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AN hp-SPECTRAL COLLOCATION METHOD FOR NONLINEAR
VOLTERRA INTEGRAL EQUATIONS WITH VANISHING
VARIABLE DELAYS

WANG ZHONG-QING AND SHENG CHANG-TAO

ABSTRACT. In this paper, we propose a multistep Legendre-Gauss spectral col-
location method for nonlinear second-kind Volterra integral equations (VIESs)
with vanishing variable delays. This method is easy to implement and pos-
sesses high-order accuracy. We also provide a rigorous convergence analysis of
the hp-version of the multistep spectral collocation method under L2-norm.
Numerical results confirm the theoretical predictions.

1. INTRODUCTION

This paper is concerned with the numerical solutions of nonlinear second-kind
VIEs with vanishing variable delays:

(1.1) . oo
y(t) = F(t) + / Ky(t,$)Ga (s, y(s))ds + / Ko(t,)Ga(s,y(s))ds, t € T := [0.T],

where the delay function 6(t) is of the form 6(¢) := ¢t — 7(¢), and 0(t) satisfies the
following conditions (cf. [9]):

(C1) 7(0) =0, 7(t) > 0 for ¢t € (0,T] (vanishing delay);

(C2) 6(t) < g1t on I for some ¢; € (0,1), and 6'(¢) > qo > 0;

(C3) (t) € CL(I).
Moreover, K; € C(D;) with ¢ = 1,2, Dy := {(t,s) : 0< s <t < T}, Dy :=
{(t,s): 0<s<0O(t) <O(T)}, f € C(I) and G; are continuous functions. Equation
(LI includes the special case where 6(t) = gt is the proportional delay with 0 <
q <1

The analysis of second-kind VIEs with proportional delays have been studied; see
[7I5L23]. Some numerical methods for VIEs with delays have also been proposed.
The recent works particularly include the piecewise polynomial collocation methods
for Volterra integral and differential equations with vanishing delays [417,[9H12][30]
31]; and the piecewise polynomial collocation methods and Runge-Kutta methods
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for Volterra integral and differential equations with nonvanishing delays [7H9,28)].
The interested readers may also refer to [2IL29] for other related works.

As we know, the spectral method often provides exceedingly accurate numerical
results with relatively fewer degrees of freedom, and has been widely used for scien-
tific computations; see, e.g., [BL6LI3L14L1719L25126]. Since the spectral method is
fully capable of solving problems with a history of dependence, they have become
very helpful for numerical VIEs with delays. In recent years, some authors pro-
posed the spectral collocation methods for Volterra integral and related differential
equations with proportional or nonvanishing delays [IH3L[18[32]. However, these
algorithms are basically one-step methods. For an effective implementation, it is
more reasonable to use multistep methods due to the following considerations:

e The resulting system for the expansion coefficients can be solved more ef-
ficiently for a modest number of unknowns.

e To ensure the convergence of the numerical scheme, the length of T is
limited sometimes.

e The multistep methods provide sufficient flexibility, e.g., we are able to
place more points in the subintervals that are needed.

Recently, Conte and Paternoster [16] constructed a class of multistep collocation
methods for nonlinear VIEs, by using the Lagrange interpolation in each sub-step.
Li, Tang and Xu [22] introduced a time parareal method with spectral-subdomain
enhancement for VIEs. Moreover, Sheng, Wang and Guo [27] proposed a multistep
spectral collocation method for nonlinear VIEs, and derived the convergence of the
hp-version. To the best of our knowledge, there are few works about the multistep
spectral collocation method to VIEs with delays.

The aim of this paper is to propose and analyze an efficient multistep spectral
collocation method for equation (LI). We highlight the main differences between
our new strategy and the existing ones as follows:

(i) First, we consider the multistep spectral collocation method for VIEs with
nonlinear vanishing delays, the existing works for spectral methods studied
the one-step methods for VIEs with proportional or nonvanishing delays.

(ii) Second, we use the Legendre expansions in each sub-step (much more stable
than the usual Lagrange approach [26]), which lead to quite a neat imple-
mentation through manipulating the expansion coefficients of the consecu-
tive steps (see equation (Z34]) of this paper).

(iii) Finally, we fully analyze and characterize the hp-convergence of the sug-
gested collocation method. The interplay between h and p can significantly
enhance numerical accuracy. More precisely, as shown in Theorem of
this paper, for a given numerical error tolerance € > 0 and a given solution

in the Sobolev space with regularity index m, we roughly have h™ M ~™

~E
(where M is the number of Legendre modes). Accordingly, we may refine
the mesh and/or increase the degree of the polynomial to achieve higher
accuracy. In other words, this new process possesses the same fascinat-
ing merits as the hp-version of the finite element method and the spectral

element method for PDEs.
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Our numerical results demonstrate that the suggested algorithm possesses the
following advantages:

(a) It provides flexibility with respect to variable time steps. Particularly, it
enables us to cope with VIEs with delays involving oscillations or steep
gradients in the solutions;

(b) It oftentimes works well even for long time calculations;

(c) It also works for nonsmooth solutions.

This paper is organized as follows. In Section 2, we design the multistep Legendre-
Gauss spectral collocation method for nonlinear VIEs with vanishing variable delays
(CI). Some lemmas useful for the convergence analysis are provided in Section 3.
The convergence analysis for the proposed new method is given in Section 4. Nu-
merical experiments are carried out in Section 5, which confirm the theoretical
results. The final section is devoted to some concluding remarks.

2. THE MULTISTEP LEGENDRE-GAUSS COLLOCATION METHOD
In this section, we propose a multistep Legendre-Gauss collocation method for
second-kind VIEs with delays (L.I]).

2.1. Preliminaries.

2.1.1. Mesh design. This subsection is devoted to the mesh design for the multistep
Legendre-Gauss collocation method of VIEs with delays (LI). To this end, we
consider the coarse/fine partitions:

(i) The coarse grid {gu}f)’;O on the interval I is created by
€0=0, Envo=T and & 1:=0(c,) (2<p<N°),

where N¢ is a positive integer. It is clear that for any A, = [£,_1,&,], it
holds that 6(As) € Ay and A,y = 6(A,) with 3 < p < N°.
(i) The fine grid in each sub-interval [§,_1,&,] is denoted by

I}(Lﬂ) = {t‘gﬂ) . 5#71 — té:“‘) < tgtu') < e < tg\l;; = g‘u}’

satisfying I}(L“*l) - 0(]2”)), where N;{ is a positive integer.

() a(s,)
é:ﬂfz”_ ““““ "'...‘fy—l T é:
RS e ae® Y2
& - oy & > ® ® - @
t(()/l—l) R pHD t(()ﬂ ____ tl(/l) téﬂ “““““ £ tiﬂ)
o) oty

FIGURE 2.1. A simple mesh.
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For clarlty, we plot asunple mesh in Figure2ZIlwith I (n=1), ={£,—2,t “ 1), té’kl),
§u—1} and I = {&u—1 té t(#)ugll} Since

8 = = 0(€umn), 18 =i =08, T =00, Y =0,

it holds that I,(L‘hl) C 9([,(1#)). It is pointed out that Bellen, Brunner, Maset and
Torelli [4], and Brunner and Hu [9] also designed a mesh with I,S“ - = 0(1 f(L” )).
However, the numerical examples of this paper show that our mesh design provides
a relatively convenient way for variable step size.

For convenience, we rename the previous global mesh as

[h;:{tn: O:t0<t1<"'<tN:T}'

We also denote hy,, = t, — tp—1, hmax = Maxi<p<n hpn, In = (tn—1,t,] and y"(¢)
the solution of equation (LI)) on the n-th element, namely,

Yy (t) = y(t), vt € I, 1<n<N.
From equation (IT]) we have that for any ¢ € I,,,
tno1 ¢
v = f0+ [ KOGHENONE + [ Kalt. )Gl ul9)ds
0 tn—1
()

O(tn—1)
+/ Kg(t,c)Gz(c,y(g))chr/ )K2(t777)G2(777y(77))d77~
0 O(tn—1

(2.1)

Clearly, for any given interval I, := (0(t_1),0(t)] with k > 1, there exists a unique
interval I; with 1 < j < k, such that I;, C I;. Correspondingly, we denote

(2.2) () =), tel

Then, equation (21 is equivalent to

+Z Kt OCHE O d5+/ Ky (1,5)Gh (5,97 (5))ds

(2.3) o

+Z Kz L<)Ga(s,u (s ))d<+/6(t )Kz(t,n)Gz(n,yﬁ(n))dn-

In order to transfer the integral intervals (t,_1,t] to I,, and (0(t,—1),0(t)] to I,,, we
make two linear transformations:

A—tn1)(t —tn1)

s=o(t,\) i=tn_1+ eI,

(2.4)
n=ptv):=0(t,-1)+
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Then, equation (23] becomes
)+ Z K0 (1,€)Gr (€, 54 (6))de
t— tn
h—l / K (101, 1) Ga o5, 3), 7 (0 (1, )
(2.5) "
+Z K2t§G2(§y())d
k=
o(t) —o(t
“— J [ Kottt )Glo(t ), 7ot )
e(tn) - n 1
2.1.2. The shifted Legendre-Gauss interpolation on I,. Let L;(z), x € (=1,1) be
the standard Legendre polynomial of degree I. Clearly, we have (cf. [26
(2.6) (I+1)Lip1(x) — 214+ DaLi(z) + 1Li—1(z) =0, 1>1,
d d
(2.7) ELZH(:&) - ELl,l(x) = (214 1)L;i(x), 1>1.
The shifted Legendre polynomial L, ;(t), ¢t € I, is defined by
2 —tp—1 — 1ty
Loa(t) = Ll(hil), [=0,1,2,--.
According to (2Z.6) and ([27), it holds that
2 —tn_1 —ty
(28) (14 DLnpa(B) = 2L+ D)(F—F ") Lna(t) + 1L () =0, 121,
n
d d 40+ 2
2. —L — =Ly = L > 1.
(2.9) 7 ni41(t) gL 1(t) I i (t), l>
In particular,
2 —tp_1 —ty
Loo(t) =1,  Loa(t) = =",
612 — 6(tn—1 + tn)t + 4bp_1ty +12_, + t2
Ly aft) = S ot H UL Bt By 2
The set of L, (t) is a complete L?(I,,)-orthogonal system, namely,
h
2.10 Lni(t) Ly (H)dt = =8, 1,
(210) [ Eni L)t = 0
where 6 ,,, is the Kronecker symbol. Thus for any v € L?(1,,), we can write
o0
20+ 1
(2.11) v(t) = vniLna(t),  vng= + / () Ly 1 (t)dt.
=0 B In

We now turn to the Legendre-Gauss interpolation. For any integer M,, > 0, we
denote by {xn’j,wnJ}jM:"O the nodes and the corresponding Christoffel numbers of

the standard Legendre-Gauss interpolation on the interval (—1,1). Let Py, (

I,) be

the set of polynomials of degree at most M,, on the interval I,,, and let t,, ; be the

Legendre-Gauss quadrature nodes on the interval I,, given by
hnxn,j + tn—l + tn

(2.12) tn, = €l,, 1<n<N, 0<j<M,.

2
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Due to the property of the standard Legendre-Gauss quadrature, it follows that for
any ¢ € Panr, +1(In),

1
I, 2 ) 2

M
R hnTnj +th-1 +tn
7n Wn,](b( 2 ) = an7]¢ ,j

(2.13)

J=0

Next, let (u,v)r, and |v
respectively. We also introduce the following discrete inner product and norm on

 be the inner product and the norm of space L*(I,),

the interval I,

=

B M ;
(2.14) (w,v)r, = = ) ultn)v(tn,;)wn., vl 1,01, = (v,0) .
j

I
o

Thanks to the identity 2I3), for any ¢p € Pans, +1(I) and ¢ € Py, (I,,), we have

(2.15) (@)1, = (&), elr, = llllz, -

Denote by I]t\/ln i C(tn—1,tn) = Pu, (tn—1,tn) the shifted Legendre-Gauss in-
terpolation operator in the t-direction such that

i, 0(tn.5) = (tn,s), 0<j< M,
Because of equation (ZI5]), we have that for any ¢ € Pps, +1(1n),
(2.16) (Ths, v, 8)1,, = (Tag, v, O)1, = (0, 0)1,.-
We can expand T}, v(t) as

M,
(2.17) Thy, v(t) = BpaLna(t).
=0
With the aid of (ZI0) and (2I0), we obtain from (ZI7) that
2+ 1 _2+1
(2.18) Tt = h+ (T v, Lo, h+ (0, L)1, 0<1< M,
n n

2.1.3. The shifted Legendre-Gauss interpolation on :fn For the purpose of conver-
gence analysis, we also need another shifted Legendre polynomial L, ;(t), defined
by

Obviously, the set of Enl( t)is a complete L? (I ) orthogonal system, namely,

R ~6(ta) — B(tu-1)
(2.19) /THLnyl(t)Lnym(t)dt ST O

Let tN,w- be the Legendre-Gauss quadrature nodes on the interval fn,

(220) o= P2 Ot Dong 2O ) 200D 7 g < <y,
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where My = M; with I,C I (cf. equation (Z2))). For any ¢ € PQM;LJF](TH), we

have
(2.21

2 1 2

)
L O(tn) = O(tn1) [P (0(tn) — O(tn—1))T + O(t,—1) + O(t,) N
. ot = TR o )d

2

O(tn) — O(tn_1) = -
e 3 ns6ns)

0(tn) — O(tn—1) < (O(tn) — 0(tn—1))an; + 0(tn_1) + 6(t,)
% ; Wﬁ7j¢(

)

where wy ; are the corresponding Christoffel numbers. Let (u,v); and [jv|7 be

the inner product and the norm of space L?(I,,), respectively. We also introduce

the following discrete inner product and norm on the interval I,,,
(2.22)

O(t,) — O(t_1) <&~

(o), = =5 ultn)o(tnj)wn ;, oIz, ars = ¢

2
=0

<.

v,v)

;?wp—A

Thanks to the identity (Z21), for any ¢©) € Panr.1+1(Iy,) and ¢ € Pay, (I,), we have

(2.23) (@, )5, = ()5 lelly, = lellz, ar, -

Denote by f}i/[ﬁ 2 C(0(tn=1),0(tn)) = P, (0(tn—1),0(tn)) the shifted Legendre-

Gauss interpolation operator in the t-direction such that

Thy 0(tng) = v(tn,), 0<j< M.
Because of equation (23], for any ¢ € PMﬁ+1(fn),
(2.24) (T, v:0)7, = Thr, v, D)7, = (v, D)7, -

We can expand ftMﬁv(t) as

Mgz
(2.25) Thv(t) =Y BnaLn(t).
=0

With the aid of (Z19)) and (224]), we obtain from ([2.25]) that
(2.26)
~ 20+1

- ( 20+ 1 -
U 0t — 0(t_1)

i-t ZYL -~ = — Ln ~
T O A

0<I< M;.
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2.2. The multistep collocation scheme of (ZH]). The multistep collocation
scheme for solving (28] is to seek Y™ (¢t) € Pas, (I,), such that

(2.27)
Y0 = The, 10+ 3 [ i (Knocie v o) i

tftn 1

M / Tir, (Ka (1o (6, M) (0(6,2), Y™ (0(£,3))) ) dA

+ 712:1/; ﬁ% (Kz(t, Q) Gals, Yz(g)))dg

t8tn) =0t . T, (Kz(t,p(t, v))Ga(p(t,v), Y™ (p(t, V))))d,,], teln,
where Y* is the numerical solution of yk on the interval Iy, and YE c PM; is the

corresponding numerical solution on the interval INk
We now describe the numerical implementations and present an algorithm for
scheme (Z27)). To this end, we set

Mo, My,

Yr8) = U Lap(®t),  Tir, f) =D fy Lnp(t)

(2.28) M

IMIMA(Kg(tg)GggY ) ZZ%,LW Vory(s), 1<k<n-—1,

p=0p’=0

Thr, Tir, ((000) = 0ta) Ka(t, plt, ¥) Galp(t,), Y™ (p(t,))))

=SS @y Ly (O ).
p=0p’=0
Then, we have
| T T (Ka(t, 0616, YH©))de
M, My
=303y L) [ Lup €1
(2.29) p=0 p'=0

Mn
= hy Z afyLnp(t)
p=0
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Similarly, we can obtain

(2.30)
/ T T (( ( t— tn 1)Ky (L, 0(t, \)Ga (ot )\),Y”(U(t,A))))dA - hninOLn,p(t),
My, "
/ T (Kg (t,6)Ga(s, y* (s )))d§ = (0(tx) — 9(tk71))ZC§0Ln,p(t)7
/| IMHIMA( O)Ex(t plt ) Galplt, 1), Y (olt ) ) v

My,

= (0(tn) = 0(tn—1)) Y dpoLnp(t)-

Next, it can be verified from (Z28)-(Z30), 2I]), (Z14), 226) and [Z22]) that

2+ 1
@/g = 5 Zyn(tn i)Ln,p(tn,i)wn,ia
=0
n ’L)w’ﬂ iy
9+ 1 L M
k k
apo = ;;Kl (tnyiste)G1(te,g Y (te,5)) Ln,p(tni )wn,iWe 5
M,
no_ 20+ 1
(231) Yo = T 3 (b — tae) Kty 0t iy 1))
1,7=0
. Gl(J(tn ’Ly ) Yn( ( n 7;,th‘)))Lnyp(tn,i)wn,iwn,j7
M, Mg
2p+1 = it kT
cho = 7 Ko (b, B1,3) G2 (s Y (F,) L (b )om, i
i=0 j=0
1<k<n-1,
op+1 n Ma
n D 1,
0= T g ZZ(G(tn,i) = O0(tn-1))K2(tni, ptnis tn.5))
=0 7=0

cG2(ptnistng), Y™ (p(tnistn))) Lnp(tn.i ). itr ;.

Moreover, a combination of (Z27))-([230) leads to
(2.32)
M,

My, My, My, My,

n Mn
S U Lnp() = 7 Lnp(W+D  apLnp(t)+Y bjoLnp(t)+ G Lup(t)+ > dyoLn (1)
p=0 p=0 p=0 p=0 p=0 p=0

where
n—1 n—1

(2.33) an=> healy, = (0(tr) — O0(te—1))cky.
k=1 k=1
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Hence, we compare the expansion coefficients of equation ([2:32]) to obtain that
(2.34) U= fran bl e +dly, 0<p< M,

This is an implicit scheme. In actual computation, an iterative process can be
employed to evaluate the expansion coefficients {yp }M In this paper, we present a
simple iterative algorithm (also called the successive substitution method). Briefly,
we obtain the successive values of Y in terms of previously computed quantities

{vF12-1 as stated in Table 2.1 below.

Table 2.1: A simple iterative algorithm
Forn=1,--- N,
Compute { f”} ", by the second formula of ([Z31]);
Ifn=1, then{a”} O—Oand{w} oy = 0;
Else

Fork=1,---,n—1,
Compute {YE(tNkﬁj)}jAﬁO by the first formula of ([2.28));
End
Compute Y (p(tni,tn ), 0<i < M,, 0<j < Ms
by the first formula of ([2:28));
Compute {ag}20%, {120, and {d7}¥, by @II) and 33
End
Provide the initial guess of {Y”(tn,j)}jﬂ/i“(’);
Compute {37;‘}24:”0 by the first formula of (2:31));
While the maximum absolute difference between two consecutive
coeflicients of {ﬂg}]]g\/ﬁo is bigger than the desired tolerance,
Ifn=1,
Compute {Y!(o(t1,4,t1,7))}i 5o and {Y (p(t16, t1,5))}1 50
by [2.28);
Compute {b),}22) and {dL} 20, by @Z3T);
Else
Compute {Y™ (0 (i, tn, ))} i,j=0 by 2.28));
Compute {b O} o by (Z3T);
End
Update the coefficients {27;}24:"0 by ([Z34);
End
Compute the values {Y™” (tnyj)}jj\i"o by the first formula of ([2.:28]);
End
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Remark 2.1. For the linear VIEs with delays (G;(t,y(t)) = y(t), 7 = 1, 2), equation
[234) is equivalent to the following linear systems:

(Hl — El)yl = fl7 for n= 1,
(2.35)
(I, —E,)y"=f"+a”+c"+d", for n>1,

where I, is an identity matrix of order (M, + 1) x (M, + 1), and E; = (e,,) and
E, = (egp,), 0 < p,p’ < M, are two matrices with the entries

M

2p+1
ehyr = T 3 (b1 — t0) K (b6, 0 (b6, 11,3)) Ly (0(f1,0 11,5)) L p (1, )wn ion
%,7=0
M,y
2+ 1 7 &
+22 Z (0(t1,:) — O(to)) K2 (t1,i, p(t1,i,t1,5)) Lo pr (p(t1,55 81,5)) L, p(t1,0)wr,iwt
i,j=0
2+ 1
Epp! = Z (tni = tn—1)K1(tn i, 0 (tnis tn,g)) L pr (0 (Enis tn,g)) Linp (En i Jwn, iwn, 5
%,7=0
and
Y= @ )T = (e T )T At = @ a7
c" = (6-617'.. 757\471)T7 d” = (d807 >d7](‘/[n0)T'

The system (Z35]) can be solved directly, based on matrix factorizations such as
LU decomposition.

3. SOME USEFUL LEMMAS

In this section, we present some lemmas useful for establishing the convergence
results.

Let w™(z) = (1 — 2%)™. Denote by ¢ a generic positive constant independent
of T, hi, My and the solutions of (L)) and ([Z217). For any integer m > 0, we
introduce the weighted Sobolev space on (—1, 1),

wa(=L1) ={v:[vllgm , (—1,1) < o0},

with the norm

=

lollzrg -1 = (D 150l1Z2 (1)
k=0
According to Theorem 4.2 of [20], we have
Lemma 3.1. For any u € H:)’fA(—l, 1) with integer 1 <m < M, + 1,
(3.1) llu = mar, ullp2—1,1) < My ™[0 ull 2, (~1,1)-

where mpr, © C(=1,1) = Pag, (—1,1) is the standard Legendre-Gauss interpolation
operator with war, u(zy ;) = w(zy, ), 0<j < M,.

With the aid of the above lemma, we can derive the following approximation
result.
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Lemma 3.2. For any v € H™(I,,) with integer 1 <m < M, + 1,
(3.2) lv = Zhr, vllr, < M0 L2, (1) < chy M ™ |0 ] 1,

where H™(I,,) is the usual Sobolev space and X' (t) = (tn — )" (t — tn_1)™.

Proof. Let u(z) = v(t) RSETITIY Then
Tag, v(tn,g) = v(tng) = (T ) = Tar,u(zn ), 0<j < M.
Since T}, v(t) ot ttn and mpz, u(z) belong to Py, (—1,1) in the variable «,
=5
we get
(3.3) I}S\/Inv(t)’t: usbty oyt =, u(z).

This, along with equation ([B1), yields

1
2 _ I

I, = (u(z) — g, u(w))*de

v — T4y, v

1
< chnMn_zm/ (O™ u(z))?*(1 — )" da

—1

< cM-2m / (O ()2t — )™ (F — £ 1)™dt
I,

< ch2m M, 2 / (9 v(t))dt.
In
Thus, the desired result follows. O

The following discrete Gronwall Lemma can be found in [27].

Lemma 3.3. Assume that {k;} and {p;} (j > 0) are given nonnegative sequences,
and the sequence {e,} satisfies €9 < po and

n—1 n—1
j=0 j=0

with ¢; >0 (j > 0). Then

n—1 n—1
en < pnt Y (a5 + kips)exp(d_ k), n> 1
=0 =0

4. ERROR ANALYSIS

In this section, we shall analyze and characterize the hp-convergence of scheme
EZ10) under reasonable assumptions on the nonlinearity. Because of the nonlin-
ear history-dependent effects, a theoretical convergence analysis for the multistep
method becomes much more difficult, compared with the linear and/or one-step
cases. Hereafter, we denote Mp,in = mini<p<n M.
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Lemma 4.1. Let y™ be the solution of [28) and Y™ the solution of Z21). Then
it holds that

5
(4.1) yr(t) =Yt =Y Bi(t)

j=1

where

Bi(t) =y (t) — Thr, y" (1),
Bs(t) = %Iztwn((t tn-1)K1(t,0(t, ), G1(o(t,),y" (a(t, ),

—%Iztun«t— n-1)K1(t,0(t,)), Gi(o(t,-), Y (a(t,)))) 1
1

n

Bs(t) = mﬁw ((0(t) = O(tn—1)Ka(t, p(t, ), G2 (p(t, ), y" (p(t, M)z,

1 ¢ D
—WIMR<(9(t) = 0(tn—1))K2(t, p(t, ), G2(p(t, ), Y" (p(t, )7, »
ZIM (K1 (t, ), Ga (- y" (- ZIM (K1(t,), G (5 Y*())) 1y,
ZIMn Ks(t,-), Ga(- 7 _ZI]M (Ka(t, ), Ga(:s A()))fk

Proof. By virtue of (Z3]) and (221, we deduce

n—1

v (1) =F@6) + D (Kt ), Gi(y" (),

k=1

k

((t = ta-1)Ka(t,0(8,)), Ga(o (8, ),5™ (0 (1)),

+ 37 (Kt ), Ga( 4" () 7,

+ g (00 = 0t Kalt,p(1)). Galp(t, .47 000 1),

n—1

Y™(t) = The, SO + > Thr, (K (L), Ga (Y (),

k=1

T, (0t K0 (1,)), Gao (6, Y (0, D),
ST (), G, YR ()
k=1

1

= oty P (O0) = Oltn ) Kot (1), Galolt, ), Y™ (p(0 )z,
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By subtracting (£3) from ([@2)), we obtain

(4.4)
VN = Y0 = 1) — T £+ 3 (K1 (4. G (05 (),

=3 T (), Ga (YO,

e (= K (6 0(6,0), G (o6, )" 01 1)
T, (= a1 K (1,0(6,), Gao (6, ), Y (0, ),

£ 30 (ot ), Ga 0 ZIMn (Ka(t, ), Gl YE (),
k=1

o AT O 1)(<9<>—e<tn Dot plt, ). Galp(t, ).y (o(t, 1)),

BT By B (00) = 0t ) (1, (1, ), Ga(o(t, ), Y (1)),

Moreover, by ([£2) we have

F@) = Tar, (1) =y (8) — Tar, " () + i (Thr, K (t,) = Ka(t,), Gi(5 9" ()) 1,
k=1

hi(ZMn —D)((t = ta1)Ka(t, 0(t,)), Ga(a(t,),y" (0 (t, 1)),

n

n—1 .

+ > (The, Ka(t, ) = Ka(t,), G2 (5" ()7,

k=1

+0(tn) _19(15”71)(15\% = I)((0(t) = O(tn-1))Ka2(t, p(t,)), G2(p(t, ), y" (p(t, ) 7. »

n

with Z the identity operator. A combination of the previous two equations leads to

@I). O

Next, we define the Nemytskii operators G;(y)(t) := G;(t,y(t)), i = 1,2. Then
we have

Lemma 4.2. Assume that K:(t,s) € C™(D1), Ylier, € H™ (1), G : H™(I,) —
H™(I,,) with integer 1 < m < My + 1, and Gy fulfills the following Lipschitz
condition:

(45) |G1(57y1)_G1(57y2)‘ S’Yl‘yl _y2|7 71 > 0.

Then, it holds that
(4.6) [|Ball7, < chplly™—Y™ |7, +Chim+2M52m(H3§”ylli + HGl(-,y(-))llim(zn))

Proof. In order to estimate || Bz||1, , we first make some necessary preparations. Let
A€, and Iy, : C(I,) = P, (In) be the shifted Legendre-Gauss interpolation
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operator in the A-direction. As in equation (24)), we set

s=0(t,\) :=tp_1+ (A= t”—lfz(t —tn-1)

It is clear that s € (t,—_1,t]. Denote by {)\nJ}jM:"O the M, + 1 Legendre-Gauss
quadrature nodes on the interval I,, (actually, A, ; = t,_;, see equation (ZI2))) and
Sn,j 1= Sn,;(t) = o(t, \n;). We define a new shifted Legendre-Gauss interpolation
operator I;[i 0 C(tp—1,t) = Par, (tn—1,1) as follows:

If\)[iv(sn,j) = v(8n,5); 0<j<M,.
Obviously,
Iyr, v(sn5) = 0(sng) = v(0(t, An)) = Tag, v(0(t, Ang)), 0 <j < My,

o nst, ;) Delong to Py, (tn—1,t) in
7tn—1+f

“'n—1

Moreover, If\fnv(s) and Ty, v(o(t, )\))‘

the variable s. Hence,

(4.7) T3 vls) = Ty, vlo(t, V)|

hn(s—tp_q1) "
t=tn—1

A=tp_1+

Thus, by (@), 2I0) and ZI4), we obtain

! t— b
/ Ijs\fnv(s)ds = 71/ Tay, v(o(t,X))dA

tn_1 hn I,
—In-1 —n—-l
=D BCTCPYN I S e s
=0 Jj=0
Similarly,

tn—1

¢ R L
S, — in-—1
(19) | @aes = =S s
j=0

Furthermore, according to ([@.7) and [B.2)), we get that for integer 1 < m < M,, +1
and t € I,

/tnl(v(s) - Tif o) s = /I (v(o(t.3)) ~ Ty v(o(t.1))) A
(4.10) < ch2mINEm (g ) / (O 0(o (£, \)))2dN
I

t
< chimMn_zm/ (0™v(s))%ds.

tnfl
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We now estimate the term | Bz||,. By Lemma 1] equation ([2.16) and the first
formula of ([4.8), we get

1Ball?, = h2 / (t = tn-1) K1 (t,0(t, X)) Ga(a(t,A), 4" (o (2, 1)) dA

—Ths, / IMn tf n— 1)K1(t,a(t,)\))Gl(a(t,/\),Y"(U(t,/\))))d)\ ’

In

(4.11) ”/ Ki(t,s)G1(s,y"(s))ds
t 2
Tl z;;n (K1t )G (5, Y™ (5)) ) ds||
tp—1 i
2(IDulF, + 1D=117,),
where

Dy =T, /t (I—I;;;)(Kl(t,s)cl(s,y”(s)))ds,

tn—1

Dy =Tt / T3 (Ka(t,)(Ga(s,5"(5)) — Gals, Y™ (s)) ) ds.
2Sn—l
Next, by (2.16), (Z14), (I0) and the Cauchy-Schwarz inequality, we have

IDull3, = |

Thr, /t (I—I;’Itn)(Kl(t,s)Gl(s,y"(s)))ds ’

n—

n

n,j

_ anj [ / (@ T3 (Kt )G (5,97 () ) ds]

tn—1
md Sitn,j 2
(4.12) < ch? Zwm / (@ =23 (K (b )G (.57 (5))) | s

tn—1

My, tn,j
<22 S s [ (00 (Kt G (5,7 () s

=0 tn—1

Schim+2Mrj2mZ/ (a;’Gl(s,y(s)))st.
=0/

Thanks to [@8)), 2I6) and @ZI4), we get

M,
hn = n,e n 1
1D, = S 3 [t et 3 Kt 505) (Gam5:5" 50
=0 7=0

2
_ Gl(sn,j, Y"(Sn,j)))wmj] Wiy
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where s, j = $,,;(tn,i) (slightly different from the previous definition s, ;). Further,
by (@A), (E9), @I0) and Holder’s inequality, we deduce that

(4.13)
AT i — b1
1Del?, < ch2 Y w50 S (07 (50g) = V" (505)) s wa
i=0 j=0
<ch? Zwm/ (T3 (s) — Y™(s))%ds
< o2 Zwm / (@™ (9) = 45 + (") = Y"(3))* ) ds
n 1
< ety vl + et ran e [ @py(o)s
In
Finally, a combination of (ZI1])-(@I3) leads to the desired result. O

Lemma 4.3. Assume that K1(t,s) € C™(D1), Ylier, € H™(Ip,), G1: H™(I,) —
H™(I,) with1 <n < N and integer 1 < m < Muin+1, and Gy fulfills the Lipschitz
condition [@Bl). Then, it holds that

(4.14)

n—1

1B, < eTha S (I = VI3, + B M2 (1073, + G oy i) )-
k=1

Proof. According to Lemma [Tl and the Cauchy-Schwarz inequality, we have

k

1847, = | 32 Zh, (K200, Ga (),

2

In

=3 T (K, Ga (Y (D),

< (%]

b [ KOG e ©)de
- Ty, | Th, (KOG Y©)
(4.15) < Zh Z i ‘
~ iy, [ 75, (Kot G V(@)
< T; hl

~Tis, [ Th, (Ka(t.OGi (6, Y ()
Iy

)2
In

/Kltsals, K(€))de

b / Ko (£,6)Ga (6,4 (€))de

<2TZ HB4 l7, + 1Ba217,),
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where

By =Th, | (T-T5,) (Ki(t G (6:6"(9) ) e

Bus = Tis, [ Z5, (KutO(Gr(€.04(9) - Grle. () ).

Next, by (Z16), I4), 32) and the Cauchy-Schwarz inequality, we get

1Bual, = |

i, /Ika-zfv,g(Kl(t,f)Gl(f,y’“(s)))

n

By, Lo 2
= 3> wng| /1 (T = T5;,) (K (b g, )G (€ () ) ]
=0 g

(4.16) < ey, | @- 2 (Kt 06 €049
§=0

Iy

M, 2
< ha 2N / [0 (K (0.5, G (€, 44(0))) | e

=0 T
2m+1 —2m 7 2
< ch B2 S /I (9LG1 (€, y(€)))?de.
=0 k
Thanks to (ZI6]) and (ZI4), we get

hn, h
72[ kZKl (tnis trei) (G (b " (tr5))
1=0 7=0

2
- Gl(tk,j7yk(tk,j)))wk,j] Wi

Moreover, by ([&H), 2I6), 2I4), (32) and Holder’s inequality, we deduce readily
that

M,
1Buallf, < ehihn 3 (o (thg) = YV (tky)) mewm
7=0
< chihn | (T3 4" () = YH(€))7d¢
(4.17) * Ik( w0 - Y1)
< chun | [T 46— OF + (€ — V()] de
k
< chihyllyt = Y*(3, + chahZ™ M2 [ (0y(€)) de.
Iy
Therefore, a combination of ([@IH)-(@I7) leads to [I4). O

Theorem 4.1. Let y™ be the solution of [28) and Y™ be the solution of (2.27).
Assume that the conditions (C1)-(C8) hold, K;(t,s) € C™(D;), ylier, € H™(I,),
G;: H™(I,) = H™(I,) with 1 <n < N and integer 1 < m < My, + 1, and G;
fulfill the following Lipschitz conditions:

(4.18) |Gi(s,91) — Gi(s,92)| < vilyr —w2l, 7% >0, i=1,2.
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Then, for any 1 <n < N and hmax sufficiently small (cf. equation [T24) below),

lyn = Y™, < cexp(eT?) [R2m M2 (107913, + R 1Gr (o y() i r,))
FRZMEME (|07 y |2 411G (- y ()]
(4.19) S (2 a2 (jom
+h, Z(hQ M, 2 (||6t y||1k+||G1( (’))H?‘I"L(lk))
thMA (o7 yllE + 1G2(,y( D)3, Ik,)))]

Proof. Clearly, by (32) we get that for integer 1 <m < M,, + 1,

ipn(fn))

(4.20) IBull7, = lly™ = Zhy, v 17, < chi™ M0yl -

Using similar arguments as in Lemmas 2] and [£3] we derive that (see Appendices

[A] and [BI)

(4.21)

1B, < ehlly — Y712 +ech2me2az?m (g2 + Gy, ;)

and

(4.22)
n—1 . .

1Bsll3, < eTha > (" = YFIZ + B2 M2 (107912 + G2y ,)))-

k=1

Moreover, by (22) we have
n n—1
S lF - YRR < S k- YR,
k=1 k=1
Hence, by (@10, 20), (£4), @2T), (£I14) and [@22), we deduce that

n—1
(L—chp)lly" =Y™7, < cThy Y lly* = Y*|I3,
k=1

+chy" M (1077, + Rl GGy () 1,,))

(4.23) + chZm M (|0 7 TG0, y())] ?{m(fn))
n—1
+ cTha Y (B3 (1979113, + 1G oy D e r,)
k=1

M (1072, + Gy (DI r,) )
Next, let
ev=hi'lly" =Y¥IE,  1<k<n,
and assume that hpay is sufficiently small such that

(4.24) ch?

max

<pB <l
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Then, we use equation (£23) and Lemma [33] to obtain

en < coxp(el®) 2002 (107 I3, + B201G () )
R TME T (107l + 1Ga (o (DI 7, )

(425) - 2m —2m m, |12 2
+ > (B (103, + 16 (o yO) 1)
k=1
R M (07 YR, + 1oy )]
This implies (£19). O

Further, let Y (¢) be the global numerical solution of equation (III), which is
given by

Y(t):=Y"(t), tel, 1<n<N.

Then, according to Theorem 1], we obtain

Theorem 4.2. Let y(t) be the solution of equation (II]) and let Y (t) be the global
numerical solution of equation (L1)). Assume that the conditions (C1)-(C3) hold,
K;(t,s) € C™(D;), ylter, € H™(I,), G; : H™(I,) = H™(I,) with1 <n < N and
integer 1 < m < My + 1 and Gy, © = 1,2 fulfill the Lipschitz conditions [EI]).
Then for hmax sufficiently small (cf. (£24)), it holds that

(4.26)
N
Iy = ¥ Iay < coxp(e?) Y [t (10, + R21Ga oy Eims,)
n=1
2m+2 2 m,, |2
HE NG (1070, + 16200 )

+ha > (hi'”M,;Zm(||a:”y||i +1G1 (o y O i 1)
k=1
M (072 + Gy )]
The above result can be simply written as

) ly = Y2y < cexp(eT?) A Mot (107 yll 2 () + 1G2 (o y (D) o
+ G2 (5 y( ) lzm0.001)));

provided that y € H™(I) and G; : H™(I) — H™(I).

(4.27

Proof. The first bound follows from Theorem Il We next estimate the result

@Z10). Obviously,

N
> (n2maam (o

n=1

+h2m+2M12m(||3Z”y||% + G2y Nz,

< e Mo (1079l 22 (1) + 1G LGy Oy + G2 (D) 0.00)))-

I, + hiHGl(a y()) H?{m(["))
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Similarly,

§jh§j@?wm%ﬂmwmfwmmwwm%ﬂm

n=1

+Wm¢mmwmi+mx YOz

< Thim M2 (10791122 1y + 1GL Gy Fom iy + G20y Frm 0,00
Hence, a combination of the previous inequalities leads to ([@.27]). O

5. NUMERICAL RESULTS

In this section, we present some numerical results to illustrate the efficiency of
the multistep Legendre-Gauss spectral collocation method. We denote by {§, 2[_0

f
the coarse grid, and by {tg.“)}j.vz“o the fine grid in each sub-interval [£,_1,&,] (cf. (i)
and (ii) of Subsection 2.1.1). Let E4(T) and E»(T) be the maximum error at the
mesh points and the discrete L?-error:

E(T) = 1I<T}€ax ly(te) — Y (te)l,

(Z & Z (k) — (tk,j))2wk,j) ~ (/OT(y(t) - Y(t))gdt)%.

5.1. Linear problem. Consider the linear VIE with delays (cf. [11]):

(5.1) y(t) = %(1 +e7 1) _/0 y(s)ds + %/Oq y(s)ds, t€[0,T],

—t

=

with the exact solution y(t) = e

We use the multistep Legendre-Gauss collocation scheme (2.35]) to resolve equa-
tion (B)) numerically. In Figures BIHD.6l we list the maximum errors and the
discrete L?-errors of equation (5.1I), with 7' = 10, ¢ = 0.1, 0.5, 0.99, various N°¢
(the number of coarse grid) and N ,f (the number of fine grid in each sub-interval
[£u—1,€4]), and the uniform mode My = M. They indicate that the numerical
errors decay exponentially as M increases and/or hyax decreases. This means that
we may refine the mesh and/or increase the degree of the polynomials to achieve
higher accuracy. In fact, this is the main advantage of the hp-version.

5.2. Nonlinear problem. Consider the nonlinear VIE with delays:
(5.2)

¢ 0(t)
mw:ﬂwféa%@@+aﬂ%@+l e y(s) + eV D)ds,  te[0,T),

with the exact solution y(t) = In(t +¢) and f(t) = 2=t — /@ ~tIn(0(t) + ¢).

We use the multistep algorithm in Table 2.1 to resolve equation (B.2]) numerically.
In Figures 5.7 and B8, we list the maximum errors and the discrete L?-errors of
equation (5.2), with T = 1, 6(t) = 2 sin(t), various N¢ and Nf, and the uniform
mode My = M. In Figures 5.9 and E.10, we also list the maximum errors and the
discrete L2-errors of equation (5.2), with 7' = 100, §(t) = 1/2arctan(t), N¢ =
the uniform mode M, = M and various N, PJ: . More precisely, we take
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0 0
“7-N°=2; Ni=2, Ni=2; -7-N°=2; Ni=2, Ni=2;
- ~-N°=2; Ni=2, Nj=4; - ~-N°=2; Ni=2, Nj=4;
-4 -o-N°=2; Ni=2, Ni=6; -4 -o-N°=2; Ni=2, Ni=6;
C_n N_o Nf_1n- Cnfeo Nf_qn.
s -6 -0-N°=2; Ni=2, N=10il g ; Ni=2, N[=10;
= =
w -8 w -8
= =
< 10 < 10
-12 12
-14 L, 14
-16 16

12 3 45 6 7 8 9 101112 13 14 15 16 "1 2 3 45 6 7 8 9 1011 1213 14 15 16
M M

FIGURE 5.2. The dis-
crete L2-errors of equa-
tion (BI) with ¢=0.1.

FIGURE 5.1. The max-
imum errors of equa-

tion (BI) with ¢=0.1.

w-N=2 (NP =

C_ fy2 _
-1 | Jet 3 ) =~N"=2, (Nu)p:1_3
C_yg. 4 _ - C_, fyd _
_ Je-N=4; (N}t =5 Fe-N°=4, (N} =5
C_pa. f16 — C_, f16 =
J -o-N°=6; (N} =7 -o-N°=6, (N }° =7
- C_q. fi8 _ C_, f8 _
s -0-N°=8; (Nu)u=1=9 5 -6 -0-N"=8, (Nu}p=1=9
— -7t a
|.|.|vc_> |.|.|vc_> _8|
& -9t g ol
-1 _12}b
-13} —14}
-15 -16!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M M

FIGURE 5.4. The dis-
crete L2-errors of equa-
tion (BI)) with ¢=0.5.

FIGURE 5.3. The max-

imum errors of equa-
tion (BI) with ¢=0.5.

@. N5f = 20, {Nl{}ﬁzl = 9, the total interval number N = 40;
@. N5f = 40, {Ng}izl =9, the total interval number N = 76;
®. N =80, {N/}_; =17, the total interval number N = 148.

We find that the suggested algorithm not only has high-order accuracy for long
time numerical simulations, but also provides flexibility with respect to variable
time steps.

5.3. Oscillating solution. Consider the nonlinear VIE with delays:
¢ 0(t)
63 v =fO+ [ Psxfdst [ Peds tepT)
0 0

with f(t) = -3¢t + % sin?(\t) — % sin(2At) — $60(t) + 55 sin(2A0(t)) 4 cos(At) and
the exact solution y(t) = cos(At).
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0
c_op- (Nf120 _ c_og: (N 120 =
B 7= N°=20; (N }20 = 1 ) - N°=20; (N)20 = 1
e N°=40; {N 140 =1 - N°=40; {N}% =1
wu=1 wu=1
-4 -o-N°=80; {N'}° =1 -4 -0-N°=80; {N}® =1
W=t W=t
-6 s -6 ]
=
-8 u® -8 1
=
-10 2 10 1
-12 -12 1
-14 -14 1
-16 -16
2 4 6 8 10 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18
M
FIGURE 5.5. The max- FIGURE 5.6. The dis-
imum errors of equa- crete L2-errors of equa-
tion (BI) with ¢=0.99. tion (BI) with ¢=0.99.
= T2 -4
C_. - C_. 2 _
=7~N"=2, {N'H);l:rS -7~N"=2, {Nu)p=173
_. C_ _ _ C_ fyd _
he-N=4, (Nr)pﬂ,s - N°=4, (Nu et 5
C_ 6 _ c_ 16 _
. -o-N°=6, (N'u)p=1-7 . =N, (N[} _=7
C_ 8 -or C_ 8 _
-0-N°=8, (Nu)u=1 9 - -0-N°=8, {Nu)u:r 9
-8} Y
w_ _qof
>
—10} o
_12.
—12}
—14f
—14f 2 ¢
2 4 8 10 -16 2 3 4 6 7 8
M
FIGURE 5.7. The max- FIGURE 5.8. The dis-
imum errors of equa- crete L?-errors of equa-
tion (B.2). tion (5.2)).
-2 f 4 f 4
- NL=20, (N))*_ =5 - N{=20, {(N}* =5
f_ fid4 f_ fi4
- =4 N{=40, (N}*_ =0 =4 N{=40, (N}* =0
f_, fi4 f_, fi4
-o-N(=80, (N}*_ =17 -o-N(=80, (N}*_ =17
S
=]
-8 IN
o
>
k]
-10
-12]
-14 : : : : : : : : : :
4 6 8 10 12 14 16 18 6 8 10 12 14 16 18

FI1GURE 5.9. The max-
imum errors of equa-

tion (52)).

FIGURE 5.10. The dis-
crete L2-errors of equa-

tion (B2)).
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0 -2
f 14 f 14
- “7-Ng=10, (N} = “7-Ng=10,{N },_,=6
f 14 — f 14
_al +N5=16, {NH}M=1=9 +N5=16, {NH}M=1=9
f 4 f 4
o -0- N5=40, (N.u)u:1=21 —6f -0- N5=40, (N.u)u:1=21
c = _g
w- =7 UJN
° °
g g -0f
~11 -12r
-13f —14f
-15 - -16
2 4 6 8 10 12 14 16 4 6 8 10 12
M M
FIGURE 5.11. The FIGURE 5.12. The dis-
maximum errors of crete L2-errors of equa-
equation (B.3]). tion (B.3).

We use the multistep algorithm in Table 2.1 to resolve equation (B.3]) numerically.
In Figures 511 and .12 we list the maximum errors and the discrete L2-errors of
equation (5.3), with 7' = 1, §(t) = $sin(t), A = 100, N¢ = 5, the uniform mode
M;, = M and
@. N5f =10, {N;{}ﬁzl = 6, the total interval number N = 34;
®. N{ =16, {N/}:_; =9, the total interval number N = 52;
®. N{ =40, {N/}/—1 = 21, the total interval number N = 124.
We observe that the numerical errors decay exponentially as M increases and/or
hmax decreases. In particular, they indicate that our algorithm is very effective for

highly oscillating solutions. Indeed, this is also one of the main advantages of the
hp-version.

5.4. Steep gradient solution. Consider the nonlinear VIE with delays:

t o(t)
(5.4) y(t) :f(t)+/0 y2(s)ds—|—/0 y2(s)ds, t € 0,77,

where

2

f@) = gcaQ(erf(y) - erf(g)) - gcaQerf(W) + aexp(— (t 202b) ).
The exact solution y(t) = aexp(—%) is a Gaussian function, which has ex-
tremely steep gradients near t = b.

We use the multistep algorithm in Table 2.1 to resolve equation (B.4]) numerically.
In Figures and [5.14] we list the maximum errors and the discrete L?-errors of
equation (B.4l), with T'= 10, 6(t) = %aretan(t), a=1,b=5¢=0.1, N° =5, the
uniform mode M}, = M and

@. Ng =10, {N;{}ﬁ=1 = 5, the total interval number N = 30;
@. N{ =20, {N/}/—1 =5, the total interval number N = 40;

®. N5f = 40, {Nl{}izl = b, the total interval number N = 60.
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FIGURE 5.13. The FIGURE 5.14. The dis-
maximum errors of crete L2-errors of equa-
equation (G5.4). tion (B.4).

They indicate that our algorithm achieves high-order accuracy for the solutions
of VIEs with steep gradients by using the locally refined meshes near ¢ = b.

5.5. Nonsmooth solutions.

5.5.1. Discontinuous solution. Consider the linear delay VIE with a discontinuous
solution:

t 2 arctan(t)
(5.5) ym:f@+ly@®+4 y(s)ds,  te|

where

=)
AN

~ o+
VOIA
poloTholet

T )4—ln(%)7 2 arctan’(t),

and the exact solution is given by

) i<

y(t) = { % : >

We use the multistep algorithm in Table 2.1 to resolve equation (B3 numeri-

cally To this end, we first decompose the interval [0, 5] into two coarse grid cells

[0, 2 arctan(5)] and [2 arctan(5), 5], then we refine the coarse grid cells such that the

set of fine grid points includes the breaking point ¢t = 5. In Figures and [5.16]

we list the maximum errors and the discrete L2-errors of equation (5.5)), with T = 5,

the uniform mode My = M and various N, /{ . They indicate that our algorithm also
provides accurate results even for discontinuous solutions.

F(t) = {t—j—%arcta 2(t)

wolonojon

5.6. Numerical comparisons. We use the multistep algorithm in Table 2.1 to
resolve equation (B.I]) numerically. In Table Bl below, we compare the maximum
errors at the mesh points of our algorithm with that of the collocation method
suggested in [I1] (see Tables 2 and 3 of [11])), for which we take T'= 10, ¢ = 0.5, 0.2,
the uniform mode M = 7, and the same number of collocation points as in [I1].
More precisely, we take
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FIGURE 5.16. The dis-
crete L2-errors of equa-

tion (B.5).

N¢ =5, {N]}5_, =5, the total interval number N = 25;
N¢ =05, {N;{}izl = 10, the total interval number N = 50;
N°¢ =10, {Nf}2, =10, the total interval number N = 100;
N¢ =10, {Nf},2, = 20, the total interval number N = 200;
N°¢ =20, {Nl{}zo = 20, the total interval number N = 400.

We observe that our method provides more accurate numerical results by using
the same number of collocation points. It should be noted that the meshes of the
two methods are different. The method in [I1] is based on geometric meshes.

TABLE 5.1. A comparison of numerical errors for equation (G.1J).

q=0.5 q=0.2
DOF || The method in [11] | Our method || The method in [I1] | Our method
(a) | 200 1.94e-07 7.93e-12 1.70e-07 5.14e-09
(b) | 400 1.49e-08 3.11e-13 1.78e-08 2.95e-11
(c) | 800 1.45e-09 3.90e-14 1.72e-09 2.95e-11
(d) | 1600 1.40e-10 9.44e-15 1.60e-10 1.40e-13
(e) | 3200 1.23e-11 9.99e-15 1.47e-11 1.40e-13

6. CONCLUDING REMARKS

In this paper, we proposed a multistep Legendre-Gauss spectral collocation
method for the nonlinear VIEs with vanishing variable delays. We designed a sim-

ple iterative algorithm and derived the hp-convergence under L?-norm. Numerical
experiments demonstrated that the suggested method possesses spectral accuracy.
In particular, it is very appropriate for various problems with highly oscillating

solutions, steep gradient solutions and nonsmooth solutions. It also works well for

numerical simulations of long time behaviors.
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APPENDIX A. THE PROOF OF THE INEQUALITY (Z21])

Proof. Let v € I, and th i C(O(tn-1),0(tn)) = P, (0(tn—1),0(tn)) be the
Legendre-Gauss interpolation operator in the v-direction. As in equation (24I), we
set

(v = Ot )O(0) ~ 0t r))
O(tn) — O(tn—-1)
It is clear that n € (6(t,—1),0(t)]. Denote by v, ; the Mz + 1 Legendre-Gauss

(Al) n= p(ta V) = e(tnfl) +

quadrature nodes in I,, (actually, v, ,; = f,w», see equation (Z20)) and n, , =
M, () = p(t, vy ;). We define a new shifted Legendre-Gauss interpolation operator
I o C0(tn—1),0(t)) = Par, (0(tn—1),0(t)) as follows:

i v(ng) = v(0ng),  0<j < M.
Obviously,

T v(ing) = v(nag) = v(p(t, vnyg)) = T o(p(t,veg)), 0= j < M.

Moreover, IX/’[;U(U) and I]‘(/Iﬁv(p(t,u))‘ Oty 00t 1) (no(t, ) Delong to
v=0(tn—1)+ (0 —0(tp_1)

Par, (0(tn—1),0(t)) in the variable 7. Hence,

A2 I w(n) =I% v t,v , .

(A.2) M; (n) vt v) u=9(tn71)+(e(t")73%?:5()2,5:?“"’1))

Thus, by (A1), (A2), Z24), and ([2:22), we obtain
o 0(t) — O(tn_ ~
/0 Iﬂ;”(n)dn = 0(()#/ IJWA’U(p(t, V))dl/

(tn—1) )70( ) Tn
Mz
0(t) — 0 (tn—
(A.3) = 80) = O(tn) Z p(t,vn,j))wn
IV
0(t) — 0(tn—
= 80 = Oltnn) 2( l)v (M), -
=0
Similarly,
oW 0(t) — O(tn_1) <>
a0 @tean = D S
O(tn-1) =0

Next, due to the Lagrange’s mean value theorem,
(A.5) O(tn) = O(tn—1) = 0"(Qhn, (€ (tn,tn-1)-
We use a similar argument as in Lemma to deduce that for any v € H™(I,,)
with integer 1 <m < M5z + 1,
v =T vll7, < cM{m\|3fznv||L;m )
(4.6) < e(O(tn) = O(tn—1))" Mz " 070,
< chp MZ™ [0l
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where X (t) = (0(tn) — t)™(t — 0(tn—1))™ and ¢ depends on maxyey, |6'(¢)]. Ac-
cordingly, we have

0(t) ~
/ (o) — E2 o(m)2dny
e(tnfl)

o oy / (wlo(t. ) — Zts, o(pt.))) v

- e(t) _79(t7’b*1) ™, v 2 v
g SO [ ottt P

n

< ch?m ;P (aglv(n))zdn.
G(tnfl)

We now estimate the term || Bs

1,- In a manner similar to equation ({{II]), we
obtain

(A.8) 1Bs17, < 2(1|Bs,

7.+ IBs2

17.);

where

6(t) ~ _
Ba=Tiy [ @D (KaltnGato"(0)) .
tn—1

o) R R
Bia =Ty, [ T (Kalt ) (Galon 7 ) — ol Y7 ) iy

Next, by (ZI6), ZI4), (AF) and (A7), we have that for 6(t) € C1(I),
(A.9)

IBaal, =28, [

e(tnfl)

h M,
T
2 jzzzo O(tn—1)
M, a(tn,j)
<ay s |
j=0 O(tn—1)
My,
< ch%m"'zMngan,j/
=0 0(tn—1)

< a2z S [ @3Gan ).
i=0 ' In

o(t) N ~
(T = Z3) (Ka(t)Ga (.5 (n)) ) dn

O(tn,;)

I,
(@~ T3 ) (Kaltas. m)Galn, o7 () ) ]
(@ T3 ) (Foltag ) Galn ™)) |

e(tn,j) R 2
[@T(Kz(tn,j,n)Gz(n,y"(n)))} dn

Thanks to (A3), 2I6) and 214), we get
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IBs2|7,
M, Mz
b <= [0(Eni) — O(tn—1) 7
27"_ [ = 5 LN Kaltnis ) (Go (g 07 (00,5))

Il
=

3 7=0
s 2
= Gao(nnj, Y (Wn,j)))wﬁ,j} Whis

where 7, j = 1, j(tn,i). Next, by @I8), (A5), (A4), (A1) and Holder’s inequality,

we deduce readily that

(A.10)
M M,
& O(tn;) —O(tn— 2, s
%n < chsz [wnzw (yn(nn,j) Y (Mn.5) wnj} an’j
=0 =0
0(tn,i) . 2
< Ch2 an z/ ) (I]T\]/[t:l ly"(n) - Y"(??)) dn
tn—1
R S (12 7 )2
o, / @ e - @y 6o = Y@y
i=0 tn—1
< chilly™ = Y3 A+ chym MR (0 y () dn.
Therefore, a combination of (A:8)-(AI0) leads to the result ([E2T]). O

APPENDIX B. THE PROOF OF THE INEQUALITY (A22])

Proof. Using a similar argument as in equation ([{I5]), we obtain that

— 1
(B.1) IBs|l7, <27 h—k(llell?n + IBs.2117.),
k=1

where

ItMn/I (I—fzng)(Kz(t,g)Gz(C,yE(g)))dg,

Bra =Ty, [ Ty, (Falt.)(Galsor(6) = Gale.YF () ) s

Next, by ([2I6), 214), (A L), (A6) and the Cauchy-Schwarz inequality, we have
that, for 6(t) € C1(I),

I Z4s, / I—fh)(Kz(t,c)Gz(gy@(c)))dclli
_wa[/ (I -1y )(Kz(tn,gyC)G2(§,yz(§)))d€r

(B.2) < chhi wa‘ / (@ T5,) (Kaltn )Gl (6)) | s

| Bs,11I7,

< chp 2™ M= QWZWM/ (af(KQ(tn,pC)Gz(QyE(§))))2d§

j=0 Ik

< chphFm MY [ (9:Ga(s, (<)) ds.
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Thanks to (ZT16]), I4), (Z23) and 224), we get

MTL

h

M-~
2 [9(tk)—9(tk—1 -
D)

) ~ ~ ~
. 5 ZKz(tn,i7tk,j)(G2(tk,jvyk(tk,j))
1=0 =0
~ oy 2
— Go(ty;, Y (tlﬁj)))wﬁ,j} Wni-

[ Bs,2

Next, by IR), (AF), Z24), [222) and Holder’s inequality, we deduce readily
that

(B.3)

2 o NS, [00) = 01) SR R )R )
IBs 2}, < chihn wni 5 D y) = YE ) wi, | D wry
=0 j

IN

My, - ~
it > ons [ (i o0) ~ YH(6) s
i=0 Tk

et [ @307 = F P + 0H(0) - Y

chihn ||y — Yk||%k + chnhimﬂMizm L (0"y(s))%ds.

Iy,

IA

)
—
)
NG
=
[\v]
—_
IS
a)

IN

Hence, a combination of (B)-(B.3) leads to ([#22). O

(1]
2]

(10]
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