
MATHEMATICS OF COMPUTATION
Volume 85, Number 301, September 2016, Pages 2553–2568
http://dx.doi.org/10.1090/mcom/3075

Article electronically published on December 31, 2015

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS

JEAN FROMENTIN AND FLORENT HIVERT

Abstract. In this paper we describe an algorithm visiting all numerical semi-
groups up to a given genus using a well-suited representation. The interest of
this algorithm is that it fits particularly well the architecture of modern com-
puters allowing very large optimizations: we obtain the number of numerical

semigroups of genus g � 67 and we confirm the Wilf conjecture for g � 60.

Introduction

A numerical semigroup S is a subset of N containing 0, closed under addition
and of finite complement in N. For example the set

(1) SE = {0, 3, 6, 7, 9, 10} ∪ {x ∈ N, x � 12}

is a numerical semigroup. The genus of a numerical semigroup S, denoted by g(S),
is the cardinality of N \ S. For example the genus of SE is 6, the cardinality of
{1, 2, 4, 5, 8, 11}.

For a given positive integer g, the number of numerical semigroups of genus g
is finite and is denoted by ng. In J.A. Sloane’s On-line Encyclopedia of Integer
Sequences [13] we find the values of ng for g � 52. These values have been obtained
by M. Bras-Amorós (see [3] for more details for g � 50). On his homepage [4],
M. Delgado gives the value of n55.

Bras-Amorós used a depth first search exploration of the tree of numerical semi-
groups T up to a given genus. This tree was introduced by J.C. Rosales et al. in
[11], and it is the subject of Section 1. Starting with all the numerical semigroups
of genus 49 she obtained the number of numerical semigroups of genus 50 in 18
days on a Pentium D running at 3GHz. In the package NumericalSgs [5] of GAP
[7], M. Delgado together with P.A. Garcia-Sanchez and J. Morais used the same
method of exploration.

Here we describe a new algorithm for the exploration of the tree of numerical
semigroups T and achieve the computation of ng for g � 67. The cornerstone of
our method is a combinatorial representation of numerical semigroups that is well
suited and allows large code optimization essentially based on the use of vectorial
instructions and parallelization. The goal of the paper is twofold: first to present
our encoding of numerical semigroups and the associated algorithms, and second to
present the optimization techniques which allow us, for those kinds of algorithms,
to get speedups by factors of hundreds and even thousands. We claim that these
techniques are fairly general for those kinds of algorithms. As support for the
claim, we applied it to an algorithm of N. Borie enumerating integer vector modulo

Received by the editor November 3, 2014 and, in revised form, April 10, 2015.
2010 Mathematics Subject Classification. Primary 05A15, 68R05, 68W10.

c©2015 American Mathematical Society

2553

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/3075

2554 JEAN FROMENTIN AND FLORENT HIVERT

permutation groups [1] and got a speedup by a factor larger than 2000 using 8
cores.

The paper is divided as follows. In Section 1 we describe the tree of numerical
semigroups and give bounds for some parameters attached to a numerical semi-
group. The description of our representation of numerical semigroups is done in
the second section. In Section 3 we describe an algorithm based on the represen-
tation given in Section 2 and give its complexity. Section 4 is more technical and
is devoted to the optimization of the algorithm introduced in Section 3. In the last
section we emphasize the results obtained using our algorithm.

1. The tree of numerical semigroups

We start this section with definitions and properties of numerical semigroups that
will be used in the sequel. For a more complete introduction, the reader can usefully
consult the book Numerical Semigroups by J.C. Rosales and P.A. Garćıa-Sánchez
[12] or the book The Diophantine Frobenius Problem by J.L. Ramı́rez Alfonśın [10].

Definition 1.1. Let S be a numerical semigroup. We define:
i) m(S) = min(S \ {0}), the multiplicity of S;
ii) g(S) = card(N \ S), the genus of S;
iii) f(S) = max(Z \ S), the Frobenius of S;
iv) c(S) = f(S) + 1, the conductor of S.

By definition a numerical semigroup is an infinite object, and we need a finite
description of such an object. That is provided by generating sets.

Definition 1.2. A subset X = {x1 < x2 < · · · < xn} of a semigroup is a generating
set of S if every element of S can be expressed as a sum of elements in X. In this
case we write S = 〈x1, . . . , xn〉.

If we reconsider the numerical semigroup of (1), we obtain

(2) SE = {0, 3, 6, 7, 9, 10} ∪ [12,+∞[= 〈3, 7〉 .
A non-zero element x of a numerical semigroup S is said to be irreducible if it

cannot be expressed as a sum of two non-zero elements of S. We denote by Irr(S)
the set of all irreducible elements of S.

Lemma 1.3 (Lemma 2.3 of [12]). For a numerical semigroup S, the set Irr(S) is
the minimal generating set of S relative to the inclusion ordering.

The different parameters we have defined on a numerical semigroup satisfy the
following relations.

Proposition 1.4 (Proposition 2.12 and Lemma 2.14 of [12]). For every numerical
semigroup S, we have:

i) x ∈ Irr(S) implies x � c(S) +m(S)− 1;
ii) m(S) � g(S) + 1;
iii) c(S) � 2g(S).

A consequence of Proposition 1.4 i) is that Irr(S) is finite and its cardinality
is at most c(S) + m(S) − 1. Moreover, the cardinality of Irr(S) is at most m(S)
since any two distinct elements of Irr(S) cannot be congruent modulo m(S). See
Section 2 of Chapter I of [12] for more details.

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 2555

We now explain the construction of the tree of numerical semigroups. Let S be
a numerical semigroup. The set S′ = S ∪ {f(S)} is also a numerical semigroup
and its genus is g(S) − 1. As each integer greater than f(S) is included in S′ we
have c(S′) � f(S). Therefore every semigroup S of genus g can be obtained from
a semigroup S′ of genus g − 1 by removing an element of S′ greater than or equal
to c(S′).

Proposition 1.5 (Proposition 7.28 of [12]). Let S be a numerical semigroup and
x an element of S. The set Sx = S \ {x} is a numerical semigroup if and only if x
is irreducible in S.

Proposition 1.5 implies that every semigroup S of genus g can be obtained from
a semigroup S by removing a generator x of S that is greater than or equal to c(S).
Hence the relation S′ = Sx holds.

We construct the tree of numerical semigroups, denoted by T , as follows. The
root of the tree is the unique semigroup of genus 0, i.e., 〈1〉, that is equal to
N. If S is a semigroup in the tree, the sons of S are exactly the semigroups Sx

where x belongs to Irr(S) ∩ [c(S),+∞[. By convention, when depicting the tree,
the numerical semigroup Sx is in the left of Sy if x is smaller than y. With this
construction, a semigroup S has depth g in T if and only if its genus is g; see
Figure 1. We denote by Tg the subtree of T restricted to all semigroups of genus
� g.

2. Decomposition number

The aim of this section is to describe a representation of numerical semigroups
that is well suited to an efficient exploration of the tree T of numerical semigroups.

Definition 2.1. Let S be a numerical semigroup. For every x of N we set

DS(x) = {y ∈ S | x− y ∈ S and 2y � x}
and dS(x) = cardDS(x). We called dS(x) the S-decomposition number of x. The
application dS : N → N is the S-decomposition numbers function.

Assume that y is an element of DS(x). By definition of DS(x), the integer z =
x−y also belongs to S. Then x can be decomposed as x = y+ z with y and z in S.
Moreover the condition 2y � x implies y � z. In other words if we define D′

S(x) to
be the set of all (y, z) ∈ S×S with x = y+z and y � z, then DS(x) is the image of
D′

S(x) under the projection on the first coordinate. Hence DS(x) describes how x
can be decomposed as sums of two elements of S. This justifies the name given to
the function dS .

Example 2.2. Reconsider the semigroup SE given at (1). The integer 14 admits
two decompositions as sums of two elements of S, namely 14 = 0+14 and 14 = 7+7.
Thus the set DSE

(14) is equal to {0, 7} and dSE
= 2 holds.

Lemma 2.3. For every numerical semigroup S and every integer x ∈ N, we have

dS(x) � 1 +
⌊x
2

⌋
, and the equality holds for S = N.

Proof. As the set DS(x) is included in
{
0, . . . ,

⌊
x
2

⌋}
, the relation dS(x) � 1 +

⌊
x
2

⌋
holds. For S = N we have the equality for the set DS(x) and so for the integer
dS(x). �

2556 JEAN FROMENTIN AND FLORENT HIVERT

〈1〉

〈2,3〉

〈3,4,5〉

〈4,5,6,7〉

〈5,6,7,8,9〉

4

〈4,6,7,9〉

5

〈4,5,7〉

6

〈4,5,6〉

7

3

〈3,5,7〉

〈3,7,8〉

5

〈3,5〉

7

4

〈3,4〉

5

2

〈2,5〉

〈2,7〉

〈2,9〉

7

5

3

1

Figure 1. The first four layers of the tree T of numerical semi-
groups, corresponding to T4. A generator of a semigroup is in gray
if it is not greater than c(S). An edge between a semigroup S and
its son S′ is labelled by x if S′ is obtained from S by removing x,
that is, if S′ = Sx holds.

A straightforward consequence of the definition of S-decomposition numbers is:

Proposition 2.4. For a numerical semigroup S and x ∈ N \ {0}, we have:
i) x lies in S if and only if dS(x) > 0.
ii) x is in Irr(S) if and only if dS(x) = 1.

We note that 0 is never irreducible despite the fact that dS(0) is 1 for all numerical
semigroups S. We now explain how to compute the S-decomposition numbers
function of a numerical semigroup from that of its father.

Proposition 2.5. Let S be a numerical semigroup and x be an irreducible element
of S. Then for all y ∈ N \ {0} we have

dSx(y) =

{
dS(y)− 1 if y � x and dS(y − x) > 0,

dS(y) otherwise.

Proof. A direct consequence of DSx(y) = DS(y) \ {y − x, x}. �

3. A new algorithm

We can easily explore the tree of numerical semigroups up to a genus G using
a depth first search algorithm (see Algorithm 1). This approach does not seem

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 2557

to have been used before. In particular, Bras-Amorós and Delgado use instead a
breadth first search exploration. The main advantage in our approach is the small
memory needs. Indeed, in the case of a breadth first search algorithm one needs to
compute and store the list Lg of all numerical semigroups of genus g before visiting
the numerical semigroups of genus g + 1, which is not required for a depth first
search exploration. In this paper we are interested in the exploration of the list Lg

for g ∈ N, not in storing it. This is the reason we use a depth first search algorithm
for the exploration of the tree Tg. The only limitation then is the duration of the
exploration and not the amount of available memory. For example the list L54

needs several terabytes to be stored.

Algorithm 1 Recursive depth first search exploration of the tree Tg

1: procedure ExploreRec(S, G)
2: if g(S) < G then
3: for x from c(S) to c(S) +m(S) do
4: if x ∈ Irr(S) then
5: ExploreRec(Sx, G)
6: end if
7: end for
8: end if
9: end procedure

Equivalently, we can use an iterative version which uses a stack:

Algorithm 2 Iterative depth first search exploration of the tree Tg

1: procedure Explore(G)
2: Stack stack � the empty stack
3: stack.push(N)

4: while stack is not empty do
5: S ← stack.top()

6: stack.pop()

7: if g(S) < G then
8: for x from c(S) to c(S) +m(S) do
9: if x ∈ Irr(S) then

10: stack.push(Sx)
11: end if
12: end for
13: end if
14: end while
15: end procedure

In Algorithm 1 we do not specify how to compute c(S), g(S) and m(S) from S
neither how to test if an integer is irreducible. It also misses the characterization
of Sx from S. These items depend heavily on the representation of S. Our choice
is to use the S-decomposition numbers function. The first task is to use a finite set
of such numbers to characterize the whole semigroup.

Proposition 3.1. Let G be an integer and S be a numerical semigroup of genus
0 < g � G. Then S is entirely described by the vector δS = (dS(0), . . . , dS(3G)) ∈
N

3G+1. More precisely we can obtain c(S), g(S),m(S) and Irr(S) from δS.

2558 JEAN FROMENTIN AND FLORENT HIVERT

Proof. By Proposition 1.4 iii) we have the relation c(S) � 2g(S), and so the S-
decomposition number of c(S) occurs in δS . Proposition 3.1 implies

c(S) = 1 +max{i ∈ {0, . . . , 3G}, dS(i) = 0}.
As all elements of N \ S are smaller than c(S), their S-decomposition numbers are
in δS and we obtain

g(S) = card{i ∈ {0, . . . , 3G}, dS(i) = 0}.
By Proposition 1.4 ii), the relation m(S) � g(S) + 1 holds. This implies that the
S-decomposition number of m(S) appears in δS :

m(S) = min{i ∈ {0, . . . , 3G}, dS(i) > 0}.
By Proposition 1.4, all irreducible elements are smaller than c(S)+m(S)−1, which
is itself smaller than 3G. Hence, Proposition 2.4 gives

Irr(S) = {i ∈ {1, . . . , 3G}, dS(i) = 1}. �
The previous representation of numerical semigroup (in terms of the vector δS)

is similar but a little different from that used in [2] and by people concerned with
coding theory.

Even though it is quite simple, the computation of c(S),m(S) and g(S) from δS
has a non-negligible cost. We represent a numerical semigroup S of genus g � G
by (c(S), g(S), c(S), δS). In an algorithmic context, if the variable S stands for a
numerical semigroup we use:

– S.c, S.g and S.m for the integers c(S), g(S) and m(S);
– S.d[i] for the integer dS(i).
For example the following algorithm initializes a representation of the semigroup

N ready for an exploration of the tree TG (the tree of numerical semigroups of genus
at most G).

Algorithm 3 Returns the root of TG

function Root(G)
R.c ← 0 � R stands for N
R.g ← 0
R.m ← 1
for x from 0 to 3 G do

R.d[x]← 1 +
⌊
x
2

⌋

end for
return R

end function

We can now describe an algorithm that returns the representation of the semi-
group Sx from that of the semigroup S where x is an irreducible element of S
greater than c(S).

Proposition 3.2. Running on (S, x,G) with g(S) � G, x ∈ Irr(S) and x � c(S),
Algorithm 4 returns the semigroup Sx in time O(log(G)×G).

Proof. Let us check the correctness of the algorithm. By construction Sx is the
semigroup S \ {x}. Thus the genus of Sx is g(S) + 1; see Line 3. Every integer of
I = [x+ 1,+∞[lies in S since x is greater than c(S), so the interval I is included
in Sx. As x does not belong to Sx, the conductor of Sx is x + 1; see Line 2. For

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 2559

Algorithm 4 Returns the son Sx of S with x ∈ Irr(S) ∩ [c(S), c(S) +m(S)[

1: function Son(S,x,G)
2: Sx.c ← x+ 1
3: Sx.g ← S.g+ 1
4: if x > S.m then
5: Sx.m ← S.m

6: else
7: Sx.m ← S.m+ 1
8: end if
9: Sx.d ← S.d � copy all the decomposition numbers

10: for y from x to 3 G do
11: if S.d[y− x] > 0 then
12: Sx.d[y] ← S.d[y]− 1 � decrease the decomposition number by 1
13: end if
14: end for
15: return Sx

16: end function

the multiplicity of Sx we have two cases. First, if x > m(S) holds, then m(S) is
also in Sx and so m(Sx) is equal to m(S). Assume now x = m(S). The relation
x(S) � c(S), and the characterization of m(S) implies x = m(S) = c(S). Thus Sx

contains m(S)+1, which is m(Sx). The initialization of m(Sx) is done by Lines 4 to
8. The correctness of the computation of δSx (see Proposition 3.1 for the definition
of δSx) done from Line 9 to Line 15 is a direct consequence of Proposition 2.4.

Let us now prove the complexity statement. Since by relations ii) and iii) of
Proposition 1.4 we have x � 3G together with m(S) � G+1, each line from 2 to 8

is done in time O(log(G)). The for loop needs O(G) steps, and each step is done
in time O(log(G)). Summarizing, these results give that the algorithm runs in time
O(log(G)×G). �

Algorithm 5 Returns an array containing the value of ng for g � G

1: function Count(G)
2: n ← [0, . . . , 0] � n[g] stands for ng and is initialized to 0
3: Stack stack � the empty stack
4: stack.push(Root(G))

5: while stack is not empty do
6: S ← stack.top()

7: stack.pop()

8: n[S.g] ← n[S.g] + 1
9: if S.g < G then

10: for x from S.c to S.c+ S.m do
11: if S.d[x] = 1 then
12: stack.push(Son(S, x, G))
13: end if
14: end for
15: end if
16: end while
17: return n

18: end function

2560 JEAN FROMENTIN AND FLORENT HIVERT

Proposition 3.3. Running on G ∈ N, Algorithm 5 returns the values of ng for
g � G in time

O

(
log(G)×G×

G∑
g=0

ng

)
,

and its space complexity is O(log(G)×G3).

Proof. The correctness of the algorithm is a consequence of Proposition 3.2 and of
the description of the tree T of numerical semigroups.

For the time complexity, let us remark that Algorithm Son is used for every
semigroup of the tree TG (the tree of semigroups of genus � G). Since there are

exactly N =
∑G

g=0 ng such semigroups, the time complexity of Son established in

Proposition 3.2 guarantees that the running time of Count is in O(log(G)×G×N),
as stated.

Let us now prove the space complexity statement. For this we need to describe
the stack through the run of the algorithm. Since the stack is filled with a depth
first search algorithm, it has two properties. The first one is that reading the
stack from the bottom to the top, the genus increases. The second one is that,
for all g ∈ [0, G], every semigroup of genus g in the stack has the same father.
As the number of sons of a semigroup S is the number of S-irreducible elements
in the set {c(S), . . . , c(S) + m(S) − 1}, a semigroup S has at most m(S) sons.
By Proposition 1.4 ii), this implies that a semigroup of genus g has at most g + 1
sons. Therefore the stack contains at most g + 1 semigroups of genus g + 1 for
g � G. So the size of the stack is bounded by

M =
G∑

g=0

g =
G(G+ 1)

2
.

A semigroup S is represented by a quadruple (c(S), g(S),m(S), δS). By relations
ii) and iii) of Proposition 1.4, we have c � 2g(S) and m � g(S) + 1. As g(S) � G
holds, the integers c, g and m of the representation of S require a memory space
in O(log(G)). The size of δS = (dS(0), . . . , dS(3G)) is exactly 3G + 1. Each entry
of δS is the S-decomposition number of an integer smaller than 3G and hence
requires O(log(G)) bytes of memory space. Therefore the space complexity of δS is
in O(log(G)×G), which implies that the space complexity of the Count algorithm
is

O(log(G)×G×M) = O(log(G)×G3). �

4. Technical optimizations and results

Even though there are asymptotically faster algorithms than the one presented
here, thanks to careful optimizations, we were able to compute ng for much larger
genuses than before. This is due to the fact that our algorithm is particularly
well suited for the current processor architecture. In particular, it allows us to use
parallelism at various scales (parallel branch exploration, vectorization).. . .

To get the greatest speed from modern processors, we used several optimization
tricks, which we will elaborate in the following section:

• Vectorization (MMX, SSE instructions sets) and careful memory alignment;
• Shared memory multi-core computing using Cilk++ for low level enumer-
ating tree branching;

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 2561

• Partially derecursived algorithm using a stack;
• Avoiding all dynamic allocation during the computation: everything is com-
puted “in place”;

• Avoiding all unnecessary copying (the cost of the Son algorithm is roughly
the same as copying);

• Aggressive loop unrolling: the main loop is unrolled by hand using some
kind of Duff’s device;

• Careful choice of data type (uint_fast8_t for decomposition number, vs.
uint_fast64_t for all indexes).

The source code of our algorithm is available in [6].

4.1. Vectorization. Assume for example that we want to construct the tree T100 of
all numerical semigroups of genus smaller than 100. In this case, the representation
of numerical semigroups given in Section 2 uses decomposition numbers of integers
smaller than 300. By Lemma 2.3, such a decomposition number is smaller than 151
and requires 1 byte of memory. Thus at each for step of Algorithm Son, the CPU
actually works on 1 byte. However, current CPUs usually work on 8 bytes and even
on 16 bytes using vector extensions. The first optimization uses this point.

To go further we must specify that the array of decomposition numbers in the
representation of a semigroup corresponds to consecutive bytes in memory. In the
for loop of Algorithm Son we may imagine two cursors: the first one, denoted
src, pointing to the memory byte of S.d[0] and the second one, denoted dst,
pointing to the memory byte Sx.d[y]. Using these two cursors, Lines 10 to 14 of
Algorithm 4 can be rewritten as follows:

src ← address(S.d[0])
dst ← address(Sx.d[x])
i ← 0
while i � 3G− x do

if content(src) > 0 then
decrease content(dst) by 1

end if
increase src,dst,i by 1

end while

In this version we can see that the cursors src and dst move at the same time and
that the modification of the value pointed by dst only needs to access the values
pointed by src and dst. We can therefore work in multiple entries at the same time
without collision. Current CPUs allow this thanks to the SIMD technologies as MMX,
SSE, etc. The acronym SIMD [19] stands for Single Operation Multiple Data. We
used SSE4.1 [8, 20] technology as it allows for the largest speedup.1 This need to
respect some constraints in the memory organization of the data is called “memory
alignment”. Recall that an address is 16 bytes aligned if it is a multiple of 16. SSE
memory access is much faster for aligned memory.

The computation of the children is then performed as follows. First, the parent’s
decomposition numbers are copied into the children’s using the following C++ code:

void copy_blocks(dec_blocks &dst, dec_blocks const &src)

for (ind_t i=0; i<NBLOCKS; i++) dst[i] = src[i];

1A much greater speedup can certainly be obtained using AVX2 technology [16]. However, at
this time, we cannot access a performant computer with this set of instructions.

2562 JEAN FROMENTIN AND FLORENT HIVERT

Here dec blocks is a type for arrays of 16 byte blocks whose size NBLOCKS is
just large enough to store the decomposition numbers (that is, 3G rounded up to
a multiple of 16). The instruction dst[i] = src[i] actually copies a full 16 byte
block.

Then the core of the while loop in the preceding algorithm is translated as a
for loop as follows (recall that x denotes the generator of the father, which is to
be removed in the children):

start = x >> 4; // index of the block containing x

shift = x & 0xF; // offset of x inside the block

... // some specific instructions to handle

the first incomplete block.

for (long int i=start+1; i<NBLOCKS; i++)

block = load_unaligned_epi8(src + ((i-start)<<4) - shift);

dst[i] -= ((block != zero) & one);

The instruction load unaligned epi8 (specific to SSE technology) loads 16 con-
secutive entries of the decomposition number of the parent (called src semigroup) in
the variable block. Those entries will be used to compute the entries 16i, . . . , 16i+
15 of the children semigroups. Since the removed generator x is not necessarily
a multiple of 16, the data are not aligned in memory, hence the use of a specific
instruction. The zero (resp. one) constants are initialized as 16 bytes equal to
0 (resp. 1). The comparison (block != zero) therefore returns a block which
contains 0 in the bytes corresponding to the 0 entries of the block and to 255 in the
non-zero one. This result is then bitwise ANDed with one so that the instruction
actually performs a 16 bytes parallel version of

dst ← dst− if block
= 0 then 1 else 0

which is equivalent to Lines 10 to 14 of Algorithm 4.
As we previously said, to gain more speed this core loop is actually unrolled

using some kind of Duff device [17].

4.2. Parallel tree exploration using Cilk++. Our second optimization is to use
parallelism on exploration of the tree. Today, CPUs of personal computers have
several cores (2, 4 or more). The given version of our exploration algorithm uses
a single core and so a fraction only of the power of a CPU. The idea here is that
different branches of the tree can be explored in parallel by different cores of the
computer. The tricky part is to ensure that all cores are busy, giving a new branch
when a core is done with a former one. Fortunately there is a technology called
Cilk++ [14,15] which is particularly well suited for these kinds of problems. For our
computation, we used the free version which is integrated into the latest version of
the GNU C compiler [9].

Cilk is a general-purpose language designed for multithreaded parallel comput-
ing. The C++ incarnation is called Cilk++. The biggest principle behind the design
of the Cilk language is that the programmer should be responsible for exposing the
parallelism, identifying elements that can safely be executed in parallel; it should
then be left to the run-time environment, particularly the scheduler, to decide dur-
ing execution how to actually divide the work between cores.

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 2563

The crucial thing is that two keywords are all that are needed to start using the
parallel features of Cilk++:

• cilk spawn: used on a procedure call, indicates that the call can safely
operate in parallel with the remaining code of the current function. Note
that the scheduler is not obliged to run this procedure in parallel; the
keyword merely alerts the scheduler that it can do so.

• cilk sync: indicates that execution of the current procedure cannot pro-
ceed until all previously spawned procedures have completed and returned
their results to the current frame.

As a consequence, to get a parallel version of the recursive Algorithm 1, one only
needs to modify it as

Algorithm 6 Cilk version of Algorithm 1

procedure ExploreRec(S, G)
if g(S) < G then

for x from c(S) to c(S) +m(S) do
if x ∈ Irr(S) then

cilk spawn ExploreRec(Sx, G)
end if

end for
end if

end procedure

We just tell Cilk++ that the subtrees rooted at various children can be explored
in parallel. Things are actually only a little bit more complicated. First we have
to gather the results of the exploration. If we simply write

result[g(S)] ← result[g(S)] + 1

then we face the problem of two cores incrementing the same variable at the same
time. Incrementing a variable is actually done in 3 steps: reading the value from
the memory, adding one, storing back the result. Since there is by default non-
synchronization, the following sequence of actions for two cores is possible:

Read1 / Read2 / Add1 / Add2 / Store1 / Store2.

Then the two cores perform the same modification resulting in incrementing the
variable only once. This is called a data race and leads to nondeterministic wrong
results. To cope with these kinds of synchronization problems, Cilk++ provides the
notion of reducer, which are variables local to each thread which are gathered (here
added) when a thread is finishing its job.

A more important problem is that the cost of a recursive call is non-negligible.
Using Cilk++ recursive calls instead of C++ calls makes it even worse. The solution
we use is to switch back to the non-recursive version using a stack when the genus
is close to the target genus. This leads to the following Cilk++ code:

void explore(const Semigroup &S) {

unsigned long int nbr = 0;

if (S.g < MAX_GENUS - STACK_BOUND) {

auto it = generator_iter<CHILDREN>(S);

while (it.move_next()) { //iterate along the children of S

auto child = remove_generator(S, it.get_gen()).

2564 JEAN FROMENTIN AND FLORENT HIVERT

cilk_spawn explore(child);

nbr++;

}

cilk_results[S.g] += nbr;

}

else explore_stack(S, cilk_results.get_array());

}

Note that in our version, we found that the STACK BOUND optimal value was
around 10 to 12 for genus in the range 45 . . . 67 so that explore stack is used
more than 99% of the time. The Cilk++ recursive function does actually very little
work but ensures that the work is balanced between the different cores.

4.3. Various technical optimizations. Using vectorization and loop unrolling
as described previously leads to an extremely fast Son algorithm. Indeed, its
cost is comparable to the cost of copying a semigroup. It is therefore crucial for
performance to avoid any extra cost. We list here various places where unnecessary
cost can be avoided.

Avoiding all unnecessary copy. We also used a trick to avoid copying from and to
the top of the stack. Indeed, the main loop performs the following sequences of
operations:

S ← stack.top()

stack.pop()

for all children Sx of S do
S.push(Sx)

end for

If we use a stack of a semigroup, we can construct Sx directly into the stack
memory, but we have to copy the top of the stack to S. In [23], A. Zhai establishes
that the limit of the quotient

ng

ng−1
, when g goes to infinity, is the golden ratio

φ ≈ 1.618. Therefore this single copy is far from being negligible. The trick is to
use a level of indirection, replacing the stack by an array of semigroups A and an
array of indexes I pointing to the array of semigroups. The array I can be viewed
as a permutation of the array A. Now instead of copying S out of the stack, we
keep it on the stack, pushing the children in the second position by exchanging the
indexes in I. Here is the relevant part of the code:

Semigroup data[MAX_GENUS-1], *stack[MAX_GENUS], *current;

Semigroup **stack_pointer = stack + 1;

for (ind_t i=1; i<MAX_GENUS; i++) stack[i] = &(data[i-1]);

[...]

while (stack_pointer != stack) {

--stack_pointer;

current = *stack_pointer;

[...] for each children {

*stack_pointer = *(stack_pointer + 1);

[...] construct the children in **stack_pointer

[...] using the parent in *current

stack_pointer++;

[...]

}

*stack_pointer = current;

}

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 2565

Avoiding dynamic allocation. Compared to the Son algorithm, dynamic allocation
costs orders of magnitude more. Therefore, during the derecursived stack algo-
rithm, we only allocate (on the system stack rather than on the heap) the stack of
semigroups. No further allocations are done.

Pointer arithmetic and indexes. Due to the way C++ does its pointer arithmetic,
even if the index in the array is less than 3G and therefore fits in 8 bits, we use
64 bit indexes (namely uint_fast64_t) to avoid conversion and sign extension
when computing addresses of indexed elements. This single standard trick saves
10% of speed.

5. Results

Running the Cilk version of our optimized algorithm we have explored the tree
of numerical semigroups up to genus 67. The computations were done on a shared
64 core AMD OpteronTM Processor 6276. As other heavy calculations were running
on the machine, we only used 32 cores. The computations took 18 days. The values
of ng for g � 67 are:

g ng g ng g ng

0 1 23 170 963 46 14 463 633 648
1 1 24 282 828 47 23 527 845 502
2 2 25 467 224 48 38 260 496 374
3 4 26 770 832 49 62 200 036 752
4 7 27 1 270 267 50 101 090 300 128
5 12 28 2 091 030 51 164 253 200 784
6 23 29 3 437 839 52 266 815 155 103
7 39 30 5 646 773 53 433 317 458 741
8 67 31 9 266 788 54 703 569 992 121
9 118 32 15 195 070 55 1 142 140 736 859
10 204 33 24 896 206 56 1 853 737 832 107
11 343 34 40 761 087 57 3 008 140 981 820
12 592 35 66 687 201 58 4 880 606 790 010
13 1 001 36 109 032 500 59 7 917 344 087 695
14 1 693 37 178 158 289 60 12 841 603 251 351
15 2 857 38 290 939 807 61 20 825 558 002 053
16 4 806 39 474 851 445 62 33 768 763 536 686
17 8 045 40 774 614 284 63 54 749 244 915 730
18 13 467 41 1 262 992 840 64 88 754 191 073 328
19 22 464 42 2 058 356 522 65 143 863 484 925 550
20 37 396 43 3 353 191 846 66 233 166 577 125 714
21 62 194 44 5 460 401 576 67 377 866 907 506 273
22 103 246 45 8 888 486 816

As the reader can check, the convergence of sequence
ng

ng−1
established by Zhai

in [23] is very slow: n67

n66
≈ 1.62.

2566 JEAN FROMENTIN AND FLORENT HIVERT

5.1. Wilf’s conjecture. In the paper [22] of 1978, H.S. Wilf conjectured that all
numerical semigroups S satisfy the relation

card(Irr(S)) � c(S)

c(S)− g(S)
.

Since the work of Bras-Amorós (see [3]) we yet know that all numerical semigroups
of genus g � 50 satisfy Wilf’s conjecture. With our exploration algorithm we have
proved that there is no counterexample to Wilf’s conjecture up to genus 60. We
have tested Wilf’s conjecture on a different machine from the one used to determine
n67. As its performance is lower we have only tested the conjecture for g � 60.

5.2. Timings. In this section we summarize the timing improvements through the
different optimizations of our algorithm.

The following table shows the time needed by the algorithm for computing the
values of ng for g � G with 30 � G � 40 on a machine equipped with an IntelTM

i5-3570K CPU running at 3.4GHz and 8GB of memory. All algorithms are executed
on only one core. Algorithm breadth is based on a breadth exploration of the tree,
while Algorithm depth use a depth exploration. These two algorithms are based
on the same naive representation of numerical semigroups. The only difference
concerns the tree exploration algorithm used. Algorithm depth+δ is a refinement of
depth based on the S-decomposition function. Algorithm δ+sse is an optimization
of depth+δ using the SIMD extension SSE. Times are in seconds.

The computation of ng for g � 35 with algorithm breadth is very long because
all the 8GB of memory are consumed and the system must use swap memory to
finish the computation. This algorithm was not launched for genus g � 36.

Algorithm 30 31 32 33 34 35 36 37 38 39 40
breadth 5.0 8.3 14 23 38 1251
depth 3.4 5.8 9.2 16 27 45 75 125 204 346 557
depth+δ 0.3 0.6 1.0 1.7 2.7 4.2 7.4 12 20 32 74
δ+sse 0.1 0.2 0.3 0.4 0.8 1.2 2.0 3.1 5.1 9.0 14

The following table illustrates the impact of parallelization on the same machine
based on the IntelTM i5-3570K CPU, which has 4 physical cores that are able to
run four threads.

Threads 30 35 40 45 50
1 0.11 1.26 14.9 182 2201
2 0.06 0.65 7.50 92 1110
3 0.05 0.44 5.14 63 747
4 0.04 0.34 4.02 48 489

The time of the one threaded algorithm must be compared with the δ+sse version
of the previous table : it illustrates the additional cost induced by the use of Cilk
technology. It should be noticed that the TurboBoost technology [21] is present
on the CPU. Therefore the clock of the CPU is a bit higher when the number of
threads is smaller. Therefore the gain of using more threads is a bit more than the
one suggested by the table.

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 2567

Finally, we tested our algorithm on a machine holding two IntelTM XeonTM X5650
CPUs running at 2.67GHz. Each of those CPUs has 6 physical cores that are able
to run 12 threads thanks to the Hyper-Threading technology [18]: the machine
also has 12 physical cores and is able to run 24 threads. However, when more than
12 threads are running, the computation engines are shared between two threads,
and the speedup should be much less when adding more cores.

The following table resumes the time needed by the algorithm to explore T50 on
different numbers of threads (the double vertical line delimits the use of
Hyper-Threading). For reference, we put in the column called C++ the compu-
tation time of the same program compiled without Cilk.

Threads C++ 1 2 4 8 12 16 20 24
Time (s) 3588 3709 1865 932.4 486.8 325.7 311.2 302.3 290.2

Further improvements on the computation of ng or on the verification of Wilf’s
conjecture will be published on our homepages and on [6].

Acknowledgments

The authors would like to thank Shalom Eliahou for introducing them to the
tree of numerical semigroups and for interesting discussions on the subject. They
are grateful to Laura Grigori, who suggested that Cilk could be a good technology
to tackle the tree-level parallelism for this kind of problem. The authors would
finally like to thank Nathan Cohen, who suggested the two levels of indirection
stack optimization.

References

[1] N. Borie, Generating tuples of integers modulo the action of a permutation group and ap-
plications (English, with English and French summaries), 25th International Conference on
Formal Power Series and Algebraic Combinatorics (FPSAC 2013), Discrete Math. Theor.
Comput. Sci. Proc., AS, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2013, pp. 767–
778. MR3091039

[2] M. Bras-Amorós, Addition behavior of a numerical semigroup (English, with English and
French summaries), Arithmetic, geometry and coding theory (AGCT 2003), Sémin. Congr.,
vol. 11, Soc. Math. France, Paris, 2005, pp. 21–28. MR2182835 (2006i:20067)

[3] M. Bras-Amorós, Fibonacci-like behavior of the number of numerical semigroups of a
given genus, Semigroup Forum 76 (2008), no. 2, 379–384, DOI 10.1007/s00233-007-9014-8.
MR2377597 (2009c:20110)

[4] M. Delgado, Homepage, http://cmup.fc.up.pt/cmup/mdelgado/numbers/.

[5] M. Delgado, P. A. Garciá-Sánchez, and J. Morais, NumericalSgps, A GAP package for nu-
merical semigroups. Available via http://www.gap-system.org.

[6] J. Fromentin and F. Hivert, https://github.com/jfromentin/nsgtree.
[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.7, 2015.
[8] M. Girkar, Intel instruction set architecture extensions — Intel� developer zone, Soft-

ware.intel.com, 2013.
[9] B. V. Iyer, R. Geva, and P. Halpern, CilkTM plus in gcc, GNU Tools Cauldron, 2012.

[10] J. L. Ramı́rez Alfonśın, The Diophantine Frobenius problem, Oxford Lecture Series in Math-
ematics and its Applications, vol. 30, Oxford University Press, Oxford, 2005. MR2260521
(2007i:11052)

[11] J. C. Rosales, Fundamental gaps of numerical semigroups generated by two elements,
Linear Algebra Appl. 405 (2005), 200–208, DOI 10.1016/j.laa.2005.03.014. MR2148170
(2006b:20086)

[12] J. C. Rosales and P. A. Garćıa-Sánchez, Numerical semigroups, Developments in Mathemat-
ics, vol. 20, Springer, New York, 2009. MR2549780 (2010j:20091)

http://www.ams.org/mathscinet-getitem?mr=3091039
http://www.ams.org/mathscinet-getitem?mr=2182835
http://www.ams.org/mathscinet-getitem?mr=2182835
http://www.ams.org/mathscinet-getitem?mr=2377597
http://www.ams.org/mathscinet-getitem?mr=2377597
http://cmup.fc.up.pt/cmup/mdelgado/numbers/
http://www.gap-system.org
https://github.com/jfromentin/nsgtree
http://www.ams.org/mathscinet-getitem?mr=2260521
http://www.ams.org/mathscinet-getitem?mr=2260521
http://www.ams.org/mathscinet-getitem?mr=2148170
http://www.ams.org/mathscinet-getitem?mr=2148170
http://www.ams.org/mathscinet-getitem?mr=2549780
http://www.ams.org/mathscinet-getitem?mr=2549780

2568 JEAN FROMENTIN AND FLORENT HIVERT

[13] N. J. A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/.
[14] Software.intel.com, Intel� CilkTM homepage, https://www.cilkplus.org/, 2013.
[15] Software.intel.com, Intel� CilkTM plus reference guide, https://software.intel.com/en-us/

node/522579, 2013.
[16] Wikipedia, Advanced vector extension, http://en.wikipedia.org/wiki/Advanced_Vector_

Extensions, 2014.
[17] Wikipedia, Duff’s device, http://en.wikipedia.org/wiki/Duff’s_device, 2014.

[18] Wikipedia, Hyper-threading, http://en.wikipedia.org/wiki/Hyper-Threading, 2014.
[19] Wikipedia, Simd, http://en.wikipedia.org/wiki/SIMD, 2014.
[20] Wikipedia, Streaming simd extensions, http://en.wikipedia.org/wiki/Streaming_SIMD_

Extensions, 2014.
[21] Wikipedia, Turbo boost, http://en.wikipedia.org/wiki/Intel_Turbo_Boost, 2014.
[22] H. S. Wilf, A circle-of-lights algorithm for the “money-changing problem”, Amer. Math.

Monthly 85 (1978), no. 7, 562–565. MR0556658 (58 #27728)
[23] A. Zhai, Fibonacci-like growth of numerical semigroups of a given genus, Semigroup Forum

86 (2013), no. 3, 634–662, DOI 10.1007/s00233-012-9456-5. MR3053785

Univ. Littoral Côte d’Opale, EA 2597 - LMPA - Laboratoire de Mathématiques Pures

et Appliquées Joseph Liouville, F-62228 Calais, France

E-mail address: fromentin@lmpa.univ-littoral.fr

Laboratoire de Recherche Informatique (UMR CNRS 8623), Université Paris Sud,

Université Paris-Saclay, Bureau 33, Bât 650 Ada Lovelace, Université Paris Sud Rue

Noetzlin, 91190 Gif-sur-Yvette

E-mail address: florent.hivert@lri.fr

http://oeis.org/
https://www.cilkplus.org/
https://software.intel.com/en-us/node/522579
https://software.intel.com/en-us/node/522579
http://en.wikipedia.org/wiki/Advanced_Vector_Extensions
http://en.wikipedia.org/wiki/Advanced_Vector_Extensions
http://en.wikipedia.org/wiki/Duff's_device
http://en.wikipedia.org/wiki/Hyper-Threading
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://en.wikipedia.org/wiki/Intel_Turbo_Boost
http://www.ams.org/mathscinet-getitem?mr=0556658
http://www.ams.org/mathscinet-getitem?mr=0556658
http://www.ams.org/mathscinet-getitem?mr=3053785

	Introduction
	1. The tree of numerical semigroups
	2. Decomposition number
	3. A new algorithm
	4. Technical optimizations and results
	4.1. Vectorization
	4.2. Parallel tree exploration using \CilkP
	4.3. Various technical optimizations

	5. Results
	5.1. Wilf’s conjecture
	5.2. Timings

	Acknowledgments
	References

