
MATHEMATICS OF COMPUTATION
Volume 86, Number 303, January 2017, Pages 315–343
http://dx.doi.org/10.1090/mcom/3104

Article electronically published on April 13, 2016

A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE

MULTIPLIER FOR SEPARABLE CONVEX PROGRAMMING

YU-HONG DAI, DEREN HAN, XIAOMING YUAN, AND WENXING ZHANG

Abstract. The augmented Lagrangian method (ALM) is a benchmark for
solving convex minimization problems with linear constraints. Solving the

augmented subproblems over the primal variables can be regarded as sequen-
tially providing inputs for updating the Lagrange multiplier (i.e., the dual
variable). We consider the separable case of a convex minimization problem
where its objective function is the sum of more than two functions without
coupled variables. When applying the ALM to this case, at each iteration we
can (sometimes must) split the resulting augmented subproblem in order to
generate decomposed subproblems which are often easy enough to have closed-
form solutions. But the decomposition of primal variables only provides less
accurate inputs for updating the Lagrange multiplier, and it points out the
lack of convergence for such a decomposition scheme. To remedy this diffi-
culty, we propose to update the Lagrange multiplier sequentially once each
decomposed subproblem over the primal variables is solved. This scheme up-
dates both the primal and dual variables in Gauss-Seidel fashion. In addition
to the exact version which is useful enough for the case where the functions
in the objective are all simple such that the decomposed subproblems all have
closed-form solutions, we investigate an inexact version of this scheme which
allows the decomposed subproblems to be solved approximately subject to
certain inexactness criteria. Some preliminary numerical results when the pro-
posed scheme is respectively applied to an image decomposition problem and
an allocation problem are reported.

1. Introduction

Let us start with the canonical convex minimization model with linear constraints

min {θ(x) | Ax = b, x ∈ X} ,(1.1)

where θ : Rn → R is a closed proper convex function (could be nonsmooth),
A ∈ Rl×n, b ∈ Rl and X ⊆ Rn is a nonempty closed convex set. A benchmark for

Received by the editor June 29, 2013 and, in revised form, August 16, 2014 and July 27, 2015.
2010 Mathematics Subject Classification. Primary 90C25, 65K10, 94A08, 68W10.
Key words and phrases. Convex programming, augmented Lagrangian method, splitting

method, method of multipliers, image processing.
The first author was partially supported by the China National Funds for Distinguished Young

Scientists Grant 11125107, the Key Project of Chinese National Programs for Fundamental Re-
search and Development Grant 2015CB856000, NSFC Grant 11331012, and the CAS Program for
Cross & Cooperative Team of the Science & Technology Innovation.

The second author was supported by a project funded by PAPD of Jiangsu Higher Education
Institutions and the NSFC grants 11371197, 11431002.

The third author was supported by the General Research Fund of Hong Kong: HKBU203613.
The fourth author was supported by the NSFC grant 11301055.

c©2016 American Mathematical Society

315

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/3104


316 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

solving (1.1) is the augmented Lagrangian method (ALM) proposed in [28, 39]:{
xk+1 = argmin

{
LH(x, λk) | x ∈ X

}
,

λk+1 = λk −H(Axk+1 − b),
(1.2)

where LH(x, λ) denotes the augmented Lagrangian function of (1.1):

LH(x, λ) := θ(x)− λT (Ax− b) + 1
2‖Ax− b‖2H(1.3)

with λ ∈ Rl the Lagrange multiplier and H ∈ Rl×l a positive definite matrix
playing the role of a penalty parameter. Usually, we can simply take H = β · Il
where Il is the identity matrix in Rl×l and β > 0 is a scalar. In [41], the ALM
was explained as an application of the proximal point algorithm (PPA) in [33] to
the dual of (1.1), and some nice convergence properties were derived therein. It’s
worth mentioning that the convergence of ALM was established in the sense that the
sequence {λk} is convergent to λ∗, an optimal solution of the dual of (1.1). Thus, we
can also understand the ALM iterative scheme (1.2) as that solving the augmented
subproblem over the primal variable is to provide an input (more specifically, the
gradient −H(Axk+1−b)) for updating the dual variable λ. For more detail we refer
the reader to [41], where the ALM was actually explained as an application of the
gradient ascent method to the dual of (1.1).

For applications in various areas, the abstract model (1.1) can usually be specified
as concrete models with such a separable structure that the objective consists of
multiple individual objectives and each of them relies on its own decision variables.
That is, the objective function is the sum of more than one function without coupled
variables. But, all the decision variables are linked via some linear constraints (e.g.,
resource constraints). For many areas such as image processing and statistical
learning, the objective function of (1.1) is composed of a data-fidelity term and
several regularization terms. We thus consider the most general separable form of
(1.1):

min

{
m∑
i=1

θi(xi)
∣∣∣ m∑

i=1

Aixi = b, xi ∈ Xi, i = 1, 2, · · · ,m
}
,(1.4)

where θi : Rni → R are all closed proper convex functions (could be nonsmooth);
Xi ⊆ Rni are nonempty closed convex sets; Ai ∈ Rl×ni ; b ∈ Rl; and

∑m
i=1 ni = n.

Our discussion is mainly inspired by the scenario where it is meaningful to indi-
vidually take advantage of θi’s properties; we thus do not consider any algorithmic
design that ignores the separable structure of (1.4). Each Ai is further assumed to
be full column rank. The solution set of (1.4) is assumed to be nonempty.

Let the augmented Lagrangian function of (1.4) be

(1.5) LH(x1, x2, · · · , xm, λ) :=
m∑
i=1

θi(xi)− λT

(
m∑
i=1

Aixi − b

)
+ 1

2

∥∥∥∥
m∑
i=1

Aixi − b

∥∥∥∥
2

H

with λ and H having the same meanings as in (1.3). Denoting x := (x1, x2, · · · , xm)
and X := X1 ×X2 × · · · × Xm, the iterative scheme of ALM for (1.4) reads as{

xk+1 = argmin
{
LH(x, λk) | x ∈ X

}
,

λk+1 = λk −H(
∑m

i=1 Aix
k+1
i − b).

(1.6)

Conceptually, this straightforward application of the ALM is capable of offering
an accurate input for updating the Lagrange multiplier provided that the mini-
mization problem over all primal variables can be solved exactly at each iteration.



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 317

This ideal purpose of solving the x-subproblem in (1.6) exactly, however, is usually
not achievable. We thus have to make a trade-off between the solvability of the
x-subproblem in (1.6) and its accuracy for the updating of the Lagrange multiplier.
In fact, many concrete applications of (1.4) share the common feature that each
function in the objective may have some specific properties. Thus, a natural idea
to improve the solvability of the x-subproblem in (1.6) is to decompose it into m
smaller subproblems so that each of these decomposed subproblems only involves
one θi(xi) and thus the properties of θi’s could be used effectively in algorithmic
design. One success is the Douglas-Rachford alternating direction method of mul-
tipliers (ADMM) in [18] for solving the special case of (1.4) with m = 2. More
specifically, the ADMM decomposes the ALM subproblem at each iteration into
two smaller subproblems in Gauss-Seidel fashion, and its iterative scheme reads as⎧⎪⎨

⎪⎩
xk+1
1 = argmin

{
LH(x1, x

k
2 , λ

k) | x1 ∈ X1

}
,

xk+1
2 = argmin

{
LH(xk+1

1 , x2, λ
k) | x2 ∈ X2

}
,

λk+1 = λk −H
(
A1x

k+1
1 +A2x

k+1
2 − b

)
,

(1.7)

with

LH(x1, x2, λ) := θ1(x1) + θ2(x2)− λT (A1x1 +A2x2 − b) +
1

2
‖A1x1 + A2x2 − b‖2H .

The ADMM scheme (1.7) enjoys the advantage that the generated subproblems
could have closed-form solutions provided that θ1 and θ2 are special enough; thus it
is impressively efficient for some applications arising in areas such as image process-
ing, compressive sensing, computer vision, statistical learning; see, e.g., [5, 10, 15]
for some recent review papers in which a number of novel applications of ADMM
and some important references can be found. Although the decomposed x1- and
x2-subproblems in (1.7) provide an approximation to the all-in-one x-subproblem
in (1.6) with x = (x1, x2), the convergence of ADMM is still guaranteed; see, e.g.,
[12, 13, 26, 27]. However, when the ADMM scheme (1.7) is extended to the general
case of (1.4) where m ≥ 3, according to [6], the convergence may not hold. That
is, the iterative scheme

(1.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

{
LH(x1, x

k
2 , · · · , xk

m, λk) | x1 ∈ X1

}
,

· · ·
xk+1
i = argmin

{
LH(xk+1

1 , · · · , xk+1
i−1 , xi, x

k
i+1, · · · , xk

m, λk) | xi ∈ Xi

}
,

· · ·
xk+1
m = argmin

{
LH(xk+1

1 , · · · , xk+1
m−1, xm, λk) | xm ∈ Xm

}
,

λk+1 = λk −H
(∑m

j=1 Ajx
k+1
j − b

)
is not necessarily convergent under our setting of (1.4). We refer to [20,29] for the
convergence of this ADMM’s extension (1.8) under additional assumptions. The
lack of convergence of (1.8) can be intuitively understood as that the x-subproblem
in (1.6) is decomposed more than twice and thus it is not able to provide inputs
that are accurate enough for the updating of the Lagrange multiplier.

With the understanding of treating the output of the decomposed ALM sub-
problems as inputs for updating the Lagrange multiplier, one idea to overcome the
lack of convergence of (1.8) is to update the Lagrange multiplier λ sequentially
right after each primal variable xi is updated. Let us start with the case of (1.4)
where m = 2. For this case, a revised version of (1.7) which updates the Lagrange



318 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

multiplier sequentially is⎧⎪⎪⎨
⎪⎪⎩

xk+1
1 = argmin

{
LH(x1, x

k
2 , λ

k) | x1 ∈ X1

}
,

λk+ 1
2 = λk −H(A1x

k+1
1 +A2x

k
2 − b),

xk+1
2 = argmin

{
LH(xk+1

1 , x2, λ
k+ 1

2 ) | x2 ∈ X2

}
,

λk+1 = λk+ 1
2 −H

(
A1x

k+1
1 +A2x

k+1
2 − b

)
.

(1.9)

In (1.9), both the primal and dual variables are updated in Gauss-Seidel fashion,
and one may expect that (1.9) achieves faster convergence than (1.7) because the
Lagrange multiplier is updated more timely. In the literature, the scheme (1.9) is
also called symmetric ADMM since the Lagrange multiplier is updated twice at
each iteration symmetrically with respect to the variables x1 and x2. In [14, 16],
it was analyzed that the scheme (1.9) is actually an application of the Peaceman-
Rachford splitting method (PRSM) in [30, 38], a very standard method in earlier
PDE literature. In [17], it was stated that “very often PRSM is faster than the
Douglas-Rachford splitting method (DRSM) in [9, 30]” (note that ADMM is only
an application of DRSM, as analyzed in [12]), and the efficiency of PRSM has been
verified numerically in existing literature such as [3, 16]. But in [17, 30], it was
also stated that “PRSM is less stable than DRSM”, and the convergence analysis
of PRSM is in general much harder than DRSM. A counterexample illustrating
that the sequence generated by PRSM could only stay with a constant distance to
the solution set and thus is divergent was given in [8], and in [24], the reason for
divergence of (1.9) is explained from the perspective of contraction methods.

If we extend the iterative scheme (1.9) straightforwardly to the general case (1.4)
with a generic m ≥ 3, the scheme reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

{
LH(x1, x

k
2 , · · · , xk

m, λk) | x1 ∈ X1

}
,

λk+ 1
m = λk −H

(
A1x

k+1
1 +

∑m
j=2 Ajx

k
j − b

)
,

· · ·
xk+1
i = argmin

{
LH(xk+1

1 , · · · , xk+1
i−1 , xi, x

k
i+1, · · · , xk

m, λk+ i−1
m ) | xi∈Xi

}
,

λk+ i
m = λk+ i−1

m −H
(∑i

j=1Ajx
k+1
j +

∑m
j=i+1 Ajx

k
j − b

)
,

· · ·
λk+m−1

m = λk+m−2
m −H

(∑m−1
j=1 Ajx

k+1
j +Amxk

m − b
)
,

xk+1
m = argmin

{
LH(xk+1

1 , · · · , xk+1
m−1, xm, λk+m−1

m ) | xm ∈ Xm

}
,

λk+1 = λk+m−1
m −H

(∑m
j=1 Ajx

k+1
j − b

)
.

(1.10)

Note that the scheme (1.10) is a natural extension of (1.9) for the case of (1.4) where
m ≥ 3, and it can be regarded as embedding a full Gauss-Seidel decomposition for
both the primal and dual variables into the scheme (1.8). However, according to
[23], the scheme (1.10) is also not necessarily convergent under the setting of our
discussion.

To obtain a scheme with provable convergence based on the scheme (1.10), our
strategy is to supplement a simple linear combination between the previous iter-
ate and the output of (1.10). Thus, the new iterate is generated in a prediction-
correction fashion where the output of (1.10) can be regarded as a predictor of the
new iterate. Moreover, in our algorithmic design, we make the effort to simplify the
update of λ before individual primal variables are solved at each iteration. That

is, when updating λk+ i
m , we ignore the quantities Ajx

k+1
j with j = 1, 2, · · · , i − 1



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 319

and Ajx
k
j with j = i+ 1, · · · ,m and simplify it as

λk+ i
m = λk+ i−1

m + μH
(
Aix

k
i −Aix

k+1
i

)
, i = 1, 2, · · · ,m− 1,

where the parameter μ ≥ 1 will be explained later. Furthermore, for the crossing
and quadratic terms in the objective of the xi-subproblem, we also ignore the
quantities Ajx

k+1
j with j = 1, 2, · · · , i − 1 and Ajx

k
j with j = i + 1, · · · ,m. For

example, the quadratic term

1
2

∥∥∥∑i−1
j=1 Ajx

k+1
j +Aixi +

∑m
j=i+1 Ajx

k
j

∥∥∥2
H

in the augmented Lagrangian function of (1.10) is altered to

μ

2
‖Aixi −Aix

k
i ‖2H .

Theoretically, we can understand this simplification of the updating scheme as a
proximal point regularization where the proximity of the updated Lagrange multi-
plier to the previous one is controlled by the difference of the just-obtained primal
variable xk+1

i , and the parameter μ plays the role of controlling the weight of prox-
imity. Algorithmically, this succinctness consideration might be of interest in the
sense of saving storage and multiplication computation — thinking about huge-
scale applications of (1.4) where the multiplication in the form of Aix

k
i might also

be unaffordable. Finally, for the last time updating λk+1 when all the primal vari-
ables xi (i = 1, 2, · · · ,m) are updated at each iteration and the Lagrange multiplier
is updated for (m− 1) times already, we coordinate all the updates and execute a
regular updating step for the Lagrange multiplier. That is, the λk+1 step in (1.10)
is retained.

The rest of this paper is organized as follows. Some necessary preliminaries for
further analysis are provided in Section 2. In Section 3, we delineate the sequential
updating scheme of the Lagrange scheme for solving (1.4), and in Section 4, we
analyze its global convergence. In Section 5, we present an inexact version of the
sequential updating scheme of the Lagrange scheme and establish its convergence.
Then, in Section 6, we report some numerical results when the sequential updat-
ing scheme of the Lagrange scheme is applied to solve image decomposition and
allocation problems. Finally, some concluding remarks are given in Section 7.

2. Preliminaries

In this section, we summarize some basic concepts and preliminaries that will be
useful in the subsequent sections.

For any vector x ∈ Rn, we denote by ‖x‖p := (
∑n

i=1 |xi|p)1/p the p-norm. In
particular, ‖x‖ := ‖x‖2. Let 1 be the vector with all elements being one and
let I represent the identity matrix with appropriate dimension. For any vector
x = (x1, x2, · · · , xn) ∈ Rn, diag(x) represents a diagonal matrix whose diagonal
elements are xi’s. Let Sn be the set of n-by-n symmetric matrices, and Sn

++ be

the set of positive definite matrices in Sn. For any H ∈ Sn
++, ‖x‖H :=

√
xTHx

denotes the matrix norm of x. The smallest and largest eigenvalues of a matrix H
are denoted by eigmin(H) and eigmax(H), respectively.

Let θ : Rn → (−∞,+∞]. If the domain of θ which is denoted by domθ := {x ∈
Rn | θ(x) < +∞} is nonempty, then θ is said to be proper. Let Γ0(Rn) denote the



320 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

set of proper convex functions from Rn to (−∞,+∞]. For any θ ∈ Γ0(Rn), the
proximity function of θ, denoted by proxθ, is defined as (see, e.g., [7, 35])

proxθ(x) := argmin
y

{
θ(y) + 1

2‖y − x‖2
}
, ∀x ∈ Rn.(2.1)

The subdifferential of θ at x, denoted by ∂θ(x) : Rn → 2R
n

, is defined as

∂θ(x) :=
{
ξ ∈ Rn | θ(y) ≥ θ(x) + ξT (y − x), ∀y ∈ Rn

}
.

Let u := (x1, x2, · · · , xm, λ) and U := X1×· · ·×Xm×Rl. According to the first-
order optimality condition, (1.4) can be characterized by the following variational
inequality problem (VIP): Find u∗ ∈ U such that for some ξ∗i ∈ ∂θi(x

∗
i ) (i =

1, 2, · · · ,m), the inequalities

(VIP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x1 − x∗
1)

T {ξ∗1 − AT
1 λ

∗} ≥ 0,
(x2 − x∗

2)
T {ξ∗2 − AT

2 λ
∗} ≥ 0,

· · · · · ·
(xm − x∗

m)T {ξ∗m −AT
mλ∗} ≥ 0,

(λ− λ∗)T (
∑m

i=1 Aix
∗
i − b) ≥ 0,

∀u ∈ U ,

are satisfied. By denoting

F(u) :=

⎛
⎜⎜⎜⎜⎝

∂θ1(x1)−AT
1 λ

∂θ2(x2)−AT
2 λ

· · · · · ·
∂θm(xm)−AT

mλ∑m
i=1 Aixi − b

⎞
⎟⎟⎟⎟⎠ ,(2.2)

the above VIP can be written as: Find u∗ ∈ U such that for some ϑ∗ ∈ F(u∗),

(2.3) (u− u∗)Tϑ∗ ≥ 0, ∀ u ∈ U .

We denote by U∗ the set of u∗ satisfying (2.3). Then, U∗ is nonempty if the solution
set of (1.4) is nonempty (see, e.g., [11]).

Thanks to an anonymous referee, we will use the following lemma (the deter-
ministic version of Theorem 1 in [40]; see also [4]) to prove the convergence for the
proposed algorithm.

Lemma 2.1 ([40, Th. 1]). Let zk, βk, ξk and ζk be nonnegative sequences such
that

zk+1 ≤ zk(1 + βk) + ξk − ζk.

If
∑∞

k=1 βk < ∞ and
∑∞

k=1 ξk < ∞, then we have

i. limk→∞ zk exists and is finite;
ii.

∑∞
k=1 ζk < ∞.

3. A sequential updating scheme of the Lagrange multiplier for (1.4)

In this section, we present a sequential updating scheme of the Lagrange multiplier
for solving (1.4).



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 321

With a given H ∈ Sn
++ and μ ≥ 1, we define two (n+ l)-by-(n+ l) matrices as

M :=

⎛
⎜⎜⎜⎜⎜⎝

μAT
1 HA1 0 · · · 0 0

μAT
2 HA1 μAT

2 HA2 · · · 0 0
...

...
. . .

...
...

μAT
mHA1 μAT

mHA2 · · · μAT
mHAm 0

0 0 · · · 0 H−1

⎞
⎟⎟⎟⎟⎟⎠

,(3.1)

N :=

⎛
⎜⎜⎜⎜⎜⎝

2μAT
1 HA1 μAT

1 HA2 · · · μAT
1 HAm AT

1

μAT
2 HA1 2μAT

2 HA2 · · · μAT
2 HAm AT

2
...

...
. . .

...
...

μAT
mHA1 μAT

mHA2 · · · 2μAT
mHAm AT

m

A1 A2 · · · Am 2H−1

⎞
⎟⎟⎟⎟⎟⎠

.(3.2)

These two matrices help us present theoretical analysis in compact notation later.
Note that when Ai’s are assumed to be full column rank and μ ≥ 1, it is easy to
see that the matrix N defined in (3.2) is positive definite.

The sequential updating scheme of the Lagrange multiplier for (1.4) is summa-
rized as Algorithm 1.

Algorithm 1: Sequential updating scheme of the Lagrange multiplier for (1.4)

Input: Choose μ ≥ 1, γ ∈ (0, 2), ε > 0, u0 = (x0
1, x

0
2, · · · , x0

m, λ0) ∈ U ,
ũ0 = (x̃0

1, x̃
0
2, · · · , x̃0

m, λ̃0) ∈ U , H ∈ Sl
++ and G ∈ Sn+l

++ . Set k = 0.

1 while max
{
max1≤i≤m ‖Aix

k
i −Aix̃

k
i ‖, ‖λk − λ̃k‖

}
> ε do

2 for i = 1, 2, · · · ,m do
3 if i = 1 then

4 λk+ i−1
m = λk −H

(∑m
j=1Ajx

k
j − b

)
.

5 else

6 λk+ i−1
m = λk+ i−2

m + μH(Ai−1x
k
i−1 −Ai−1x̃

k
i−1).

7 end

8 x̃k
i = arg min

xi∈Xi

{
θi(xi)− (λk+ i−1

m )TAixi +
μ
2 ‖Aixi −Aix

k
i ‖2H

}
.

9 end

10 λ̃k = λk −H
(∑m

i=1 Aix̃
k
i − b

)
.

11 αk = ‖uk − ũk‖2N/
(
2‖G−1M(uk − ũk)‖2G

)
.

12 uk+1 = uk − γαkG
−1M(uk − ũk).

13 k = k + 1.

14 end

Remark 3.1. We abuse slightly the notation “k+ 0
m” in Algorithm 1; it is not k by

calculation. That is, λk+ 0
m and λk are different.

Remark 3.2. In general, the x̃i-subproblems require inner iterations to pursue ap-
proximate solutions, and this is the motivation for considering an inexact version
of Algorithm 1 in Section 4, which allows us to solve these subproblems approxi-
mately subject to certain approximate criteria. Even when these subproblems are
easy enough to have closed-form solutions for some specific applications (e.g., the



322 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

example in Section 6), these subproblems usually dominate the computation of Al-
gorithm 1, and the computation of the correction steps is often relatively much
cheaper (and it is completely computable and requires no optimization).

Remark 3.3. For the correction step in Line 12, the αk is a step size along the
descent direction −G−1M(uk − ũk). We choose it judiciously according to the
formula in Line 11 because it helps us ensure the convergence of Algorithm 1 (see
Lemma 4.2). For the parameter γ, it is a relaxation (or scaling) factor, and the
restriction γ ∈ (0, 2) is to ensure the contraction of Algorithm 1’s sequence (see
Theorem 4.3) theoretically and also to accelerate the convergence empirically. Our
experience is to choose an aggressive value close to 2, e.g., γ ≈ 1.5. For the matrix
G ∈ Sn+l

++ , we can simply choose it as the identity matrix in practice.

The following lemma shows that it is reasonable to use the stopping criterion in
Line 1 of Algorithm 1.

Lemma 3.1. If Aix
k
i = Aix̃

k
i (i = 1, 2, · · · ,m) and λk = λ̃k, then ũk = (x̃k

1 , x̃
k
2 , · · · ,

x̃k
m, λ̃k) is a solution of VIP (2.3).

Proof. The optimality condition of the x̃k
i -subproblem in Line 8 is to find x̃k

i ∈ Xi

such that for some ξ̃ki ∈ ∂θi(x̃
k
i ) the following inequality holds:

(x′
i − x̃k

i )
T
{
ξ̃ki −AT

i λ
k+ i−1

m + μAT
i HAi(x̃

k
i − xk

i )
}
≥ 0, ∀x′

i ∈ Xi.

Line 10 in Algorithm 1 can also be written as

(λ′ − λ̃k)T
{

m∑
i=1

Aix̃
k
i − b+H−1(λ̃k − λk)

}
≥ 0, ∀λ′ ∈ Rl.

Consequently, the VIP characterization of Algorithm 1 is to find ũk = (x̃k
1 , x̃

k
2 , · · · ,

x̃k
m, λ̃k) such that for some ξ̃ki ∈ ∂θi(x̃

k
i ) (i = 1, 2, · · · ,m),

⎛
⎜⎜⎜⎜⎝

x′
1 − x̃k

1

x′
2 − x̃k

2

· · ·
x′
m − x̃k

m

λ′ − λ̃k

⎞
⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎝

ξ̃k1 −AT
1 λ

k+ 0
m + μAT

1 HA1(x̃
k
1 − xk

1)

ξ̃k2 −AT
2 λ

k+ 1
m + μAT

2 HA2(x̃
k
2 − xk

2)
· · · · · ·

ξ̃km −AT
mλk+m−1

m + μAT
mHAm(x̃k

m − xk
m)∑m

i=1 Aix̃
k
i − b+H−1(λ̃k − λk)

⎞
⎟⎟⎟⎟⎠ ≥ 0, ∀u′ ∈ U .(3.3)

Combining the schemes of λk+ i−1
m and λ̃k in Lines 4, 6 and 10, we deduce that

λk+ i−1
m =

⎧⎪⎪⎨
⎪⎪⎩

λ̃k −H
m∑
j=1

(Ajx
k
j −Aj x̃

k
j ), i = 1,

λ̃k −H
m∑
j=1

(Ajx
k
j −Aj x̃

k
j ) + μH

i−1∑
j=1

(Ajx
k
j −Ajx̃

k
j ), i = 2, 3, · · · ,m.

(3.4)



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 323

Substituting (3.4) into VIP (3.3) and rearranging terms, we have

⎛
⎜⎜⎜⎜⎝

x′
1 − x̃k

1

x′
2 − x̃k

2

· · ·
x′
m − x̃k

m

λ′ − λ̃k

⎞
⎟⎟⎟⎟⎠

T
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ̃k1 −AT
1 λ̃

k

ξ̃k2 −AT
2 λ̃

k

· · ·
ξ̃km −AT

mλ̃k

m∑
i=1

Aix̃
k
i − b

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

AT
1

AT
2
...

AT
m

0

⎞
⎟⎟⎟⎟⎟⎠

H
m∑
j=1

(Ajx
k
j −Aj x̃

k
j )

(3.5)

−

⎛
⎜⎜⎜⎜⎜⎝

μAT
1 HA1 0 · · · 0 0

μAT
2 HA1 μAT

2 HA2 · · · 0 0
...

...
. . .

...
...

μAT
mHA1 μAT

mHA2 · · · μAT
mHAm 0

0 0 · · · 0 H−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

xk
1 − x̃k

1

xk
2 − x̃k

2

· · ·
xk
m − x̃k

m

λk − λ̃k

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
≥ 0, ∀u′∈U .

Defining

η(uk, ũk) :=

⎛
⎜⎜⎜⎜⎜⎝

AT
1

AT
2
...

AT
m

0

⎞
⎟⎟⎟⎟⎟⎠

H
m∑
j=1

(Ajx
k
j −Ajx̃

k
j )

and combining the definitions of F in (2.2) and M in (3.1), the inequality (3.5) can
be condensed into

(u′ − ũk)T
{
F(ũk) + η(uk, ũk)−M(uk − ũk)

}
≥ 0, ∀u′ ∈ U .(3.6)

If Aix
k
i = Aix̃

k
i (i = 1, 2, · · · ,m) and λk = λ̃k, it yields that

η(uk, ũk) = 0 and M(uk − ũk) = 0.

Consequently, the inequality (3.6) further reduces to

(u′ − ũk)TF(ũk) ≥ 0, ∀u′ ∈ U ,

which indicates that ũk is a solution of VIP (2.3). �

4. Convergence

We now establish the global convergence of Algorithm 1 under some mild as-
sumptions. We first introduce a matrix Q ∈ Rn+l defined as

Q =

⎛
⎜⎜⎜⎝

0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 0
A1 A2 · · · Am 0

⎞
⎟⎟⎟⎠ .

Obviously, the matrices M in (3.1), N in (3.2) and Q above satisfy the relationship

N = M +MT +Q+QT .(4.1)



324 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

Lemma 4.1. Let (x∗
1, x

∗
2, · · · , x∗

m) be an arbitrary solution of (1.4) and λ∗ be the
corresponding Lagrange multiplier. Then for any given uk, the point ũk generated
by Algorithm 1 satisfies

(uk − u∗)TM(uk − ũk) ≥ 1

2
‖uk − ũk‖2N .(4.2)

Proof. By adding (2.3) with u := ũk to (3.6) with u′ := u∗, we deduce that

(ũk − u∗)T
{
F(u∗)− F(ũk)− η(uk, ũk) +M(uk − ũk)

}
≥ 0.(4.3)

Because of the monotonicity of F(u) on U , the inequality (4.3) can be written as

(ũk − u∗)TM(uk − ũk) ≥ (ũk − u∗)T η(uk, ũk)

= (λk − λ̃k)T
m∑
j=1

(Ajx
k
j −Aj x̃

k
j )

= (uk − ũk)TQ(uk − ũk),(4.4)

where the first equality follows the fact that
∑m

i=1 Aix
∗
i = b. Furthermore, we can

rewrite (4.4) as

(uk − u∗)TM(uk − ũk) ≥ (uk − ũk)T (M +Q)(uk − ũk)

=
1

2
(uk − ũk)T (M +MT +Q+QT )(uk − ũk)

=
1

2
(uk − ũk)TN(uk − ũk)

=
1

2
‖uk − ũk‖2N ,(4.5)

where the second equality is the consequence of (4.1). �

By the definition of αk in Line 11 of Algorithm 1, it is obvious that αk ≥ 0 for
all k’s. Moreover, we will prove in the following lemma that the sequence {αk} is
uniformly bounded away from zero; i.e., there exists a constant αmin > 0 such that
αk ≥ αmin for all k’s.

Lemma 4.2. For the sequence {αk} generated by Algorithm 1, there exists a con-
stant αmin > 0 such that αk ≥ αmin for all k ≥ 0.

Proof. Since Ai’s are assumed to be full column rank and μ ≥ 1, the matrix N
in (3.2) is positive definite, i.e., the minimum eigenvalue eigmin(N) > 0. By the
definition of αk in Line 11 of Algorithm 1, we deduce that

αk =
‖uk − ũk‖2N

2‖G−1M(uk − ũk)‖2G
≥ eigmin(N)

2‖MTG−1M‖ =: αmin,(4.6)

which completes the proof. �

Remark 4.1. By the equation (4.5), we have that

1
2‖uk − ũk‖2N = (uk − ũk)T (M +Q)(uk − ũk)

= (uk − ũk)TM(uk − ũk) + (λk − λ̃k)T
m∑
i=1

(Aix
k
i −Aix̃

k
i ).

It is numerically preferred that this equation be employed for computing αk.

We now establish the global convergence of Algorithm 1 in the following theorem.



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 325

Theorem 4.3. The sequence {uk} generated by Algorithm 1 converges to a solution
of VIP (2.3).

Proof. It follows from Line 12 of Algorithm 1 that

‖uk+1 − u∗‖2G = ‖uk − u∗‖2G − 2γαk(u
k − u∗)TM(uk − ũk)

+ γ2α2
k‖G−1M(uk − ũk)‖2G

≤ ‖uk − u∗‖2G − 1

2
γ(2− γ)αk‖uk − ũk‖2N

≤ ‖uk − u∗‖2G − 1

2
γ(2− γ)αmin‖uk − ũk‖2N ,(4.7)

where the inequalities come from (4.2) and (4.6). The assumptions in Lemma 2.1
are fulfilled (βk ≡ 0 and ξk ≡ 0), and we conclude that

(i) lim
k→∞

‖uk − u∗‖G exists and is finite; (ii) lim
k→∞

‖uk − ũk‖N = 0.

Since the matrix N is positive definite as μ ≥ 1, we have

lim
k→∞

‖λk − λ̃k‖ = 0 and lim
k→∞

‖xk
i − x̃k

i ‖ = 0, i = 1, 2, · · · ,m.(4.8)

By Lemma 3.1, we deduce that the sequence {ũk} converges to a solution of VIP
(2.3). Consequently, the sequence {(x̃k

1 , x̃
k
2 , · · · , x̃k

m)} converges to a solution of
(1.4). �

5. An inexact version of the sequential updating scheme

of the Lagrange multiplier

In this section, we consider an inexact version of the sequential updating scheme
of the Lagrange multiplier which allows the minimization subproblems in Algorithm
1 to be solved approximately subject to certain inexactness criteria. This consider-
ation is necessary when the objective functions θi(xi)’s in (1.4) are in general forms,
and thus it is not possible to obtain closed-form solutions for the x̃k

i -subproblems
in Algorithm 1. In the following, we present an inexact version of Algorithm 1 and
establish its convergence rigorously.

Remark 5.1. To check the inexact criterion in Line 8 of Algorithm 2 which involves
the unknown exact solution x̃k

i , we can employ an existing algorithm in the liter-
ature that is suitable for the xi-subproblem and seek an approximate solution x̂k

i

such that a certain error bound which can sufficiently guarantee the criterion in
Line 8 of Algorithm 2 is satisfied. For example, according to [11, Chapter 6], there
exists a function ri : Rni → R+ such that

‖xi − x̃k
i ‖ ≤ Ci‖ri(xi)‖, ∀xi ∈ Rni ,(5.1)

where Ci > 0 represents a constant independent of x̃k
i and ri(xi) is computable

based on the generated iterates. Then, as long as an iterate x̂k
i generated by

iteratively solving the xi-subproblem satisfies

‖ri(x̂k
i )‖ ≤ ε̂k/Ci,

it sufficiently ensures the inexact criterion in Line 8 of Algorithm 2. For how to
choose ri(xi) in (5.1) for different scenarios, we refer the reader to, e.g., [11,31] for
details.



326 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

Algorithm 2: An inexact version of Algorithm 1

Input: Choose μ ≥ 1, γ ∈ (0, 2), ε > 0, a sequence {ε̂k} ∈ [0, 1) satisfying∑∞
k=0 ε̂k < +∞, u0 = (x0

1, x
0
2, · · · , x0

m, λ0) ∈ U ,
û0 = (x̂0

1, x̂
0
2, · · · , x̂0

m, λ̂0) ∈ U , H ∈ Sl
++ and G ∈ Sn+l

++ . Set k = 0.

1 while max
{
max1≤i≤m ‖Aix

k
i −Aix̂

k
i ‖, ‖λk − λ̂k‖

}
> ε do

2 for i = 1, 2, · · · ,m do
3 if i = 1 then

4 λ̂k+ i−1
m = λk −H

(∑m
j=1Ajx

k
j − b

)
.

5 else

6 λ̂k+ i−1
m = λ̂k+ i−2

m + μH(Ai−1x
k
i−1 −Ai−1x̂

k
i−1).

7 end

8 Find an x̂k
i satisfying ‖x̂k

i − x̃k
i ‖ < ε̂k,

9 where x̃k
i = arg min

xi∈Xi

{
θi(xi)− (λk+ i−1

m )TAixi +
μ
2 ‖Aixi −Aix

k
i ‖2H

}
.

10 end

11 λ̂k = λk −H
(∑m

i=1 Aix̂
k
i − b

)
.

12 α̂k = (1− ε̂k)‖uk − ûk‖2N/
(
2‖G−1M(uk − ûk)‖2G

)
.

13 uk+1 = uk − γα̂kG
−1M(uk − ûk).

14 k = k + 1.

15 end

Remark 5.2. The requirements ε̂k ≥ 0 and
∑∞

k=0 ε̂k < +∞ imply that limk→∞ ε̂k =
0. Thus, with the given accuracy ε > 0 in the inexact criteria, there exists an integer
K > 0 such that ε̂k < ε for all k ≥ K. Without loss of generality, we just assume
that ε̂k < ε for all k’s.

The following lemma, together with Lemma 3.1, justifies the rationale of the
stopping criteria in Algorithm 2.

Lemma 5.1. If the stopping rule in Line 1 of Algorithm 2 holds, then there exists
a constant ν > 0 such that

max
{
max1≤i≤m ‖Aix

k
i −Aix̃

k
i ‖, ‖λk − λ̃k‖

}
< νε.

Proof. If the stopping rule in Line 1 of Algorithm 2 holds, i.e.,

max
{
max1≤i≤m ‖Aix

k
i − Aix̂

k
i ‖, ‖λk − λ̂k‖

}
< ε,

it follows that ‖Aix
k
i −Aix̂

k
i ‖ < ε for all i’s. By the triangle inequality, we have

‖Aix
k
i −Aix̃

k
i ‖ ≤ ‖Aix

k
i −Aix̂

k
i ‖+ ‖Aix̃

k
i −Aix̂

k
i ‖

≤ ε+ ‖Ai‖ε̂k
≤ (1 + ‖Ai‖)ε, ∀ i.

Recall the updates of λ̃k and λ̂k in Algorithms 1 and 2, respectively. We have

λ̂k − λ̃k = H
m∑
i=1

(Aix̃
k
i −Aix̂

k
i ),



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 327

and as a consequence,

‖λ̂k − λ̃k‖ ≤
∥∥∥∥H

m∑
i=1

(Aix̃
k
i −Aix̂

k
i )

∥∥∥∥ ≤ ‖H‖
(

m∑
i=1

‖Ai‖ · ‖x̃k
i − x̂k

i ‖
)

≤ ς1ε̂k,

(5.2)

where ς1 := ‖H‖ (
∑m

i=1 ‖Ai‖). Hence,

‖λk − λ̃k‖ ≤ ‖λk − λ̂k‖+ ‖λ̂k − λ̃k‖ ≤ (1 + ς1) ε.

The proof is completed by setting ν := max {max1≤i≤m(1 + ‖Ai‖), 1 + ς1}. �

Compared to the αk in Algorithm 1, the α̂k in Algorithm 2 is computed by
replacing (the unknown) ũk with ûk and by multiplying by a factor (1− ε̂k). Ac-
cordingly, the lower boundedness of α̂k can be proved analogously to Lemma 4.2.
Specifically, it can be easily proved that

α̂k ≥ (1− ε̂max)αmin =: α̂min > 0, ∀ k ≥ 0,

where ε̂max := max
k≥0

ε̂k and αmin is as in (4.6). Moreover, followed by the fact that

‖G−1M(uk − ûk)‖2G ≥ eigmin(M
TG−1M)‖uk − ûk‖2,

‖uk − ûk‖2N ≤ eigmax(N)‖uk − ûk‖2,
we have

α̂k =
(1− ε̂k)‖uk − ûk‖2N
2‖G−1M(uk − ûk)‖2G

≤ (1− ε̂k)eigmax(N)

2 · eigmin(M
TG−1M)

(5.3)

<
eigmax(N)

2 · eigmin(M
TG−1M)

=: α̂max,

which indicates that the sequence {α̂k} ⊂ [α̂min, α̂max] is bounded.

Lemma 5.2. Let (x∗
1, x

∗
2, · · · , x∗

m) be an arbitrary solution of (1.4) and λ∗ be the
corresponding Lagrange multiplier. Then the sequences {uk} and {ûk} generated
by Algorithm 2 satisfy

(uk − u∗)M(uk − ûk) ≥1

2

{
(1− ε̂k)‖uk − ûk‖2N − (1 + ‖N‖)(m+ ς21 )ε̂k(5.4)

−ε̂k‖M‖2 · ‖uk − u∗‖2
}
.

Proof. First, notice the identity

(uk − u∗)TM(uk − ûk) = (uk − u∗)TM(uk − ũk) + (uk − u∗)TM(ũk − ûk).

Applying the assertion in Lemma 4.1 to the first term of the right-hand side above,
we obtain

(uk − u∗)TM(uk − ûk) ≥ 1

2
‖uk − ũk‖2N + (uk − u∗)TM(ũk − ûk).(5.5)

Using (5.2), we get

‖ûk − ũk‖2 =
m∑
i=1

‖x̂k
i − x̃k

i ‖2 + ‖λ̂k − λ̃k‖2 ≤ (m+ ς21 )ε̂
2
k.(5.6)

For any two vectors a and b with the same dimension, the inequality

2aT b ≤ �‖a‖2 + 1

�
‖b‖2, ∀� > 0,(5.7)



328 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

holds. Then, by setting a := −MT (uk − u∗), b := ũk − ûk and � := ε̂k in (5.7), we
obtain

2(uk − u∗)TM(ũk − ûk) ≥ −ε̂k‖MT (uk − u∗)‖2 − 1

ε̂k
‖ũk − ûk‖2

≥ −ε̂k‖M‖2 · ‖uk − u∗‖2 − 1

ε̂k
‖ũk − ûk‖2

≥ −ε̂k‖M‖2 · ‖uk − u∗‖2 − (m+ ς21 )ε̂k,(5.8)

where the last inequality follows from (5.6). Analogically, by setting a :=

−N
1
2 (uk − ûk), b := N

1
2 (ûk − ũk) and � := ε̂k in (5.7), we obtain

2(uk − ûk)TN(ûk − ũk) ≥ −ε̂k‖uk − ûk‖2N − 1

ε̂k
‖N‖ · ‖ũk − ûk‖2

≥ −ε̂k‖uk − ûk‖2N − ‖N‖(m+ ς21 )ε̂k.

Consequently,

‖uk − ũk‖2N = ‖uk − ûk‖2N + 2(uk − ûk)TN(ûk − ũk) + ‖ûk − ũk‖2N
≥ (1− ε̂k)‖uk − ûk‖2N − ‖N‖(m+ ς21 )ε̂k.(5.9)

Combining (5.5), (5.8) and (5.9), we obtain the assertion immediately. �
By Lemma 5.2, however, −G−1M(uk − ûk) cannot be guaranteed as a descent

direction of the implicit merit function 1
2‖uk − u∗‖2G. Nevertheless, we are still

capable of proving the global convergence of Algorithm 2.
We are now in the position of proving the global convergence of the proposed

algorithm.

Theorem 5.3. The sequence {uk} generated by Algorithm 2 converges to a solution
of VIP (2.3).

Proof. It follows from the scheme of uk+1 in Line 13 of Algorithm 2 that
(5.10)

‖uk+1 − u∗‖2G = ‖uk − u∗‖2G + γ2α̂2
k‖G−1M(uk − ûk)‖2G

− 2γα̂k(u
k − u∗)TM(uk − ûk)

≤ ‖uk − u∗‖2G + γ2α̂2
k‖G−1M(uk − ûk)‖2G − γα̂k

[
(1− ε̂k)‖uk − ûk‖2N

−(1 + ‖N‖)(m+ ς21 )ε̂k − ‖M‖2ε̂k‖uk − u∗‖
]

≤
(
1 +

γα̂maxε̂k‖M‖2
eigmin(G)

)
‖uk − u∗‖2G − 1

2
γ(2− γ)α̂min‖uk − ûk‖2N

+ γα̂max(1 + ‖N‖)(m+ ς21 )ε̂k,

where the inequalities are due to (5.4) and (5.3), respectively. Specializing zk :=

‖uk − u∗‖2G, βk := γα̂maxε̂k‖M‖2

eigmin(G)
, ξk := γα̂max(1 + ‖N‖)(m + ς21 )ε̂k, and ζk :=

1
2γ(2− γ)α̂min‖uk − ûk‖2N , respectively, we know that the assumptions in Lemma
2.1 are fulfilled and we conclude that

(i) lim
k→∞

‖uk − u∗‖G exists and is finite; (ii) lim
k→∞

‖uk − ûk‖N = 0.

Combining Line 8 of Algorithm 2 and (5.2), we have

lim
k→∞

‖ûk − ũk‖ = 0,



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 329

which indicates that the sequences {uk}, {ûk} and {ũk} are all bounded and they
share the same cluster points. Let ǔ be a cluster point such that

lim
j→∞

ukj = lim
j→∞

ûkj = lim
j→∞

ũkj = ǔ.(5.11)

It follows from the optimality condition that for x̃k
i , there exists some ξ̃ki ∈ ∂θi(x̃

k
i )

such that the following inequality holds:

(5.12) (x′
i − x̃k

i )
T
{
ξ̃ki −AT

i λ
k+ i−1

m + μAT
i HAi(x̃

k
i − xk

i )
}
≥ 0, ∀x′

i ∈ Xi.

Note that according to Line 11 of Algorithm 2, we have

(λ′ − λ̂k)T
{

m∑
i=1

Aix̂
k
i − b+H−1(λ̂k − λk)

}
≥ 0, ∀λ′ ∈ Rl.(5.13)

Taking the limit in (5.12)-(5.13) and using the upper semicontinuity of the subdif-
ferential operator and (5.11), it follows that for all i = 1, · · · ,m, there exist ξ̌i such
that

(x′
i − x̌i)

T
{
ξ̌i −AT

i λ̌
}
≥ 0, ∀x′

i ∈ Xi,

and

(λ′ − λ̌)T
{

m∑
i=1

Aix̌i − b

}
≥ 0, ∀λ′ ∈ Rl,

which means that ǔ is a solution point of VIP (2.3).
Setting u∗ := ǔ in (5.10) and applying again Lemma 2.1, we deduce that

limk→∞ ‖uk − ǔ‖G exists and it is finite. Since ǔ is the cluster point of {uk},
we eventually conclude that the sequence {uk} converges to ǔ, which is a solution
point of VIP (2.3). �

6. Numerical experiments

In this section, we test some applications of the abstract model (1.4) and em-
pirically verify the efficiency of the proposed sequential updating scheme of the
Lagrange multiplier. For these applications, all the decomposed subproblems have
closed-form solutions. Thus, only Algorithm 1 (“SUSLM” for short), the exact
version, is tested. We wrote our code by Matlab 7.9, and all experiments were
conducted on a Lenovo personal computer with Intel Core (TM) CPU 2.30 GHZ
and 8G memory.

6.1. An image decomposition model. First, we test an image decomposition
model. A brief introduction to the image decomposition problem is as follows. For
a digital image f ∈ Rn (the two- or higher-dimensional image is stacked as a one-
dimensional vector, e.g., in lexicographic order, and the pixel values of image are
re-scaled into [0,1]), the goal of image decomposition is to separate f = u+v where
u is the cartoon part which contains the geometry or sketchy approximation of f ,
and v is the texture part which involves the oscillations or small scale repeated
patterns of f (see, e.g., [1, 34, 36, 44, 46]). Mathematically, the cartoon part of an
image can be described by a piecewise smooth (or piecewise constant) function,
and the texture part is commonly oscillating. We test the scenario considered in
[43], where a low patch-rank interpretation is used for the texture part. In [43],
an n1-by-n2 (n = n1 · n2) image v with textures is first partitioned orderly into
a series of r-by-r (r � n) small square patches (nonoverlapping) under a certain



330 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

boundary condition. Then these small patches are vectorized individually as a

vector, denoted by wi ∈ Rr2 with i = 1, 2, · · · , l. Therein, l = �n/r2�, where �·�
rounds a scalar as the nearest integer towards infinity. By further realigning those
vector wi’s together, an r2-by-l matrix, denoted by V , is obtained. The patch

mapping P : Rn → Rr2×l, which depicts the foregoing procedure of rearranging an
image v as a matrix V , is defined as (see [43] for details)

V := Pv = [w1, w2, · · · , wl] .

Generally, the texture part of a target image possesses numerous small scale re-
peated patterns. Thus, the matrix V , also the Pv, can be viewed as being of low
rank. Accordingly, a low-rank based model for separating a target image f into
cartoon and texture was developed in [43] as

min
u∈Rn,v∈Rn

τ1
∥∥|∇u|

∥∥
1
+ τ2‖Pv‖∗ +

τ3
2
‖K(u+ v)− f‖2,(6.1)

where
∥∥|∇ · |

∥∥
1
denotes the total variation norm (see, e.g., [42]) and induces the

cartoon part of f ; ‖ · ‖∗ is the nuclear norm which is defined as the sum of all
singular values of a matrix and induces the texture part of f ; τi (i = 1, 2, 3) are
parameters to balance the three terms in the objective function; and K : Rn → Rn

is a linear operator. Different K’s correspond to image decomposition on different
target images: (i) for clean images, K = I where I is the identity matrix; (ii) for
images with missing pixels (herein we consider the case of missing pixels with zero
values), K = S where S is a binary matrix (also the so-called “mask” in image
inpainting) to represent missing pixels; (iii) for images with blurry pixels, K = B
where B is the convolutional matrix associated with a spatially invariant point
spread function; (iv) for images with both blurry and missing pixels, K = SB
where S is a mask and B is a convolutional matrix.

The model (6.1) can be reformulated as a special case of the abstract model

(1.4). Specifically, by introducing the auxiliary variables x ∈ Rn ×Rn, y ∈ Rr2×l

and z ∈ Rn, the model (6.1) can be rewritten as

(6.2) min
{
τ1
∥∥|x|∥∥

1
+ τ2‖y‖∗ +

τ3
2
‖Kz − f‖2 | x = ∇u, y = Pv, z = u+ v

}
.

Thus, the problem (6.2) is a special case of (1.4) with m = 3 and the following
specifications:

• x1 := u, x2 := v, x3 := (x, y, z), Xi (i = 1, 2, 3) are Euclidean spaces.
• θ1(x1) := 0, θ2(x2) := 0 and θ3(x3) := τ1

∥∥|x|∥∥
1
+ τ2‖y‖∗ + τ3

2 ‖Kz − f‖2.
• The matrices in the linear constraint are

A1 :=

⎛
⎝∇

0
I

⎞
⎠ , A2 :=

⎛
⎝0
P
I

⎞
⎠ , A3 :=

⎛
⎝−I 0 0

0 −I 0
0 0 −I

⎞
⎠ ,

and the vector b is zero.

The proposed SUSLM is thus applicable to the model (6.1). The decomposed x̃1-,
x̃2- and x̃3-subproblems (i.e., the ũ-, ṽ- and (x̃, ỹ, z̃)-subproblems) by implementing
the SUSLM are further delineated as follows.

• The ũ-subproblem corresponds to the optimization problem

ũk = uk + [μβ(∇T∇+ I)]−1(∇Tλ
k+ 0

3
1 + λ

k+ 0
3

3 ),(6.3)



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 331

which can be easily solved by the fast Fourier transform (FFT) if the pe-
riodic boundary condition is exploited to the derivative operator ∇, or by
the discrete cosine transform (DCT) if the reflective boundary condition is
exploited (see, e.g., [21, Chapter 7]).

• The ṽ-subproblem is equivalent to the optimization problem

ṽk = vk + (P−1λ
k+ 1

3
2 + λ

k+ 1
3

3 )/(2μβ).

• The x̃-, ỹ- and z̃-subproblems can be solved simultaneously as follows.
– The x̃-subproblem can be solved explicitly by the shrinkage operator

x̃k = shrink τ1
μβ

(xk − λ
k+ 2

3
1 /(μβ)),

where, for any c > 0, the mapping shrinkc(·) is defined as

shrinkc(g) := g −min{c, |g|} g

|g| , ∀g ∈ Rn ×Rn,

and ( g
|g| )i should be taken as 0 if |g|i = 0.

– The ỹ-subproblem can be solved explicitly by the singular value de-
composition (SVD)

ỹk = D τ2
μβ

(yk − λ
k+ 2

3
2 /(μβ)).

Here, for any c > 0, the mapping Dc(·) is defined as

Dc(M) := UΣ̂V T , ∀M ∈ Rm×n,(6.4)

where UΣV T is the SVD of M , and Σ̂ij = max{Σij − c, 0} for all
1 ≤ i ≤ m and 1 ≤ j ≤ n.

– The z̃-subproblem is involved in the matrix K:

z̃k = (τ3K
TK + μβ)−1(τ3K

T f − λ
k+ 2

3
3 + μβzk).(6.5)

If K is an identity, diagonal or downsampling matrix, then the z̃-
subproblem (6.5) can be solved directly since its coefficient matrix is
diagonal. If K is a convolutional matrix, then the z̃-subproblem (6.5)
can be solved efficiently in the frequency domain as the ũ-subproblem
(6.3).

For simplicity, we choose the matrices (see the Input in Algorithm 1) G = In+l

and H = βIl with β > 0 a scalar.
In [43], it is suggested that the model (6.1) be solved by the split Bregman

method (SBM for short) proposed in [19]. To see the efficiency of SUSLM, we
compare it with the SBM in [43] and report the numerical results. Comparisons with
the alternating direction method with Gaussian back substitution (ADM-G) in [25]
and the alternating proximal gradient method (APGM) in [32] are also reported.
For the other methods to be compared, we also wrote the code by Matlab 7.9,
and their parameters were chosen exactly as suggested in the original papers. We
refer the reader to [43] for the implementation details of the SBM. For the details
of the ADM-G subproblems, since they are similar to those of the SUSLM, we omit
them for succinctness. Now, we elaborate on the details of the APGM subproblems.



332 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

First, we need to reformulate the problem (6.2) as a special case of (1.4) with m = 2
and the following specifications:

• x1 := (u, v), x2 := (x, y, z), Xi (i = 1, 2) are Euclidean spaces.
• θ1(x1) := 0 and θ2(x2) := τ1

∥∥|x|∥∥
1
+ τ2‖y‖∗ + τ3

2 ‖Kz − f‖2.
• The matrices in the linear constraint are

A1 :=

⎛
⎝∇ 0

0 P
I I

⎞
⎠ , A2 :=

⎛
⎝−I 0 0

0 −I 0
0 0 −I

⎞
⎠

and b = 0. Then, the APGM iterative scheme for (6.2) is

⎧⎪⎪⎨
⎪⎪⎩

xk+1
1 = argmin

{
θ1(x1) +

β
2r1

‖x1 − xk
1 + r1A

T
1 (A1x

k
1 +A2x

k
2 − b− λk/β)‖2

}
,

xk+1
2 = argmin

{
θ2(x2) +

β
2r2

‖x2 − xk
2 + r2A

T
2 (A1x

k+1
1 +A2x

k
2 − b− λk/β)‖2

}
,

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 − b),

where ri < 1/eigmax(A
T
i Ai) is the step size of the proximal gradient step and β > 0

is the penalty parameter. The xi-subproblems can be further specified as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uk+1 = uk − r1
[
∇T (∇uk − xk − λk

1/β) + (uk + vk − zk − λk
3/β)

]
,

vk+1 = vk − r1
[
P−1(Pvk − yk − λk

2/β) + (uk + vk − zk − λk
3/β)

]
,

xk+1 = shrink τ1r2
β

(
xk + r2(∇uk+1 − xk − λk

1/β)
)
,

yk+1 = D τ2r2
β

(
yk + r2(Pvk+1 − yk − λk

2/β)‖2
)
,

zk+1 = (βI + τ2r3K
TK)−1

[
τ3r2K

T f + β(zk + r2(u
k+1 + vk+1 − zk − λk

3/β))
]
.

We will test two scenarios for the model (6.1): K = I andK = S. Some synthetic
images and real images listed in Figures 1-2 will be tested. For the synthetic images
in Figure 1, cartoon and texture parts are superposed with a ratio of 7:3. We adopt
the periodic boundary condition for the images to be tested and thus the FFT will
be implemented. Also, we will implement an efficient Matlab Mex interface via
a divide-and-conquer routine (dgesdd) implemented in LAPACK for the SVD in
(6.4).

We follow [43, Theorem 3.3-3.6] to choose the trade-offs in model (6.1) as τ1 ∈
[10−2, 10−1], τ2 ∈ [10−3, 10−2] and τ3 ≡ 1. Recall that r is the size of the patch
mapping P. It can be easily estimated by the number of spikes of the target image
f in the Fourier domain (see [43] for details). Empirically, as in [43], the integers
in the interval [5,15] are preferable for the scalar r to render promising numerical
results. We adopt r = 11 as the size of the patch mapping P throughout the
numerical simulations.

To implement the SUSLM, some parameters should be specified. As we have
mentioned, we simply take the penalty matrix H = βI. Numerically, the value of β
is often tuned in order to result in better numerical results. We used the Boy image
in Figure 1 to tune the value of β and we found that the choice of β = 0.1 works well
for SUSLM. We thus fix β = 0.1 throughout the implementation of SUSLM. Then,
for the proximity parameter μ, we found that μ ≈ 1 is good enough (see Figure 3)
and we thus fix it as μ ≡ 1 throughout. Finally, for the relaxation parameter γ, we
take it as γ ≡ 1.9.



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 333

Image cartoon texture synthetic image

“
C
ir
cl
es
”

25
6
×
25
6

“
B
oy
”

25
6
×
25
6

“
T
o
m
je
rr
y
”

51
2
×
51
2

Figure 1. Synthetic images.

Figure 2. Real images. Left: 256 × 256 “Barbara.png”. Right:
250× 248 “Weave.jpg”.

0 10 20 30 40 50 60 70 80
101

102

103

104

Iteration   No.

O
bj

ec
tiv

e 
 fu

nc
tio

n 
 v

al
ue

s

 

 

µ=0.5
µ=1
µ=5
µ=10
µ=50

Figure 3. Performance of SUSLM with different values of the
proximal factor μ.



334 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

0 20 40 60 80 100

102

103

104

Iteration   No.

O
b

je
ct

iv
e 

 f
u

n
ct

io
n

  v
al

u
es

 

 

SBM
APGM
ADM−G
SUSLM

0 20 40 60 80 100

101

102

103

104

Iteration   No.

O
b

je
ct

iv
e 

 f
u

n
ct

io
n

  v
al

u
es

 

 
SBM
APGM
ADM−G
SUSLM

0 50 100 150

102

103

104

Iteration   No.

O
b

je
ct

iv
e 

 f
u

n
ct

io
n

  v
al

u
es

 

 
SBM
APGM
ADM−G
SUSLM

0 10 20 30 40 50

102

103

104

CPU    time (s)

O
b

je
ct

iv
e 

 f
u

n
ct

io
n

  v
al

u
es

 

 
SBM
APGM
ADM−G
SUSLM

0 10 20 30 40 50

101

102

103

104

CPU    time (s)

O
b

je
ct

iv
e 

 f
u

n
ct

io
n

  v
al

u
es

 

 
SBM
APGM
ADM−G
SUSLM

0 50 100 150 200

102

103

104

CPU    time (s)

O
b

je
ct

iv
e 

 f
u

n
ct

io
n

  v
al

u
es

 

 
SBM
APGM
ADM−G
SUSLM

Figure 4. Evolutions of objective function values w.r.t. iterations
and computing time. From left column to right column: for Circles,
Boy and Tomjerry.

6.1.1. The case of K = I. For this case, the model (6.1) reduces to decomposing
clean images without noise or blur.

We first test the synthetic images in Figure 1. The parameters (τ1, τ2, τ3) in
model (6.1) are fixed as (τ1, τ2, τ3) = (0.05, 0.005, 1), as suggested by Theorems
3.3-3.6 in [43]. We take the penalty parameters (λ1, λ2) = (1, 1) (as suggested in
[43]) for the SBM; β = 10 and α = 1 for the ADM-G; β = 10, r1 = 0.2 and
r2 = 1 for the APGM. All the tested algorithms take zero as the initial point. We
run all algorithms for some iterations (100 iterations for 256-by-256 images and
150 iterations for 512-by-512 images) and plot the evolutions of objective function
values with respect to iterations and computing time in seconds in Figure 4. For
synthetic images, the ground-truth of cartoons and textures are known (see Figure
1). We thus use the following criteria to measure the quality of the cartoons and
textures decomposed by the tested algorithms:

Error(u) := ‖u− u∗‖ and Error(v) := ‖v − v∗‖,(6.6)

where u and v (pixel values are re-scaled in [0, 1]) are the decomposed cartoons
and textures, respectively, and u∗ and v∗ are the corresponding ground-truths of
synthetic images in Figure 1. The evolutions of Error(u) and Error(v) with respect
to iterations and computing time in seconds are plotted in Figure 5. In Figure
6, we display the cartoons and textures decomposed by the SBM and SUSLM
(corresponding to the best and worst decompositions among all tested algorithms).

We now test the two real images in Figure 2. Analogously, the parameters
(τ1, τ2, τ3) in model (6.1) are still fixed as (τ1, τ2, τ3) = (0.05, 0.005, 1). The param-
eters (λ1, λ2) for the SBM; β and α for the ADM-G; β, r1 and r2 for the APGM
and β for the SUSLM are identical to those of the synthetic image case. The initial
points for all algorithms are taken as zero vectors. We run each algorithm for 150



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 335

0 20 40 60 80 100
140

145

150

155

160

165

170

175

180

Iteration   No.

E
rr

or
 (u

)

 

 
SBM
APGM
ADM−G
SUSLM

0 10 20 30 40 50
140

145

150

155

160

165

170

175

180

CPU    time (s)

E
rr

or
 (u

)

 

 
SBM
APGM
ADM−G
SUSLM

0 20 40 60 80 100
60

80

100

120

140

160

180

Iteration   No.

E
rr

or
 (v

)

 

 
SBM
APGM
ADM−G
SUSLM

0 10 20 30 40 50
60

80

100

120

140

160

180

CPU    time (s)

E
rr

or
 (v

)

 

 
SBM
APGM
ADM−G
SUSLM

Figure 5. Evolutions of Error(u) and Error(v) w.r.t. iterations
and computing time (test image: Circles).

Figure 6. Decomposed cartoons and textures of synthetic images.
From left column to right column: cartoons by SBM, textures by
SBM, cartoons by SUSLM, textures by SUSLM.

iterations for both images and plot the evolutions of objective function values with
respect to iterations and computing time in seconds in Figure 7. We display the
decomposed cartoons and textures in Figure 8.



336 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

0 50 100 150

10 2

10 3

10 4

Iteration   No.

O
bj

ec
tiv

e 
 fu

nc
tio

n 
 v

al
ue

s

 

 
SBM
APGM
ADM−G
SUSLM

0 10 20 30 40 50

10 2

10 3

10 4

CPU    time (s)

O
bj

ec
tiv

e 
 fu

nc
tio

n 
 v

al
ue

s

 

 
SBM
APGM
ADM−G
SUSLM

0 50 100 150

10 2

10 3

10 4

Iteration   No.

O
bj

ec
tiv

e 
 fu

nc
tio

n 
 v

al
ue

s

 

 
SBM
APGM
ADM−G
SUSLM

0 50 100 150 200

10 2

10 3

10 4

CPU    time (s)

O
bj

ec
tiv

e 
 fu

nc
tio

n 
 v

al
ue

s

 

 
SBM
APGM
ADM−G
SUSLM

Figure 7. Evolutions of objective function values w.r.t. iterations
and computing time. Top row: for Barbara. Bottom row: for
Weave.

Figure 8. Decomposed cartoons and textures on real images.
From left column to right column: cartoons by SBM, textures by
SBM, cartoons by SUSLM, textures by SUSLM.

6.1.2. The case of K = S. We now test the model (6.1) with K = S; i.e., the image
f to be decomposed has missing pixels. We test the 256-by-256 Barbara image in
Figure 2 (with 9.12% missing pixels) and the 512-by-512 Tomjerry image in Figure
1 (with 12.76% missing pixels). Both corrupted images are listed in Figure 9. The
signal-to-noise ratio (SNR), which is commonly used to measure the quality of
reconstructed images, is defined by SNR = 20 log10 ‖f∗‖/‖f − f∗‖, where f∗ is the
true image and f is its approximation. For the corrupted images listed in Figure 9,
the SNR values are 10.88dB for the corrupted Barbara image and 9.06dB for the
corrupted Tomjerry image.

The parameters (τ1, τ2, τ3) in (6.2) are chosen as (0.08, 0.005, 1), as suggested by
Theorems 3.3-3.6 in [43]. The penalty parameters are fixed as (λ1, λ2) = (1, 1) for



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 337

Figure 9. Decomposed cartoons and textures on images with
missing pixels by SUSLM. From left column to right column: cor-
rupted image, cartoon, texture, cartoon+texture.

0 50 100 150 200
10

12

14

16

18

20

Iteration   No.

S
N

R
  (

dB
)

 

 

SBM
APGM
ADM−G
SUSLM

0 10 20 30 40 50
10

12

14

16

18

20

CPU    time (s)

S
N

R
  (

dB
)

 

 

SBM
APGM
ADM−G
SUSLM

0 50 100 150 200
12

13

14

15

16

17

18

19

20

Iteration   No.

S
N

R
  (

dB
)

 

 

SBM
APGM
ADM−G
SUSLM

0 50 100 150 200
12

13

14

15

16

17

18

19

20

CPU    time (s)

SN
R 

 (d
B)

 

 

SBM
APGM
ADM−G
SUSLM

Figure 10. Evolutions of SNR w.r.t. iterations and computing
time. Top row: for Barbara. Bottom row: for Tomjerry.

the SBM; β = 10 and α = 1 for the ADM-G; β = 10, r1 = 0.1 and r2 = 1 for the
APGM; and β = 1 for the SUSLM. All tested algorithms still take zero as the ini-
tial iterate. We illustrate the decomposed cartoons and textures by the SUSLM in
Figure 9 at 200 iterations for test images. Visually, the target images with corrup-
tions are basically separated as cartoons and textures. The reconstructions for the
missing pixels regions in cartoons are superior to those in textures. Additionally, by
superposing the decomposed cartoons and textures correspondingly, we derived the
reconstructed images, i.e., “cartoon+texture”, listed in Figure 9. The SNR of the
reconstructed images in Figure 9 are 19.17dB for the Barbara image and 19.38dB
for the Tomjerry image. We plot the evolutions of SNR with respect to iterations
and computing time in seconds in Figure 10, which indicates the efficiency of the
SUSLM.



338 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

6.2. Application to an allocation problem. In this subsection, we test an al-
location problem arising from market mechanisms (see, e.g., [5,37,45]) and further
verify the efficiency of the SUSLM.

We consider an economic system in which n resources are allocated by using
m technological activities. The goal is to minimize the sum of cost functions of
all the activities, denoted by θi (i = 1, 2, · · · ,m). The amount of each resource is
denoted by bj ≥ 0 (j = 1, 2, · · · , n), which justifies the nonnegativity and budget
constraints. As [5], the allocation problem can be modeled as

min

{
m∑
i=1

θi(xi)
∣∣∣ m∑

i=1

xi = b, xi ∈ Rn
+, i = 1, 2, · · · ,m

}
,(6.7)

where θi : Rn → R is the cost function of the i-th activity and the vector b =
(b1, b2, · · · , bn) ∈ Rn represents all the resources.

The model (6.7) is a special case of (1.4) with

Ai := I and Xi := Rn
+, i = 1, 2, · · · ,m.

Thus, the proposed SUSLM is applicable.
To specify the cost functions in (6.7), we follow the stencil functions listed in

[7, Table 10.2]. Note that we skip 5 of them because the proximity functions of
those scaled stencil functions are implicitly defined. More specifically, we list 12
stencil functions in Table 1 (labeled as in [7, Table 10.2]), denoted by φ(s), whose
proximity functions possess closed-form solutions or can be efficiently computed
by solving polynomial equations. Note that for a one-dimensional stencil function
φ(s) in Table 1, it can be easily extended to an n-dimensional function Φ(s) whose
proximity function can also be easily computed. Let us take the stencil function
φ(s) listed as item (ii) in Table 1 as an illustrative example. Based on this φ(s),
we can define

Φ(s) :=
n∑

i=1

φi(si),(6.8)

where s = (s1, s2, · · · , sn), ω = (ω1, ω2, · · · , ωn), ω = (ω1, ω2, · · · , ωn) are vectors
in Rn, and

φi(si) :=

{
ωisi, if si ≥ 0,
ωisi, otherwise.

Particularly, if ω = −ω = 1, we have Φ(s) = ‖s‖1, which corresponds to the
standard l1-norm; otherwise, we have Φ(s) = ‖W s‖1, which corresponds to the
weighted l1-norm (the diagonal entry ofW is ωi if si ≥ 0 and ωi if si < 0). Similarly,
we can extend all the other functions listed in Table 1 to n-dimensional functions
for the use of the cost functions {θi}12i=1 in the model (6.7). The parametric vectors,
e.g., ω, ω, κ, etc., are chosen randomly by following some uniform distributions (see
the right column of Table 1 with U(a, b) representing uniform distribution in the
interval [a, b]). The resource amount vector b in model (6.7) is set as b := n1.

For the allocation problem (6.7), we will test the proposed SUSLM, the ADM-
G in [25], the APGM in [32], the scheme (1.8) (EADM) and the scheme (1.10)
(SEADM). Recall that both (1.8) and (1.10) are not necessarily convergent, but
empirically they could perform well. For the involved parameters of these iterative
schemes, we chose β = 1, r1 = 1/6 and r2 = 1/6 for the APGM; β = 1 and α = 1
for the ADM-G; β = 1, μ = 1 and γ = 1.8 for the SUSLM; β = 1 for the SEADM
and the EADM. All initial iterates are chosen as 1.



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 339

Table 1. The stencil function φ(s) for generating θi in (6.7).

Label Stencil function φ(s) : R → (−∞,+∞] Parameters

i

{
0, if s ∈ [ω, ω]
+∞, otherwise ω ∼ U(102, 103)

ω ∼ U(−102,−103)
ii

{
ωs, if s ≥ 0
ωs, otherwise

v κ|s|q

vi

{
κs2, if |s| ≤ ω/

√
2κ

ω
√
2κ|s| − ω2/2, otherwise

ω ∼ U(1, 5)
κ ∼ U(1, 5)
τ ∼ U(1, 5)
q ∼ U(1, 5)

vii ω|s|+ τ |s|2 + κ|s|q

ix

{
ωs, if s ≥ 0
+∞, otherwise

x

{
−ωs1/q, if s ≥ 0
+∞, otherwise

xi

{
ωs−q, if s > 0
+∞, otherwise

ω ∼ U(107, 108)
q ∼ U(1, 5)

xiv

{
−κ ln(s) + τs2/2 + αs, if s > 0
+∞, otherwise

ω ∼ U(1, 5)
κ ∼ U(1, 5)
τ ∼ U(1, 5)
q ∼ U(1, 5)
α ∼ U(1, 5)

xv

{
−κ ln(s) + αs+ ωs−1, if s > 0
+∞, otherwise

xvi

{
−κ ln(s) + ωsq, if s > 0
+∞, otherwise

xvii

{
−κ ln(s− ω)− κ ln(ω − s), if s ∈ (ω, ω)
+∞, otherwise

κ ∼ U(10−3, 10−1)
κ ∼ U(10−3, 10−1)
ω ∼ U(103, 104)
ω ∼ U(−103,−104)

To compare the efficiency of different algorithms for solving the model (6.7),
we measure the quality of iterates by both the objective function value and the
constraint violation. More specifically, for the iterate xk

i , the constraint violation
is measured by

∥∥∑n
i=1 x

k
i − b

∥∥
1 + ‖b‖ .(6.9)

Note that the nonnegativity constraint is satisfied automatically for all the se-
quences generated by the algorithms to be tested.

In Figure 11, we plot the evolutions of the objective function values (Obj-Fun-
Val for short) with respect to the computing time for the cases of n where n =
100, 200, 300, 500, 800, 1000. Similar plots with respect to the iterations can also
be displayed, but we omit them for succinctness. The evaluations of the constraint
violation with respect to the computing time are plotted in Figure 12. These figures
show that both the EADM and SEADM, though theoretically lack convergence,
perform well for the allocation problem (6.7). Furthermore, among the methods
with provable convergence, the proposed SUSLM performs the best.



340 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

0 5 10 15 20 25

103.5

103.6

CPU  time (s)

O
b

j−
F

u
n

−
V

a
l

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=100

0 10 20 30 40 50

104

CPU  time (s)

O
b

j−
F

u
n

−
V

a
l

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=200

0 10 20 30 40 50 60 70

105

CPU  time (s)

O
b

j−
F

u
n

−
V

a
l

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=300

0 20 40 60 80 100 120

104.2

104.3

104.4

CPU  time (s)

O
b

j−
F

u
n

−
V

a
l

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=500

0 50 100 150

104.4

104.5

104.6

104.7

CPU  time (s)

O
b

j−
F

u
n

−
V

a
l

 

 

APGM
ADM − G
SUSLM
EADM
SEADM

n=800

0 50 100 150 200 250

104.5

104.6

104.7

104.8

CPU  time (s)

O
b

j−
F

u
n

−V
al

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=1000

Figure 11. Evolutions of objective function values w.r.t. com-
puting time for variant n’s.

0 50 100 150

10
−6

10
−4

10
−2

10
0

CPU  time (s)

F
ea

si
b

ili
ty

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=100

0 50 100 150 200 250

10
−6

10
−4

10
−2

10
0

CPU  time (s)

Fe
as

ib
ili

ty

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=200

0 100 200 300 400

10
−6

10
−4

10
−2

10
0

CPU  time (s)

Fe
as

ib
ili

ty

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=300

0 100 200 300 400 500 600 700

10
−6

10
−4

10
−2

CPU  time (s)

F
ea

si
b

ili
ty

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=500

0 200 400 600 800 1000
10

−8

10
−6

10
−4

10
−2

CPU  time (s)

F
ea

si
b

ili
ty

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=800

0 200 400 600 800 1000 1200 1400
10

−8

10
−6

10
−4

10
−2

CPU  time (s)

F
ea

si
b

ili
ty

 

 

APGM
ADM−G
SUSLM
EADM
SEADM

n=1000

Figure 12. Evolutions of the constraint violation measured by
(6.9) w.r.t. computing time for variant n’s.

7. Concluding remarks

In this paper we focused on how to split the augmented Lagrangian method
(ALM) for a separable convex minimization problem with linear constraints and an
objective function in the sum ofm functions without coupled variables. A sequential
updating scheme of the Lagrange multiplier was proposed. The new scheme splits
the ALM subproblem at each iteration into m smaller minimization problems such
that each of them only involves one function in the original objective. As most of
the ALM-based splitting methods in the literature, the new scheme preserves the
possibility of taking advantgae of the objective functions’ properties individually.
But it differs from the existing ALM-based splitting methods in that the Lagrange



A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 341

multiplier is updated timely (m times) once each block of primal variables are
solved. We derive both the exact and inexact algorithms based on the new scheme.
An image decomposition problem and a resource allocation problem have been
tested to demonstrate the numerical efficiency of the proposed sequential updating
scheme of the Lagrange multiplier.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable com-
ments, which helped the authors improve the presentation of this paper substan-
tially.

References

[1] J. F. Aujol, G. Gilboa, T. Chan, and S. Osher, Structure-texture image decomposition—
modeling, algorithms, and parameter selection, Int. J. Comput. Vision 67 (2006), 111–136.

[2] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in
Hilbert spaces, with a foreword by Hédy Attouch. CMS Books in Mathematics/Ouvrages de
Mathématiques de la SMC, Springer, New York, 2011. MR2798533 (2012h:49001)

[3] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods, Computer Sci-
ence and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publish-
ers], New York-London, 1982. MR690767 (84k:90068)

[4] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, 1996.
[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statis-

tical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn.
3 (2010), 1–122.

[6] C. Chen, B. He, Y. Ye, and X. Yuan, The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent, Math. Program. 155 (2016), no. 1-2,
Ser. A, 57–79, DOI 10.1007/s10107-014-0826-5. MR3439797

[7] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing,
Fixed-point algorithms for inverse problems in science and engineering, Springer Optim.
Appl., vol. 49, Springer, New York, 2011, pp. 185–212, DOI 10.1007/978-1-4419-9569-8 10.
MR2858838 (2012i:90117)

[8] E. Corman and X. Yuan, A generalized proximal point algorithm and its convergence rate,
SIAM J. Optim. 24 (2014), no. 4, 1614–1638, DOI 10.1137/130940402. MR3268621

[9] J. Douglas Jr. and H. H. Rachford Jr., On the numerical solution of heat conduction problems
in two and three space variables, Trans. Amer. Math. Soc. 82 (1956), 421–439. MR0084194
(18,827f)

[10] J. Eckstein and W. Yao, Understanding the convergence of the alternating direction method
of multipliers: theoretical and computational perspectives, Pac. J. Optim. 11 (2015), no. 4,
619–644. MR3420805

[11] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and complementarity

problems. Vols. I, II, Springer Series in Operations Research, Springer-Verlag, New York,
2003. MR1955648 (2004g:90003a)

[12] D. Gabay, Applications of the method of multipliers to variational inequalities, In: Augmented
Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems
(M. Fortin, R. Glowinski), North-Holland, Amsterdam, 1983, pp. 299–331.

[13] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems
via finite element approximations, Comput. Math. Appl. 2 (1976), 17–40.

[14] R. Glowinski, Numerical methods for nonlinear variational problems, Springer Series in Com-
putational Physics, Springer-Verlag, New York, 1984. MR737005 (86c:65004)

[15] R. Glowinski, On alternating direction methods of multipliers: a historical perspective, Mod-
eling, simulation and optimization for science and technology, Comput. Methods Appl. Sci.,
vol. 34, Springer, Dordrecht, 2014, pp. 59–82, DOI 10.1007/978-94-017-9054-3 4. MR3330832

[16] R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods in
nonlinear mechanics, SIAM Studies in Applied Mathematics, vol. 9, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1989. MR1060954 (91f:73038)

http://www.ams.org/mathscinet-getitem?mr=2798533
http://www.ams.org/mathscinet-getitem?mr=2798533
http://www.ams.org/mathscinet-getitem?mr=690767
http://www.ams.org/mathscinet-getitem?mr=690767
http://www.ams.org/mathscinet-getitem?mr=3439797
http://www.ams.org/mathscinet-getitem?mr=2858838
http://www.ams.org/mathscinet-getitem?mr=2858838
http://www.ams.org/mathscinet-getitem?mr=3268621
http://www.ams.org/mathscinet-getitem?mr=0084194
http://www.ams.org/mathscinet-getitem?mr=0084194
http://www.ams.org/mathscinet-getitem?mr=3420805
http://www.ams.org/mathscinet-getitem?mr=1955648
http://www.ams.org/mathscinet-getitem?mr=1955648
http://www.ams.org/mathscinet-getitem?mr=737005
http://www.ams.org/mathscinet-getitem?mr=737005
http://www.ams.org/mathscinet-getitem?mr=3330832
http://www.ams.org/mathscinet-getitem?mr=1060954
http://www.ams.org/mathscinet-getitem?mr=1060954


342 Y.-H. DAI, D. R. HAN, X. M. YUAN, AND W. X. ZHANG

[17] R. Glowinski, T. Kärkkäinen, and K. Majava, On the convergence of operator-splitting meth-
ods, Numerical methods for scientific computing. Variational problems and applications, In-
ternat. Center Numer. Methods Eng. (CIMNE), Barcelona, 2003, pp. 67–79. MR2427782
(2009j:65284)

[18] R. Glowinski and A. Marrocco, Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires
(French, with Loose English summary), Rev. Française Automat. Informat. Recherche

Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. R-2, 41–76. MR0388811 (52 #9645)
[19] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J.

Imaging Sci. 2 (2009), no. 2, 323–343, DOI 10.1137/080725891. MR2496060 (2010e:65087)
[20] D. Han and X. Yuan, A note on the alternating direction method of multipliers, J. Optim.

Theory Appl. 155 (2012), no. 1, 227–238, DOI 10.1007/s10957-012-0003-z. MR2983116
[21] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring images, Matrices, spectra, and

filtering, Fundamentals of Algorithms, vol. 3, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2006. MR2271138 (2008d:94007)

[22] B. He, L.-Z. Liao, D. Han, and H. Yang, A new inexact alternating directions method for
monotone variational inequalities, Math. Program. 92 (2002), no. 1, Ser. A, 103–118, DOI
10.1007/s101070100280. MR1892298 (2003b:90111)

[23] B. S. He, H. Liu, J. Lu, and X. M. Yuan, Application of the strictly contractive Peaceman-
Rachford splitting method to multi-block convex programming, manuscript (2014).

[24] B. He, H. Liu, Z. Wang, and X. Yuan, A strictly contractive Peaceman-Rachford split-
ting method for convex programming, SIAM J. Optim. 24 (2014), no. 3, 1011–1040, DOI
10.1137/13090849X. MR3231988

[25] B. He, M. Tao, and X. Yuan, Alternating direction method with Gaussian back substitu-
tion for separable convex programming, SIAM J. Optim. 22 (2012), no. 2, 313–340, DOI
10.1137/110822347. MR2968856

[26] B. He and H. Yang, Some convergence properties of a method of multipliers for linearly
constrained monotone variational inequalities, Oper. Res. Lett. 23 (1998), no. 3-5, 151–161,
DOI 10.1016/S0167-6377(98)00044-3. MR1677664 (2000d:90089)

[27] B. He and X. Yuan, On the O(1/n) convergence rate of the Douglas-Rachford alternating

direction method, SIAM J. Numer. Anal. 50 (2012), no. 2, 700–709, DOI 10.1137/110836936.
MR2914282

[28] M. R. Hestenes, Multiplier and gradient methods, J. Optimization Theory Appl. 4 (1969),
303–320. MR0271809 (42 #6690)

[29] M. Hong and Z. Q. Luo, On the linear convergence of alternating direction method of mul-
tipliers, Math. Program., to appear.

[30] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM
J. Numer. Anal. 16 (1979), no. 6, 964–979, DOI 10.1137/0716071. MR551319 (81g:47070)

[31] Z.-Q. Luo and P. Tseng, On the convergence rate of dual ascent methods for linearly
constrained convex minimization, Math. Oper. Res. 18 (1993), no. 4, 846–867, DOI
10.1287/moor.18.4.846. MR1251683 (95a:90070)

[32] S. Q. Ma, Alternating proximal gradient method for convex minimization, preprint (2012).
[33] B. Martinet, Régularisation d’inéquations variationnelles par approximations successives

(French), Rev. Française Informat. Recherche Opérationnelle 4 (1970), no. Ser. R-3, 154–
158. MR0298899 (45 #7948)

[34] Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations, The
fifteenth Dean Jacqueline B. Lewis memorial lectures. University Lecture Series, vol. 22,
American Mathematical Society, Providence, RI, 2001. MR1852741 (2002j:43001)

[35] J.-J. Moreau, Proximité et dualité dans un espace hilbertien (French), Bull. Soc. Math. France
93 (1965), 273–299. MR0201952 (34 #1829)

[36] S. Osher, A. Solé, and L. Vese, Image decomposition and restoration using total variation
minimization and the H−1 norm, Multiscale Model. Simul. 1 (2003), no. 3, 349–370 (elec-

tronic), DOI 10.1137/S1540345902416247. MR2030155 (2004k:49004)
[37] M. Patriksson, A survey on the continuous nonlinear resource allocation problem, Euro-

pean J. Oper. Res. 185 (2008), no. 1, 1–46, DOI 10.1016/j.ejor.2006.12.006. MR2358684
(2008g:91153)

[38] D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic
differential equations, J. Soc. Indust. Appl. Math. 3 (1955), 28–41. MR0071874 (17,196d)

http://www.ams.org/mathscinet-getitem?mr=2427782
http://www.ams.org/mathscinet-getitem?mr=2427782
http://www.ams.org/mathscinet-getitem?mr=0388811
http://www.ams.org/mathscinet-getitem?mr=0388811
http://www.ams.org/mathscinet-getitem?mr=2496060
http://www.ams.org/mathscinet-getitem?mr=2496060
http://www.ams.org/mathscinet-getitem?mr=2983116
http://www.ams.org/mathscinet-getitem?mr=2271138
http://www.ams.org/mathscinet-getitem?mr=2271138
http://www.ams.org/mathscinet-getitem?mr=1892298
http://www.ams.org/mathscinet-getitem?mr=1892298
http://www.ams.org/mathscinet-getitem?mr=3231988
http://www.ams.org/mathscinet-getitem?mr=2968856
http://www.ams.org/mathscinet-getitem?mr=1677664
http://www.ams.org/mathscinet-getitem?mr=1677664
http://www.ams.org/mathscinet-getitem?mr=2914282
http://www.ams.org/mathscinet-getitem?mr=0271809
http://www.ams.org/mathscinet-getitem?mr=0271809
http://www.ams.org/mathscinet-getitem?mr=551319
http://www.ams.org/mathscinet-getitem?mr=551319
http://www.ams.org/mathscinet-getitem?mr=1251683
http://www.ams.org/mathscinet-getitem?mr=1251683
http://www.ams.org/mathscinet-getitem?mr=0298899
http://www.ams.org/mathscinet-getitem?mr=0298899
http://www.ams.org/mathscinet-getitem?mr=1852741
http://www.ams.org/mathscinet-getitem?mr=1852741
http://www.ams.org/mathscinet-getitem?mr=0201952
http://www.ams.org/mathscinet-getitem?mr=0201952
http://www.ams.org/mathscinet-getitem?mr=2030155
http://www.ams.org/mathscinet-getitem?mr=2030155
http://www.ams.org/mathscinet-getitem?mr=2358684
http://www.ams.org/mathscinet-getitem?mr=2358684
http://www.ams.org/mathscinet-getitem?mr=0071874
http://www.ams.org/mathscinet-getitem?mr=0071874


A SEQUENTIAL UPDATING SCHEME OF THE LAGRANGE MULTIPLIER 343

[39] M. J. D. Powell, A method for nonlinear constraints in minimization problems, Optimiza-
tion (Sympos., Univ. Keele, Keele, 1968), Academic Press, London, 1969, pp. 283–298.
MR0272403 (42 #7284)

[40] H. Robbins and D. Siegmund, A convergence theorem for non negative almost supermartin-
gales and some applications, Optimizing methods in statistics (Proc. Sympos., Ohio State
Univ., Columbus, Ohio, 1971), Academic Press, New York, 1971, pp. 233–257. MR0343355
(49 #8097)

[41] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control
Optimization 14 (1976), no. 5, 877–898. MR0410483 (53 #14232)

[42] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algo-
rithms, Phys. D 60 (1992), no. 1-4, 259–268. MR3363401

[43] H. Schaeffer and S. Osher, A low patch-rank interpretation of texture, SIAM J. Imaging Sci.
6 (2013), no. 1, 226–262, DOI 10.1137/110854989. MR3032953

[44] J.-L. Starck, M. Elad, and D. L. Donoho, Image decomposition via the combination of sparse
representations and a variational approach, IEEE Trans. Image Process. 14 (2005), no. 10,
1570–1582, DOI 10.1109/TIP.2005.852206. MR2483314

[45] H. Uzawa, Market mechanisms and mathematical programming, Econometrica 28 (1960),
872–881. MR0136447 (24 #B2481)

[46] L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillat-
ing patterns in image processing, Special issue in honor of the sixtieth birthday of Stanley Os-
her, J. Sci. Comput. 19 (2003), no. 1-3, 553–572, DOI 10.1023/A:1025384832106. MR2028858
(2004k:49006)

LSEC, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O.

Box 2719, Beijing 100190, People’s Republic of China

E-mail address: dyh@lsec.cc.ac.cn

School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS, Nanjing

Normal University, Nanjing 210023, People’s Republic of China

E-mail address: handeren@njnu.edu.cn

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong,

People’s Republic of China

E-mail address: xmyuan@hkbu.edu.hk

School of Mathematical Sciences, University of Electronic Science and Technology

of China, Chengdu 611731, People’s Republic of China

E-mail address: wxzh1984@126.com

http://www.ams.org/mathscinet-getitem?mr=0272403
http://www.ams.org/mathscinet-getitem?mr=0272403
http://www.ams.org/mathscinet-getitem?mr=0343355
http://www.ams.org/mathscinet-getitem?mr=0343355
http://www.ams.org/mathscinet-getitem?mr=0410483
http://www.ams.org/mathscinet-getitem?mr=0410483
http://www.ams.org/mathscinet-getitem?mr=3363401
http://www.ams.org/mathscinet-getitem?mr=3032953
http://www.ams.org/mathscinet-getitem?mr=2483314
http://www.ams.org/mathscinet-getitem?mr=0136447
http://www.ams.org/mathscinet-getitem?mr=0136447
http://www.ams.org/mathscinet-getitem?mr=2028858
http://www.ams.org/mathscinet-getitem?mr=2028858

	1. Introduction
	2. Preliminaries
	3. A sequential updating scheme of the Lagrange multiplier for (1.4)
	4. Convergence
	5. An inexact version of the sequential updating scheme  of the Lagrange multiplier
	6. Numerical experiments
	6.1. An image decomposition model
	6.2. Application to an allocation problem

	7. Concluding remarks
	Acknowledgments
	References

