy, the computational limit is the
MOLS of order 9.

Taking care in our enumeration, we will sometimes need to distinguish between sets of
MOLS and lists of MOLS (a list is an ordered set). The distinction will become important
shortly. The definitions below are intended to apply to any number of MOLS, including the
(arguably degenerate) case of MOLS that consist of a single latin square. In that case, of
course, sets and lists are the same thing.

To introduce our various notions of equivalence, it is useful to discuss a well-known
relationship between MOLS and orthogonal arrays. Let S be a set of cardinality s and let O
be an s2 × k array of symbols chosen from S. If, for any pair of columns of O, the ordered
pairs in S×S each occur exactly once among the rows in those chosen columns, then O is an
orthogonal array of strength 2 and index 1. We will omit further reference to the strength
and index, since we will not need orthogonal arrays with other values of these parameters.
See [3] for further details and background on orthogonal arrays.

A list L1, L2, . . . , Lk of MOLS of order n can be used to build an n2 × (k+2) orthogonal
array as follows. For each row r and column c of the latin squares there is one row of the
orthogonal array equal to

(r, c, L1[r, c], L2[r, c], . . . , Lk[r, c]) ,

where Li[r, c] is the symbol in row r, column c of the square Li. Moreover, the process is
reversible, so that any n2×(k+2) orthogonal array can be interpreted as a list of k MOLS of
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order n. In other words, orthogonal arrays correspond to lists of MOLS (the correspondence
is not one-to-one, but only because permuting the rows of the orthogonal array changes
the array but does not affect the MOLS). We will sometimes talk of an orthogonal array
representing a set of MOLS. In such cases we will mean that any order can be imposed on
the set to make it a list, and it makes no material difference which order is chosen.

We call two orthogonal arrays of the same dimensions equivalent if they are the same
up to permutation of the rows and columns of the array and permutations of the symbols
within each column of the array. We define two lists of MOLS to be paratopic if they define
equivalent orthogonal arrays in this sense.

Let Sn denote the symmetric group of degree n. Viewed another way, paratopism is an
action of the wreath product Sn ≀Sk+2 on lists of k-MOLS(n), where each copy of Sn permutes
the symbols in one of the columns of the corresponding orthogonal array, while Sk+2 permutes
the columns themselves. An orbit under paratopism is known as a species of MOLS. The
stabiliser of a list of MOLS M under paratopism will be called its autoparatopism group,
which we denote by par(M). We say that a group is trivial if it has order 1, and non-trivial

otherwise. Lists of MOLS that have trivial autoparatopism group are rigid, all other MOLS
will be called symmetric.

We call two lists of MOLS isotopic if they define the same orthogonal array, up to
permutation of the symbols within each column of the array and permutation of the rows
of the array. In latin squares terminology, we are allowing uniform permutation of rows
and columns of the squares as well as permutation of the symbols within each square. We
call two lists of MOLS trisotopic if they are isotopic, or if swapping the first two columns
of the orthogonal array for one of the lists makes it isotopic to the other. In latin squares
terminology, trisotopism is the same as isotopism except that we also allow the squares to
be transposed in the usual matrix sense.

Isotopism can be viewed as an action of the direct product of k + 2 copies of Sn on
lists of k-MOLS(n). The stabiliser of a list M of MOLS under isotopism is known as the
autotopism group of M , which is denoted atp(M). The orbit of M under isotopism is known
as its isotopism class – it is the set of all lists of MOLS that are isotopic to M . Similarly,
the trisotopism class of M is the set of all lists of MOLS that are trisotopic to M .

We call two sets of MOLS isotopic (respectively, trisotopic, paratopic) if there is any way
in which they can be ordered so that the resulting lists of MOLS are isotopic (respectively,
trisotopic, paratopic). Again, we define the isotopism class (respectively, trisotopism class,
species) of a set M of MOLS to be the set of all sets of MOLS that are isotopic (respectively,
trisotopic, paratopic) to M . We will frequently discuss species of MOLS without specifying
whether the MOLS are lists or sets. This is appropriate since species of lists of MOLS
correspond one-to-one to species of sets of MOLS, simply by “forgetting” the order of the
lists. Similar statements fail for isotopism classes and trisotopism classes – there are typically
more of these for lists of MOLS than for the corresponding sets of MOLS.

For complete sets/lists of MOLS there are also geometric notions of equivalence. We
define two complete sets/lists of MOLS to be PP-equivalent if they correspond to isomorphic
projective planes, and to be DPP-equivalent if the projective planes they define are, up to
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isomorphism, either equal or dual.
The strongest possible notion of equivalence for MOLS is equality, when considered as

lists or sets. A list of MOLS is reduced if all squares in the set have their first row in order
and the first square has its first column in order. A set of MOLS is reduced if an ordering
can be put on it to make it a reduced list of MOLS.

It should be clear from the definitions that equality is a refinement of isotopism equiva-
lence which in turn is a refinement of trisotopism equivalence which in turn is a refinement of
paratopism equivalence. For complete sets of MOLS, paratopism equivalence is a refinement
of PP-equivalence which is a refinement of DPP-equivalence. The relationship between pro-
jective planes, MOLS and different notions of equivalence was studied by Owens and Preece
[30, 31, 32]. Our enumerations confirm and extend a number of their results.

Some of our terminology follows the pioneers of the subject, such as Norton [28], who
used “species” in our sense for single latin squares and also for larger sets of MOLS. Another
term that we want to borrow from [28] is the notion of an aspect. An aspect of a list or
set of MOLS is obtained by selecting 3 columns of the corresponding orthogonal array, then
interpreting the result as a latin square. In our work we will only care about which species
each aspect is in, so we will talk of there being

(

k+2
3

)

aspects for a set or list of k MOLS. In
other words, aspects will be considered to be the same if they use the same 3 columns of the
orthogonal array, but in a different order.

The orthogonal array interpretation of a set of MOLS provides an easy mechanism for
converting any set of k-MOLS containing a particular latin square L into another set of
k-MOLS that contains L′, where L′ is any latin square in the same species as L. What is
not so obvious is that the conversion may change the species of some or all of the k − 1
latin squares in the sets of MOLS other than L. Variation of the species of latin squares
among paratopic sets of MOLS was observed by Owens and Preece [31, 32] in their study of
complete sets of MOLS of order 9 obtained from affine planes of order 9. See also [21] for an
explicit example. However, with that caveat, to enumerate species of MOLS it is sufficient
to start with a set of representatives of species of latin squares and find the sets of MOLS
that they are contained in. The details of how we did this will be discussed in Section 3.

Suppose that M is a set of k-MOLS(n) and O is the corresponding orthogonal array. A
common transversal for M is a selection of n of the rows of O in which no two rows share
the same symbol in any column. In other words, in the n × (k + 2) subarray of O formed
by the chosen rows, each column is a permutation of the n symbols in O. A particularly
important consideration is whether O can be partitioned into subarrays of this type. The
set M of k-MOLS(n) has a set of n disjoint common transversals if and only if M is a subset
of some set of (k + 1)-MOLS(n), in other words, it is not maximal.

We finish the section with an example that illustrates why we need to carefully distinguish
between sets and lists when enumerating MOLS. All calculations in this example will be in
Z5. Define Lx to be the latin square of order 5 whose entry in cell (i, j) is xi + j. It is
easy to see that L1, L2, L3 and L4 are mutually orthogonal. However, the list (L1, L4) is
isotopic to (L4, L1), by applying the permutation x 7→ 4x to the rows of both squares. In
contrast, (L1, L2) is not isotopic, as a list, to (L2, L1), even though the corresponding sets
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are clearly equal. Hence, the sets of MOLS {L1, L2} and {L1, L4} correspond to a total of
three different lists, up to isotopism. All three lists are in the same species.

This example illustrates an interesting point regarding autotopism groups. We have
been careful to define atp (and par) only for lists of MOLS, where the group actions that
we have described are well-defined. It is tempting to define autotopisms of sets of MOLS
by considering the autotopisms of a corresponding list of MOLS. If we do this in the above
example, the set {L1, L4} seems to have twice as many autotopisms as {L1, L2}, since there
are the autotopisms that preserve the list (L1, L4), as well as those that map L1 to L4 and
vice versa. This would mean that the number of autotopisms is not a species invariant for
sets of MOLS. In any case, we do not need a notion of an autotopism group for sets of MOLS
in this work.

3 Basic Algorithms

In this section we discuss the algorithms that we used for enumerating the MOLS of a given
order and testing them for equivalence. The first task was to obtain a set of species repre-
sentatives for the MOLS. Next we used these species representatives to count the isotopism
classes and trisotopism classes for sets and lists of MOLS. Lastly, we calculated the number
of reduced MOLS using two theorems that we prove at the end of this section. The tech-
niques described in this section were feasible in most cases. The case (k, n) = (2, 9) required
some additional considerations, which are described in Section 4.

We began with a set of species representatives for latin squares of order n. For n 6 8
these are available in many places, including [22]. For order 9 there are too many to store,
so we generated the species representatives “on the fly”, using a program written for [24].
Our first task reduces to the problem of finding a set of species representatives for sets of
(k+1)-MOLS(n) given a set of species representatives for sets of k-MOLS(n). This requires
us to find all possible 1-partitions of each k-MOLS(n) in turn. Except when (n, k+1) = (9, 2),
the resulting number of (k + 1)-MOLS(n) was small enough to screen for isomorphism, in a
way that we describe below, to select the required set of species representatives.

In [9] we conducted an exhaustive study of the indivisible partitions of latin squares of
orders 6 8. The algorithm used for finding partitions in that study included the special case
of 1-partitions. Since it is almost as simple to describe how to find p-partitions for a general
p, we describe this more general algorithm now.

The first step was to generate and store all of the p-plexes. This was possible for the
cases encountered in [9] and in the present work, but for most larger squares the number of
p-plexes would be too large to store. To generate all p-plexes we used a simple backtracking
algorithm, aided by bit-arithmetic. Given a list L1, . . . , Lk of k-MOLS(n) we first computed
an n × n array U of bitstrings. The entry in cell (r, c) of U was 2c +

∑k

i=1 2
in+Li[r,c], using

{0, . . . , n − 1} to index rows, columns and symbols. The backtracking worked row by row,
adding to our plex all allowable choices of p cells from a row. To keep track of what is
allowable, we maintained one bitstring for each i = 1, 2, . . . , p which recorded which symbols
from each latin square and/or columns were already represented i times in our plex. These
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bitstrings were updated using the matrix U . Each plex that was found was stored as a
bitstring of n2 bits saying which cells were included in the plex. This allowed rapid pairwise
comparison to see if two plexes were disjoint, or similarly, to check if one plex was a subset
of another. The latter question was vital when testing divisibility of plexes in [9], but is not
so important to us here.

In the process of generating the plexes, we also computed a look-up table T which
recorded, for each plex P and row r, the index of the plex T [P, r] which was the first
plex in the catalogue after P whose cells in row r were different (in at least one place) from
the ones used in P . This look-up table greatly sped up the second stage, which was the
finding of all p-partitions. Here again we used backtracking. We built each p-partition one
p-plex at a time. However, if we found that a particular plex P could not be added to our
partition, then we located the first row r in which P intersected with the plexes already
chosen, then skipped forward in the catalogue to T [P, r], the next plex that might have a
chance of being compatible. As an example, consider the process of choosing transversals
to make a 1-partition. We end up choosing the transversals in order of which cell they use
in the first row. Skipping forward using T is one way to ensure that we do not waste time
considering transversals that clash in the first row with a transversal that we have already
chosen. Note that if we are only interested in finding 1-partitions then we may enforce that
the ith transversal that we choose uses the ith cell in the first row. However, if we are looking
for the largest number of disjoint transversals then we may only assume that each transversal
that we choose uses a cell in the first row to the right of that used by the previous transversal.

With the above algorithm we were able to find all 1-partitions of a set of MOLS. In
particular, of course, if there are no 1-partitions then the MOLS are maximal. It is worth
making some comments on an alternative approach to finding 1-partitions. Finding all the
transversals in a latin square can be viewed as an instance of the exact cover problem
[16, 29]. Once the transversals have been generated and stored, finding all the 1-partitions is
another instance of exact cover. A solver for exact cover, called libexact, is available
at [17]. It uses what [16, p.149] describes as “an algorithm that lacks serious competitors”.
However, as often happens, we were able to beat the general purpose algorithm by exploiting
the particularities of our setting. We found that our algorithm was faster than libexact

by a factor of 2 for average latin squares of order 9, and faster by a factor of 7 for the
latin squares with the most orthogonal mates (the group tables). The time taken to find
the transversals was negligible compared to the time taken to find the 1-partitions. On a
standard desktop PC, our code took roughly 17 seconds to find the 12445836 mates for the
elementary abelian group of order 9, but could process over 1200 typical latin squares of
order 9 per second.

Next we discuss the issue of equivalence testing for MOLS. For this task we used nauty

[25] to canonically label our MOLS, which could then be compared pairwise to see if their
canonical forms were equal. This is a standard way to employ nauty, but we needed to
encode our MOLS as a graph so that nauty could be applied. This is easiest to describe by
considering the orthogonal array representation for the MOLS.

Suppose that we have an n2× k orthogonal array O corresponding to a list of MOLS M .
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We now define an undirected graph GO corresponding to O. The vertices of GO are of three
types. There are:

• k type 1 vertices that correspond to the columns of O,

• kn type 2 vertices that correspond to the symbols in each of the columns of O, and

• n2 type 3 vertices that correspond to the rows of O.

Each type 1 vertex is joined to the n type 2 vertices that correspond to the symbols in its
column. Each type 3 vertex is connected to the k type 2 vertices that correspond to the
symbols in its row. There are no more edges. Vertices are coloured according to their type
so that isomorphisms are not allowed to change the type of a vertex. It is now routine to
check the following key facts (that generalise observations from [24], which dealt with the
case k = 3):

• the automorphism group of GO is isomorphic to par(M).

• If GO′ is the graph corresponding to another orthogonal array O′ then GO is isomorphic
to GO′ if and only if O is paratopic to O′.

This shows how we tested paratopism (of sets or lists) of MOLS. Moreover, we can test the
other equivalence relations we need by altering the colouring of the type 1 vertices. Suppose
that the first two type 1 vertices correspond to the rows and columns of the latin squares
respectively. Then to test isotopism of lists of MOLS we give each type 1 vertex a different
colour. To test isotopism of sets of MOLS we give the first two type 1 vertices different
colours, then all remaining type 1 vertices are given a third colour. In both cases, trisotopism
is the same as isotopism except that the first two type 1 vertices get the same colour. Since
nauty looks only for colour preserving isomorphisms, this allowed us to test the different
notions of equivalence that we needed. We could simply take each species representative,
reorder the columns of their orthogonal array in all ways that might plausibly be inequivalent,
then test with nauty which ones were in fact inequivalent.

One other point bears mentioning, which is that nauty can be dramatically quickened by
use of vertex invariants [25]. We trialed several invariants of which the fastest was cellfano2,
which is one of the invariants that ships in the current distribution of nauty.

By using nauty as described above, we were able to compile catalogues of representa-
tives for species, trisotopism classes and isotopism classes of MOLS for all cases except when
(k, n) = (2, 9). We did not do any computations of PP or DPP equivalence, since classifica-
tion of sets of MOLS under those notions is well known [3] for orders up to and including
9. So it only remains to discuss how we counted reduced MOLS. For this we employed the
following theorems. In the next result, a class of MOLS should be interpreted as containing
both lists and sets of MOLS, with a list being a member of the class if and only if the
corresponding set is in the class.

Theorem 3.1. Suppose 1 6 k < n. Let M be any class of k-MOLS(n) that is closed under

isotopisms. Let RSM and RLM be the number of reduced sets and reduced lists, respectively,
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in M . Let ASM and ALM be the corresponding numbers of arbitrary (that is, not necessarily
reduced) sets and lists. These numbers are related by

(k − 1)!n!k(n− 1)! RSM = n!k(n− 1)! RLM = ALM = k! ASM .

Proof. Since orthogonal latin squares cannot be equal, the last equality is immediate. The
first equality is similar, given that any reduced set or list of MOLS contains a unique reduced
latin square.

To prove the middle inequality, we construct a bipartite multigraph where the two vertex
parts are, respectively, the reduced and arbitrary lists of k-MOLS(n). Let R be any reduced
list of k-MOLS(n). We add one edge from R for every isotopism, with the other end of the
edge being the list that results from applying the isotopism to R. Hence the degree of R will
be n!k+2, the number of possible isotopisms.

Now consider A, an arbitrary list of k-MOLS(n). The degree of A will be the number of
isotopisms that can be applied to A to produce a reduced list of MOLS. Such an isotopism
is determined by the permutation it applies to the columns of the squares in A, and which
row becomes the first row. Once these choices are made, there is a unique way to permute
the symbols in each square to get the first row in order and a unique way to permute the
remaining rows to get the first column of the first square in order. Hence there are n!n
possible choices, and each produces exactly one reduced list. In other words, the degree of
A is n!n. Thus our multigraph is bi-regular, so the sizes of the two vertex parts are in the
opposite ratio to the degrees of the vertices in those parts, yielding the claimed equality.

Theorem 3.1 deals with classes of k-MOLS(n) that are closed under isotopisms. An
important example is the class of all k-MOLS(n). In that case we will write RSk,n, RLk,n,
ALk,n, ASk,n instead of RSM , RLM , ALM , ASM , respectively.

Theorem 3.2. Suppose 1 6 k < n. Let O be a set of sets of k-MOLS(n) such that no two

elements of O are paratopic. The number of reduced sets of k-MOLS(n) that are paratopic

to some member of O is

n!n(k + 2)(k + 1)k
∑

M∈O

1

| par(M)|
.

Proof. It suffices to prove the case when O contains a single set M of k-MOLS(n). Let A
be an orthogonal array representation of M . By the Orbit-Stabiliser Theorem, the number
of orthogonal arrays equivalent to A is

|Sn ≀ Sk+2|

| par(M)|
=

n!k+2(k + 2)!

| par(M)|
. (1)

The number of reduced sets of k-MOLS(n) paratopic to M is obtained by dividing (1) by
n!k(n− 1)!(k − 1)!, by Theorem 3.1.

In particular, Theorem 3.2 can be used to find RSk,n from a set of species representatives
for sets of k-MOLS(n), using nauty to find | par(M)| for each representative M . We can
then employ Theorem 3.1 to find RLk,n, ALk,n and ASk,n.
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4 Pairs of MOLS of order 9

In this section we explain the most difficult part of our computations, namely finding the
number of pairs of MOLS of order 9 modulo each of the equivalences defined in Section 2.
Throughout this section, MOLS will mean an ordered pair (list) of reduced MOLS, and all
latin squares will have order 9.

Each pair of MOLS has exactly four aspects. We use the notation P [i] to denote the
aspect that results from deleting the ith column of the orthogonal array corresponding to a
pair P of MOLS.

Unsurprisingly, symmetry plays a crucial role in our counting. For this reason, one task
was to find sets Γ1 and Γ2 of species representatives for the symmetric latin squares and
symmetric MOLS, respectively (we stress that symmetric is used throughout in the sense
defined in Section 2, not in the usual matrix sense). The authors of [24] collated Γ1, which
contains 2523159 latin squares. We will explain below how we found Γ2, and then analysed
it to deduce data on the rigid MOLS from the overall totals.

Let Λ be a set of species representatives of reduced latin squares of order 9. Let Ω be
the set of all pairs (A,B) of reduced MOLS for which A ∈ Λ. Using the method discussed
in Section 3, we generated Ω and found that

|Ω| =
∑

A∈Λ

θ(A) = 390255632. (2)

We did not store all of Ω but kept statistics from the generation as well as a list (which
will be defined shortly) of candidates for members of Γ2. In any MOLS with a non-trivial
autotopism group both latin squares have a non-trivial autotopism group and hence are
paratopic to a member of Γ1. Such MOLS are relatively easy to generate directly from Γ1.
Hence, while generating Ω, we only needed to find all MOLS that have an autoparatopism
that is not an autotopism. Such MOLS necessarily have two paratopic aspects. Rather than
the relatively time-consuming task of calculating the autoparatopism group of each set of
MOLS in Ω we computed two species invariants for each aspect. First we calculated the
number of intercalates, and if that did not discriminate between the aspects, we counted
the number of transversals. If any two of the four aspects agreed on both statistics then
we stored the MOLS as a candidate for being in Γ2. These candidates, together with the
25382851 MOLS (A,B) for which A ∈ Γ1, were subsequently screened to produce Γ2. As
it turned out, |Γ2| = 257442. A by-product of our method for finding Γ2 is that we were
also able to identify MOLS with two paratopic aspects even if there was no symmetry that
mapped one to the other. Data on this issue will be presented in Table 15.

We next consider how many times a given species of MOLS will appear in Ω.

Lemma 4.1. The number of MOLS in Ω that are paratopic to a given pair P is

1

| par(P )|

4
∑

i=1

∣

∣ par(P [i])
∣

∣.
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| par(A)| #Species #Pairs #Symmetric χ
1 19268330382 364872781 70240 364802541
2 2497877 2620967 654163 983402
3 15618 77434 42211 11741
4 6890 923949 166421 189382
5 12
6 2237 1010064 65304 157460
7 5 7 1
8 151 149780 47940 12730
9 10 677 434 27
10 21
12 196 1807096 122512 140382
14 1
16 10 25392 8224 1073
18 43 93779 12923 4492
20 3
21 4
24 28 555467 74291 20049
30 4
32 1 284 124 5
36 23 685034 79838 16811
48 1 197 149 1
54 2 187657 16693 3166
60 1
72 6 541584 105192 6061
96 2 14568 10152 46
108 4 260888 27392 2162
162 1 3124 2314 5
168 1 84 84
216 2 544264 105136 2033
324 1 139968 81972 179
432 1 4171 3739 1
972 1 1241361 225621 1045
2916 1 2049219 375435 574
23328 1 12445836 4071084 359

Total 19270853541 390255632 6369588 366355728

Table 1: Data for counting pairs (A,B) of MOLS(9)
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Proof. Let G denote the paratopism group Sn ≀S4 and let H = Sn ≀ (S3×S1) be the subgroup
of G that preserves the species of P [4], the first square in the pair P . For g ∈ G, let P g

denote the image of P under the action of g and let PG denote the orbit of P under the
action of G. The quantity we seek is |Ω ∩ PG|. From the action of H we see that each
choice of A from a species of latin squares has the same number of choices for B for which
(A,B) ∈ PG. Hence

∣

∣Ω ∩ PG
∣

∣ =
∣

∣{(A,B) ∈ PG : A ∈ Λ}
∣

∣ =
∑

(A,B)∈PG

1

|(A,B)H|
=

∑

(A,B)∈PG

| par(A)|

|H|
,

by the Orbit-Stabiliser Theorem. Now

∑

(A,B)∈PG

| par(A)| =
∑

g∈G

| par(P g[4])|

| par(P )|
=

4
∑

i=1

|H|| par(P g[i])|

| par(P )|
,

from which the result follows.

Table 1 shows some of the data that was used to calculate the number of pairs of MOLS of
order 9. In it, MOLS are classified according to g = | par(A)|, the order of the autoparatopism
group of the first latin square in the pair. The value of g is listed in the first column. The
second column counts how many species of latin squares have autoparatopism group of size
g (this data was first calculated in [24]). The third column records the number of MOLS,
in other words,

∑

θ(A) over all A ∈ Λ with | par(A)| = g. The value for g = 1 was deduced
from (2) and the values for larger g. The fourth column lists how many symmetric MOLS
were counted in the third column. This information was obtained by applying Lemma 4.1
to Γ2. The last column of Table 1 is headed χ. It is calculated by subtracting the fourth
column from the third column, then dividing by g (the first column). By Lemma 4.1, the
total χ, namely 366355728, is four times the number of rigid MOLS, which must therefore
be 91588932. Together with the |Γ2| = 257442 species of symmetric MOLS, this shows that
there are a total of 91846374 species of 2-MOLS(9).

Table 2 shows the 91846374 species of MOLS categorised by the sizes of their au-
toparatopism group and autotopism group (| par | and | atp |, respectively). For each combi-
nation of these group sizes, the table lists the total number of species with groups of those
sizes and also the number of species of non-maximal MOLS. There are only 433 species of
non-maximal MOLS. These were identified by screening Ω as it was produced, with all non-
maximal MOLS that we encountered then being stored in a separate file for later analysis,
including construction of all larger sets of MOLS. We stress that the values of | par | and
| atp | given in Table 2 are for lists rather than sets of MOLS (cf. the example at the end of
Section 2).

5 The number of orthogonal mates

In this section we provide data on the number of orthogonal mates for latin squares of order
up to and including 9. Data on the number of species of bachelor latin squares of order
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| par | | atp | all non-max
1 1 91588932 3
2 1 72273 12
2 2 156009 18
3 1 1859 3
3 3 17346 40
4 1 25 1
4 2 4923 32
4 4 411 1
6 1 302 7
6 2 275
6 3 1522 28
6 6 1074 90
8 1 2 2
8 2 111 10
8 4 123 3
8 8 1
9 3 103 3
9 9 256 18
12 2 51 4
12 3 1 1
12 4 6
12 6 228 32
12 12 4
16 2 9 2
16 4 37
16 8 5 2
18 3 75 6
18 6 43 6
18 9 101 18
18 18 50 24
24 1 1 1
24 6 10 1
24 12 6
27 27 12
32 4 4 1
32 8 4 3
36 6 27 6

| par | | atp | all non-max
36 12 2
36 18 40 15
48 2 3 2
48 4 1
48 6 7
48 8 3 2
48 12 1
54 9 19 2
54 27 15 1
54 54 2 1
64 8 4 1
72 12 1
72 18 7 7
72 36 1 1
81 27 2
96 12 2
108 18 9 1
108 54 7 3
144 36 1 1
162 27 4 3
162 54 1
162 162 1
216 36 1
216 54 3 2
288 48 1 1
324 54 1
384 48 1 1
432 54 1 1
432 72 2 2
486 81 1
3888 486 1
576 72 1 1
972 162 4 4
5184 648 1 1
11664 486 1 1
93312 3888 1 1

Total 91846374 433

Table 2: Species of 2-MOLS(9) categorised by symmetry
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order Proportion of species
that have a mate

Probability of a random
latin square having a mate

Expected number
of mates

3 1 1 1
4 1

2
1
4

1
2

5 1
2

3
28

≈ 0.107143 9
28

≈ 0.321429

6 0 0 0

7 6
147

≈ 0.040816 5891
564736

≈ 0.010431 1427
70592

≈ 0.020215

8 2024
283657

≈ 0.007135 103065585
22303391744

≈ 0.004621 40888485
2787923968

≈ 0.014666

9 348498052
19270853541

≈ 0.018084 23706924145915
1311102676959232

≈ 0.018082 24960190907155
1311102676959232

≈ 0.019038

Table 3: Data for random latin squares of order 3 6 n 6 9

r 7 8 9
0 1 1223 336634416
1 3 329 11654552
2 175 123054
3 1 90 38700
4 67 20131
5 49 10913
6 31 7672
7 17 4552
8 15 2141
9 1 7 902
10 4 341

r 7 8 9
11 6 379
12 5 217
13 1 30
14 3 6
15 1
16 1 31
17 10
18 2
20 2
23 1

Total 6 2024 348498052

Table 4: Non-bachelor species of order 7 6 n 6 9 grouped by r = ⌊log2(θ)⌋

n 6 9 was first published in [10]. Here we calculate the probability of a uniformly random
latin square having an orthogonal mate, and the expected number of mates. This is a simple
calculation where each species is weighted by the number of latin squares in that species in
order to calculate statistics across the whole set of latin squares of a given order. The results
are given in Table 3. It is noteworthy that in [24] it is estimated that around 60% of latin
squares of order 10 have mates and the expected number of mates in a random latin square
of order 10 exceeds 1. The values for orders in the range 5 6 n 6 9 are clearly a lot smaller
than this.

The only latin squares of order less than 7 that have orthogonal mates are isotopic to
the cyclic group of order 3 (which has 1 mate), the elementary abelian group of order 4 (2
mates) or the cyclic group of order 5 (3 mates). Hence for the remainder of this section we
concentrate on the range 7 6 n 6 9.

For the latin squares of order 7 6 n 6 9 that have θ > 0 mates, we provide a summary
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of the number of mates in Table 4. Since θ takes many different values for these squares
and the distribution is distinctly skewed towards smaller values, we have grouped the counts
according to the value of r = ⌊log2(θ)⌋. In other words, for each r the table reports the
number of different species for which the number of mates lies in the interval [2r, 2r+1).

It is not surprising that the latin squares with the most orthogonal mates tend to have nice
algebraic structure. The two species of order 9 with the most mates contain the elementary
abelian group (12445836 mates) and the cyclic group (2049219 mates). The species with the
third highest number of mates (1241361) contains the 3 non-associative conjugacy-closed
loops of order 9 (see [19] for a definition of these loops). Below that, the sequence of the
number of mates continues 403056, 277788, 253276, 242832, 237786, 226822, 207297,. . . .
There are 74 species with at least 10000 mates and every one of them has a non-trivial
autotopism group and at least 4 subsquares of order 3. The species with the largest number
of mates and a trivial autotopism group (in fact, it is rigid) has 8226 mates, 6 subsquares of
order 3 and 371 transversals. A representative of this species is





























0 1 2 3 4 5 6 7 8
1 2 0 4 5 3 7 8 6
2 0 1 5 3 4 8 6 7
5 8 3 2 7 6 0 1 4
6 4 7 8 1 0 5 3 2
8 7 6 1 0 2 3 4 5
4 3 5 6 8 7 2 0 1
7 6 8 0 2 1 4 5 3
3 5 4 7 6 8 1 2 0





























,

where shading indicates the subsquares of order 3 other than those formed by the first 3
rows. Among the species with no subsquares of order 3, the one with the most mates (4171)
is the planar species d, which has 72 subsquares of order 2, the maximum possible number
[23].

For order 8 the species with the three highest numbers of mates contain the elementary
abelian group (70272 mates), dihedral group (33408 mates) and quaternion group (32256
mates), respectively. In fourth place, with 23232 mates, is a species containing a loop that
is nearly a group in the sense that it has a large nucleus (isomorphic to the Klein 4-group).
The species of the group Z4 × Z2 is in fifth place (23040 mates). The top five places are
occupied by the only latin squares with 384 transversals, which is the most that any latin
square of order 8 has. The next highest number of mates is 12048. The cyclic group, of
course, has no transversals and hence no mates.

For order 7 the species with the highest numbers of mates contain the cyclic group (133
transversals, 63 mates), the Steiner quasigroup (63 transversals, 8 mates) and the pan-
hamiltonian latin square that is not atomic (25 transversals, 3 mates) (see A7 in [34]).
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n k Equality Isotopism Trisotopism Paratopism PP DPP
2 1 1 1 1 1 1 1

3 2 1 1 1 1 1 1

4 1 3 1 1 1
4 3 1 1 1 1 1 1

5 1 50 1 1 1
5 4 6 1 1 1 1 1

6 1 9408 22 17 12

7 1 16765350 549 314 141
7 2 341880 17 11 5
7 6 120 1 1 1 1 1

8 1 532807827816 1665394 836595 281633
8 2 7832534400 23005 11704 2127
8 3 14923440 221 147 38
8 7 240 1 1 1 1 1

9 1 370769976810235296 113527931950 56764991345 18922355489
9 2 7188529229970480 1101731294 550905816 91845941
9 3 7648799760 2943 1578 232
9 4 665884800 371 203 22
9 5 222499200 318 200 36
9 8 7728840 19 15 7 4 3

Table 5: Number of reduced sets of k-maxMOLS(n)

6 Number of sets of MOLS and maxMOLS

For 1 6 k < n 6 9, Table 5 gives the number of reduced sets of k-maxMOLS(n) modulo each
of the different notions of equivalence defined in Section 2. The column headed “Equality”
gives the total number of reduced sets of k-maxMOLS(n), in other words, RSk,n. These
numbers were calculated from a list of species representatives using Theorem 3.2. The
number of (not necessarily reduced) sets of k-maxMOLS(n) can be found from RSk,n using
Theorem 3.1, as can the number of lists of k-maxMOLS(n) (reduced or otherwise).

Table 6 gives, for each 1 6 k < n 6 9, the number of non-equivalent reduced sets of
k-MOLS(n) under each of the different notions of equivalence defined in Section 2. We stress
that the difference between Table 5 and Table 6 is that the former counts only maximal sets,
while the latter also includes sets that are not maximal. Following those tables, we give
Table 7 and Table 8 which provide the same information, except for lists of MOLS rather
than sets of MOLS. In Tables 5 to 8, the stipulation that the MOLS should be reduced only
affects the counts in the column headed “Equality”. Every isotopism class contains reduced
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n k Equality Isotopism Trisotopism Paratopism PP DPP
2 1 1 1 1 1 1 1

3 1 1 1 1 1
3 2 1 1 1 1 1 1

4 1 4 2 2 2
4 2 2 1 1 1
4 3 1 1 1 1 1 1

5 1 56 2 2 2
5 2 18 2 2 1
5 3 18 1 1 1
5 4 6 1 1 1 1 1

6 1 9408 22 17 12

7 1 16942080 564 324 147
7 2 342480 20 14 7
7 3 1200 4 3 1
7 4 1200 3 3 1
7 5 600 1 1 1
7 6 120 1 1 1 1 1

8 1 535281401856 1676267 842227 283657
8 2 7850589120 23362 11887 2165
8 3 14927040 224 149 39
8 4 4800 3 2 1
8 5 3600 1 1 1
8 6 1440 1 1 1
8 7 240 1 1 1 1 1

9 1 377597570964258816 115618721533 57810418543 19270853541
9 2 7188534981260640 1101734942 550907773 91846374
9 3 9338177520 4428 2408 371
9 4 1526884800 1096 642 96
9 5 493008600 454 293 56
9 6 162305640 82 62 15
9 7 54101880 38 29 11
9 8 7728840 19 15 7 4 3

Table 6: Number of reduced sets of k-MOLS(n)
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n k Equality Isotopism Trisotopism Paratopism PP DPP
2 1 1 1 1 1 1 1

3 2 1 1 1 1 1 1

4 1 3 1 1 1
4 3 2 1 1 1 1 1

5 1 50 1 1 1
5 4 36 6 3 1 1 1

6 1 9408 22 17 12

7 1 16765350 549 314 141
7 2 341880 29 17 5
7 6 14400 120 60 1 1 1

8 1 532807827816 1665394 836595 281633
8 2 7832534400 45222 23005 2127
8 3 29846880 1217 616 38
8 7 172800 240 120 1 1 1

9 1 370769976810235296 113527931950 56764991345 18922355489
9 2 7188529229970480 2203304036 1101731294 91845941
9 3 15297599520 15963 8228 232
9 4 3995308800 8150 4111 22
9 5 5339980800 18060 9030 36
9 8 38953353600 56700 28350 7 4 3

Table 7: Number of reduced lists of k-maxMOLS(n)

MOLS so counting reduced MOLS up to isotopism is the same as counting isotopism classes.
Similar statements apply to trisotopism classes and species.

For the remainder of this discussion we count all MOLS by species. Hedayat, Parker
and Federer [12] showed how sets of disjoint common transversals of a set of MOLS can be
used to design successive experiments. In Table 9, the 5 sets of 2-maxMOLS(7) are classified
according to their number of common transversals and maximum number of disjoint common
transversals. We present similar tables for the 2127 sets of 2-maxMOLS(8) (Table 10), the
232 sets of 3-maxMOLS(9) (Table 11) and the 22 sets of 4-maxMOLS(9) (Table 12). We do
not provide tables for the 38 sets of 3-maxMOLS(8) or the 36 sets of 5-maxMOLS(9), each
of which has no common transversal. We also do not provide a table for the 91845941 sets
of 2-maxMOLS(9), since we did not collect data on their common transversals. However,
in Table 13 we do summarise the symmetric 2-maxMOLS(9) according to their common
transversals.

Our next aim is to examine how prevalent planar species of latin squares are in MOLS.
We say that a latin square L is involved in MOLS M if at least one aspect of M is paratopic
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n k Equality Isotopism Trisotopism Paratopism PP DPP
2 1 1 1 1 1 1 1

3 1 1 1 1 1
3 2 1 1 1 1 1 1

4 1 4 2 2 2
4 2 2 1 1 1
4 3 2 1 1 1 1 1

5 1 56 2 2 2
5 2 18 3 2 1
5 3 36 6 3 1
5 4 36 6 3 1 1 1

6 1 9408 22 17 12

7 1 16942080 564 324 147
7 2 342480 34 20 7
7 3 2400 20 10 1
7 4 7200 60 30 1
7 5 14400 120 60 1
7 6 14400 120 60 1 1 1

8 1 535281401856 1676267 842227 283657
8 2 7850589120 45927 23362 2165
8 3 29854080 1227 621 39
8 4 28800 40 20 1
8 5 86400 120 60 1
8 6 172800 240 120 1
8 7 172800 240 120 1 1 1

9 1 377597570964258816 115618721533 57810418543 19270853541
9 2 7188534981260640 2203310919 1101734942 91846374
9 3 18676355040 23677 12264 371
9 4 9161308800 21705 10944 96
9 5 11832206400 27510 13800 56
9 6 19476676800 28350 14220 15
9 7 38953353600 56700 28350 11
9 8 38953353600 56700 28350 7 4 3

Table 8: Number of reduced lists of k-MOLS(n)
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#Common #Disjoint
transversals 0 1 Total

0 1 1
1 1 1
2 1 1
4 2 2

Total 1 4 5

Table 9: 2-maxMOLS(7) according to their common transversals

#Common #Disjoint
transversals 0 1 2 4 Total

0 1980 1980
1 23 23
2 10 60 70
3 1 1
4 16 26 42
8 1 7 8
12 1 1 2
19 1 1

Total 1980 34 79 34 2127

Table 10: 2-maxMOLS(8) according to their common transversals

to L. We say that a set of MOLS has type P (respectively N) if every latin square in the set
of MOLS is planar (respectively, non-planar). A set of MOLS is of type M (for mixed) if it
is neither of type P or N. In Table 14 we classify the species of k-maxMOLS(9) according to
which types of MOLS they contain. Types of MOLS that are not listed are assumed to be
not present. So, for example, the column headed “PM” counts species of MOLS that contain
at least one set of MOLS of type P, at least one set of MOLS of type M, and no sets of MOLS
of type N. It is worth remarking that there are no columns headed “M” or “PN” because no
k-maxMOLS(9) fell in those categories. There seems to be no obvious reason why “M” is
impossible, but we now describe an obstacle that prevents “PN” occurring. Suppose that we
have an n2×k orthogonal array O. Let Oij be the set of MOLS obtained by taking column i
of O to index the rows of our MOLS, and column j of O to index the columns of our MOLS.
Suppose that O12 is of type P and Oab is of type N, for some 1 6 a < b 6 k. Then O1b is of
type M since it contains one latin square paratopic to an element of O12 and another latin
square paratopic to an element of Oab.

Clearly, each of the 7 species of 8-maxMOLS(9) involve only planar latin squares. Planar
latin squares are also involved in many of the k-maxMOLS(9) for k ∈ {3, 4, 5}. In particular,
we can see from Table 14 that all 36 species of 5-maxMOLS(9) involve at least one planar latin
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#Common #Disjoint
transversals 0 1 3 5 Total

0 188 188
1 8 8
2 5 5
3 7 5 12
4 6 6
5 6 1 7
6 3 3
10 1 1
11 1 1
12 1 1

Total 188 33 10 1 232

Table 11: 3-maxMOLS(9) according to their common transversals

#Common #Disjoint
transversals 0 3 Total

0 21 21
6 1 1

Total 21 1 22

Table 12: 4-maxMOLS(9) according to their common transversals

square and seven of them involve only planar latin squares. All 22 species of 4-maxMOLS(9)
involve at least one planar latin square and at least one non-planar latin square. There are
three species of 3-maxMOLS(9) for which there is only one species of latin square involved;
in one case the sole species is the planar species e, in the other two cases the species is not
planar. There is one species of 5-maxMOLS(9) that involves only one species of latin square
(namely, the planar species a, the elementary abelian group). All other 5-maxMOLS(9)
involve at least two distinct planar species and between 3 and 9 (inclusive) species of latin
squares in total.

We next consider the possibility that a latin square L may be in a set of θ(L)+1 MOLS.
In other words, the set of all orthogonal mates for L itself forms a set of MOLS. This is
automatically true if θ(L) = 1 but we would expect it to be rare for larger values of θ. For
order 9 we have the following data:

• There are exactly 11222874 species of order 9 that possess exactly two mates. Of these,
27 species appear in a set of 3-maxMOLS(9).

• Of the 431678 species with θ = 3, none occur in a set of 4-maxMOLS(9).

• Of the 74741 species with θ = 4, precisely one species is in a set of 5-maxMOLS(9). A
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#Common #Disjoint
transversals 0 1 2 3 4 5 6 7 Total

0 183793 183793
1 14079 14079
2 32580 1244 33824
3–4 8051 3672 1605 9 13337
5–8 2397 3128 1756 74 47 22 1 7425
9–16 483 1023 1328 253 69 67 6 3229
17–32 140 210 457 157 79 75 2 1120
33–60 13 20 97 13 2 9 2 156
66–120 20 3 21 2 1 1 48
216 1 1
Total 183793 57763 9300 5265 508 198 173 12 257012

Table 13: Symmetric 2-maxMOLS(9) according to their common transversals

k P N PM NM PNM Total
1 18922355489 18922355489
2 3 91835638 6 10224 70 91845941
3 1 39 3 186 3 232
4 3 4 15 22
5 7 19 6 4 36
8 7 7

Table 14: Species of k-maxMOLS(9) classified by planarity type

representative of that species is




























0 1 2 3 4 5 6 7 8
1 2 0 7 5 4 8 3 6
2 0 1 6 8 7 3 4 5
3 8 6 4 0 1 2 5 7
4 5 7 0 3 8 1 6 2
5 4 8 1 7 6 0 2 3
6 7 3 2 1 0 5 8 4
7 6 5 8 2 3 4 0 1
8 3 4 5 6 2 7 1 0





























.

It has 242 transversals, 3 subsquares of order 3 (all including the entry in the top left
corner) and an autoparatopism group of order 4.

A set of k-maxMOLS(n) has
(

k+2
3

)

different aspects that may potentially belong to dif-
ferent species. In Table 15 we show, for 2 6 k < n 6 9, how many different species of latin
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n 3 4 5 7 8 9
#LS k 2 3 4 2 6 2 3 7 2 3 4 5 8
1 1 1 1 2 1 4 1 1 116 3 1 2
2 2 82 6 5953 10 1 2
3 1 512 13 100971 22 1 12 2
4 1529 16 91738901 44 5 12
5 2 30 5 8 1
6 62 5 1
7 38 1 1
8 18 2
9 1 2 1
10 4

Total 1 1 1 5 1 2127 38 1 91845941 232 22 36 7

Table 15: Number of species of LS involved in the species of k-maxMOLS(n)

squares are involved in each species of k-maxMOLS(n). The number, say s, of species of
latin squares is listed in the first column of Table 15, while other columns list the number of
species of k-maxMOLS(n) which involve exactly s different species of latin squares. It seems
from the table that it is fairly common for pairs of MOLS to have aspects in 4 different
species. However, for k > 2 the theoretical bound of

(

k+2
3

)

different species is rarely attained
among the cases covered by Table 15.

In Table 16 we record statistics on a selection of species of order 9. The species
{a, b, . . . , k} are the planar species according to their alphabetic label given in [32]. The other
two species referred to in Table 16 are the species of the Cayley table of Z9 and a species
we call T , which occurs with high frequency among k-maxMOLS(9) for k ∈ {3, 4, 5}. Each
square in species T has 18 subsquares of order 3 (and none of order 2). A representative of
T is





























0 1 2 3 4 5 6 7 8
1 2 0 4 5 3 7 8 6
2 0 1 5 3 4 8 6 7
3 5 4 6 7 8 0 2 1
4 3 5 7 8 6 1 0 2
5 4 3 8 6 7 2 1 0
6 8 7 0 2 1 3 4 5
7 6 8 1 0 2 4 5 3
8 7 6 2 1 0 5 3 4





























When considered as a loop, it has the antiautomorphic inverse property. This means that it
satisfies the law (xy)⋆ = y⋆x⋆, for all x and y, where ⋆ denotes the left inverse. In Table 16
we give the number of transversals for each species. Next we give the value of α, which is
the smallest number of transversals in a maximal set of disjoint transversals (see [10]). After
that, we give θ, the number of orthogonal mates. The remaining columns count how many
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Species Transversals α θ k = 2 k = 3 k = 4 k = 5 k = 8
a 2241 5 12445836 935 69 16 34 5
b 417 4 11448 265 1 2
c 489 4 197 9 3 1 1
d 801 4 4171 20 9 1 7 2
e 553 4 3120 87 9 1
f 405 3 8928 200 69 7 22 1
g 1620 4 1241361 1816 94 18 30 1
h 861 4 242832 4248 9 2 1 1
i 351 4 2886 424 1 1 1
j 369 4 59 12 1 1 1
k 855 4 403056 2335 2 1 2 1

non-planar:
Z9 2025 5 2049219 932 6 5 6
T 819 4 141208 863 77 16 20

Table 16: Statistics on selected species of order 9 including the number of species of
k-maxMOLS(9) in which they occur

species of k-maxMOLS(9) include the given species of latin square.
An interesting feature of Table 16 is that planar species a has an order of magnitude

more mates than any other latin square, but is a long way from being involved in the most
species of 2-maxMOLS(9). In fact that honour does not go to any of the species covered in
the table, but rather to the species represented by





























0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 0
2 0 1 5 3 7 8 6 4
3 4 8 6 7 2 0 1 5
4 8 0 7 2 3 1 5 6
5 6 4 8 0 1 2 3 7
6 7 5 0 1 8 3 4 2
7 5 6 1 8 0 4 2 3
8 3 7 2 6 4 5 0 1





























.

This square has 755 transversals and an autoparatopism group of order 2. It has 121330
mates and is in 58296 different species of 2-MOLS(9), all of them maximal.

7 Crosschecking

Any computation runs the risk of errors, with the risk increasing with the length and complex-
ity of the computation. The following precautions and crosschecks have been implemented
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to try to minimise the risk of errors affecting our results.

• Data in all of the tables was computed at least twice. There was some common code
used, most notably the generator of species representatives from [24] and the code
for screening MOLS for isomorphism. Both of these programs have been previously
used for multiple tasks, reducing the likelihood that bugs would have been undetected.
With the caveat that this code was common, the main computations were performed
independently. For example, both authors found their own versions of the set Γ2, which
were then compared to check that each set contained the same species of MOLS.

• After we generated our catalogues, Brendan McKay kindly gave us code he had written
for canonically labelling MOLS and calculating their autoparatopism and autotopism
groups. With this code we were able to verify that MOLS in our catalogues of represen-
tatives really were from distinct species or isotopism classes, as appropriate. We also
checked that our code agreed with his on all group sizes, including those in Table 2.

• We found k-maxMOLS(n) exist exactly when the prior literature (see Section 1) said
they should.

• The number of species of 2-MOLS(n) had previously been computed by Brendan
McKay [22] for n 6 8. His results agree with ours in Table 6 and Table 8.

• Norton [28] manually enumerated lists of MOLS of order 7. His enumeration of species
of latin squares of order 7 was incomplete, but the single species that he missed contains
bachelor latin squares, so this did not affect his results on MOLS. His values for the
number of species, isotopism classes and reduced latin squares agree with ours in
Table 8 for 2 6 k < 7 = n. He also calculated that AL2,7 = 6263668776960000, which
agrees with the value given by Theorem 3.1 from our value of RL2,7.

• A number of our computations confirm results obtained by Owens and Preece for sets
of 8-MOLS(9). It was reported in [31] that there are 19 isotopism classes (in 7 species)
of sets of 8-MOLS(9). This agrees with our results in the final line of Table 5 and
Table 6. Also, the last column of Table 15 tallies with [32, Table 4].

• The total of the χ column in Table 1 evaluated to a multiple of four, as it should. If
that total had been corrupted by one or more errors, it is quite likely that the result
would not be divisible by 4.

• For each n, the number of isotopism classes of sets of 2-MOLS(n) equals the number
of trisotopism classes of lists of 2-MOLS(n). A similar equality holds if attention
is restricted to 2-maxMOLS(n). Thus there are several cases of equinumerous objects
being counted in Tables 5 to 8. The reason can be seen by considering the corresponding
orthogonal arrays and which operations result in equivalence. For isotopism of sets
we allow the last two columns of the orthogonal array to be exchanged, whereas for
trisotopism of lists we allow the first two columns to be exchanged. In other respects
the two cases are identical. Hence, reversing the order of the columns of the orthogonal
arrays provides a bijection between the objects that we claimed are equinumerous.
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• Hicks et al. [13] show that there are exactly (pd−2)!/d reduced sets of (pd−1)-MOLS(pd)
that define the Desarguesian projective plane of order pd. Our computations agreed
for pd 6 9.

• The method outlined in Section 4 for counting the pairs of MOLS of order 9 was
replicated for order 8 and agreed with the results of our more direct computations.
Smaller orders do not provide useful test cases, since there are no rigid MOLS of order
n 6 7.

Data from our enumerations is available online at [36], including species representatives
for the MOLS that we generated.

8 Order 10

For orders 10 and higher there are simply too many latin squares to attempt the sorts of
comprehensive enumerations of the sort undertaken in the previous sections. However, given
the tremendous interest in the existence or otherwise of a triple of MOLS of order 10 (see
[24] and the references therein), we did use our programs to investigate the latin squares
with autoparatopism groups of order at least 3. A catalogue of these squares was produced
by the authors of [24]. It was already established in [24] that none of these squares is in
any triple of MOLS. However, some of them come much closer than any previously known
examples, as we discovered. Consider the following three squares

A =

































0 8 9 7 5 6 4 2 3 1
9 1 4 6 2 7 3 8 0 5
7 4 2 5 1 3 8 6 9 0
8 6 5 3 9 2 1 0 4 7
6 2 1 8 4 0 9 5 7 3
4 9 3 2 7 5 0 1 6 8
5 3 7 1 0 8 6 9 2 4
3 5 0 9 8 4 2 7 1 6
1 7 6 0 3 9 5 4 8 2
2 0 8 4 6 1 7 3 5 9

































, B =

































0 7 8 9 1 2 3 4 5 6
9 0 6 1 8 3 2 5 4 7
7 2 0 4 3 9 1 8 6 5
8 5 3 0 2 1 7 6 9 4
6 9 5 3 0 7 4 2 1 8
4 1 7 6 5 0 8 9 3 2
5 4 2 8 9 6 0 3 7 1
3 6 1 7 4 8 5 0 2 9
1 8 4 2 6 5 9 7 0 3
2 3 9 5 7 4 6 1 8 0

































, C =

































0 7 8 9 1 2 3 4 5 6
6 4 2 8 9 5 1 3 7 0
4 9 5 3 2 7 6 0 1 8
5 1 7 6 4 3 8 9 0 2
3 2 9 0 7 1 5 6 8 4
1 0 3 7 6 8 2 5 4 9
2 8 0 1 3 4 9 7 6 5
9 5 4 2 8 6 0 1 3 7
7 3 6 5 0 9 4 8 2 1
8 6 1 4 5 0 7 2 9 3

































.

Square A is orthogonal to both B and C. When B and C are overlayed, 91 different pairs
are produced out of a possible 100. Moreover, the only duplicated pairs involve symbols
7,8,9 in C. We conclude that A and B have 7 common transversals. The previously best
published result showed a pair of MOLS of order 10 with 4 common transversals [2].

Note that A is semisymmetric and A, B and C all have the automorphism
(0)(123)(456)(789).
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