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Abstract. This paper is concerned with quasi-unbiased Hadamard matrices
and weakly unbiased Hadamard matrices, which are generalizations of unbi-
ased Hadamard matrices, equivalently unbiased bases. These matrices are
studied from the viewpoint of coding theory. As a consequence of a coding-
theoretic approach, we provide upper bounds on the number of mutually quasi-
unbiased Hadamard matrices. We give classifications of a certain class of self-
complementary codes for modest lengths. These codes give quasi-unbiased
Hadamard matrices and weakly unbiased Hadamard matrices. Some modifi-
cation of the notion of weakly unbiased Hadamard matrices is also provided.

1. Introduction

Two Hadamard matrices H,K of order n are said to be unbiased if (1/
√
n)HKT

is also a Hadamard matrix of order n, where KT denotes the transpose of K.
This means that the absolute value of any entry of HKT is

√
n. The notion of

unbiased Hadamard matrices is essentially the same as that of unbiased bases in
Rn. It is a fundamental problem to determine the maximum size among sets of
mutually unbiased Hadamard matrices. Much work has been done concerning this
fundamental problem (see [5], [8], [10], [11], [15], [19], [21], [23], [29]).

Recently, the notion of unbiased Hadamard matrices has been generalized in [5],
[19] and [26] (see also Section 2.1 for the motivation). Two weighing matrices

W1,W2 of order n and weight k are unbiased if (1/
√
k)W1W

T
2 is a weighing matrix

of order n and weight k [19]. As a natural generalization, quasi-unbiased weighing
matrices are defined in [26] as follows: W1,W2 are quasi-unbiased for parameters
(n, k, l, a) if (1/

√
a)W1W

T
2 is a weighing matrix of weight l. In this paper, we

restrict our investigation to the case where W1,W2 are Hadamard in order to adopt
a coding-theoretic approach. We say that Hadamard matrices H,K are quasi-
unbiased Hadamard matrices with parameters (l, a) if (1/

√
a)HKT is a weighing

matrix of weight l. Note that the absolute value of any entry of HKT is 0 or
√
a.

Two Hadamard matrices H,K are weakly unbiased if aij ≡ 2 (mod 4) for i, j ∈
{1, 2, . . . , n} and |{|aij | | i, j ∈ {1, 2, . . . , n}}| ≤ 2, where aij denotes the (i, j)-entry
of HKT [5]. Hadamard matrices H1, H2, . . . , Hf are said to be mutually unbiased
(resp. quasi-unbiased and weakly unbiased) Hadamard matrices if any pair of two
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distinct Hadamard matrices is unbiased (resp. quasi-unbiased and weakly unbiased)
Hadamard matrices. In this paper, by adopting a coding-theoretic approach, we
study the maximum size among sets of mutually quasi-unbiased Hadamard matrices
and weakly unbiased Hadamard matrices.

This paper is organized as follows. In Section 2, we give definitions and some
known results of Hadamard matrices, codes and association schemes used in this pa-
per. In Section 3, we give two upper bounds on the number of codewords of binary
self-complementary codes (Theorems 3.2 and 3.4). In Sections 4 and 5, we study the
existence of mutually quasi-unbiased Hadamard matrices. In Section 5, we char-
acterize binary self-complementary (n, 2fn) codes whose existence is equivalent to
that of a set of f mutually quasi-unbiased Hadamard matrices of order n (The-
orem 5.1). By Theorems 3.2 and 3.4, this characterization derives upper bounds
on the size of sets of mutually quasi-unbiased Hadamard matrices (Theorem 5.4).
For modest lengths, we also give classifications of some binary self-complementary
codes satisfying the conditions in Theorem 5.1 in order to construct mutually quasi-
unbiased Hadamard matrices. In analogy to the case of quasi-unbiased Hadamard
matrices, Sections 6 and 7 study the existence of weakly unbiased Hadamard ma-
trices. Theorem 6.1 shows that the size of a set of mutually weakly unbiased
Hadamard matrices is at most 2. Similarly to Theorem 5.1, we characterize binary
self-complementary codes whose existence is equivalent to that of a pair of weakly
unbiased Hadamard matrices of order n (Theorem 7.1). For modest lengths, we
also give classifications of some binary self-complementary codes satisfying the con-
ditions in Theorem 7.1 in order to construct weakly unbiased Hadamard matrices.
Finally, in Section 8, as a modification of the notion of weakly unbiased Hadamard
matrices, we introduce the notion of Type II weakly unbiased Hadamard matri-
ces. We establish results which are analogous to those of quasi-unbiased Hadamard
matrices and weakly unbiased Hadamard matrices.

All computer calculations in this paper were done by programs in the algebra
software Magma [7] and programs in the language C.

2. Preliminaries

In this section, we give definitions and some known results of Hadamard matrices,
codes and association schemes used in this paper.

2.1. Hadamard matrices. A Hadamard matrix of order n is an n × n (1,−1)-
matrix H such that HHT = nIn, where In is the identity matrix of order n. It is
well known that the order n is necessarily 1, 2, or a multiple of 4. Throughout this
paper, we assume that n ≥ 2 unless otherwise specified. A weighing matrix of order
n and weight k is an n× n (1,−1, 0)-matrix W such that WWT = kIn. Of course,
a weighing matrix of order n and weight n is a Hadamard matrix. The two distinct
rows ri, rj (i �= j) of a weighing matrix W of order n and weight k are orthogonal
under the standard inner product ri ·rj and W contains exactly k nonzero entries in
each row and each column. Two Hadamard matrices H,K are said to be equivalent
if there exist (1,−1, 0)-monomial matrices P,Q with K = PHQ. All Hadamard
matrices of orders up to 32 have been classified (see [18, Chap. 7] for orders up to 28
and [22] for order 32; see also [28]). The numbers of inequivalent Hadamard matrices
of orders 4, 8, 12, 16, 20, 24, 28, 32 are 1, 1, 1, 5, 3, 60, 487, 13710027, respectively.

Two Hadamard matrices H,K of order n are said to be unbiased if (1/
√
n)HKT

is also a Hadamard matrix of order n, where KT denotes the transpose of K. This
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means that the absolute value of any entry of HKT is
√
n. Hadamard matrices

are said to be mutually unbiased Hadamard matrices if any pair of two distinct
Hadamard matrices are unbiased Hadamard matrices. The existence of f mutually
unbiased Hadamard matrices of order n is equivalent to that of f + 1 mutually
unbiased bases in Rn [8, Observation 2.1]. It is a fundamental problem to determine
the maximum size among sets of mutually unbiased Hadamard matrices of order n.
For example, it follows from [8, Observation 2.1] and [15, Table 1] that f ≤ n/2.

Recently, generalizations of unbiased Hadamard matrices have been presented
in [5], [19] and [26]. Two weighing matrices W1,W2 of order n and weight k are

unbiased if (1/
√
k)W1W

T
2 is a weighing matrix of weight k [19]. As a natural gen-

eralization, quasi-unbiased weighing matrices are defined in [26] as follows: W1,W2

are quasi-unbiased for parameters (n, k, l, a) if (1/
√
a)W1W

T
2 is a weighing matrix

of order n and weight l. This notion was introduced to show that Conjecture 32
in [6] is true. In addition, a set of f mutually quasi-unbiased weighing matrices for
parameters (n, k, l, a) implies a set of f − 1 mutually unbiased weighing matrices
of order n and weight l. In this paper, we restrict our investigation to the case
where W1,W2 are Hadamard in the definition of quasi-unbiased weighing matrices
in order to adopt a coding-theoretic approach. Our restriction is also natural for
a consideration of a certain generalization of the situation in [6, Conjecture 32].
We say that Hadamard matrices H,K of order n are quasi-unbiased Hadamard
matrices with parameters (l, a) if (1/

√
a)HKT is a weighing matrix of weight l.

Equivalently, the absolute value of any entry of HKT is 0 or
√
a. Two Hadamard

matrices H,K are weakly unbiased if aij ≡ 2 (mod 4) for i, j ∈ {1, 2, . . . , n} and
|{|aij | | i, j ∈ {1, 2, . . . , n}}| ≤ 2, where aij denotes the (i, j)-entry of HKT [5]. A
pair of weakly unbiased Hadamard matrices is constructed from that of unbiased
quaternary complex Hadamard matrices satisfying a certain condition [5, Theo-
rem 14].

Throughout this paper, in the presentation of Hadamard matrices, we use +,−
to denote 1,−1, respectively.

2.2. Binary codes and Z4-codes. Let Z2k (= {0, 1, . . . , 2k− 1}) denote the ring
of integers modulo 2k. A Z2k-code C of length n is a subset of Zn

2k. A Z2k-code C
is called linear if C is a Z2k-submodule of Zn

2k. Usually Z2-codes are called binary.
In this paper, we deal with binary codes and Z4-codes. In addition, codes mean
binary codes unless otherwise specified.

The (Hamming) distance d(x, y) between two vectors x and y of Zn
2k is the

number of components in which they differ. Let C be a Z2k-code of length n. A
vector of C is called a codeword of C. The minimum (Hamming) distance dH(C)
of C is the smallest (Hamming) distance among all pairs of two distinct codewords
of C. A generator matrix of a linear Z2k-code is a matrix such that the rows
generate the code and no proper subset of the rows of the matrix generates the
code. For a linear Z2k-code C of length n and vectors x1, x2, . . . , xs ∈ Zn

2k, we
denote by 〈C, x1, x2, . . . , xs〉 the linear Z2k-code generated by the codewords of C
and x1, x2, . . . , xs. Let Sn denote the symmetric group of degree n. For x ∈ Zn

2k

and σ ∈ Sn, let σ(x) denote the vector obtained from x by the permutation σ of
the coordinates. For j ∈ {1, 2, . . . , n}, let τj(x) denote the vector obtained from x
by changing the sign of the j-th coordinate. In addition, set σ(C) = {σ(c) | c ∈ C}
and τj(C) = {τj(c) | c ∈ C}.



954 MAKOTO ARAYA, MASAAKI HARADA, AND SHO SUDA

A binary (n,M) code is a binary code of length n with M codewords. A binary
(n,M, d) code is a binary (n,M) code with minimum distance d. A binary [n, k]
code means a binary linear code of length n with 2k codewords. A binary [n, k, d]
code means a binary [n, k] code with minimum distance d. The distance distribution
of a binary code C of length n is defined as (A0(C), A1(C), . . . , An(C)), where

Ai(C) =
1

|C| |{(x, x
′) | x, x′ ∈ C, d(x, x′) = i}| (i = 0, 1, . . . , n).

A binary code C is called self-complementary if x+ 1 ∈ C for any x ∈ C, where 1
denotes the all-one vector. Two binary (n,M, d) codes C,D are equivalent if there
exist a permutation σ ∈ Sn and a vector x ∈ Zn

2 such that D = x+ σ(C).
A Hadamard matrix is normalized if all entries in the first row and the first

column are 1. LetH be a normalized Hadamard matrix of order n. Throughout this
paper, we denote by C(H) the binary (n, 2n) code consisting of the 2n row vectors
of (1, 0)-matrices (H +Jn)/2 and (−H +Jn)/2, where Jn denotes the n×n all-one
matrix. The code C(H) is often called a Hadamard code. It is trivial that C(H) is
a self-complementary code with distance distribution (A0(C), An/2(C), An(C)) =
(1, 2n− 2, 1).

The Lee weight wtL(x) of a vector x = (x1, x2, . . . , xn) of Z
n
4 is n1(x)+2n2(x)+

n3(x), where nα(x) denotes the number of components i with xi = α (α = 0, 1, 2, 3).
The Lee distance dL(x, y) between two vectors x and y of Zn

4 is wtL(x − y). The
minimum Lee distance dL(C) of a Z4-code C is the smallest Lee distance among all
pairs of two distinct codewords of C. The Gray map φ is defined as a map from Zn

4

to Z2n
2 mapping (x1, x2, . . . , xn) to (φ(x1), φ(x2), . . . , φ(xn)), where φ(0) = (0, 0),

φ(1) = (0, 1), φ(2) = (1, 1) and φ(3) = (1, 0). If C is a Z4-code of length n and min-
imum Lee distance dL(C), then the Gray image φ(C) is a binary (2n, |C|, dL(C))
code. The Lee distance distribution of a Z4-code C of length n is defined as
(A0(C), A1(C), . . . , A2n(C)), where

Ai(C) =
1

|C| |{(x, x
′) | x, x′ ∈ C, dL(x, x′) = i}| (i = 0, 1, . . . , 2n).

Two linear Z4-codes C, C′ of length n are equivalent if there exist σ ∈ Sn and
j1, j2, . . . , jk ∈ {1, 2, . . . , n} such that C = τj1τj2 · · · τjkσ(C′). Let G(1,m) denote
a generator matrix of the first order binary Reed–Muller code RM(1,m) of length
2m. The first order Reed–Muller Z4-code ZRM(1,m) is defined as the linear Z4-

code of length 2m, which is generated by the rows of the matrix
(
11 ··· 11

2G(1,m)

)
,

where we regard 2G(1,m) as a Z4-matrix [16].

2.3. Association schemes. Let X be a finite set and {R0, R1, . . . , Rn} be a set
of nonempty subsets of X ×X. Let Ai denote the adjacency matrix of the digraph
with vertex set X and arc set Ri for i = 0, 1, . . . , n. The pair (X, {Ri}ni=0) is called
a symmetric association scheme of class n if the following conditions hold:

• A0 = I|X|,
•
∑n

i=0 Ai = J|X|,

• AT
i = Ai for i ∈ {1, 2, . . . , n},

• AiAj=
∑n

k=0 p
k
i,jAk, where p

k
i,j are nonnegative integers (i, j∈{0, 1, . . . , n}).
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The vector space A over R spanned by the matrices Ai forms an algebra. Since
A is commutative and semisimple, A has a unique basis of primitive idempotents
E0 = 1

|X|J|X|, E1, . . . , En. The algebraA is closed under the ordinary multiplication

and entry-wise multiplication denoted by ◦. We define the Krein numbers qki,j for

i, j, k ∈ {0, 1, . . . , n} as Ei ◦Ej =
1

|X|
∑n

k=0 q
k
i,jEk. It is known that the Krein num-

bers are nonnegative real numbers (see [13, Lemma 2.4]). Since {A0, A1, . . . , An}
forms a basis of A, there exists a matrix Q = (qij) with Ei =

1
|X|
∑n

j=0 qjiAj . A

symmetric association scheme (X, {Ri}ni=0) is said to be Q-polynomial if for each
i ∈ {0, 1, . . . , n}, there exists a polynomial vi(z) of degree i such that qji = vi(qj1)
for all j ∈ {0, 1, . . . , n}. We say that a Q-polynomial association scheme is Q-
bipartite if qki,j = 0 for all i, j, k ∈ {1, 2, . . . , n} such that i+ j + k is odd.

There exists a matrix S = (S0 S1 · · · Sn) whose rows and columns are indexed
by X, satisfying that SST = |X|I|X| and S diagonalizes the adjacency matrices,

where Ei = 1
|X|SiS

T
i for i ∈ {0, 1, . . . , n} [13, p. 11]. We then define the i-th

characteristic matrix Gi of a subset C of X as the submatrix of Si that lies in the
rows indexed by C.

Suppose that X = Zn
2 and Ri = {(x, y) | x, y ∈ X, d(x, y) = i} for i = 0, 1, . . . , n.

Then the pair (X, {Ri}ni=0) is a symmetric association scheme, which is called the
binary Hamming association scheme. The binary Hamming association scheme
is a Q-bipartite Q-polynomial association scheme with the polynomials vi(z) =
Ki(n − 2z), where Ki(z) is the Krawtchouk polynomial of degree i defined as

Ki(z) =
∑i

j=0(−1)j
(
z
j

)(
n−z
i−j

)
. By [14, Theorem 2.5], the Krawtchouk polynomials

satisfy the following recursion:

K1(z)Ki(z) = (n− i+ 1)Ki−1(z) + (i+ 1)Ki+1(z),(1)

for i = 0, 1, . . . , n− 1, where K−1(z) is defined as 0.
Recently, by generalizing the result in [1], it has been shown in [23] that there

exists a set of f mutually unbiased Hadamard matrices of order n if and only if
there exists a Q-polynomial association scheme of class 4 which is both Q-antipodal
and Q-bipartite with f Q-antipodal classes (see [23] for undefined terms).

3. Bounds for self-complementary codes

For a code C of length n, set S(C) = {i ∈ {1, 2, . . . , n} | Ai(C) �= 0}. The size
of S(C) is said to be the degree of C. The annihilator polynomial of C is defined
as follows:

αC(z) = |C|
∏

i∈S(C)

(
1− z

i

)
.

By considering annihilator polynomials, in this section, we give two upper bounds
on the number of codewords of binary self-complementary codes. The two bounds
are used to give upper bounds on the size of sets of mutually quasi-unbiased (resp.
Type II weakly unbiased) Hadamard matrices in Theorem 5.4 (resp. Theorem 8.6).
We also consider the condition of equality of the first bound.

Lemma 3.1. Let S be a subset of {1, 2, . . . , n} such that |S| = s, n ∈ S, and if
a ∈ S \ {n}, then n − a ∈ S. Then α(z) =

∏
i∈S\{n}(1 − z

i ) has the following
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expansion by the Krawtchouk polynomials:

α(z) =
∑

i=0,1,...,s−1
i≡s−1 (mod 2)

αiKi(z),(2)

where αi ∈ Q.

Proof. When s is odd, we may write S = {a1, a2, . . . , a(s−1)/2, n − a1, n − a2, . . . ,
n− a(s−1)/2, n}, where 0 < a1 < a2 < · · · < a(s−1)/2 < n/2. Then we have

α(z) =

(s−1)/2∏
i=1

((
1− z

ai

)(
1− z

n− ai

))

=

(s−1)/2∏
i=1

1

ai(n− ai)

(s−1)/2∏
i=1

(
−
(
ai −

n

2

)2
+

x2

4

)
,

where x = n− 2z. Thus, α(z) = α(n/2− x/2) is an even polynomial in variable x.
When s is even, we may write S = {a1, a2, . . . , as/2−1, n/2, n − a1, n − a2, . . . ,

n − as/2−1, n}, where 0 < a1 < a2 < · · · < as/2−1 < n/2. Similarly to the case
where s is odd, we have

α(z) =

⎛
⎝s/2−1∏

i=1

1

ai(n− ai)

⎞
⎠ 1

n
2

⎛
⎝s/2−1∏

i=1

(
−
(
ai −

n

2

)2
+

x2

4

)⎞⎠ x

2
,

where x = n− 2z. Thus, α(z) = α(n/2− x/2) is an odd polynomial in variable x.
It can be shown that Ki(z) = Ki(n/2− x/2) is an even (resp. odd) polynomial

of degree i in variable x if i is even (resp. odd), from which the expansion of α(z)
by the Krawtchouk polynomials has the desired form (2). �

Theorem 3.2. Let C be a self-complementary code of length n and degree s. Then

|C| ≤ 2
∑

i=0,1,...,s−1
i≡s−1 (mod 2)

(
n

i

)
.

Proof. We consider a subcode C ′ of C such that C = C ′∪(C ′+1), C ′∩(C ′+1) = ∅.
Then |C| = 2|C ′| and C ′ satisfies that S(C ′) ⊂ S(C) \ {n}. Since C is self-
complementary, the annihilator polynomial αC′(z) of C ′ has the following expansion
by Lemma 3.1:

αC′(z) =
∑

i=0,1,...,s−1
i≡s−1 (mod 2)

αiKi(z).

Set K =
(
G0 G2 · · · Gs−1

)
if s is odd and K =

(
G1 G3 · · · Gs−1

)
if s

is even, where Gi is the i-th characteristic matrix of C, and set

Γ =
⊕

i=0,1,...,s−1
i≡s−1 (mod 2)

αiIKi(0).
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By [13, Theorem 3.13], we have KΓKT = |C ′|I|C′|. Taking the rank of the above
equation yields that

|C ′| = rank(KΓKT ) ≤ rank(K) ≤ min

⎧⎪⎪⎨
⎪⎪⎩|C ′|,

∑
i=0,1,...,s−1

i≡s−1 (mod 2)

Ki(0)

⎫⎪⎪⎬
⎪⎪⎭ ,

as desired. �

Remark 3.3. The above upper bound depends on the degrees. An upper bound,
which depends on the minimum distances, can be found in [24].

If |C| = 2
∑

i=0,1,...,s−1
i≡s−1 (mod 2)

(
n
i

)
, then the matrix K is a square matrix and in-

vertible. Thus,
⊕

i=0,1,...,s−1
i≡s−1 (mod 2)

αiIKi(0) is a scalar multiple of the identity matrix,

which implies that αi are all equal.
Let C be a self-complementary code of length n and degree s. By Lemma 3.1, we

may suppose that the expansion of αC(z) =
∏

i∈S(C)\{n}(1− z
i ) by the Krawtchouk

polynomials is as follows:

αC(z) =
∑

i=0,1,...,s−1
i≡s−1 (mod 2)

αiKi(z).(3)

Theorem 3.4. Suppose that αδ = α0 if s is odd and αδ = α1 if s is even. If αi

in (3) are all nonnegative and αδ is positive, then

|C| ≤
⌊
2

αδ

⌋
.

Proof. The annihilator polynomial of C is written as αC(z) = |C|
(
1− z

n

)
αC(z).

By K1(z) = n− 2z and (1),

αC(z) =
|C|
2

(
1 +

1

n
K1(z)

)
αC(z)

=
|C|
2

∑
i=0,1,...,s−1

i≡s−1 (mod 2)

(
αiKi(z) +

αiK1(z)Ki(z)

n

)

=
|C|
2

∑
i=0,1,...,s−1

i≡s−1 (mod 2)

(
αiKi(z) +

αi((n− i+ 1)Ki−1(z) + (i+ 1)Ki+1(z))

n

)
,

whereK−1(z) = 0. Hence, the coefficient ofK0(z) is |C|αδ/2. By the assumption on
αi, the linear programming bound [13, Theorem 5.23 (ii)] shows that the coefficient
of K0(z) is at most 1. Therefore, the desired bound follows. �

The above two bounds are referred to as the absolute bounds and the linear
programming bounds, respectively. As a consequence, upper bounds on the maxi-
mum size among sets of mutually quasi-unbiased (resp. Type II weakly unbiased)
Hadamard matrices are given in Section 5 (resp. Section 8).
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4. Quasi-unbiased Hadamard matrices

In this section, we study quasi-unbiased Hadamard matrices. All feasible pa-
rameter sets for quasi-unbiased Hadamard matrices are examined for orders up to
48.

4.1. Basic properties and feasible parameters.

Proposition 4.1. If there exists a pair of quasi-unbiased Hadamard matrices of
order n with parameters (l, a), then

(4) l =
( n

2α

)2
, a = 4α2

for some positive integer α satisfying that n ≡ 0 (mod 2α) and n ≤ 4α2.

Proof. Let (H1, H2) be a pair of quasi-unbiased Hadamard matrices of order n
with parameters (l, a). From the definition, a must be a square, say, a = b2,
where b is a positive integer. Let h1 (resp. h2) be a row of H1 (resp. H2). Let
n±(h1, h2) denote the number of components which are different in h1 and h2.
Then 2n±(h1, h2) = n− b and n+ b if h1 · h2 = b and −b, respectively. Since n = 2
or n ≡ 0 (mod 4), b is even. Therefore, a = 4α2 for some positive integer α; then
l = (n/2α)2. Since (1/

√
a)H1H

T
2 is a weighing matrix of weight l, it is trivial that

l ≤ n. Hence, n ≤ 4α2. �

From now on we assume that α is a positive integer for parameters ((n/2α)2, 4α2).
We say that parameters (l, a) satisfying (4) are feasible. Since (l, a) = (1, n2) satis-
fies (4), the parameters (1, n2) are feasible for each order n.

Proposition 4.2. If there exists a Hadamard matrix of order n, then there exists
a set of 2nn! mutually quasi-unbiased Hadamard matrices with parameters (1, n2),
where 2nn! is the maximum size among sets of such matrices.

Proof. Let H,K be Hadamard matrices of order n. It is easy to see that (H,K) is
a pair of quasi-unbiased Hadamard matrices with parameters (1, n2) if and only if
there exists a monomial (1,−1, 0)-matrix P such that K = PH. In addition, for
any monomial (1,−1, 0)-matrices P and Q, (PH,QH) is a pair of quasi-unbiased
Hadamard matrices with parameters (1, n2). �

For n = 4, 8, . . . , 48, we give in Table 1 feasible parameters (l, a) and our present
state of knowledge about the maximum size fmax among sets of mutually quasi-
unbiased Hadamard matrices of order n with parameters (l, a) except (1, n2). In
the third column of the table, “-” means that there exists no pair of quasi-unbiased
Hadamard matrices. The last two columns provide references for the lower and
upper bounds on fmax.

Proposition 4.3. Suppose that there exists a pair of quasi-unbiased Hadamard
matrices of order n with parameters ((n/2α)2, 4α2). If n �= 4α2, then α must be
even.

Proof. Let H be a Hadamard matrix of order n and let hi be the i-th row of H.
Let x be a vector of {1,−1}n. Then it is easy to see that hi · x ≡ hj · x (mod 4)
for i, j ∈ {1, 2, . . . , n}.

Let (H,K) be a pair of quasi-unbiased Hadamard matrices with parameters
((n/2α)2, 4α2). Since (1/2α)HKT is a weighing matrix of weight (n/2α)2, any row
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Table 1. Quasi-unbiased Hadamard matrices (n = 4, 8, . . . , 48).

n (l, a) fmax Reference

4 (4, 4) 2 [11, Proposition 6] [15, Table 1]

8 (4, 16) 8 [26, Theorem 4.4] [26, Theorem 4.1]

12 (4, 36) - Corollary 4.4
(9, 16) 2 Section 4.2 Section 4.2

16 (4, 64) 8− 35 [17, Section 3] Table 2
(16, 16) 8 [11, Proposition 6] [15, Table 1]

20 (4, 100) - Corollary 4.5

24 (4, 144) 2− 85 Section 4.2 Table 2
(9, 64) 16− 85 Section 5.2 Table 2
(16, 36) - Proposition 4.3

28 (4, 196) - Corollary 4.5

32 (4, 256) 8− 155 Proposition 4.6 Table 2
(16, 64) 32 [26, Theorem 4.4] [26, Theorem 4.1]

36 (4, 324) - Corollary 4.4
(9, 144) ≤ 199 Table 2
(36, 36) 2 [19, Theorem 1.5] [8, Lemma 3.3]

40 (4, 400) ≤ 247 Table 2
(16, 100) - Proposition 4.3
(25, 64) ≤ 28 Table 2

44 (4, 484) - Corollary 4.5

48 (4, 576) 2− 361 Proposition 4.6 Table 2
(9, 256) 16− 361 Proposition 4.6 Table 2
(16, 144) ≤ 361 Table 2
(36, 64) 2− 28 Proposition 4.6 Table 2

x of K satisfies that hi · x ∈ {0,±2α} for i = 1, 2, . . . , n. Hence, if (1/2α)HKT is
not Hadamard, equivalently n �= 4α2, then α must be even. �

Corollary 4.4. Suppose that n ≡ 4 (mod 8) and n ≥ 12. Then there exists no
pair of quasi-unbiased Hadamard matrices of order n with parameters (4, (n/2)2).

Proof. Follows from Proposition 4.3 by considering the case α = n/4. �

Corollary 4.5. Suppose that n = 4p, where p is an odd prime with p ≥ 5. Then
there exists no pair of quasi-unbiased Hadamard matrices of order n with parameters
(l, a) �= (1, n2).

Proof. From p ≥ 5, the only feasible parameters are (4, 4p2) and (1, 16p2). By
Proposition 4.3, there exists no pair of quasi-unbiased Hadamard matrices with
parameters (4, 4p2). �

Proposition 4.6. Let {H1, H2, . . . , Hf} (resp. {K1,K2, . . . ,Kf}) be a set of f
mutually quasi-unbiased Hadamard matrices of order n (resp. n′) with parameters
(l, a) (resp. (l′, a′)). Then {H1⊗K1, H2⊗K2, . . . , Hf ⊗Kf} is a set of f mutually
quasi-unbiased Hadamard matrices of order nn′ with parameters (ll′, aa′).

Proof. It is sufficient to give a proof for the case f = 2. Using some (1,−1, 0)-

matrices L and L′, the matrices H1H
T
2 and K1K

T
2 are written as

√
aL and

√
a′L′,

respectively. Then (H1 ⊗K1)(H2 ⊗K2)
T =

√
aa′L⊗ L′. The result follows. �

Let (H,K) be a pair of quasi-unbiased Hadamard matrices of order n with
parameters (l, a). We denote the unique Hadamard matrix of order 2 by H2. There
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exists a pair (H4,K4) of unbiased Hadamard matrices of order 4 [11, Proposition 6].
By the above proposition, (H ⊗H2,K ⊗H2) is a pair of quasi-unbiased Hadamard
matrices of order 2n with parameters (l, 4a), and (H ⊗ H4,K ⊗ K4) is a pair of
quasi-unbiased Hadamard matrices of order 4n with parameters (4l, 4a).

If there exist Hadamard matrices of orders 4m and 4n, then there exists a
Hadamard matrix of order 8mn [2, Statement 4.10] (see also [12, Theorem 1]
and [20, Theorem 4.2.5]). The explicit construction given in [12, Theorem 1]
and [20, Theorem 4.2.5] is as follows. Let H be a Hadamard matrix of order
4m and K be a Hadamard matrix of order 4n. Let Hi (i = 1, 2) be the 4m × 2m
matrices and Ki (i = 1, 2) be the 2n × 4n matrices such that H =

(
H1 H2

)
,

K =

(
K1

K2

)
. The matrix

M(H,K) =
1

2
(H1 +H2)⊗K1 +

1

2
(H1 −H2)⊗K2

is a Hadamard matrix of order 8mn.

Proposition 4.7. Let {H1, H2, . . . , Hf} be a set of f mutually quasi-unbiased
Hadamard matrices of order 4m with parameters (l, a) and let K be a Hadamard
matrix of order 4n. Then {M(H1,K),M(H2,K), . . . ,M(Hf ,K)} is a set of f mu-
tually quasi-unbiased Hadamard matrices of order 8mn with parameters (l, 4an2).

Proof. Similar to that of the above proposition. The tedious but straightforward
proof is omitted. �
4.2. Observations by straightforward construction. From the definition of
quasi-unbiased Hadamard matrices, we immediately have the following observation.

Proposition 4.8. Let P,Q,R be n×n (1,−1, 0)-monomial matrices. Then (H,K)
is a pair of quasi-unbiased Hadamard matrices of order n with parameters ((n/2α)2,
4α2) if and only if (PHQ,RKQ) is a pair of quasi-unbiased Hadamard matrices of
order n with parameters ((n/2α)2, 4α2).

Suppose that n ≥ 4. For a given (n, α), when attempting to determine whether
there exists a pair of quasi-unbiased Hadamard matrices H,K of order n with pa-
rameters ((n/2α)2, 4α2), it is sufficient to consider only the inequivalent Hadamard
matrices of order n as possible choices for H and only the Hadamard matrices K
of order n as possible choices for K, where the first three columns c1, c2, c3 of K
satisfy the following:

(5)

cT1 = ( + · · ·+ + · · ·+ + · · ·+ + · · ·+ ),

cT2 = ( + · · ·+ + · · ·+ − · · ·− − · · ·− ),

cT3 = ( + · · ·+︸ ︷︷ ︸
n
4 rows

− · · ·−︸ ︷︷ ︸
n
4 rows

+ · · ·+︸ ︷︷ ︸
n
4 rows

− · · ·−︸ ︷︷ ︸
n
4 rows

).

This substantially reduces the number of pairs of Hadamard matrices to be checked
as possible pairs (H,K).

Let H12 be the Hadamard matrix of order 12 having the following form:

(6)

⎛
⎜⎜⎜⎝

+ + · · · +
+
... R
+

⎞
⎟⎟⎟⎠ ,
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where R is the 11× 11 circulant matrix with first row:

(−+−+++−−−+−).

We determine the maximum size f among sets of mutually quasi-unbiased Hada-
mard matrices H12,1, H12,2, . . . , H12,f of order 12 with parameters (9, 16) as follows.
By Proposition 4.8, without loss of generality, we may assume that H12,1 = H12.
Our exhaustive computer search under the above condition (5) on K found 1485
distinct Hadamard matrices K12,i (i = 1, 2, . . . , 1485) such that (H12,K12,i) is a
pair of quasi-unbiased Hadamard matrices with the parameters. In addition, our
exhaustive computer search verified that there exists no pair (K12,i,K12,j) (i �= j)

such that {H12,K12,i,K12,j} is a set of three mutually quasi-unbiased Hadamard

matrices. This means that f = 2. In Figure 1, we list K12, which is one of the 1485
Hadamard matrices.

K12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + − − + + + + − +−
+ + + − + − − − − − −−
+ + + + − + − + − + −+
+ + − − + + + − − + ++
+ + − + + − − + + + +−
+ + − + − − + − + − −+
+ − + + + + + − + + −−
+ − + − − − − − + + ++
+ − + + + − + + − − ++
+ − − + − + − − − − +−
+ − − − − − + + − + −−
+ − − − + + − + + − −+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 1. The matrix K12

Our computer search under the condition (5) on K found a Hadamard matrix
K24,1 of order 24 such that (H24,1,K24,1) is a pair of quasi-unbiased Hadamard
matrices of order 24 with parameters (4, 144), where H24,1 is had.24.1 in [28]. The

matrix K24,1 is listed in Figure 2.

K24,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + − + + + − + − − + − − − − − − − + −+
+ + + + − + − − − − + − − + + + − + + − + − −−
+ + + − − − + + − + − − + + − + − − − + + − +−
+ + + − + + + + + − + − + − + − + + + + + + +−
+ + + − − − − + + − − + − − − + + + + − − − ++
+ + + + + + − + − + − + + − + − + − − − − − −−
+ + − + + + + + − + − + − + − + + + + + + + −+
+ + − + − − + − + − − + + − + + − − + + − + −−
+ + − + + − − − − + + − + − − − − + + + − − ++
+ + − − + − − − + + − + − + + − − + − − + + +−
+ + − − − + − − + + + − + − − + + − − − + + −+
+ + − − − + + − − − + + − + + − + − − + − − ++
+ − + − + + + − + + + + − − − + − + − + − − −−
+ − + + + − + − + + + + + + + + + − + − + − ++
+ − + − − − − + − + + + − − + − − − + + + + −+
+ − + + − + + − − − − + + − − − − + − − + + ++
+ − + − + − − − − − − − + + + + + + − + − + −+
+ − + + − + − − + + − − − + − − + − + + − + +−
+ − − − − + + + + + − − + + + − − + + − − − −+
+ − − − + + − + − − + + + + − + − − + − − + +−
+ − − + − − − + + − + + + + − − + + − + + − −−
+ − − − + − + − − − − − − − − − + − + − + − −−
+ − − + + + − + + − − − − − + + − − − + + − ++
+ − − + − − + + − + + − − − + + + + − − − + +−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2. The matrix K24,1
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5. A coding-theoretic approach

to quasi-unbiased Hadamard matrices

In this section, we give a coding-theoretic approach to mutually quasi-unbiased
Hadamard matrices. As an application, upper bounds on the size of sets of mutu-
ally quasi-unbiased Hadamard matrices are derived. For modest lengths, we also
give classifications of some binary self-complementary codes in order to construct
mutually quasi-unbiased Hadamard matrices.

5.1. Binary codes and quasi-unbiased Hadamard matrices.

Theorem 5.1. Let α be an integer with 0 < α < n/2. There exists a self-
complementary (n, 2fn) code C satisfying the following conditions:

{i ∈ {0, 1, . . . , n} | Ai(C) �= 0} = {0, n/2± α, n/2, n},(7)

C = C1 ∪ C2 ∪ · · · ∪ Cf ,(8)

where each Ci has distance distribution (A0(Ci), An/2(Ci), An(Ci)) = (1, 2n− 2, 1)
if and only if there exists a set of f mutually quasi-unbiased Hadamard matrices of
order n with parameters ((n/2α)2, 4α2).

Proof. Suppose that there exists an (n, 2fn) code C satisfying (7) and (8). Define
ψ as a map from Zn

2 to {1,−1}n (⊂ Zn) by ψ((x1, x2, . . . , xn)) = (x′
1, x

′
2, . . . , x

′
n),

where x′
i = −1 if xi = 1 and x′

i = 1 if xi = 0. It follows from the distance
distribution of Ci that Ci+1 = Ci for i = 1, 2, . . . , f . Thus, ψ(Ci) is antipodal, that
is, −ψ(Ci) = ψ(Ci) for i = 1, 2, . . . , f . Hence, there exists a subset Xi of ψ(Ci) such
that Xi ∪ (−Xi) = ψ(Ci) and Xi ∩ (−Xi) = ∅. Note that ψ(x) ·ψ(y) = n− 2d(x, y)
for x, y ∈ Zn

2 . The distance distribution of Ci implies that d(x, y) ∈ {0, n/2, n} for
x, y ∈ Ci. Thus, ψ(x) · ψ(y) ∈ {−n, 0, n} for x, y ∈ Ci. This means that any two
different vectors of Xi are orthogonal for i = 1, 2, . . . , f . Hence, one may define a
Hadamard matrix Hi of order n whose rows are the vectors of Xi for i = 1, 2, . . . , f .

Let vi be a vector of Xi for i = 1, 2, . . . , f . The assumption of (7) implies
that d(ψ−1(vi), ψ

−1(vj)) = n/2, n/2 ± α (i �= j); namely, vi · vj (i �= j) is 0,∓2α
respectively, where α is the integer given in (7). This shows that for any distinct
i, j ∈ {1, 2, . . . , f}, (1/2α)HiH

T
j is a (1,−1, 0)-matrix, and thus it is a weighing

matrix of weight (n/2α)2. Therefore, {H1, H2, . . . , Hf} is a set of f mutually
quasi-unbiased Hadamard matrices of order n with parameters ((n/2α)2, 4α2).

The converse assertion follows by reversing the above argument. �

Remark 5.2. The “only if’’ part in the above proposition was proved in [26] for
a specific case; namely, C is a linear code of length n = 2m satisfying (7) and
containing RM(1,m) as a subcode.

Now, as the case s = 4 of Theorems 3.2 and 3.4, we have two upper bounds on
the number of the codewords of self-complementary codes satisfying (7).

Lemma 5.3. Let C be a self-complementary code of length n satisfying (7). Then

(i) |C| ≤ n(n2−3n+8)
3 . If equality holds, then 4α2 = 3n− 8.

(ii) If 3n − 4α2 − 2 > 0, then |C| ≤ � 2n(n2−4α2)
3n−4α2−2 �. If |C| = 2n(n2−4α2)

3n−4α2−2 , then a

pair (C, {Ri}4i=0) is a Q-polynomial association scheme, where Ri = {(x, y) |
x, y ∈ C, d(x, y) = βi} and {i ∈ {0, 1, . . . , n} | Ai(C) �= 0} = {β0, β1, . . . , β4}
with 0 = β0 < β1 < · · · < β4.
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Proof. (i) The upper bound is the case s = 4 of Theorem 3.2.
Suppose that equality holds. From the observation after Theorem 3.2, αC′(z) =

β(K1(z) +K3(z)) for some β. Since n/2 ± α are roots of K1(z) +K3(z), we have
4α2 = 3n− 8.

(ii) Expanding by the Krawtchouk polynomials, we have

αC(z) =
(
1− 2z

2α+ n

)(
1− 2z

n

)(
1− 2z

−2α+ n

)
=
3n− 4α2 − 2

n(n2 − 4α2)
K1(z) +

6

n(n2 − 4α2)
K3(z).

By the assumption on α and n, both 3n−4α2−2
n(n2−4α2) and 6

n(n2−4α2) are positive. Thus,

Theorem 3.4 implies the desired bound.

Suppose that |C| = 2n(n2−4α2)
3n−2−4α2 . By following the same line as in the proof

of [3, Theorems 1.1, 1.2 (5)], we may prove that (C, {Ri}4i=0) is a Q-polynomial
association scheme. A detailed proof is given in Appendix A. �

By Theorem 5.1, we immediately have the following two upper bounds on the
maximum size among sets of mutually quasi-unbiased Hadamard matrices, one of
which depends only on n, and the other depends on n, α. This is one of the main
results of this paper.

Theorem 5.4. Suppose that there exists a set of f mutually quasi-unbiased Had-
amard matrices of order n with parameters ((n/2α)2, 4α2). Then

(i) f ≤ �n2−3n+8
6 �. If f = n2−3n+8

6 , then 4α2 = 3n− 8.

(ii) If 3n− 4α2 − 2 > 0, then f ≤ � n2−4α2

3n−4α2−2�.

Remark 5.5. It is known that f ≤ n/2 if n = 4α2 and α is even [15, Table 1], f ≤ 2
if n = 4α2 and α is odd [8, Lemma 3.3], and f ≤ n if 2n = 4α2 [26, Theorem 4.1].
For the first and third cases, the bounds are the same as (ii).

Table 2. Absolute and linear programming bounds in Theorem 5.4.

n (l, a) Absolute bound Linear programming bound

4 (4, 4) 2 2

8 (4, 16) 8 8

12 (9, 16) �58/3� = 19 �64/9� = 7

16 (4, 64) 35 ∗
(16, 16) 36 8

24 (4, 144) �256/3� = 85 ∗
(9, 64) 85 �256/3� = 85

32 (4, 256) 155 ∗
(16, 64) 156 32

36 (9, 144) �598/3� = 199 ∗
(36, 36) 199 18

40 (4, 400) 247 ∗
(25, 64) 248 �256/9� = 28

48 (4, 576) �1084/3� = 361 ∗
(9, 256) 361 ∗
(16, 144) 361 ∗
(36, 64) 361 �1120/39� = 28
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For the feasible parameters given in Table 1, we list in Table 2 the maximum
possible sizes among sets of mutually quasi-unbiased Hadamard matrices, which
are obtained by the two upper bounds. We do no list the maximum possible sizes
when there exists no pair of quasi-unbiased Hadamard matrices. In the table, “∗”
means that the assumption of Theorem 5.4 (ii) is not satisfied. By Theorem 5.4 (i),

if 4α2 �= 3n − 8, then f < n2−3n+8
6 . Suppose that n = 4α. Then 4α2 = 3n − 8 if

and only if α = 1, 2. As an example, for the cases (n, l, a) = (16, 4, 64), (32, 4, 256),
(40, 4, 400) in Table 2, the upper bound can decrease from that of Theorem 5.4 (i)
by 1.

The following proposition was proved in [17] for a specific case; namely, C is a
linear code of length n = 2m satisfying (7) and containing RM(1,m) as a subcode.
Although the proof can be easily applied to all codes satisfying (7) and (8), we give
a proof for the sake of completeness.

Proposition 5.6. Let C be an (n, 2fn) code satisfying (7) and (8). Then the
distance distribution of C is given by

(A0(C), An/2−α(C), An/2(C), An/2+α(C), An(C))

= (1, (f − 1)l, 2n− 2 + (f − 1)(2n− 2l), (f − 1)l, 1),

where l = (n/2α)2.

Proof. Let Hi be the Hadamard matrix and let Ci be the code as in the proof of
Theorem 5.1 for i = 1, 2, . . . , f . Let xi be a codeword of Ci for i = 1, 2, . . . , f .
The distance distribution of Ci implies that there exist 2n − 2 codewords y of Ci

such that d(xi, y) = n/2. Now, suppose that i, j ∈ {1, 2, . . . , f} with i �= j. Since
(1/2α)HiH

T
j is a weighing matrix of weight l, the number of 0’s in each row of

(1/2α)HiH
T
j is n− l. That is, for a fixed row ri of Hi, there exist n− l rows r of

Hj such that ri · r = 0. Hence, since C is self-complementary, there exist 2(n− l)
codewords y ∈ Cj such that d(xi, y) = n/2. Therefore, we have

An/2(C) =(2fn(2n− 2) + f(f − 1)2n(2n− 2l))/|C|
=(2n− 2) + (f − 1)(2n− 2l).

Since C is self-complementary, we have the desired distance distribution. �

Remark 5.7. The minimum distance of C implies the distance distribution of C.

5.2. Binary codes satisfying (7) and (8). For some (n, 2n) codes C1 (n =
8, 12, 16, 20, 24), we give a classification of (n, 2fn) codes of the following form:

(9) C1 ∪ (u2 + C1) ∪ (u3 + C1) ∪ · · · ∪ (uf + C1),

satisfying (7) and (8). Although our method for the classifications is straightfor-
ward, we describe it for the sake of completeness. Let C be an (n, 2(f − 1)n) code
of the form (9) satisfying (7) and (8). Every (n, 2fn) code C of the form (9) sat-
isfying (7) and (8) and that C ⊃ C can be constructed as C ∪ (uf + C1), where

uf ∈ Zn
2 . By considering all vectors of Zn

2 \C, all (n, 2fn) codes C of the form (9)

satisfying (7), (8) and that C ⊃ C can be obtained. In addition, by considering
all inequivalent (n, 2(f − 1)n) codes C of the form (9) satisfying (7) and (8), all
(n, 2fn) codes C of the form (9) satisfying (7) and (8), which must be checked
further for equivalences, can be obtained. By checking equivalences among these
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codes, one can complete the classification of codes of the form (9) satisfying (7)
and (8) for a fixed C1.

Let C,D be two binary (n,M) codes containing the zero vector 0. Two codes
C,D are equivalent if and only if there exist a permutation σ ∈ Sn and a vector
x ∈ C such that D = {σ(c+ x) | c ∈ C}. For an (n,M) code C, we have an M × n
(1, 0)-matrix m(C) with rows composed of the codewords of C. To test equivalence,
we checked whether there exists a vector x ∈ C such that the incidence structures
with incidence matrices m(D),m({σ(c+ x) | c ∈ C}) are isomorphic. The Magma

function IsIsomorphic was used to find out whether the incidence structures are
isomorphic.

In this way, for some (n, 2n) codes C1 (n = 8, 12, 16, 20, 24), by a computer
calculation, we completed the classification of codes of the form (9) satisfying (7)
and (8). We list the number N2(C1, 2fn) of the inequivalent (n, 2fn) codes of the
form (9) satisfying (7) and (8). We mention that a classification of linear codes of
length 2m satisfying (7) and containing RM(1,m) as a subcode has been recently
done in [17] under the equivalence of linear codes for m = 3, 4, 5.

Proposition 5.8. N2(RM(1, 3), 16f)=1 (f =2, 3, 5, 6, 7, 8), N2(RM(1, 3), 16f)=
2 (f = 4), and N2(RM(1, 3), 16f) = 0 (f = 9).

Table 3. Complete representatives of Z8
2/RM(1, 3).

i supp(xi) i supp(xi) i supp(xi) i supp(xi)

1 ∅ 5 {6} 9 {4} 13 {4, 6}
2 {8} 6 {6, 8} 10 {4, 8} 14 {4, 6, 8}
3 {7} 7 {6, 7} 11 {4, 7} 15 {4, 6, 7}
4 {7, 8} 8 {6, 7, 8} 12 {4, 7, 8} 16 {4, 6, 7, 8}

To list the result of the classification, we fix the generator matrix of RM(1, 3)

as

(
11111111
01010101
00110011
00001111

)
, and we list the 16 vectors xi, which give the set of complete repre-

sentatives of Z8
2/RM(1, 3). To save space, we list the supports supp(xi) in Table 3,

where supp(v) = {i | vi �= 0} for a vector v = (v1, v2, . . . , vn). The set was
found by the Magma function Transversal. The unique (8, 32) code B8,1,1, the
unique (8, 48) code B8,2,1, the two (8, 64) codes B8,3,i (i = 1, 2), the unique (8, 80)
code B8,4,1, the unique (8, 96) code B8,5,1, the unique (8, 112) code B8,6,1, and the
unique (8, 128) code B8,7,1 are constructed via

⋃
k∈X(B8,j,i)

(xk +RM(1, 3)), where

X(B8,j,i) are listed in Table 4. By a computer calculation, we verified that the
minimum distances of the eight codes are 2.

Table 4. Codes of length 8 satisfying (7) and (8).

C X(C) C X(C)

B8,1,1 {1, 4} B8,4,1 {1, 4, 6, 7, 10}
B8,2,1 {1, 4, 6} B8,5,1 {1, 4, 6, 7, 10, 11}
B8,3,1 {1, 4, 6, 7} B8,6,1 {1, 4, 6, 7, 10, 11, 13}
B8,3,2 {1, 4, 6, 10} B8,7,1 {1, 4, 6, 7, 10, 11, 13, 16}
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Proposition 5.9. N2(C(H12), 24f) = 0 (f = 2).

Proposition 5.10. N2(RM(1, 4), 32f) = 2 (f = 2, 3), N2(RM(1, 4), 32f) = 5
(f = 4), N2(RM(1, 4), 32f) = 3 (f = 5, 6, 7, 8), and N2(RM(1, 4), 32f) = 0
(f = 9).

Table 5. Codes of length 16 satisfying (7) and (8).

C X(C) dH(C) C X(C) dH(C)

B16,1,1 {1, 2} 4 B16,4,3 {1, 5, 6, 8, 9} 6
B16,1,2 {1, 5} 6 B16,5,1 {1, 2, 3, 4, 12, 13} 4
B16,2,1 {1, 2, 3} 4 B16,5,2 {1, 2, 3, 4, 17, 18} 4
B16,2,2 {1, 5, 6} 6 B16,5,3 {1, 5, 6, 8, 9, 10} 6
B16,3,1 {1, 2, 3, 4} 4 B16,6,1 {1, 2, 3, 4, 12, 13, 14} 4
B16,3,2 {1, 2, 3, 12} 4 B16,6,2 {1, 2, 3, 4, 17, 18, 19} 4
B16,3,3 {1, 2, 3, 17} 4 B16,6,3 {1, 5, 6, 8, 9, 10, 11} 6
B16,3,4 {1, 5, 6, 7} 6 B16,7,1 {1, 2, 3, 4, 12, 13, 14, 15} 4

B16,3,5 {1, 5, 6, 8} 6 B16,7,2 {1, 2, 3, 4, 17, 18, 19, 20} 4
B16,4,1 {1, 2, 3, 4, 12} 4 B16,7,3 {1, 5, 6, 8, 9, 10, 11, 16} 6
B16,4,2 {1, 2, 3, 4, 17} 4

To list the result of the classification, we fix the generator matrix of RM(1, 4)
as follows: ⎛

⎜⎜⎜⎜⎝
1111111111111111
0101010101010101
0011001100110011
0000111100001111
0000000011111111

⎞
⎟⎟⎟⎟⎠ .

The two (16, 32) codes B16,1,i (i = 1, 2), the two (16, 64) codes B16,2,i (i = 1, 2),
the five (16, 96) codes B16,3,i (i = 1, 2, . . . , 5), the three (16, 128) codes B16,4,i (i =
1, 2, 3), the three (16, 160) codes B16,5,i (i = 1, 2, 3), the three (16, 192) codes B16,6,i

(i = 1, 2, 3), and the three (16, 224) codes B16,7,i (i = 1, 2, 3), are constructed via⋃
k∈X(B16,j,i)

(xk +RM(1, 4)), where X(B16,j,i) are listed in Table 5, and supp(xm)

(m = 1, 2, . . . , 20) are listed in Table 6. By a computer calculation, we determined
the minimum distances dH(B16,j,i), which are also listed in Table 5.

Table 6. Some representatives of Z16
2 /RM(1, 4).

i supp(xi) i supp(xi) i supp(xi)
1 ∅ 8 {7, 8, 10, 12, 14, 15} 15 {6, 8, 10, 12, 13, 14, 15, 16}
2 {6, 7, 10, 11} 9 {4, 7, 11, 13, 14, 15} 16 {6, 7, 11, 12, 14, 16}
3 {7, 8, 11, 12} 10 {4, 6, 10, 11, 12, 15} 17 {4, 8, 12, 16}
4 {6, 8, 10, 12} 11 {4, 8, 10, 13, 15, 16} 18 {4, 6, 7, 8, 10, 11, 12, 16}
5 {4, 6, 7, 8, 12, 13} 12 {13, 14, 15, 16} 19 {4, 7, 11, 16}
6 {6, 8, 10, 11, 13, 14} 13 {6, 7, 10, 11, 13, 14, 15, 16} 20 {4, 6, 10, 16}
7 {4, 7, 10, 11, 12, 14} 14 {7, 8, 11, 12, 13, 14, 15, 16}

We denote by H16,1, H16,2, H16,3, H16,4 had.16.1, had.16.2, had.16.3,
had.16.4 in [28], respectively, which are the remaining four normalized Hadamard
matrices. To save space, we only list the numbers N2(C(H16,i), 32f) in Table 7 for
i = 1, 2, 3, 4.
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Table 7. N2(C(H16,i), 32f) (i = 1, 2, 3, 4).

f 2 3 4 5 6 7 8 9

N2(C(H16,1), 32f) 4 13 47 24 9 3 2 0
N2(C(H16,2), 32f) 7 18 62 34 14 3 2 0
N2(C(H16,3), 32f) 2 3 10 3 3 1 1 0
N2(C(H16,4), 32f) 2 9 22 16 4 1 1 0

Let H24,2 be the Paley Hadamard matrix of order 24 having the form (6), where
R is the 23× 23 circulant matrix with first row:

(−−−−−+−+−−++−−++−+−++++).

Our computer search found a (24, 768, 8) code C24 =
⋃16

i=1(ui + C(H24,2)) satis-
fying (7) and (8). The vector u1 is 0 and supp(ui) (i = 2, 3, . . . , 16) are listed in
Table 8. This gives a set of 16 mutually quasi-unbiased Hadamard matrices of order
24 with parameters (9, 64) by Theorem 5.1.

Table 8. Vectors ui for C24.

i supp(ui) i supp(ui)

2 {3, 4, 5, 6, 7, 10, 13, 15} 10 {3, 6, 7, 9, 11, 14, 15, 18}
3 {4, 5, 6, 7, 8, 11, 14, 16} 11 {6, 7, 8, 9, 10, 13, 16, 18}
4 {3, 8, 10, 11, 13, 14, 15, 16} 12 {3, 4, 5, 8, 9, 15, 16, 18}
5 {3, 4, 8, 9, 10, 12, 13, 17} 13 {3, 5, 8, 11, 12, 14, 17, 18}
6 {5, 6, 7, 8, 9, 12, 15, 17} 14 {4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18}
7 {3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17} 15 {3, 4, 6, 7, 12, 16, 17, 18}
8 {4, 9, 11, 12, 14, 15, 16, 17} 16 {5, 10, 12, 13, 15, 16, 17, 18}
9 {4, 5, 9, 10, 11, 13, 14, 18}

5.3. Binary codes satisfying (7) and (8) from Z4-codes. In order to construct
binary codes satisfying (7) and (8) systematically, we consider Z4-codes C of length
n with |C| = 4fn satisfying the following conditions:

{i ∈ {0, 1, . . . , n} | Ai(C) �= 0} = {0, n± β, n, 2n},(10)

C = C1 ∪ C2 ∪ · · · ∪ Cf ,(11)

where β is an integer with 0 < β < n, and each Ci has Lee distance distribution
(A0(Ci), An(Ci), A2n(Ci)) = (1, 4n− 2, 1).

Proposition 5.11. Let C be a Z4-code of length n satisfying (10) and (11). Then
there exists a set of f mutually quasi-unbiased Hadamard matrices of order 2n with
parameters (n2/β2, 4β2).

Proof. Since the Lee distance distribution of C is the same as the distance distribu-
tion of φ(C), φ(C) satisfies (7). In addition, φ(Ci) has the same distance distribution
as RM(1,m+ 1) for i = 1, 2, . . . , f . Since φ(C) = φ(C1) ∪ φ(C2) ∪ · · · ∪ φ(Cf ), φ(C)
satisfies (8). The result follows from Theorem 5.1. �

Now, we restrict our attention to linear Z4-codes C of length n = 2m satisfying
the following conditions:

{(n0(x)− n2(x))
2 | x ∈ C} = {0, β2, n2},(12)

C contains ZRM(1,m) as a subcode,(13)
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where β is an integer with 0 < β < n. Let x be a codeword of C. Since n1(x) +
2n2(x) + n3(x) = n − (n0(x) − n2(x)), {wtL(x) | x ∈ C} = {0, n ± β, n, 2n}. This
means that C satisfies (10). Let {t1, t2, . . . , tf} be a set of complete representatives
of C/ZRM(1,m). It is trivial that ti + ZRM(1,m) has the same Lee distance
distribution as ZRM(1,m) for i = 1, 2, . . . , f . Hence, C satisfies (11). We note
that the Kerdock Z4-code K(m) of length 2m defined in [16] satisfies (12) and (13)
for m ≥ 2.

Remark 5.12. The above method is a slight generalization of that given in [26].

In the rest of this section, we study classifications of linear Z4-codes of length
2m satisfying (12) and (13). Note that the conditions (12) and (13) are invariant
under equivalences of linear Z4-codes.

Although our method for classifications of linear Z4-codes of length 2m satisfy-
ing (12) and (13) is straightforward, we describe it for the sake of completeness. Let
C be a linear Z4-code with |C| = 2k satisfying (12) and (13). Every linear Z4-code
C such that |C| = 2k+1 and C ⊃ C satisfying (12) and (13) can be constructed as
〈C, x〉, where x is some vector of a set Rm of complete representatives of Z2m

4 /C.
By considering all vectors of Rm, all linear Z4-codes C which must be checked fur-
ther for equivalence can be obtained. In addition, by considering all inequivalent
linear Z4-codes C with |C| = 2k satisfying (12) and (13), all linear Z4-codes C with
|C| = 2k+1 satisfying (12) and (13), which must be checked further for equivalences,
can be obtained. By checking equivalences among these codes, one can complete
the classification of linear Z4-codes C with |C| = 2k+1 satisfying (12) and (13).

We now describe how to test equivalences of linear Z4-codes. In this paper, we
modify the method for linear codes over a finite field, which is given in [27]. For a
linear Z4-code C of length n, we define the digraph Γ(C) with the following vertex
set V (Γ(C)) and arc set A(Γ(C)):

V (Γ(C)) =C# ∪ (P × Z
#
4 ),

A(Γ(C)) ={(c, (j, cj)) | c = (c1, c2, . . . , cn) ∈ C#, cj �= 0, j ∈ P}
∪ {((j, x), (j, 2)), ((j, 2), (j, x)) | j ∈ P, x ∈ {1, 3}},

where C# = C \ {0}, P = {1, 2, . . . , n} and Z
#
4 = Z4 \ {0}. By an argument similar

to that in [27], the following characterization is obtained.

Proposition 5.13. Two linear Z4-codes C, C′ are equivalent if and only if Γ(C),
Γ(C′) are isomorphic.

Proof. Suppose that two linear Z4-codes C, C′ of length n are equivalent. Then there
exist σ ∈ Sn and j1, j2, . . . , j� ∈ P such that τj1τj2 · · · τj�σ(C) = C′ (see Section 2.2
for the notation). For σ ∈ Sn, define a map fσ from V (Γ(C)) to V (Γ(σ(C)))
mapping (j, x) ∈ P × Z

#
4 to (σ(j), x), and c ∈ C# to σ(c). Then the map fσ is

an isomorphism from Γ(C) to Γ(σ(C)). Now, for j ∈ P, define a map gj from

V (Γ(C)) to V (Γ(τj(C))) mapping (j, x) to (j,−x), (i, x) ∈ (P \ {j})× Z
#
4 to (i, x),

and c ∈ C# to τj(c). Then the map gj is an isomorphism from Γ(C) to Γ(τj(C)).
Hence, gj1gj2 · · · gj�fσ is an isomorphism from Γ(C) to Γ(C′).

Conversely, we suppose that two digraphs Γ(C),Γ(C′) are isomorphic. Then there
exists a bijection f from V (Γ(C)) to V (Γ(C′)) such that (x, y) ∈ A(Γ(C)) if and only

if (f(x), f(y)) ∈ A(Γ(C′)). By the definition of A(Γ(C)), the subsets C# and P×Z
#
4
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of V (Γ(C)) are characterized as follows:

C# = {v ∈ V (Γ(C)) | the indegree of v is equal to 0},
P × Z

#
4 = V (Γ(C)) \ C#.

We have a similar characterization for Γ(C′). Thus, we have

f(C#) = C′#, f(P × Z
#
4 ) = P × Z

#
4 .

We put f((j, x)) = (j′, x′) for (j, x) ∈ P ×Z
#
4 . There exists a permutation σf ∈ Sn

with σf (j) = j′ for j ∈ P. The set of the vertices of Γ(C) (resp. Γ(C′)) whose
indegrees are at least 2 and outdegrees are equal to 2 is {(j, 2) | j ∈ P} (resp.
{(j′, 2) | j′ ∈ P}). Hence, (j′, 2′) = (j′, 2) for each j′ ∈ P. Also, we have either
that (j′, 1′) = (j′, 1) and (j′, 3′) = (j′, 3) or that (j′, 1′) = (j′, 3) and (j′, 3′) = (j′, 1)
for each j′ ∈ P. Hence, we have

τj1τj2 · · · τj�σf (C) = f(C#) ∪ {0} = C′,

where {j1, j2, . . . , j�} = {j ∈ P | (j′, 1′) = (j′, 3), (j′, 3′) = (j′, 1)} with |{j1, j2, . . . ,
j�}| = �. Therefore, two linear Z4-codes C, C′ are equivalent. �

Using the above method, by a computer calculation, we completed the classi-
fication of linear Z4-codes of length 16 satisfying (12) and (13). By the Magma

function IsIsomorphic, we determined whether Γ(C),Γ(C′) are isomorphic.

Proposition 5.14. Let N4(16, k) denote the number of inequivalent linear Z4-
codes C of length 16 with |C| = 2k satisfying (12) and (13). Then N4(16, 7) = 5,
N4(16, 8) = 21, N4(16, 9) = 62, N4(16, 10) = 28, N4(16, 11) = 2 and N4(16, 12) =
0.

To list the result of the classification, we fix the generator matrix of ZRM(1, 4)
as follows: ⎛

⎜⎜⎜⎜⎝
1111111111111111
0202020202020202
0022002200220022
0000222200002222
0000000022222222

⎞
⎟⎟⎟⎟⎠ .

To save space, we only list the maximal linear Z4-codes (with respect to the subset
relation) given in the above proposition. The seven maximal linear Z4-codes C =
C16,3,i (i = 1, 2, . . . , 7) with |C| = 29 are constructed as 〈ZRM(1, 4), x1, x2, x3〉,
where x1, x2, x3 are listed in Table 9. The 19 maximal linear Z4-codes C = C16,4,i
(i = 1, 2, . . . , 19) with |C| = 210 are constructed as 〈ZRM(1, 4), x1, x2, x3, x4〉,
where x1, x2, x3, x4 are listed in Table 10. The two maximal linear Z4-codes C =
C16,5,i (i = 1, 2) with |C| = 211 are constructed as 〈ZRM(1, 4), x1, x2, . . . , x5〉, where
x1, x2, . . . , x5 are listed in Table 11. For each code C, by a computer calculation,
we determined the value β2 in (12), the minimum Hamming distance dH(C) and
the minimum Lee distance dL(C), which are listed in Table 12.

Remark 5.15. By a computer calculation, we verified that Γ(C16,4,16) and Γ(K(4))
are isomorphic.
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Table 9. Vectors xj for C16,3,i (i = 1, 2, . . . , 7).

Code xj (j = 1, 2, 3)

C16,3,1 (1, 0, 0, 3, 0, 1, 3, 0, 0, 1, 3, 0, 1, 0, 0, 3), (0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2),
(0, 0, 0, 0, 1, 1, 3, 3, 1, 1, 3, 3, 0, 0, 0, 0)

C16,3,2 (1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 3, 0, 1, 0, 2, 3), (0, 1, 0, 1, 1, 2, 3, 0, 1, 0, 1, 0, 0, 3, 2, 1),
(0, 0, 1, 1, 1, 3, 0, 2, 1, 3, 2, 0, 2, 2, 1, 1)

C16,3,3 (1, 0, 0, 1, 1, 2, 2, 3, 0, 1, 1, 0, 0, 1, 3, 0), (0, 1, 0, 1, 0, 1, 2, 3, 1, 0, 3, 0, 3, 0, 3, 2),
(0, 0, 1, 1, 1, 3, 0, 2, 1, 3, 2, 0, 0, 0, 3, 3)

C16,3,4 (1, 0, 0, 1, 0, 3, 1, 2, 0, 1, 3, 2, 1, 2, 2, 1), (0, 1, 0, 1, 1, 0, 3, 0, 0, 1, 0, 3, 1, 2, 1, 2),
(0, 0, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 3, 3, 0, 0)

C16,3,5 (1, 0, 0, 1, 0, 3, 3, 0, 0, 1, 1, 0, 1, 2, 2, 1), (0, 1, 1, 0, 0, 1, 1, 2, 1, 2, 2, 1, 3, 2, 0, 3),
(0, 0, 2, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1, 3, 3, 1)

C16,3,6 (1, 0, 0, 1, 0, 3, 1, 2, 0, 1, 3, 2, 1, 2, 2, 1), (0, 1, 0, 1, 0, 1, 2, 3, 1, 2, 3, 0, 3, 0, 3, 0),
(0, 0, 1, 1, 0, 2, 3, 1, 1, 3, 0, 2, 1, 1, 2, 2)

C16,3,7 (0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 2), (0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0),
(0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0)

Table 10. Vectors xj for C16,4,i (i = 1, 2, . . . , 19).

Code xj (j = 1, 2, 3, 4)

C16,4,1 (1, 0, 0, 1, 0, 3, 1, 0, 1, 0, 2, 3, 0, 1, 1, 2), (0, 1, 0, 1, 0, 1, 2, 1, 0, 3, 2, 1, 2, 3, 2, 1),
(0, 0, 1, 1, 0, 2, 3, 3, 1, 3, 0, 0, 3, 1, 0, 2), (0, 0, 0, 2, 0, 2, 2, 2, 0, 0, 0, 2, 2, 0, 0, 0)

C16,4,2 (1, 0, 0, 1, 0, 3, 1, 2, 1, 2, 2, 3, 2, 1, 1, 0), (0, 1, 0, 1, 0, 3, 0, 3, 0, 1, 2, 3, 0, 3, 2, 1),
(0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 2, 2, 3, 3, 0, 2), (0, 0, 0, 2, 0, 0, 0, 2, 1, 1, 1, 1, 1, 3, 1, 3)

C16,4,3 (1, 0, 0, 1, 0, 1, 3, 2, 0, 1, 1, 0, 1, 0, 2, 3), (0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 3, 2, 3),
(0, 0, 1, 1, 1, 1, 2, 2, 0, 0, 3, 3, 1, 1, 0, 0), (0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 1, 1, 3, 3, 1)

C16,4,4 (1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 1, 0, 3, 3, 2), (0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 1, 0, 2, 1, 1, 2),
(0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 2), (0, 0, 0, 2, 0, 0, 0, 2, 1, 1, 3, 3, 3, 3, 3, 3)

C16,4,5 (1, 0, 0, 1, 0, 1, 3, 2, 1, 2, 2, 1, 2, 1, 3, 0), (0, 1, 0, 1, 1, 0, 1, 0, 0, 3, 0, 3, 1, 2, 1, 2),
(0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 3, 1, 3, 1, 0, 2), (0, 0, 0, 0, 2, 0, 2, 0, 1, 3, 1, 3, 3, 3, 3, 3)

C16,4,6 (1, 0, 0, 1, 0, 1, 3, 2, 0, 1, 1, 0, 1, 0, 2, 3), (0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 1, 2, 1, 0, 3),
(0, 0, 1, 1, 0, 2, 1, 3, 0, 2, 3, 1, 0, 0, 3, 3), (0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 2, 0)

C16,4,7 (1, 0, 0, 1, 0, 1, 1, 0, 0, 3, 1, 2, 3, 0, 2, 1), (0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 3, 0, 0, 3, 2, 1),
(0, 0, 1, 1, 1, 3, 0, 2, 0, 2, 3, 1, 3, 3, 0, 0), (0, 0, 0, 0, 2, 2, 0, 0, 1, 3, 3, 1, 3, 1, 3, 1)

C16,4,8 (1, 0, 0, 1, 0, 1, 3, 2, 0, 3, 3, 0, 1, 2, 0, 3), (0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 3, 0, 2, 1, 0, 3),
(0, 0, 1, 1, 1, 1, 2, 2, 0, 2, 3, 1, 3, 1, 2, 0), (0, 0, 0, 0, 2, 0, 0, 2, 1, 3, 1, 3, 3, 3, 1, 1)

C16,4,9 (1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 3, 2, 1, 0, 2, 3), (0, 1, 0, 1, 1, 0, 1, 0, 0, 3, 0, 3, 1, 2, 1, 2),
(0, 0, 1, 1, 1, 3, 0, 2, 1, 1, 0, 0, 0, 2, 1, 3), (0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 3, 3, 3, 3, 3, 3)

C16,4,10 (1, 0, 0, 1, 0, 1, 3, 2, 1, 0, 2, 1, 2, 1, 3, 2), (0, 1, 0, 1, 1, 0, 3, 0, 1, 2, 1, 0, 0, 3, 2, 1),
(0, 0, 1, 1, 1, 1, 2, 2, 0, 2, 3, 3, 1, 1, 0, 2), (0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 3, 1, 1, 1, 1, 3)

C16,4,11 (1, 0, 0, 1, 0, 1, 3, 0, 0, 1, 1, 2, 1, 2, 0, 3), (0, 1, 1, 0, 0, 1, 3, 2, 0, 3, 1, 2, 2, 3, 3, 2),
(0, 0, 2, 0, 0, 0, 2, 0, 1, 1, 1, 1, 3, 1, 1, 3), (0, 0, 0, 0, 1, 1, 3, 1, 0, 2, 2, 0, 3, 3, 1, 3)

C16,4,12 (1, 1, 0, 0, 0, 0, 1, 3, 1, 3, 0, 2, 0, 2, 3, 3), (0, 2, 0, 0, 0, 0, 2, 0, 1, 3, 3, 1, 3, 3, 1, 1),
(0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 2, 3, 3, 0, 2), (0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2)

C16,4,13 (1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 3, 0, 3), (0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 2, 3, 0, 3, 2, 1),
(0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0), (0, 0, 0, 0, 1, 1, 3, 1, 1, 3, 3, 3, 0, 2, 0, 2)

C16,4,14 (1, 0, 0, 1, 0, 3, 3, 0, 0, 1, 1, 0, 1, 2, 2, 1), (0, 1, 0, 1, 0, 3, 2, 1, 1, 2, 3, 2, 1, 2, 1, 0),
(0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 2, 2, 3, 3, 0, 2), (0, 0, 0, 2, 0, 0, 0, 2, 1, 1, 1, 1, 1, 3, 1, 3)

C16,4,15 (2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 2, 2, 0), (3, 0, 0, 0, 0, 2, 0, 1, 3, 2, 0, 0, 3, 1, 1, 2),
(0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 2, 3, 2, 3, 0, 3), (0, 0, 1, 0, 0, 3, 2, 2, 0, 2, 3, 0, 1, 0, 1, 3)

C16,4,16 (1, 0, 0, 1, 0, 1, 3, 2, 1, 2, 2, 1, 2, 1, 3, 0), (0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 0, 1),
(0, 0, 1, 1, 0, 0, 1, 1, 1, 3, 2, 0, 3, 1, 0, 2), (0, 0, 0, 2, 0, 0, 0, 2, 1, 3, 3, 3, 1, 3, 3, 3)

C16,4,17 (1, 1, 0, 0, 0, 2, 1, 3, 1, 3, 0, 2, 0, 0, 3, 3), (0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2),
(0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 3, 3, 2, 2), (0, 0, 0, 0, 1, 1, 1, 3, 1, 1, 3, 1, 0, 2, 0, 2)

C16,4,18 (1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1), (0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0),

(0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2), (0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2)
C16,4,19 (1, 0, 0, 1, 0, 1, 3, 2, 0, 3, 1, 2, 3, 2, 2, 3), (0, 2, 0, 0, 0, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2),

(0, 3, 0, 0, 0, 3, 3, 3, 0, 3, 1, 3, 1, 2, 3, 1), (0, 0, 1, 0, 0, 2, 0, 3, 0, 2, 2, 3, 3, 3, 0, 3)
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Table 11. Vectors xj for C16,5,i (i = 1, 2).

Code xj (j = 1, 2, . . . , 5)

C16,5,1 (1, 0, 0, 1, 0, 1, 3, 0, 1, 0, 2, 3, 0, 3, 3, 2), (0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 3, 0, 3, 2, 1, 0),
(0, 0, 1, 1, 0, 0, 1, 3, 0, 2, 3, 1, 2, 0, 3, 3), (0, 0, 0, 2, 0, 0, 0, 2, 1, 1, 1, 1, 3, 1, 1, 3),
(0, 0, 0, 0, 1, 1, 1, 3, 1, 1, 3, 1, 0, 2, 0, 2)

C16,5,2 (1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 3, 3, 2), (0, 1, 0, 1, 0, 1, 2, 1, 1, 2, 3, 2, 3, 0, 1, 2),
(0, 0, 1, 1, 0, 0, 3, 1, 0, 2, 3, 1, 0, 2, 3, 3), (0, 0, 0, 2, 0, 0, 2, 0, 1, 1, 1, 1, 1, 3, 1, 3),
(0, 0, 0, 0, 1, 1, 1, 3, 1, 3, 1, 1, 2, 2, 0, 0)

Table 12. Maximal linear Z4-codes of length 16 satisfying (12) and (13).

C β2 (dH(C), dL(C)) C β2 (dH(C), dL(C))
C16,3,1 64 (4, 8) C16,3,2 16 (8, 12)
C16,3,3 16 (8, 12) C16,3,4 16 (8, 12)

C16,3,5 16 (8, 12) C16,3,6 16 (8, 12)
C16,3,7 64 (4, 8)

C16,4,1 16 (6, 12) C16,4,2 16 (8, 12)
C16,4,3 16 (8, 12) C16,4,4 16 (6, 12)
C16,4,5 16 (8, 12) C16,4,6 16 (6, 12)
C16,4,7 16 (8, 12) C16,4,8 16 (8, 12)
C16,4,9 16 (8, 12) C16,4,10 16 (8, 12)
C16,4,11 16 (6, 12) C16,4,12 16 (6, 12)

C16,4,13 16 (6, 12) C16,4,14 16 (8, 12)
C16,4,15 16 (6, 12) C16,4,16 16 (8, 12)
C16,4,17 16 (6, 12) C16,4,18 64 (4, 8)
C16,4,19 16 (6, 12)

C16,5,1 16 (6, 12) C16,5,2 16 (6, 12)

6. Weakly unbiased Hadamard matrices

In analogy to the case of quasi-unbiased Hadamard matrices, this section studies
weakly unbiased Hadamard matrices. All feasible parameter sets for weakly unbi-
ased Hadamard matrices are examined for orders up to 48. It is also shown that
the size of a set of mutually weakly unbiased Hadamard matrices of order n is at
most 2.

6.1. Basic properties and feasible parameters. Let H,K be Hadamard ma-
trices of order n. Let aij denote the (i, j)-entry of HKT . Recall that H,K are
weakly unbiased if aij ≡ 2 (mod 4) for i, j ∈ {1, 2, . . . , n} and |{|aij | | i, j ∈
{1, 2, . . . , n}}| ≤ 2. In this paper, we exclude unbiased Hadamard matrices from
weakly unbiased Hadamard matrices. This implies that |{|aij | | i, j ∈ {1, 2, . . . , n}}|
= 2. It follows immediately from the definition that n ≥ 8.

Let (H,K) be a pair of weakly unbiased Hadamard matrices of order n. Suppose
that a, b are positive integers satisfying {|aij | | i, j ∈ {1, 2, . . . , n}} = {a, b}. We
denote the set {a, b} by σ(H,K). Let n(a) be the number of components j with
aij = ±a for i = 1, 2, . . . , n. From now on, we assume that a < b. The value n(a)
does not depend on i. Indeed, it follows from (HKT )(HKT )T = n2In that

(14) a2n(a) + b2(n− n(a)) = n2.

We say that parameters (a, b) satisfying (14) are feasible. Since (a, b, n(a)) =
(2, n − 2, n − 1) satisfies (14), the parameters (a, b) = (2, n − 2) are feasible for
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each order n. The following theorem gives an upper bound on the size of a set of
mutually weakly unbiased Hadamard matrices, which is one of the main results of
this paper.

Theorem 6.1. The size of a set of mutually weakly unbiased Hadamard matrices
of order n is at most 2.

Proof. Note that n ≥ 8 by the definition. Suppose that {H1, H2, H3} is a set of
three mutually weakly unbiased Hadamard matrices of order n. Let hi denote the
first row of Hi (i = 1, 2, 3). By an argument similar to that in Proposition 4.8,
(H,K) is a pair of weakly unbiased Hadamard matrices if and only if (HP,KP ) is
a pair of weakly unbiased Hadamard matrices for any monomial (1,−1, 0)-matrix
P . Hence, without loss of generality, we may assume the following:

h1 = ( + · · ·+ + · · ·+ + · · ·+ + · · ·+ ),
h2 = ( + · · ·+ + · · ·+ − · · ·− − · · ·− ),
h3 = ( + · · ·+︸ ︷︷ ︸

s columns

− · · ·− + · · ·+ − · · ·− ).

It follows that 4s = n+ h1 · h2 + h1 · h3 + h2 · h3. This gives a contradiction to the
fact that h1 · h2 ≡ h1 · h3 ≡ h2 · h3 ≡ 2 (mod 4). �

Remark 6.2. The above theorem is known for n ≡ 4 (mod 8) [5, Lemma 13].

For n = 4, 8, . . . , 48, we give in Table 13 the feasible parameters (a, b) along with
n(a). The third column of the table indicates our present state of knowledge about
the existence of a pair of weakly unbiased Hadamard matrices for n and (a, b, n(a)).

Now, we give two methods for constructing weakly unbiased Hadamard matrices.

Let H =
(

a yT

x H1

)
, H ′ =

(
a′ y′T

x′ H′
1

)
be Hadamard matrices of order n, where H1, H

′
1

are (n−1)× (n−1) matrices, x, x′, y, y′ are (n−1)×1 matrices and a, a′ ∈ {1,−1}.
Let K be the Hadamard matrix obtained from H ′ by negating the first column.
Then we have

(15) HKT = HH ′T +

(
−2aa′ −2ax′T

−2a′x −2xx′T

)
.

Proposition 6.3. If there exists a Hadamard matrix of order n ≥ 8, then there
exists a pair of weakly unbiased Hadamard matrices H,K of order n with σ(H,K) =
{2, n− 2}.

Proof. Suppose that H ′ = H. From (15), the entries of HKT are n − 2,±2. The
result follows. �

Proposition 6.4. Suppose that n = 4k2, where k is even. If there exists a pair of
unbiased Hadamard matrices of order n, then there exists a pair of weakly unbiased
Hadamard matrices H,K of order n with σ(H,K) = {

√
n− 2,

√
n+ 2}.

Proof. Suppose that (H,H ′) is a pair of unbiased Hadamard matrices of order n.
From (15), the entries of HKT are ±√

n± 2. The result follows. �

Since there exists a pair of unbiased Hadamard matrices of order 4k for a posi-
tive integer k [11], the above proposition implies the existence of a pair of weakly
unbiased Hadamard matrices H,K of order 4k with σ(H,K) = {2k − 2, 2k +2} for
k ≥ 2.
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Table 13. Weakly unbiased Hadamard matrices (n = 4, 8, . . . , 48).

n (a, b, n(a)) Existence Reference

8 (2, 6, 7) Yes Proposition 6.3

12 (2, 6, 9) Yes [5, Table 3], Section 7.2
(2, 10, 11) Yes Proposition 6.3, Section 7.2

16 (2, 6, 10) Yes Proposition 6.4, Section 7.2
(2, 10, 14) No Section 6.2
(2, 14, 15) Yes Proposition 6.3, Section 7.2

20 (2, 6, 10) Yes [5, Table 6]
(2, 18, 19) Yes Proposition 6.3, Section 7.2

24 (2, 6, 9) Yes Section 6.2
(2, 10, 19) No Section 6.2
(2, 22, 23) Yes Proposition 6.3, Section 7.2

28 (2, 6, 7) No Section 6.2
(2, 10, 21) No Section 6.2
(2, 26, 27) Yes Proposition 6.3

32 (2, 6, 4) ?
(2, 30, 31) Yes Proposition 6.3, Section 7.2

36 (2, 10, 24) ?
(2, 14, 30) ?
(2, 34, 35) Yes Proposition 6.3

40 (2, 10, 25) ?
(2, 22, 37) ?
(2, 38, 39) Yes Proposition 6.3
(6, 14, 39) ?

44 (2, 42, 43) Yes Proposition 6.3

48 (2, 10, 26) ?
(2, 14, 37) ?
(2, 46, 47) Yes Proposition 6.3
(6, 10, 39) ?
(6, 18, 46) ?

6.2. Observations by straightforward construction. For each H of the five
inequivalent Hadamard matrices of order 16 and the 60 inequivalent Hadamard
matrices of order 24, our exhaustive computer search verified that there exists no
(1,−1)-vector x of lengths 16 and 24, respectively, such that |x · r| ∈ {2, 10} for all
rows r of H. This means that there exists no pair of weakly unbiased Hadamard
matrices H,K of orders 16 and 24 with σ(H,K) = {2, 10}. We denote by H24,3

had.24.8 in [28], which is a Hadamard matrix of order 24. Our computer search un-
der the condition (5) on K found a Hadamard matrix K24,3 such that (H24,3,K24,3)

is a pair of weakly unbiased Hadamard matrices with σ(H24,3,K24,3) = {2, 6},
where K24,3 is listed in Figure 3.

Now, for a Hadamard matrix H of order n, we consider the following graph
Γ(H, {a, b}) in order to convert the problem of finding K such that (H,K) is a pair
of weakly unbiased Hadamard matrices of order n with σ(H,K) = {a, b} into that
of finding an n-clique in the graph. Let hi be the i-th row of H. Set

Vj = {x ∈ Xj | |x · hi| ∈ {a, b} (i = 1, 2, . . . , n)} (j = 1, 2, 3, 4),

where Xj = {(x1, x2, . . . , xn) ∈ {1,−1}n | (x1, x2, x3) = Yj} with Y1 = (1, 1, 1),
Y2 = (1, 1,−1), Y3 = (1,−1, 1) and Y4 = (1,−1,−1). We define the simple graph
Γ(H, {a, b}), whose set of vertices is V = V1∪V2∪V3∪V4 and two vertices x, y ∈ V
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K24,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + − + − − + + − − − + − − + + − − + − − +−
+ + + + − + + + + + − − + + − − + + + − + − −−
+ + + − − − + − − − + + + + + − − − − − − − −−
+ + + + − − − − − + + − + − + + + + − − + + ++
+ + + + + + − − + + + − − + + + − − + + − − −+
+ + + + + − + + − − + + − − − − − + + + + − ++
+ + − − − − − − − + − − − + − − − − + + + + +−
+ + − − + + − − − + − + − − − − + + − − − − −+
+ + − − + − + + + + + + − − + + + − + − + + −−
+ + − − + + + + − − − − + + + + − + + − − + ++
+ + − + − + + − + − − + + − − + − − − + + + −+
+ + − + − + − + + − + + − + + − + + − + − + +−
+ − + − − + − − + − − + − − + + − + + − + − +−
+ − + − − + + + − + + − − − − + − + − + − + −−
+ − + − + − + − + − − − − + + − + + − + + + −+
+ − + + + + + − − + − + + − + − + − + + − + +−
+ − + − + + − + + + + + + + − − − − − − + + ++
+ − + + − − − + − − − + − + − + + − + − − + −+
+ − − + + + + − − − + − − + − + + − − − + − +−
+ − − + − − + + + + − − − − + − − − − − − − ++
+ − − + + − − + − + − + + + + + − + − + + − −−
+ − − − − + − + − − + − + − + − + − + + + − −+
+ − − − − − + − + + + + + + − + + + + + − − ++
+ − − + + − − − + − + − + − − − − + + − − + −−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3. The matrix K24,3

are adjacent if x · y = 0. It follows that the graph Γ(H, {a, b}) contains an n-clique
if and only if there exists a Hadamard matrix K of order n such that (H,K) is a
pair of weakly unbiased Hadamard matrices of order n with σ(H,K) = {a, b}. We
denote by H28,1, H28,2, . . . , H28,487 had.28.1, had.28.2, . . ., had.28.487 in [28],
respectively, which are the 487 inequivalent Hadamard matrices of order 28. By a
computer calculation, we verified that each of the four induced subgraphs on Vj (j =
1, 2, 3, 4) of Γ(H28,i, {2, 6}) (resp. Γ(H28,i, {2, 10})) contains a 7-clique for only i =
54, 295, 456, 479, 484, 487 (resp. i = 128, 197, 295, 297, 374, 445, 453, 456, 476, 477,
478, 479, 481, 485). For these i, we list in Table 14 the sizes mc(i) of the maximum
cliques of Γ(H28,i, {2, 6}) and Γ(H28,i, {2, 10}). From Table 14, there exists no pair
of weakly unbiased Hadamard matrices H,K of order 28 with σ(H,K) = {2, 6} and
{2, 10}. Our calculations for finding cliques in this section were done by a computer
calculation using the Cliquer software [25].

Table 14. Maximum cliques of Γ(H28,i, {2, 6}) and Γ(H28,i, {2, 10}).

Graph (i,mc(i))

Γ(H28,i, {2, 6}) (54, 12) (295, 14) (456, 12) (479, 26) (484, 26) (487, 16)

Γ(H28,i, {2, 10}) (128, 9) (197, 10) (295, 16) (297, 12) (374, 10) (445, 12)
(453, 10) (456, 12) (476, 12) (477, 10) (478, 12) (479, 14)
(481, 12) (485, 12)

7. A coding-theoretic approach to weakly unbiased

Hadamard matrices

In this section we give a coding-theoretic approach to weakly unbiased Hadamard
matrices. For modest lengths, we give classifications of some binary self-complemen-
tary codes in order to construct weakly unbiased Hadamard matrices.
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7.1. Binary codes and weakly unbiased Hadamard matrices. Similarly to
Theorem 5.1, we give a coding-theoretic approach to weakly unbiased Hadamard
matrices.

Theorem 7.1. Let a, b be odd integers with 0 < a < b < n/2. There exists a
self-complementary (n, 4n) code C satisfying the following conditions:

{i ∈ {0, 1, . . . , n} | Ai(C) �= 0} = {0, n/2± a, n/2± b, n/2, n},(16)

An/2(C) = 2n− 2,(17)

C = C1 ∪ C2,(18)

where each Ci has distance distribution (A0(Ci), An/2(Ci), An(Ci)) = (1, 2n− 2, 1)
if and only if there exists a pair of weakly unbiased Hadamard matrices H,K with
σ(H,K) = {2a, 2b}.

Proof. The proof is similar to that of Theorem 5.1. We remark that the condition
An/2(C) = 2n− 2 corresponds to the condition that HKT contains no zero entry.

�

7.2. Binary codes satisfying (16)–(18). By the method given in Section 5.2, for
some (n, 2n) codes C1 (n = 8, 12, 16, 20, 24), our computer calculation completed
the classification of codes of the form C = C1 ∪ (u+ C1) satisfying (16)–(18). Let
N2(C1) denote the number of inequivalent (n, 4n) codes of the form C1 ∪ (u+ C1)
satisfying (16)–(18).

Proposition 7.2. N2(RM(1, 3)) = 1. N2(C(H12)) = 2. N2(RM(1, 4)) = 2,
N2(C(H16,1)) = 4, N2(C(H16,2)) = 6, N2(C(H16,3)) = 3 and N2(C(H16,4)) = 3.
N2(C(H20,i)) = 1 (i = 1, 2, 3). N2(C(H24,i)) = 1 (i = 1, 2). N2(RM(1, 5)) = 1.

The unique (8, 32) code D8,1 is constructed as 〈RM(1, 3), u1〉, where supp(u1) =
{1}. The two (12, 48) codes D12,i (i = 1, 2) are constructed as C(H12) ∪
(ui + C(H12)), where supp(u1) = {1} and supp(u2) = {1, 2, 3}. To save space,
we only give the two (16, 64) codesD16,0,i (i = 1, 2) corresponding toN2(RM(1, 4)).
The two codes are constructed as 〈RM(1, 4), ui〉, where supp(u1) = {1} and
supp(u2) = {1, 2, 3, 5, 9}. Let H20,1 be the Paley Hadamard matrix of order 20
having the form (6), where R is the 19× 19 circulant matrix with first row:

(−+−−++++−+−+−−−−++−).

We denote by H20,2, H20,3 had.20.toncheviii, had.20.toncheviv in [28], respec-
tively, which are the remaining two Hadamard matrices of order 20. The unique
(20, 80) code D20,i is constructed as C(H20,i)∪(u+C(H20,i)), where supp(u) = {1}
(i = 1, 2, 3). The unique (24, 96) code D24,i is constructed as C(H24,i) ∪ (u +
C(H24,i)), where supp(u) = {1} (i = 1, 2). The unique [32, 7] code D32,1 is
constructed as 〈RM(1, 5), u〉, where supp(u) = {4} and the generator matrix of
RM(1, 5) is given by:⎛

⎜⎜⎜⎜⎜⎜⎝

10010110011010010110100110010110
01010101010101010101010101010101
00110011001100110011001100110011
00001111000011110000111100001111
00000000111111110000000011111111
00000000000000001111111111111111

⎞
⎟⎟⎟⎟⎟⎟⎠ .
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All distance distributions are listed in Table 15. The distance distributions were
obtained by a computer calculation.

Table 15. Distance distributions.

Code (A0, A1, . . . , An)

D8,1 (1, 1, 0, 7, 14, 7, 0, 1, 1)
D12,1 (1, 1, 0, 0, 0, 11, 22, 11, 0, 0, 0, 1, 1)
D12,2 (1, 0, 0, 3, 0, 9, 22, 9, 0, 3, 0, 0, 1)
D16,0,1 (1, 1, 0, 0, 0, 0, 0, 15, 30, 15, 0, 0, 0, 0, 0, 1, 1)
D16,0,2 (1, 0, 0, 0, 0, 6, 0, 10, 30, 10, 0, 6, 0, 0, 0, 0, 1)

D20,i (i = 1, 2, 3) (1, 1, 0, 0, . . . , 0, 0, 19, 38, 19, 0, 0, . . . , 0, 0, 1, 1)
D24,i (i = 1, 2) (1, 1, 0, 0, . . . , 0, 0, 23, 46, 23, 0, 0, . . . , 0, 0, 1, 1)

D32,1 (1, 1, 0, 0, . . . , 0, 0, 31, 62, 31, 0, 0, . . . , 0, 0, 1, 1)

Similarly to Section 5.3, we consider linear Z4-codes C of length n = 2m satisfying
the following conditions:

{(n0(x)− n2(x))
2 | x ∈ C} = {0, a2, b2, n2},(19)

|{x ∈ C | n0(x) = n2(x)}| = 4n− 2,(20)

C contains ZRM(1,m) as a subcode,(21)

where a, b are odd integers with 0 < a < b < n. Then φ(C) satisfies (16)–(18). Our
exhaustive computer search based on the method in Section 5.3 verified that there
exists no Z4-code satisfying (19)–(21) for lengths 8 and 16.

8. Some modification of weakly unbiased Hadamard matrices

Finally, some modification of the notion of weakly unbiased Hadamard matrices
is given. We derive some results which are an analogy to those of quasi-unbiased
Hadamard matrices and weakly unbiased Hadamard matrices.

8.1. Type II weakly unbiased Hadamard matrices. Let H,K be Hadamard
matrices of order n. Let aij denote the (i, j)-entry of HKT . We say that H,K are
Type II weakly unbiased if aij ≡ 0 (mod 4) for i, j ∈ {1, 2, . . . , n} and |{|aij | | i, j ∈
{1, 2, . . . , n}}| ≤ 2. For an even square n, a pair of unbiased Hadamard matrices of
order n is a pair of Type II weakly unbiased Hadamard matrices. Hence, the notion
of Type II weakly unbiased Hadamard matrices of order n is some natural extension
of the notion of unbiased Hadamard matrices for an even square n. Similarly to
weakly unbiased Hadamard matrices, in this paper, we exclude unbiased Hadamard
matrices from Type II weakly unbiased Hadamard matrices. It follows immediately
from the definition that n ≥ 8.

8.2. Basic properties and feasible parameters. Let (H,K) be a pair of Type II
weakly unbiased Hadamard matrices of order n. Suppose that a, b are positive
integers satisfying {|aij | | i, j ∈ {1, 2, . . . , n}} = {a, b}. We denote the set {a, b} by
σ(H,K). Let n(a) be the number of components j with aij = ±a for i = 1, 2, . . . , n,
where aij denotes the (i, j)-entry of HKT . Similarly to weakly unbiased Hadamard
matrices, (14) holds. From now on, we assume that a < b. We say that parameters
(a, b) satisfying (14) are feasible. Since (a, b, n(a)) = (4, n/2−4, n−4) satisfies (14),
the parameters (a, b) = (4, n/2− 4) are feasible for each order n ≡ 0 (mod 8).
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For n = 4, 8, . . . , 48, we give in Table 16 feasible parameters (a, b) along with
n(a) and our present state of knowledge about the maximum size fmax among sets
of mutually Type II weakly unbiased Hadamard matrices of order n for (a, b, n(a)).
In the third column of the table, “-” means that there exists no pair of Type II
weakly unbiased Hadamard matrices.

Table 16. Type II weakly unbiased Hadamard matrices (n = 4, 8, . . . , 48).

n (a, b, n(a)) fmax Reference

24 (4, 8, 20) 2− 42 Section 8.3 Table 17

28 (4, 8, 21) - Section 8.3

32 (4, 12, 28) 4− 264 Section 8.5 Table 17

36 (4, 8, 21) 2− 72 Proposition 8.3 Table 17
(4, 16, 33) ≤ 10671 Table 17

40 (4, 8, 20) ≤ 84 Table 17
(4, 16, 36) ≤ 16698 Table 17

48 (4, 8, 16) ≤ 112 Table 17
(4, 12, 36) 2− 194 Proposition 8.1 Table 17
(4, 20, 44) 2− 36034 Corollary 8.2 Table 17
(4, 28, 46) ≤ 36034 Table 17

Proposition 8.1. Suppose that there exists a set of f mutually unbiased Hadamard
matrices of order m. Assume that one of the following holds:

(i) There exists a set of f mutually weakly unbiased Hadamard matrices H1,
H2, . . . , Hf of order n with σ(Hi, Hj) = {a, b} (i, j ∈ {1, 2, . . . , f} and
i �= j).

(ii) There exists a set of f mutually Type II weakly unbiased Hadamard matrices
H1, H2, . . . , Hf of order n with σ(Hi, Hj) = {a, b} (i, j ∈ {1, 2, . . . , f} and
i �= j).

Then there exists a set of f mutually Type II weakly unbiased Hadamard matrices
L1, L2, . . . , Lf of order mn with σ(Li, Lj) = {

√
ma,

√
mb} (i, j ∈ {1, 2, . . . , f} and

i �= j).

Proof. It is sufficient to give a proof for the case f = 2. Let (H ′,K ′) be a pair of
unbiased Hadamard matrices of order m. Then (H1 ⊗ H ′, H2 ⊗ K ′) is a pair of
Type II weakly unbiased Hadamard matrices of order mn with σ(H1 ⊗ H ′, H2 ⊗
K ′) = {

√
ma,

√
mb}. �

As an example, a pair of Type II weakly unbiased Hadamard matrices L1, L2

of order 48 with σ(L1, L2) = {4, 12} is constructed from a pair of weakly unbiased
Hadamard matrices H1,K1 of order 12 with σ(H1,K1) = {2, 6} (see Table 13) and
a pair of unbiased Hadamard matrices of order 4.

Corollary 8.2. If there exists a Hadamard matrix of order n ≥ 8, then there
exists a pair of Type II weakly unbiased Hadamard matrices H,K of order 4n with
σ(H,K) = {4, 2n− 4}.

Proof. Suppose that there exists a Hadamard matrix of order n ≥ 8. By Proposi-
tion 6.3, there exists a pair of weakly unbiased Hadamard matrices H,K of order n
with σ(H,K) = {2, n−2}. Since there exists a pair of unbiased Hadamard matrices
of order 4, the result follows from Proposition 8.1. �
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Similarly to Proposition 6.4, we immediately have the following:

Proposition 8.3. Suppose that n = 4k2, where k is odd. If there exists a pair of
unbiased Hadamard matrices of order n, then there exists a pair of Type II weakly
unbiased Hadamard matrices H,K of order n with σ(H,K) = {

√
n− 2,

√
n+ 2}.

As an example, a pair of Type II weakly unbiased Hadamard matrices H,K of
order 36 with σ(H,K) = {4, 8} is constructed from that of unbiased Hadamard
matrices of order 36 given in [19].

8.3. Observations by straightforward construction. Under the condition (5)
on K, our computer search found a Hadamard matrix K24,4 such that (H24,4,K24,4)

is a pair of Type II weakly unbiased Hadamard matrices with σ(H24,4,K24,4) =

{4, 8}, where H24,4 is had.24.49 in [28]. The matrix K24,4 is listed in Figure 4.

K24,4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + − + − + − − − − + − + + − − − − − + − +−
+ + + − − + − + − + − − + − + − + − + + + + +−
+ + + − + − + − − − − + + − − + + + + + − + −+
+ + + + − + + + + − + + − + − − + + + + − − +−
+ + + + − + + + + − + + + − + + − − − − + + −+
+ + + − − + − + − + − − − + − + − + − − − − −+
+ + − + − − + − − + + − + + − − + + − − + + ++
+ + − + − − + − − + + − − − + + − − + + − − −−
+ + − + + − − + + − − − − + + + + + + − + + −−
+ + − − + + − − + + + + + − + + + + − − − − +−
+ + − − + + − − + + + + − + − − − − + + + + −+
+ + − + + − − + + − − − + − − − − − − + − − ++
+ − + + − − − − + + − + − − − − + − − − − + −−
+ − + − + − + + + + + − + + + − + − + − − − −+
+ − + − + − + + + + + − − − − + − + − + + + +−
+ − + + + + − − − − + − + − − − − + + − + − −−
+ − + + − − − − + + − + + + + + − + + + + − ++
+ − + + + + − − − − + − − + + + + − − + − + ++
+ − − − − − − + − − + + − − + − − + + − − + ++
+ − − + + + + + − + − + + + + − − + − + − + −−
+ − − − − + + − + − − − + + − + − − + − − + +−
+ − − − − + + − + − − − − − + − + + − + + − −+
+ − − + + + + + − + − + − − − + + − + − + − ++
+ − − − − − − + − − + + + + − + + − − + + − −−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 4. The matrix K24,4

By a computer calculation, we verified that each of the four induced subgraphs
on Vj (j = 1, 2, 3, 4) of Γ(H28,i, {4, 8}) contains a 7-clique for 355 Hadamard ma-
trices. In addition, we verified that the induced subgraph on V1 ∪ V2 of only
Γ(H28,484, {4, 8}) contains a 14-clique among the 355 graphs Γ(H28,i, {4, 8}). By
a computer calculation, we obtained that the size of the maximum cliques of
Γ(H28,484, {4, 8}) is 24. Hence, there exists no pair of Type II weakly unbiased
Hadamard matrices of order 28 with σ(H,K) = {4, 8}.

8.4. A coding-theoretic approach. Similarly to Theorems 5.1 and 7.1, we have
the following coding-theoretic approach to Type II weakly unbiased Hadamard
matrices.
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Theorem 8.4. Let a, b be even integers with 0 < a < b < n/2. There exists a
self-complementary (n, 2fn) code C satisfying the following conditions:

{i ∈ {0, 1, . . . , n} | Ai(C) �= 0} = {0, n/2± a, n/2± b, n/2, n},(22)

An/2(C) = 2n− 2,(23)

C = C1 ∪ C2 ∪ · · · ∪ Cf ,(24)

where Ci has distance distribution (A0(Ci), An/2(Ci), An(Ci)) = (1, 2n−2, 1) if and
only if there exists a set of f Type II weakly unbiased Hadamard matrices H,K with
σ(H,K) = {2a, 2b}.

Similarly to Lemma 5.3, as in the case s = 6 of Theorems 3.2 and 3.4, we have
two upper bounds on the number of the codewords of self-complementary codes
satisfying (22).

Lemma 8.5. Let C be a self-complementary code of length n satisfying (22). Then

(i) |C| ≤ 2(
(
n
5

)
+
(
n
3

)
+
(
n
1

)
).

(ii) If 15n2−30n+16−4(3n−2)(a2+b2)+16a2b2 > 0 and 5(n−2)−2a2−2b2 ≥ 0,

then |C| ≤ � 2n(n2−4a2)(n2−4b2)
15n2−30n+16−4(3n−2)(a2+b2)+16a2b2 �.

Proof. (i) The upper bound is the case s = 6 of Theorem 3.2.
(ii) Expanding by the Krawtchouk polynomials, we have

αC(z) =
(
1− 2z

2a+ n

)(
1− 2z

2b+ n

)(
1− 2z

n

)(
1− 2z

−2a+ n

)(
1− 2z

−2b+ n

)
=
15n2 − 30n+ 16− 4(3n− 2)(a2 + b2) + 16a2b2

n(n2 − 4a2)(n2 − 4b2)
K1(z)

+
12(5n− 10− 2a2 − 2b2)

n(n2 − 4a2)(n2 − 4b2)
K3(z) +

120

n(n2 − 4a2)(n2 − 4b2)
K5(z)

=α1K1(z) + α3K3(z) + α5K5(z) (say).

The assumption on a, b and n yields that α1 is positive and α3, α5 are nonnegative.
Therefore, Theorem 3.4 implies the desired bound. �

Similarly to Theorem 5.4, by Theorem 8.4, we immediately have the following two
upper bounds on the maximum size among sets of mutually Type II weakly unbiased
Hadamard matrices, one of which depends only on n, and the other depends on
n, α. This is also one of the main results of this paper.

Theorem 8.6. Suppose that there exists a set of f mutually Type II weakly unbiased
Hadamard matrices H,K of order n with σ(H,K) = {a, b}. Then

(i) f ≤ �n4−10n3+55n2−110n+184
5! �.

(ii) If 15n2−30n+16−4(3n−2)(a2+b2)+16a2b2 > 0 and 5(n−2)−2a2−2b2 ≥ 0,

then f ≤ � (n2−4a2)(n2−4b2)
15n2−30n+16−4(3n−2)(a2+b2)+16a2b2 �.

For the feasible parameters given in Table 16, we list in Table 17 the maximum
possible sizes among sets of mutually Type II weakly unbiased Hadamard matrices,
which are obtained by the two upper bounds. We do not list the maximum possible
sizes when there exists no pair of Type II weakly unbiased Hadamard matrices. In
the table, “∗” means that the assumption of Theorem 8.6 (ii) is not satisfied.
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Table 17. Absolute and linear programming bounds in Theorem 8.6.

n (a, b, n(a)) Absolute bound Linear programming bound

24 (4, 8, 20) �5569/3� = 1856 �256/3� = 85

32 (4, 12, 28) 6449 528

36 (4, 8, 21) �32014/3� = 10671 �5632/39� = 144
(4, 16, 33) 10671 ∗

40 (4, 8, 20) �83491/5� = 16698 �4224/25� = 168
(4, 16, 36) 16698 ∗

48 (4, 8, 16) �108103/3� = 36034 �64064/285� = 224
(4, 12, 36) 36034 �20592/53� = 388
(4, 20, 44) 36034 ∗
(4, 28, 46) 36034 ∗

8.5. Binary codes satisfying (22)–(24). In the process of the classification of
codes of length 32 satisfying (16)–(18) with C1 = RM(1, 5), our exhaustive com-
puter search verified that there exists no [32, 7] code satisfying (22)–(24) with
C1 = RM(1, 5).

Suppose that C is a linear Z4-code of length n = 2m satisfying the following
conditions:

{(n0(x)− n2(x))
2 | x ∈ C} = {0, a2, b2, n2},(25)

|{x ∈ C | n0(x) = n2(x)}| = 4n− 2,(26)

C contains ZRM(1,m) as a subcode,(27)

where a, b are even integers with 0 < a < b < n. Then φ(C) satisfies (22)–(24).
In the process of verifying that there exists no linear Z4-code of length 16 sat-

isfying (19)–(21), our computer calculation completed the classification of linear
Z4-code of length 16 satisfying (25)–(27). We give the numbers N ′

4(16, k) of in-
equivalent linear Z4-codes C of length 16 with |C| = 2k satisfying (25)–(27).

Proposition 8.7. N ′
4(16, 7) = 1, N ′

4(16, 8) = 3 and N ′
4(16, 9) = 0.

The unique linear Z4-code C = C′
16,1 with |C| = 27 is constructed as 〈ZRM(1, 4),

x1〉, where x1 = (0, 0, 0, 2, 1, 1, 1, 3, 1, 3, 1, 3, 0, 0, 0, 0). The three linear Z4-codes
C = C′

16,2,i with |C| = 28 (i = 1, 2, 3) are constructed as 〈ZRM(1, 4), x1, x2,i〉,
where

x2,1 =(0, 0, 1, 3, 0, 2, 3, 3, 1, 3, 0, 0, 1, 3, 0, 0),

x2,2 =(0, 0, 1, 3, 0, 0, 3, 3, 1, 3, 2, 0, 1, 3, 0, 0),

x2,3 =(0, 0, 1, 1, 0, 0, 3, 3, 1, 3, 0, 2, 3, 3, 0, 0).

This gives a set of four mutually Type II weakly unbiased Hadamard matrices
of order 32 with σ(H,K) = {4, 12} by Theorem 8.4. By a computer calcula-
tion, we verified that the above linear Z4-codes C have (a2, b2) = (4, 36) and have
(dH(C), dL(C)) = (8, 10).

Appendix A

In Lemma 5.3, we did not give a detailed proof of the fact that (C, {Ri}4i=0) is

a Q-polynomial association scheme when |C| = 2n(n2−4α2)
3n−2−4α2 . In this appendix, we

give a detailed proof.
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Suppose that C and Ri are as given in Lemma 5.3. Assume that |C| = 2n(n2−4α2)
3n−2−4α2 .

For i ∈ {0, 1, . . . , 4}, Ai denotes the adjacency matrix of the graph with ver-
tex set C and edge set Ri. Let A denote the vector space over R spanned by
A0 = I|C|, A1, . . . , A4, which forms an algebra. Let {E0, E1, . . . , E4} denote the
set of the primitive idempotents of A. Then the matrix P = (pij) is defined by

Ai =
∑4

j=0 pjiEi.

Lemma A.1. (C, {Ri}4i=0) is a symmetric association scheme.

Proof. It is sufficient to show that (C, {Ri}4i=0) satisfies the 4-th condition in the
definition of a symmetric association scheme given in Section 2.3; namely, we show
that AiAj ∈ A for i, j ∈ {0, 1, . . . , 4}. Since A0 = I|C|, AiA0 = A0Ai = Ai holds
for i ∈ {0, 1, . . . , 4}. Since C is self-complementary, AiA4 = A4Ai = A4−i holds for
i ∈ {0, 1, . . . , 4}.

Since |C| = 2n(n2−4α2)
3n−4α2−2 , the coefficients of K0(z) and K1(z) in αC(z) are 1 and

the other coefficients are positive by the calculation in the proof of Theorem 3.4.
By [13, Theorem 5.23 (iii)], C is a 5-design in the binary Hamming scheme; namely,
C is an orthogonal array of strength 5.

We denote the Krawtchouk expansion of zλ by zλ =
∑λ

l=0 fλ,lKl(z), and de-

fine a polynomial by Fλ,μ(z) =
∑min{λ,μ}

l=0 fλ,lfμ,lKl(z). For λ, μ ∈ {0, 1, 2}, ex-
pand (

∑λ
k=0 fλ,kGkG

T
k )(
∑μ

l=0 fμ,lGlG
T
l ) in two ways, where Gk denotes the k-th

characteristic matrix of C. In the following calculation, define 00 to be 1. By
[13, Theorem 5.18],

(

λ∑
k=0

fλ,kGkG
T
k )(

μ∑
l=0

fμ,lGlG
T
l ) = |C|

min{λ,μ}∑
k=0

fλ,kfμ,kGkG
T
k

= |C|
min{λ,μ}∑

k=0

fλ,kfμ,k

4∑
l=0

Kk(βl)Al = |C|
4∑

l=0

Fλ,μ(βl)Al.

On the other hand, by [13, Theorem 3.13],

(
λ∑

k=0

fλ,kGkG
T
k )(

μ∑
l=0

fμ,lGlG
T
l ) = (

λ∑
k=0

fλ,k

4∑
i=0

Kk(βi)Ai)(

μ∑
l=0

fμ,l

4∑
j=0

Kl(βj)Aj)

=
λ∑

k=0

μ∑
l=0

4∑
i=0

4∑
j=0

fλ,kfμ,lKk(βi)Kl(βj)AiAj =
4∑

i=0

4∑
j=0

βλ
i β

μ
j AiAj

=
3∑

i=1

3∑
j=1

βλ
i β

μ
j AiAj +

3∑
i=1

βλ
i β

μ
0Ai +

3∑
j=1

βλ
0 β

μ
j Aj +

3∑
i=1

βλ
i β

μ
4A4−i

+

3∑
j=1

βλ
4 β

μ
j A4−j + βλ+μ

0 A0 + βλ+μ
4 A0 + βλ

0 β
μ
4A4 + βλ

4 β
μ
0A4.

Thus,
∑3

i=1

∑3
j=1 β

λ
i β

μ
j AiAj ∈ A for i, j ∈ {1, 2, 3}. For W =

(
1 1 1
β1 β2 β3

β2
1 β2

2 β2
3

)
, W ⊗W

is invertible. Hence, AiAj ∈ A for i, j ∈ {1, 2, 3}. Therefore, (C, {Ri}4i=0) is a
symmetric association scheme. �
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Lemma A.2. (C, {Ri}4i=0) is Q-polynomial.

Proof. Set Fi = 1
|C|GiG

T
i for i = 0, 1, 2, 3 and F4 = I −

∑2
i=0 Fi. We claim

that {F0, F1, F2} is a subset of the set of primitive idempotents of A. Let Ei

(i = 0, 1, . . . , 4) be primitive idempotents. Assume that Fi �∈ {E0, E1, . . . , E4} for
some i ∈ {0, 1, 2}. Since Fi is an idempotent, we have decomposition Fi = E + E′

satisfying E,E′ �= O, E2 = E, E′2 = E′ and EE′ = O, where O denotes the zero
matrix. Then {F0, F1, F2, E,E′}\{Fi} is a set of elements which are linear indepen-
dent. Thus, 〈F3, F4〉 has dimension 1. Hence, there exists a nonzero real number

c such that F4 = cF3. Then A0 − 1
|C|
∑2

i=0

∑4
j=0 Ki(βj)Aj = c

|C|
∑4

j=0 K3(βj)Aj ,

and thus we obtain cK3(βj) +
∑2

i=0 Ki(βj) = 0 for any j ∈ {1, 2, 3, 4}. Since all

βj are distinct and the degree of cK3(z) +
∑2

i=0 Ki(z) is at most three, this is a
contradiction. Therefore, we may assume Ei = Fi for i = 0, 1, 2.

For i = 0, 1, 2,

A4Ei =
1

|C|

4∑
j=0

Ki(βj)A4Aj =
1

|C|

4∑
j=0

Ki(βj)A4−j =
1

|C|

4∑
j=0

Ki(β4−j)Aj

=
1

|C|

4∑
j=0

Ki(n− βj)Aj =
1

|C|

4∑
j=0

(−1)iKi(βj)Aj = (−1)iEi.

Thus, pi4=(−1)i for i=0, 1, 2. By [4, Chap. II, Theorem 4.1 (ii)], {p04, p14, . . . , p44}
= {γ0, γ1, . . . , γ4} as a multiset, where γi (i = 0, 1, . . . , 4) are the eigenvalues of the

matrix

(
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

)
. Thus, we may assume that p34 = −1 and p44 = 1.

By [9, Lemma 2.3.1 (vii)],

q0iq0j =
4∑

k=0

qki,jq0k, q4iq4j =
4∑

k=0

qki,jq4k.(28)

By [4, Chap. II, Theorem 3.5 (i)] and pi4 = (−1)i, q4i = (−1)iq0i for i = 0, 1, . . . , 4.
Substituting these into (28), we obtain

(−1)i+jq0iq0j =
4∑

k=0

qki,j(−1)kq0k.(29)

By (28) and (29), we have
∑4

k=0(1 − (−1)i+j+k)qki,jq0k = 0. Since q0k > 0 and

qki,j ≥ 0, we obtain

qki,j = 0 if i+ j + k is odd.(30)

For i = 0, 1,

|C|E1 ◦ |C|Ei =

4∑
l=0

K1(βl)Ki(βl)Al

=

4∑
l=0

(n− i+ 1)Ki−1(βl)Al +

4∑
l=0

(i+ 1)Ki+1(βl)Al

= (n− i+ 1)|C|Ei−1 + (i+ 1)|C|Ei+1.
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Thus, qi−1
1,i = n − i + 1 and qi+1

1,i = i + 1 for i = 0, 1, and qj1,i = 0 for i = 0, 1, j �=
i− 1, i+ 1. By [4, Chap. II, Proposition 3.7 (v)], q11,2 = n− 1, and by [4, Chap. II,

Proposition 3.7 (vi)], qj1,i = 0 for (i, j) ∈ {(2, 0), (3, 0), (4, 0), (3, 1), (4, 1)}. By (30),

qj1,i = 0 for (i, j) ∈ {(2, 2), (3, 3), (4, 4), (2, 4), (4, 2)}. Again by [4, Chap. II, Propo-

sition 3.7 (vi)], qj1,i > 0 for (i, j) ∈ {(2, 3), (3, 2), (3, 4), (4, 3)}. The Q-polynomiality

is equivalent to the condition that the Krein matrix B∗
1 = (qk1,j) is a tridiagonal ma-

trix with nonzero entries on the superdiagonal and the subdiagonal (see [4, p. 193]).
This completes the proof of the fact that the association scheme (C, {Ri}4i=0) is Q-
polynomial. �
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