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ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS

GALERKIN METHOD FOR CONSERVATION LAWS:

ANALYSIS AND APPLICATION IN ONE DIMENSION

CHRISTIAN KLINGENBERG, GERO SCHNÜCKE, AND YINHUA XIA

Abstract. In this paper, we develop and analyze an arbitrary Lagrangian-
Eulerian discontinuous Galerkin (ALE-DG) method with a time-dependent

approximation space for one dimensional conservation laws, which satisfies
the geometric conservation law. For the semi-discrete ALE-DG method, when
applied to nonlinear scalar conservation laws, a cell entropy inequality, L2 sta-
bility and error estimates are proven. More precisely, we prove the sub-optimal
(k + 1

2
) convergence for monotone fluxes and optimal (k + 1) convergence for

an upwind flux when a piecewise Pk polynomial approximation space is used.

For the fully-discrete ALE-DG method, the geometric conservation law and
the local maximum principle are proven. Moreover, we state conditions for
slope limiters, which ensure total variation stability of the method. Numerical
examples show the capability of the method.

1. Introduction

Grid deformation methods are unavoidable in many applications in fluid dynam-
ics. For instance, these kinds of methods are used for aeroelastic analysis of wings in
engineering (cf. Robinson et al. [26]) or to describe star-formations and galaxies in
astrophysics (cf. Kereš et al. [17]). In this paper a grid deformation method based
on a discontinuous Galerkin (DG) discretization will be presented. To describe and
analyze the method we consider the following simple model problem:

∂tu+ ∂xf(u) = 0, in Ω× (0, T ],(1.1a)

u(x, 0) = u0(x), x ∈ Ω,(1.1b)

with periodic boundary conditions. The set Ω is an open interval in R, the initial
data u0 is considered to be periodic or compactly supported and f is a sufficiently
smooth flux function.

In order to describe the method, we assume that the grid points are explicitly
given for the upcoming time level, based on some grid moving methodology. Then,
the cells of the partitions for the current and next time level can be connected
by local affine linear mappings. In the finite volume context a technique using a
local affine mapping was used by Fazio and LeVeque [10]. The mappings yield time
dependent test functions for the DG discretization. Moreover, the grid is static if the
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linear mappings are constant. In this case the motion of a fluid is described by the
Eulerian description of motion. On the other hand, it is described by the Lagrangian
description if the linear mappings describe approximately the motion of the particles
in a fluid. Thus, our method belongs to the class of arbitrary Lagrangian-Eulerian
(ALE) methods (cf. Donea et al. [7]). Thence, we call our method the arbitrary
Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) method.

The Runge-Kutta DG method, in the context of static grids, has been developed
and analyzed by Cockburn, Shu et al. in a series of papers (cf. [3–5] and a review
article [6]). ALE-DG methods for equations with compressible viscous flows have
been developed by Lomtev et al. [22], Persson et al. [24] and Nguyen [23]. In their
papers, the focus lies on the implementation and performance of the methods in
aeroelastic applications. However, there are also some theoretical aspects about
ALE methods in the literature. These discussions are mostly about the significance
of the geometric conservation law (GCL) for ALE methods. This law governs the
geometric parameters of a grid deformation method, such that the method preserves
constant states. The terminology GCL was introduced by Lombard and Thomas in
[21]. It is well known that there is a lack of stability in a grid deformation method,
if there is no GCL satisfied. For instance in [9] Grandmont, Guillard and Farhat
have proven that for monotone ALE methods the GCL is a necessary and sufficient
condition to obtain the local maximum principle for the method. Moreover, in [12]
Guillard and Farhat have proven that the GCL is a necessary condition to ensure
that the time discretization of the method is high order accurate for ALE-finite
volume methods. Further, in [20] Lesoinne and Farhat have analyzed the relevance
and implementation of geometric conservation laws for different ALE methods.
They have shown that the GCL is not trivially satisfied for ALE-finite element
methods with a Runge-Kutta time discretization. Thus, in particular for ALE-
DG methods, it is important to pay attention to the GCL. We are able to prove
that our ALE-DG method preserves constant states for any Runge-Kutta method.
Therefore, our method satisfies the GCL.

It is well known that solutions of hyperbolic conservation laws are in general
discontinuous, even if the initial data is chosen smooth. Discontinuities are the
cause of numerical artifacts like spurious oscillations in high order methods for
hyperbolic conservation laws. Without taming these artifacts a numerical method
will become unstable. A possible way to stabilize DG methods has been introduced
by Cockburn and Shu in [2, 5]. They constructed slope limiters such that the
method stays high order accurate and the cell average values of the DG solution
become total variation stable. By following Cockburn and Shu’s approach we obtain
conditions for slope limiters which stabilize our ALE-DG method. Furthermore, in
numerical test examples we validate our conditions. Discontinuities are not the
only source of instabilities in a numerical method. It is necessary that the method
preserve bounds. In general it is not easy to prove that a high order method
preserves bounds, even for methods on static grids. In [31] X. Zhang and Shu
developed a limiter for static grids which ensures that the revised solution of a high
order method preserves bounds. We prove that this limiter works for our ALE-DG
method, too. Moreover, for scalar conservation laws we obtain the local maximum
principle as X. Zhang and Shu did for high order methods on static grids.

Another peculiarity of hyperbolic conservation laws is that weak solutions are
in general not unique. A weak solution has to satisfy an entropy inequality to be
the unique physically relevant or entropy solution. For scalar conservation laws it
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is well known that there exists a unique entropy solution (cf. Kruzkov [18]). We
prove for scalar conservation laws that our semi-discrete ALE-DG method satisfies
a discrete version of the square entropy inequality. Thus, in particular the method
is L2 stable. Additionally, we prove for smooth solutions of scalar conservation laws
the sub-optimal (k + 1

2 ) convergence for the semi-discrete ALE-DG method with
monotone numerical fluxes and the optimal (k + 1) convergence for the method
with an upwind numerical flux if a piecewise P k polynomial approximation space
is used.

For DG methods on static grids, there are already many results in the litera-
ture about the a priori error for smooth solutions of hyperbolic conservation laws.
In the following, we will list a few results. The first a priori error estimate for a
DG method has been proven by LeSaint and Raviart [19]. In [16] Johnson and
Pitkr̈anta have proven that for linear conservation laws the discontinuous Galerkin
a priori error behaves as O

(
hk+1

)
, and in [25] Peterson has proven that the result

of Johnson and Pitkäranta is the optimal a priori error for any DG method for
hyperbolic conservation laws. Further, nonlinear scalar conservation laws and sym-
metrizable systems have been considered by Zhang and Shu in [28], [29] and [30].
They have proven for DG methods with a second and third order total variation di-
minishing (TVD) Runge-Kutta time discretization that the a priori error behaves as

O
(
hk+ 1

2 + (�t)
σ
)
, σ = 2, 3, in the general case and as O

(
hk+1 + (�t)

σ)
, σ = 2, 3,

by applying an upwind numerical flux.
The organization of the paper is as follows: In Section 2 we develop our ALE-

DG method in one dimension. First, we develop the semi-discrete ALE-DG scheme
and prove the cell entropy inequality as well as the L2 stability. Afterwards, the
error estimates are proven for the method with monotone numerical fluxes and an
upwind numerical flux. Then, in Section 2.4 we discuss the fully-discrete ALE-DG
method. Further, the geometric conservation law and the local maximum principle
are proven. Conditions for the slope limiter are derived, too. Section 3 contains
numerical results for linear and nonlinear problems to demonstrate the accuracy
and capabilities of the method. Finally, some concluding remarks are given in
Section 4.

2. The arbitrary Lagrangian-Eulerian

discontinuous Galerkin method

In this section, we develop and analyze an arbitrary Lagrangian-Eulerian dis-
continuous Galerkin (ALE-DG) method for solving conservation laws.

2.1. The semi-discrete ALE-DG discretization. In order to describe the
method, we need to take the motion of the grid into account. We assume that

there are given points
{
xn
j− 1

2

}N

j=1
at time level tn and

{
xn+1
j− 1

2

}N

j=1
at tn+1, such

that

Ω =

N⋃
j=1

[
xn
j− 1

2
, xn

j+ 1
2

]
and Ω =

N⋃
j=1

[
xn+1
j− 1

2

, xn+1
j+ 1

2

]
.
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Note that the first point and the last point stay the same for the compactly sup-
ported problem and could move at the same speed for the periodic boundary prob-
lem. Next, we connect the points xn

j− 1
2

and xn+1
j− 1

2

by rays

(2.1) xj− 1
2
(t) := xn

j− 1
2
+ ωj− 1

2
(t− tn) , for all t ∈ [tn, tn+1] ,

where

(2.2) ωj− 1
2
:=

xn+1
j− 1

2

− xn
j− 1

2

tn+1 − tn
.

The quantity ωj− 1
2
describes the speed of motion in which the point xn

j− 1
2

moves

to xn+1
j− 1

2

. The rays (2.1) provide for all t ∈ [tn, tn+1] time-dependent cells Kj(t) :=[
xj− 1

2
(t) , xj+ 1

2
(t)
]
. The length of a time-dependent cell is denoted by

�j(t) := xj+ 1
2
(t)− xj− 1

2
(t).

Next, we introduce some assumptions:

(ω1): For all j = 1, · · · , N and t ∈ [tn, tn+1],

�j (t) = (ωj+ 1
2
− ωj− 1

2
)(t− tn) +�j (tn) > 0.

(ω2): There exists a constant C0, independent of h, such that

max
(x,t)∈Ω×[0,T ]

|ω (x, t)| ≤ C0.

(ω3): There exists a constant C0,1, independent of h, such that

max
(x,t)∈Ω×[0,T ]

|∂x (ω (x, t))| ≤ C0,1.

Note that the function ω : Ω× [0, T ] → R is the grid velocity field. It is for any cell
Kj(t) given by

(2.3) ω(x, t) = ωj+ 1
2

x− xj− 1
2
(t)

�j(t)
+ ωj− 1

2

xj+ 1
2
(t)− x

�j(t)
.

The length of the largest time-dependent cell is defined by h(t) := max
1≤j≤N

�j (t).

Moreover, for every time point the maximal cell length will be denoted by

(2.4) h := max
t∈[0,T ]

h (t) .

In addition, we assume that the mesh is regular. Thus, there exists a constant
ρ > 0, independent of h, such that

(2.5) �j (t) ≥ ρh, ∀j = 1, · · · , N.

The equation (ω1) guarantees that the time-dependent cells Kj(t) are well de-
fined. Therefore, for any t ∈ [tn, tn+1] the time-dependent cells Kj(t) can be
connected with a reference cell [−1, 1] by the mapping

χj : [−1, 1] → Kj (t) , χj (ξ, t) =
�j (t)

2
(ξ + 1) + xj− 1

2
(t) .(2.6)

The mapping yields a characterization of the grid velocity

(2.7) ∂t
(
χj (ξ, t)

)
= ω (χj (ξ, t) , t) for all (ξ, t) ∈ [−1, 1]× [tn, tn+1] .



ALE-DG METHOD FOR CONSERVATION LAWS 1207

Furthermore, for any t ∈ [tn, tn+1] by the mapping a finite dimensional test function
space can be defined by

Vh (t) :=
{
vh ∈ L2 (Ω) | vh

(
χj (·, t)

)
∈ P k

(
[−1, 1]

)
, ∀j = 1, · · · , N

}
,(2.8)

where P k ([−1, 1]) denotes the space of polynomials in [−1, 1] of degree at most k.
The space Vh(t) contains discontinuous functions. Hence, for a function vh ∈ Vh(t),
we denote the left as well as the right limit, the cell average and the jump in a
point xj− 1

2
(t) as follows:

v−
h,j− 1

2

= vh

(
x−
j− 1

2

(t) , t
)
:= lim

ε→0
vh

(
xj− 1

2
(t)− ε, t

)
,

v+
h,j− 1

2

= vh

(
x+
j− 1

2

(t) , t
)
:= lim

ε→0
vh

(
xj− 1

2
(t) + ε, t

)
,

{{vh}}j− 1
2
:=

1

2

(
v+
h,j− 1

2

+ v−
h,j− 1

2

)
and [[vh]]j− 1

2
:= v+

h,j− 1
2

− v−
h,j− 1

2

.

In addition, for all v, w ∈ L2 (Kj (t)) we denote the L2 (Kj (t)) inner product by
(v, w)Kj(t)

:=
∫
Kj(t)

vw dx. The following transport equation will be essential for

the upcoming.

Lemma 2.1. Let u ∈ W1,∞ (0, T ; H1 (Ω)
)
. Then for all vh ∈ Vh(t) the following

transport equation holds:

d

dt

(
u, vh

)
Kj(t)

=
(
∂tu, vh

)
Kj(t)

+
(
∂x (ωu) , vh

)
Kj(t)

.(2.9)

Proof. Let φ0(ξ), · · · , φk(ξ) be a basis of the polynomial space P k ([−1, 1]). Then
in any cell Kj(t) the functions

(2.10) φ̂� (x, t) := φ�

⎛⎝2
(
x− xj− 1

2
(t)
)

�j (t)
− 1

⎞⎠ , x ∈ Kj (t) ,

represent a basis of the test function space Vh(t). It is easy to verify that the
functions (2.10) satisfy the equation

(2.11) ∂t

(
φ̂� (x, t)

)
+ ω (x, t) ∂x

(
φ̂� (x, t)

)
= 0, x ∈ Kj (t) .

Let u ∈ W1,∞ (0, T ; H1 (Ω)
)
and vh ∈ Vh(t). By (2.10) the function vh can be

written as

vh (x, t) =

k∑
�=0

v�hφ̂� (x, t) , x ∈ Kj (t) and v�h ∈ R.

Next, by the identity (2.11),

∂t (vh (x, t)) + ω (x, t) ∂x (vh (x, t)) = 0, x ∈ Kj (t) .(2.12)

Therefore, by the Reynolds transport theorem and (2.12),

d

dt
(u, vh)Kj(t)

= (∂t(uvh), 1)Kj(t)
+ (∂x(ωuvh), 1)Kj(t)

= (∂tu, vh)Kj(t)
+ (∂x(ωu), vh)Kj(t)

.

�
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Finally, with all these ingredients we can start to describe the semi-discrete
ALE-DG method. The description of the ALE-DG method for the time interval
[tn, tn+1] and the cell Kj (t) starts by multiplying the equation (1.1a) with a test
function vh ∈ Vh(t). Next, we integrate the result over the cell Kj(t) and apply the
transport equation (2.9). Then, by an integration by parts we obtain

d

dt
(uh, vh)Kj(t)

= (g (ω, uh) , ∂xvh)Kj(t)
− g
(
ωj+ 1

2
, uh

(
xj+ 1

2
(t) , t

))
v−
h,j+ 1

2

+ g
(
ωj− 1

2
, uh

(
xj− 1

2
(t) , t

))
v+
h,j− 1

2

,

where g (ω, uh) := f (uh) − ωuh and uh ∈ Vh(t) is an unknown approximation
to the solution u of (1.1), which we try to determine by the ALE-DG method.
Since uh is discontinuous in the cell interface points xj+ 1

2
(t), we replace the flux

g(ωj+ 1
2
, uh(xj+ 1

2
(t) , t)) by a numerical flux ĝ

(
ωj+ 1

2
, u−

h,j+ 1
2

, u+
h,j+ 1

2

)
, which is a

single valued function defined in the cell interface points and depends on the values
of the approximate solution uh from both sides of the cell interfaces. In general

the numerical flux ĝ
(
ωj+ 1

2
(t), u−

h,j+ 1
2

, u+
h,j+ 1

2

)
should be chosen as a monotone

numerical flux which satisfies:

(ĝ1) Consistency: For any smooth function the identity ĝ (ω, u, u) = g (ω, u)
holds.

(ĝ2) Monotonicity: The numerical flux function ĝ (ω, ·, ·) is increasing in the
second argument and decreasing in the third argument.

(ĝ3) Lipschitz continuity: For all (a1, b1) , (a2, b2) ∈ R
2 the inequality

|ĝ (ω, a1, b1)− ĝ (ω, a2, b2)| ≤ L−
ĝ |a1 − a2|+ L+

ĝ |b1 − b2|

holds, where the Lipschitz constants L−
ĝ and L+

ĝ are independent of h.

Finally, the semi-discrete ALE-DG method can be written as follows: Find a
function uh ∈ Vh(t) such that

d

dt
(uh, vh)Kj(t)

= (g (ω, uh) , ∂xvh)Kj(t)
− ĝ
(
ωj+ 1

2
, u−

h,j+ 1
2

, u+
h,j+ 1

2

)
v−
h,j+ 1

2

+ ĝ
(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
v+
h,j− 1

2

,(2.13)

for all vh ∈ Vh(t) and j = 1, · · · , N .

2.2. A cell entropy inequality and L2 stability. Weak solutions of equation
(1.1) are in general not unique. The physically relevant unique entropy solution
can be found by the entropy inequality

(2.14) ∂tη (u) + ∂xF (u) ≤ 0, in Ω× (0, T ]

in the sense of distribution. The entropy η : R → R in (2.14) can be any convex
function (cf. Di Perna [8]) if the flux function in (1.1) is convex. For a flux function
f ∈ C1 (R) the entropy inequality (2.14) has to be true for all convex functions or
η has to be the so-called Kruzkov entropy (cf. Kruzkov [18]). Further, the entropy
flux is given by F (u) :=

∫ u
η′ (v) f ′ (v) dv.
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By integrating the entropy inequality (2.14) over the cell Kj (t) and applying the
transport equation (2.9) with vh = 1 we obtain

0 ≥ d

dt
(η (u) , 1)Kj(t)

+ F
(
uj+ 1

2

)
− ωj+ 1

2
η
(
uj+ 1

2

)
− F

(
uj− 1

2

)
+ ωj− 1

2
η
(
uj− 1

2

)
,(2.15)

where uj− 1
2
:= u

(
xj− 1

2
(t) , t

)
. In the following, we show that in every cell Kj (t)

the ALE-DG method satisfies an inequality, which is consistent with (2.15) for
smooth functions. Thus, we have a cell entropy inequality for the ALE-DG method
like Jiang and Shu [15] for the DG methods on static grids.

Proposition 2.2. The solution uh of the semi-discrete ALE-DG method given by
(2.13) satisfies the following cell entropy inequality:

0 ≥ d

dt
(η (uh) , 1)Kj(t)

+H
(
ωj+ 1

2
, u−

h,j+ 1
2

, u+
h,j+ 1

2

)
−H

(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
,(2.16)

where η (u) := u2

2 is the square entropy and

H
(
ω, u−, u+

)
:= −

∫ u−

f (v) dv +
ω

2

(
u−)2 + ĝ

(
ω, u−, u+

)
u−.

Proof. By applying the transport equation (2.9) the equation (2.13) can be written
for all test functions vh ∈ Vh(t) as follows:

0 = (∂tuh, vh)Kj(t)
+ (∂x (ωuhvh) , 1)Kj(t)

− (f (uh) , ∂xvh)Kj(t)

+ ĝ
(
ωj+ 1

2
, u−

h,j+ 1
2

, u+
h,j+ 1

2

)
v−
h,j+ 1

2

− ĝ
(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
v+
h,j− 1

2

.(2.17)

For equation (2.17) we can choose vh = uh as a test function. Then, by the Reynolds
transport theorem,

0 =
1

2

d

dt
(uh, uh)Kj(t)

+
1

2

(
∂x
(
ωu2

h

)
, 1
)
− (f (uh) , ∂xuh)Kj(t)

+ ĝ
(
ωj+ 1

2
, u−

h,j+ 1
2

, u+
h,j+ 1

2

)
u−
h,j+ 1

2

− ĝ
(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
u+
h,j− 1

2

.(2.18)

Next, we define the quantities

G (ω, u) :=

∫ u

f (v) dv − ω

2
u2

and

H
(
ω, u−, u+

)
:= −G

(
ω, u−)+ ĝ

(
ω, u−, u+

)
.

Then, equation (2.18) can be rewritten as

0 =
1

2

d

dt
(uh, uh)Kj(t)

+H
(
ωj+ 1

2
, u−

h,j+ 1
2

, u+
h,j+ 1

2

)
−H

(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
+Θj− 1

2
,
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where

Θj− 1
2
:= G

(
ωj− 1

2
, u+

h,j− 1
2

)
−G

(
ωj− 1

2
, u−

h,j− 1
2

)
− ĝ
(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
[[uh]]j− 1

2
.

The function G (ω, u) is differentiable in the second argument. Thus, by the mean
value theorem there exists a ϑ ∈ [u−

h,j− 1
2

, u+
h,j− 1

2

] such that

G
(
ω, u+

h,j− 1
2

)
−G

(
ω, u−

h,j− 1
2

)
= g (ω, ϑ) [[uh]]j− 1

2
.

Hence, by the properties (ĝ1) and (ĝ2) of the numerical flux ĝ (ω, ·, ·) it follows that
Θj− 1

2
≥ 0. �

We would like to mention that for static grids, which means ω = 0, we obtain
the same cell entropy inequality as in [15]. In addition, the cell entropy inequality
(2.16) implies the L2 stability of the semi-discrete ALE-DG method.

Corollary 2.3. The solution uh of the semi-discrete ALE-DG method given by
(2.13) satisfies for all t ∈ [0, T ] the inequality

‖uh (t)‖L2(Ω) ≤ ‖uh (0)‖L2(Ω) .

2.3. A priori error estimates. In this section, we present a priori error estimates
for the ALE-DG method for smooth solutions of (1.1). Therefore, we follow the
approach of Zhang and Shu (cf. [28], [29] and [30]). However, since we apply time-
dependent cells in our method, there are some differences in our proof. First of
all, as in the proof of the cell entropy inequality (2.15), we cannot apply the ALE-
DG solution uh as a test function in equation (2.13). Thus, we have to apply the
equivalent equation (2.17) for the proof. Further, we have to apply the transport
equation (2.9) to manage the differentiation of the time-dependent volume integrals.
Finally, we compensate the nonlinear nature of the flux function f(u) by Taylor
expansion as Zhang and Shu did. Therefore, we need an a priori assumption given
by

(2.19) max
t∈[0,T ]

‖u− uh‖L∞(Ω) ≤ C1h,

where the constant C1 is independent of uh and h. For the utilization of Taylor
expansion, we need to ensure that the flux function f(u) and its derivatives are
bounded. Since we consider scalar conservation laws (1.1), the maximum principle
guarantees that the flux function f(u) itself and up to third order derivatives are
bounded. To evaluate the numerical flux function ĝ (ω, ·, ·) with Taylor expansion
we proceed again as Zhang and Shu (cf. [28]) and apply a quantity â (ĝ;u) to
measure the difference between the numerical flux function ĝ (ω, u−, u+) and the
flux g (ω, u). The quantity is for any piecewise smooth function v ∈ L2 (Ω) defined
by

â (ĝ; v) :=

{
[[v]]−1 (g (ω, {{v}})− ĝ (ω, v−, v+)) , if [[v]] 	= 0,

|g′ (ω, {{v}})| , if [[v]] = 0.
(2.20)

This quantity was introduced by Harten in [13]. Moreover, Zhang and Shu (cf.
[28]) proved the following lemma for the quantity above.
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Lemma 2.4. Suppose the numerical flux function ĝ has the properties (ĝ1) - (ĝ3).
Then for any piecewise smooth function v ∈ L2 (Ω) the quantity â (ĝ; v) given by

(2.20) is nonnegative and bounded by the constant C2 := 1
2

(
L−
ĝ + L+

ĝ

)
. In addition,

the inequality

1

2
|g′ (ω, {{v}})| ≤ â (ĝ; v) + C3 |[[v]]|

holds, where the constant C3 only depends on the maximum of |f ′′|.

2.3.1. Projections, interpolation properties and inverse inequalities. First of all, we
present two projections. The L2 projection Ph (u) of a function u ∈ L2 (Ω) into
Vh (t) is for all vh ∈ Vh (t) defined by

(2.21) (Ph (u) , vh)Kj(t)
= (u, vh)Kj(t)

.

In addition, if k ≥ 1, we define the Gauss-Radau projections P±
h (u) of a func-

tion u ∈ L2 (Ω) into Vh(t) for all vh ∈ Vh (t) with the property vh (χj (·, t)) ∈
P
k−1
(
[−1, 1]

)
by

(2.22a)
(
P±
h (u) , vh

)
Kj(t)

= (u, vh)Kj(t)

and

(2.22b) P+
h (u)

(
x+
j− 1

2

(t)
)
= u

(
x+
j− 1

2

(t)
)
, P−

h (u)
(
x−
j+ 1

2

(t)
)
= u

(
x−
j+ 1

2

(t)
)
.

For the L2 projection we have the following lemma.

Lemma 2.5. Let u ∈ L2 (Ω), Ph (u) be the L2 projection of u and vh ∈ Vh(t).
Suppose for any cell Kj(t) that the function vh can be written as

vh (x, t) :=

k∑
�=0

v�h (t) φ̂� (x, t) ,

where v0h, . . . , v
k
h ∈ H1 (0, T ) and φ̂0, . . . , φ̂k are given by (2.10). Then we have

(2.22)
(
u− Ph (u) , ∂tvh

)
Kj(t)

= 0.

Proof. By (2.6) and (2.3) for any cell Kj(t) the grid velocity can be rewritten as

ω(χj(ξ, t), t) =
1

2

(
(1− ξ)ωj− 1

2
+ (1 + ξ)ωj+ 1

2

)
, ξ ∈ [−1, 1] .

Hence, ω∂xvh ∈ Vh, and therefore ∂tvh ∈ Vh, since ∂tφ̂� = −ω∂xφ̂�, � = 0, . . . , k,
by (2.11). Thus, (2.21) yields (2.22). �

In addition, we apply the following auxiliary lemma.

Lemma 2.6. Let u ∈ W1,∞ (0, T ; H1 (Ω)
)
and Qh be either Ph, P−

h or P+
h . Then

(2.23) ∂t
(
Qh

(
u
))

+ ω∂x
(
Qh

(
u
))

= Qh

(
∂t
(
u
))

+Qh

(
ω∂x
(
u
))

.

Proof. In order to prove (2.23), we will apply Legendre polynomials. Each Legendre
polynomial L�, � = 0, · · · , k, is an �-th degree polynomial and can be expressed by
Rodrigues’ formula (cf. Abramowitz and Stegun [14]). In addition, the Legendre
polynomials satisfy

(L�, L�′)[−1,1] =
2

2�+ 1
δ��′ , L�(−1) = (−1)

�
and L�(1) = 1.
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Furthermore, the Legendre polynomials supply an orthogonal basis of the space
P k ([−1, 1]). Therefore, the functions

(2.24) L̂� (x, t) := L�

⎛⎝2
(
x− xj− 1

2
(t)
)

�j (t)
− 1

⎞⎠ , x ∈ Kj (t) ,

represent for any cell Kj (t) an orthogonal basis of the test function space Vh(t).
Hence, for the cell Kj (t) the L2 projection of a function u ∈ L2 (Ω) can be written
as

Ph (u) :=
k∑

�=0

c� (u, t) L̂� (x, t) , c� (u, t) :=

(
2�+ 1

�j (t)

)(
u, L̂� (x, t)

)
Kj(t)

.

Similarly, for the cell Kj (t) the Gauss-Radau projections of a function u ∈ L2 (Ω)
can be written as

P±
h (u) :=

k∑
�=0

r±� (u, t) L̂� (x, t) ,

where the coefficients are given by

r±� (u, t) :=

(
2�+ 1

�j (t)

)(
u, L̂� (x, t)

)
Kj(t)

, � = 0, · · · , k − 1,

and

r+k (u, t) := (−1)k u
(
x+
j− 1

2

(t) , t
)
−

k−1∑
�=0

(−1)k+� r+� (u, t) ,

r−k (u, t) := u
(
x−
j+ 1

2

(t) , t
)
−

k−1∑
�=0

r−� (u, t) .

Next, we start to prove equality (2.23). Let u be an element of the space
W1,∞ (0, T ; H1 (Ω)

)
. It is easy to verify that

(2.25)
d

dt

(
u
(
x±
j+ 1

2

(t) , t
))

= ∂t

(
u
(
x±
j+ 1

2

(t) , t
))

+ ωj+ 1
2
∂x

(
u
(
x±
j+ 1

2

(t) , t
))

.

Likewise, it is easy to verify that

∂x (ω (x, t)) =
ωj+ 1

2
− ωj− 1

2

�j(t)
=

�′
j(t)

�j(t)
, x ∈ Kj (t) ,

where �′
j (t) is the derivative with respect to t of the cell length �j (t).

Therefore, we obtain by the transport equation (2.9) and (2.11)

d

dt

(
2�+ 1

�j (t)

(
u, L̂�

)
Kj(t)

)
=

2�+ 1

�j (t)

(
∂tu+ ∂x (ωu) , L̂�

)
Kj(t)

−
(
2�+ 1

�j (t)

)(
ωj+ 1

2
− ωj− 1

2

�j (t)

)(
u, L̂�

)
Kj(t)

=
2�+ 1

�j (t)

(
∂tu+ ω∂xu, L̂�

)
Kj(t)

.(2.26)

Thus, by (2.25) and (2.26) we obtain

(2.27) ∂t (c� (u, t)) = c� (∂t (u) , t) + c� (ω∂x (u) , t)
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and

(2.28) ∂t
(
r±� (u, t)

)
= r±� (∂t (u) , t) + r±� (ω∂x (u) , t) ,

where the functions (c� (u, t)) and
(
r±� (u, t)

)
are the coefficients of the projections

Ph (u) and P±
h (u).

Let Qh (u) be either Ph (u) or P±
h (u). Then, for the cell Kj(t) the projection

Qh (u) can be written as

Qh (u) =

k∑
�=0

q� (u, t) L̂� (x, t) ,

where the coefficients q� (u, t) are c� (u, t) or r
±
� (u, t). Finally, by (2.11), (2.27) and

(2.28) we obtain

∂t (Qh (u)) =
k∑

�=0

∂t (q� (u, t)) L̂� (x, t)−
(

k∑
�=0

q� (u, t)ω (x, t) ∂x

(
L̂� (x, t)

))
= Qh (∂t (u)) +Qh (ω∂x (u))− ω∂x (Qh (u)) . �

Further, we will apply the following interpolation properties. For an arbitrary
fixed function u ∈ Hk+1 (Ω) there are constants C4 and C5, which are independent
of h, such that

(2.29) ‖u−Qh (u)‖2L2(Ω) ≤ C4

∥∥∂k+1
x u

∥∥2
L2(Ω)

h2k+2

and

(2.30)
∥∥u−Qh (u)

)∥∥2
L2(Γ)

≤ C5

∥∥∂k+1
x u

∥∥2
L2(Ω)

h2k+1,

where we have applied the norm

‖u‖2L2(Γ) :=

N∑
n,j=1

(∣∣∣u(x+
j− 1

2

(t) , t
)∣∣∣2 + ∣∣∣u(x−

j− 1
2

(t) , t
)∣∣∣2) .

Moreover, we will apply for all vh ∈ Vh(t) the inverse and trace inequality

(2.31) h2 ‖∂x (vh)‖2L2(Ω) + h ‖vh‖2L2(Γ) ≤ C6 ‖vh‖2L2(Ω) ,

where the constant C6 is independent of h and vh. These inequalities can be
proven by well known results of basic approximation theory (cf. Ciarlet [1]), since
we assume that the mesh is regular.

2.3.2. A sub-optimal error estimate by using monotone fluxes. In this section, we
state an a priori error estimate for the semi-discrete ALE-DG method with a general
monotone numerical flux.

Theorem 2.7. Let u ∈ W1,∞ (0, T ; Hk+1 (Ω)
)
be the exact solution of equation

(1.1), f ∈ C2 (R) and uh be the solution of the semi-discrete ALE-DG method
(2.13) with a monotone numerical flux ĝ. The initial data for the method is the L2

projection of the function u0, and the grid velocity satisfies the conditions (ω1) and
(ω2). Then there exists a constant C independent of uh and h such that there holds
the error estimate

max
t∈[0,T ]

‖eh‖L2(Ω) ≤ Chk+ 1
2 ,

where eh = u− uh and h is given by (2.4).
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Proof. We define the quantities

(2.32) ψh := u− Ph (u) and ϕh := uh − Ph (u) .

Then, the error function can be written as

(2.33) eh := u− uh = ψh − ϕh.

The exact solution u and the approximation solution uh satisfy the equation (2.13)
and the equivalent equation (2.17). Hence, equation (2.17) supplies the following
error equation:

0 = (∂teh, vh)Kj(t)
+ (∂x (ωehvh) , 1)Kj(t)

− (f(u)− f(uh), ∂xvh)Kj(t)

+ g
(
ωj+ 1

2
, uj+ 1

2

)
v−
h,j+ 1

2

− g
(
ωj− 1

2
, uj− 1

2

)
v+
h,j− 1

2

− ĝ
(
ωj+ 1

2
, u−

h,j+ 1
2

, u+
h,j+ 1

2

)
v−
h,j+ 1

2

+ ĝ
(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
v+
h,j− 1

2

.(2.34)

Taylor expansion on the flux function f(uh) up to second order provides the identity

(2.35) f (uh) = f (u)− f ′ (u) eh +
1

2
f ′′ (Θ) (eh)

2
,

where Θ is a value between u and uh. Since we assume that the exact solution u of
(1.1) is sufficiently smooth, the following equation holds in the cell interface points
xj− 1

2
(t):

(2.36) [[uh]]j− 1
2
= −[[eh]]j− 1

2
.

Thus, by applying (2.20) we obtain in the cell boundary points xj− 1
2
(t):

g
(
ωj− 1

2
, uj− 1

2

)
− ĝ
(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
= g

(
ωj− 1

2
, uj− 1

2

)
− g
(
ωj− 1

2
, {{uh}}j− 1

2

)
+ â (ĝ;uh)j− 1

2
[[uh]]j− 1

2

= g′
(
ωj− 1

2
, uj− 1

2

)
{{eh}}j− 1

2
− 1

2
f ′′
(
Θj− 1

2

)(
{{eh}}j− 1

2

)2
− â (ĝ;uh)j− 1

2
[[eh]]j− 1

2
,

(2.37)

where Θj− 1
2
is a value between uj− 1

2
and {{uh}}j− 1

2
. Next, we apply ϕh as a test

function and sum the error equation (2.34). Then, we obtain by (2.35) and (2.37)

0 =
N∑
j=1

(∂teh, ϕh)Kj(t)
+

N∑
j=1

(∂x (ωehϕh) , 1)Kj(t)
−

N∑
j=1

(f ′ (u) eh, ∂xϕh)Kj(t)

+
1

2

N∑
j=1

(
f ′′ (Θ) (eh)

2 , ∂xϕh

)
Kj(t)

−
N∑
j=1

g′
(
ωj− 1

2
, uj− 1

2

)
{{eh}}j− 1

2
[[ϕh]]j− 1

2

+
1

2

N∑
j=1

f ′′
(
Θj− 1

2

)(
{{eh}}j− 1

2

)2
[[ϕh]]j− 1

2
+

N∑
j=1

â (ĝ;uh)j− 1
2
[[eh]]j− 1

2
[[ϕh]]j− 1

2
.

(2.38)
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By the transport equation (2.9) we obtain

−
N∑
j=1

(∂tϕh, ϕh)Kj(t)
−

N∑
j=1

(
∂x

(
ω (ϕh)

2
)
, 1
)
Kj(t)

=− 1

2

d

dt
‖ϕh‖2L2(Ω) −

1

2

N∑
j=1

(
∂x

(
ω (ϕh)

2
)
, 1
)
Kj(t)

.(2.39)

Likewise, by the properties (2.21) as well as (2.22) of the L2 projection and the
transport equation (2.9) we obtain

N∑
j=1

(∂tψ, ϕh)Kj(t)
+

N∑
j=1

(∂x (ωψϕh) , 1)Kj(t)

=

N∑
j=1

(∂t (ψϕh) , 1)Kj(t)
+

N∑
j=1

(∂x (ωψϕh) , 1)Kj(t)

=

N∑
j=1

d

dt
(ψ, ϕh)Kj(t)

= 0.(2.40)

Therefore, by (2.39) and (2.40) the equation (2.38) can be rewritten as

1

2

d

dt
‖ϕh‖2L2(Ω) = a1 (ψh, ϕh) + a2 (eh, ϕh) + a3 (ω, ψh, ϕh) ,(2.41)

where

a1 (ψh, ϕh) := −
N∑
j=1

(f ′ (u)ψh, ∂xϕh)Kj(t)
,

a2 (eh, ϕh) :=
1

2

N∑
j=1

(
f ′′ (Θ) (eh)

2 , ∂xϕh

)
Kj(t)

+
1

2

N∑
j=1

f ′′
(
Θj− 1

2

)(
{{eh}}j− 1

2

)2
[[ϕh]]j− 1

2

and

a3 (ω, ψh, ϕh) :=
1

2

N∑
j=1

(
f ′ (u) , ∂x (ϕh)

2
)
Kj(t)

− 1

2

N∑
j=1

(
∂x

(
ω (ϕh)

2
)
, 1
)
Kj(t)

−
N∑
j=1

g′
(
ωj− 1

2
, uj− 1

2

)
{{eh}}j− 1

2
[[ϕh]]j− 1

2

+

N∑
j=1

â (ĝ;uh)j− 1
2
[[eh]]j− 1

2
[[ϕh]]j− 1

2
.

Henceforth, the quantities a1 (ψh, ϕh), a2 (eh, ϕh) and a3 (ω, ψh, ϕh) can be es-
timated by (2.29), (2.30) and (2.31) as in the papers of Zhang and Shu [28–30].



1216 CHRISTIAN KLINGENBERG, GERO SCHNÜCKE, AND YINHUA XIA

Thus, we obtain the inequality

(2.42)
1

2

d

dt
‖ϕh‖2L2(Ω) ≤ CI

(
h2k+1 + ‖ϕh‖2L2(Ω)

)
,

where the constant CI is independent of uh, h and t ∈ [0, T ]. Hence, by Gronwall’s
inequality and the identity uh(0) = Ph(u0) it follows that, for all t ∈ [0, T ],

(2.43) ‖ϕh‖2L2(Ω) ≤ e2CITh2k+1.

Thus, for all t ∈ [0, T ] the error function eh can be estimated as

‖eh‖L2(Ω) ≤ ‖ψh‖L2(Ω) + ‖ϕh‖L2(Ω) ≤ CIIh
2k+1,

where the constant CII is independent of uh and h. �

2.3.3. An optimal error estimate by using an upwind numerical flux. In order to
achieve the optimal a priori error estimate for the ALE-DG method, we assume
that g′ (ω, v) ≥ 0. Thus, we can apply an upwind numerical flux function given by

ĝ
(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
:= g

(
ωj− 1

2
, u−

h,j− 1
2

(t)
)
, ∀j = 1, · · · , N.(2.44)

This numerical flux provides the following a priori error estimate.

Theorem 2.8. Let u ∈ W1,∞ (0, T ; Hk+2 (Ω)
)
be the exact solution of equation

(1.1). Suppose f ∈ C2 (R) and the grid velocity satisfies the conditions (ω1), (ω2)
as well as (ω3). Further, the condition g′ (ω, v) ≥ 0 is satisfied. Let uh be the
solution of the semi-discrete ALE-DG method (2.13) with the upwind flux (2.44).
The initial data for the method is the Gauss-Radau projection P−

h of u0. Then there
exists a constant C independent of uh and h such that the following error estimate
holds:

max
t∈[0,T ]

‖eh‖L2(Ω) ≤ Chk+1,

where eh := u− uh and h is given by (2.4).

Proof. First of all, we define the quantities

(2.45) ψh := u− P−
h (u) and ϕh := uh − P−

h (u)

as in the proof of Theorem 2.7. Then, the ALE-DG scheme (2.17) yields the
following error equation:

0 = (∂teh, vh)Kj(t)
+ (∂x (ωehvh) , 1)Kj(t)

− (f(u)− f(uh), ∂xvh)Kj(t)

+ g
(
ωj+ 1

2
, uj+ 1

2

)
v−
h,j+ 1

2

− g
(
ωj− 1

2
, uj− 1

2

)
v+
h,j− 1

2

− g
(
ωj+ 1

2
, u−

h,j+ 1
2

)
v−
h,j+ 1

2

+ g
(
ωj− 1

2
, u−

h,j− 1
2

)
v+
h,j− 1

2

.(2.46)

By Taylor expansion on the flux function g (ω, ·) up to second order,

g
(
ωj− 1

2
, uj− 1

2

)
− g
(
ωj− 1

2
, u−

h,j− 1
2

)
=g′
(
ωj− 1

2
, uj− 1

2

)
e−
h,j− 1

2

− 1

2
f ′′
(
Θ−

j− 1
2

)(
eh,j− 1

2

)2
(2.47)
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holds, where Θ−
j− 1

2

is a value between uj− 1
2
and u−

h,j− 1
2

. Next, we apply ϕh as a

test function and sum the error equation (2.46). Then, we obtain by (2.35) and
(2.47)

1

2

d

dt
‖ϕh‖2L2(Ω) = b1 (eh, ϕh) + b2 (ω, ϕh, ϕh) + b3 (ω, ψh, ϕh) ,(2.48)

where

b1 (eh, ϕh) =
1

2

N∑
j=1

(
f ′′ (Θ) (eh)

2
, ∂xϕh

)
Kj(t)

+
1

2

N∑
j=1

f ′′
(
Θ−

j− 1
2

)(
e−
h,j− 1

2

)2
[[ϕh]]j− 1

2
,

b2 (ω, ϕh, ϕh) =
1

2

N∑
j=1

(
f ′ (u) , ∂x

(
(ϕh)

2
))

Kj(t)
− 1

2

N∑
j=1

(
∂x

(
ω (ϕh)

2
)
, 1
)
Kj(t)

+
N∑
j=1

g′
(
ωj− 1

2
, uj− 1

2

)
ϕ−
h,j− 1

2

[[ϕh]]j− 1
2
,

and

b3 (ω, ψh, ϕh) =
N∑
j=1

(∂tψh, ϕh)Kj(t)
+

N∑
j=1

(∂x (ωψhϕh) , 1)Kj(t)

−
N∑
j=1

(f ′ (u)ψh, ∂xϕh)Kj(t)
.

Henceforth, the quantities b1 (eh, ϕh), b2 (ω, ϕh, ϕh) and b3 (ω, ψh, ϕh) can be es-
timated by (2.29), (2.30) and (2.31) as in the papers of Zhang and Shu [28–30].
Thus, we obtain the inequality

(2.49)
1

2

d

dt
‖ϕh‖2L2(Ω) ≤ CI

(
h2k+2 + ‖ϕh‖2L2(Ω)

)
,

where the constant CI is independent of uh, h and t ∈ [0, T ]. The final steps in the
proof of Theorem 2.8 are exactly the same as in the proof of Theorem 2.7. �

Remark 2.1. If we assume g′ (ω, v) ≤ 0, the result in Theorem 2.8 holds true, too.
In this case, we have to apply the numerical flux function

ĝ
(
ωj− 1

2
, u−

h,j− 1
2

, u+
h,j− 1

2

)
:= g

(
ωj− 1

2
, u+

h,j− 1
2

)
, ∀j = 1, · · · , N,

and the Gauss-Radau projection P+
h .

2.4. The fully discrete ALE-DG method. In this section, we consider and
analyze the time discretization of the ALE-DG method.
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2.4.1. The geometric conservation law. The geometric conservation law (GCL) gov-
erns the geometric parameters of a grid deformation method, such that the method
preserves constant states. In other words, if we consider the equation (1.1) with
the initial condition uh(x, 0) ≡ 1 for all (x, t) ∈ Ω× [0, T ], the approximate solution
given by the ALE-DG method has to be uh(x, t) ≡ 1, too.

For all vh ∈ Vh(t) the ALE-DG scheme (2.13) degenerates to

(2.50)
d

dt
(1, vh)Kj(t)

= (∂xω, vh)Kj(t)
, ∀j = 1, · · · , N,

if the approximate solution is given by uh(x, t) ≡ 1. This equation is the geometric
conservation law (GCL) for the ALE-DG method. Certainly, the equation (2.50) is
a special case of the transport equation (2.9) and thus is satisfied.

However, the situation is slightly different when the method is discretized in
time. A discrete version of the GCL is the discrete geometric conservation law
(dGCL). In general it is not clear that the discrete geometric conservation law
(dGCL) holds true whenever the GCL is satisfied. The method will not preserve
constant states if there is no dGCL satisfied. This leads to a lack of stability and
accuracy (cf. Grandmont, Guillard and Farhat [9] or Farhat and Geuzaine [12]).
Fortunately, the forward Euler time discretization of the ALE-DG method satisfies
a dGCL. This can be realized as follows. By applying the mapping (2.6) we rewrite
the semi-discrete GCL condition (2.50) as

(2.51)
d

dt

(
1, vhJ

)
[−1,1]

=
(
∂xω, vhJ

)
[−1,1]

,

where J(t) =
Δj(t)

2 is the determinant of the Jacobian matrix. Note that J(t) =
Δj(t)

2 does not depend on x. Further, the definition of the mapping yields

∂x
(
ω(x, t)

)
=

ωj+ 1
2
− ωj− 1

2

2
.

Thus, ∂x
(
ω(x, t)

)
does not depend on x either. Hence, the dGCL condition becomes

d

dt

(
J(t)

)
=

ωj+ 1
2
− ωj− 1

2

2
.

Therefore, since J(t) is linearly dependent on t, the dGCL can be easily satisfied
for any first order or high order single step time discretization method, e.g. the
forward Euler method or total variation diminishing (TVD) Runge-Kutta methods,
also known as strong stability preserving (SSP) Runge-Kutta methods (cf. Gottlieb
and Shu [11]).

Proposition 2.9. The fully discrete ALE-DG method (2.13) with the approxima-
tion space (2.8) satisfies the discrete geometric conservation law for any first order
time discretization method or high order single step method in which the stage order
is equal to or higher than first order.

2.4.2. The local maximum principle. In [31] X. Zhang and Shu developed for static
grids a maximum-principle-satisfying limiter. We will prove that their limiter can
also be applied to our ALE-DG method. However, our proof is slightly different
from Zhang and Shu’s proof, since we have to control an extra term resulting from
the time-dependent cells. In this section, we consider the ALE-DG method with
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the Lax-Friedrichs flux. The Lax-Friedrichs flux is given by

(2.52) ĝ
(
ω, u−

h , u
+
h

)
:=

g
(
ω, u−

h

)
+ g
(
ω, u+

h

)
2

− λ

2

(
u+
h − u−

h

)
,

where

(2.53) λ := max
x∈Ω

{|∂uh
g (ω (x, t) , uh)|} .

The Lax-Friedrichs flux can be split up in an increasing function

(2.54) ĝ+
(
ω, u−

h

)
:=

1

2

(
g
(
ω, u−

h

)
+ λu−

h

)
and a decreasing function

(2.55) ĝ−
(
ω, u+

h

)
:=

1

2

(
g
(
ω, u+

h

)
− λu+

h

)
.

Further, for all x, y ∈ Kj (t) it holds that

(2.56) ĝ (ω (x, t) , a, b)− ĝ (ω (y, t) , a, b) = − (ω (x, t)− ω (y, t))
a+ b

2
.

Henceforth, for any cell Kj(t) the average value of the ALE-DG solution uh is
denoted by

(2.57) uj(t) :=
1

�j(t)

∫
Kj(t)

uh(x, t) dx,

and the forward and backward differential operators of the cell average value are
denoted by

(2.58) �+uj := uj+1 − uj and �−uj := uj − uj−1.

In order to rewrite the average value of the ALE-DG solution, we apply the p-point
Gauss-Lobatto quadrature rule in the reference cell [−1, 1], where we choose p to be
the smallest integer satisfying p−3 ≥ k, if a piecewise P k polynomial approximation
space is used. We denote the quadrature points by

−1 = ξ1 < ξ2 < · · · < ξp = 1,

and the corresponding weights by σν , ν = 1, · · · , p. Note that
p∑

ν=1

σν

2 = 1. Next, we

define
(2.59)

un,+

h,j− 1
2

:= uh (χj (−1, tn) , tn) := un,1
h , un,−

h,j+ 1
2

:= uh (χj (1, tn) , tn) := un,p
h

and for all ν = 2, · · · , p− 1,

uh

(
χj

(
ξνj , tn

)
, tn
)
:= un,ν

h .

Hence, we obtain

(2.60) un
j =

1

2

∫ 1

−1

uh (χj (ξ, tn) , tn) dξ =

p∑
ν=1

σν

2
un,ν
h ,

since the parameter p is chosen such that the Gauss-Lobatto quadrature rule is
exact for polynomials of degree k.
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In the following, we consider the forward Euler time discretization of the weak
formulation (2.13). By Proposition 2.9 we get the geometric conservation law for
the forward Euler time discretization of the ALE-DG method. Therefore, we obtain

(2.61) �n+1
j −�n

j = �t
(
ωj+ 1

2
− ωj− 1

2

)
,

where �n
j = �j(tn). Next, the forward Euler time discretization of the discrete

weak formulation (2.13) with the test function vh = 1 and the identities (2.54),
(2.55), (2.56) as well as (2.61) provide

un+1
j = un

j − �t

�n+1
j

(
ĝ−
(
ωj+ 1

2
, un,+

h,j+ 1
2

)
− ĝ−

(
ωj+ 1

2
, un,+

h,j− 1
2

))
− �t

�n+1
j

(
ĝ+

(
ωj− 1

2
, un,−

h,j+ 1
2

)
− ĝ+

(
ωj− 1

2
, un,−

h,j− 1
2

))
− �t

�n+1
j

(
ωj+ 1

2
− ωj− 1

2

)(
un
j − 1

2

(
un,−
h,j+ 1

2

+ un,+

h,j− 1
2

))
.(2.62)

Finally, we are able to state the following lemma.

Lemma 2.10. Let uh be the solution of the forward Euler time discretization of the
ALE-DG method (2.13) with the Lax-Friedrichs flux (2.52). For all j = 1, · · · , N
all values u−

h,j− 1
2

(tn) , u
n,1
h , · · · , un,p

h , u+
h,j+ 1

2

(tn) and un
j are in the interval [m,M ]

and the grid velocity satisfies the conditions (ω1), (ω2) as well as (ω3). Further,
the quantity h := max

t∈[tn,tn+1]
h (t) ∈ (0, 1) and the CFL condition

(2.63)
�t

ρh
≤

min
1≤ν≤p

σν

C0,1

(
min

1≤ν≤p
σν + 1

)
+ 8λ

is satisfied, where the parameter λ is given by (2.53), the parameter ρ comes from
the mesh regularity property (2.5) and the constant C0,1 comes from the condition

(ω3) of the grid velocity. Then for all j = 1, · · · , N , un+1
j is in the interval [m,M ].

Proof. First of all, we define the quantities

Cj :=

⎧⎪⎪⎨⎪⎪⎩
−

⎛⎝ ĝ−

(
ω

j+1
2
,un,+

h,j+1
2

)
−ĝ−

(
ω

j+1
2
,un,1

h

)
un,+

h,j+1
2

−un,1
h

⎞⎠ , if un,+

h,j+ 1
2

	= un,1
h ,

0, if un,+

h,j+ 1
2

= un,1
h ,

and

Dj :=

⎧⎪⎪⎨⎪⎪⎩
ĝ+

(
ω

j− 1
2
,un,p

h

)
−ĝ+

(
ω

j− 1
2
,un,−

h,j− 1
2

)
un,p
h −un,+

h,j− 1
2

, if un,p
h 	= un,−

h,j− 1
2

,

0, if un,p
h = un,−

h,j− 1
2

.

Note that Cj ≥ 0 and Dj ≥ 0, since ĝ−
(
ωj+ 1

2
, ·
)

is a decreasing function and

ĝ+

(
ωj− 1

2
, ·
)
is an increasing function. Further, Cj +Dj ≤ 2λ follows by the mean
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value theorem. Next, we define for all a ∈ R
p+2 the function

H (a0, · · · , ap+1)

:=
σ1

2

(
1− �t

�n+1
j

((
ωj+ 1

2
− ωj− 1

2

)(
1− 1

σ1

)
+

2

σ1
Cj

))
a1

+
σp

2

(
1− �t

�n+1
j

((
ωj+ 1

2
− ωj− 1

2

)(
1− 1

σp

)
+

2

σp
Dj

))
ap

+
�t

�n+1
j

(Cjap+1 +Dja0)

+

p−1∑
ν=2

σν

2

(
1− �t

�n+1
j

(
ωj+ 1

2
− ωj− 1

2

))
aν .

Then, by applying (2.60) the scheme (2.62) can be written as

(2.64) un+1
j = H

(
un,−
h,j− 1

2

, un,1
h , · · · , un,p

h , un,+

h,j+ 1
2

)
.

The mean value theorem and the condition (ω3) of the grid velocity provide

(2.65)
∣∣∣ωj+ 1

2
− ωj− 1

2

∣∣∣ ≤ max
x∈Kj(tn)

|∂x (ω (x, tn))|�n
j ≤ C0,1h.

Thus, by applying the CFL number (2.63) it follows that

∂νH (a0, · · · , ap+1) ≥ 0 for all a ∈ R
p+2 and ν = 0, · · · , p+ 1.

Further, H (a, · · · , a) = a for all a ∈ R, since
∑p

ν=1
σν

2 = 1. Therefore, (2.64) is a
monotone scheme in conservation form. This completes the proof. �

We have seen that the dGCL (2.61) is an important ingredient to prove the local
maximum principle for the ALE-DG method. In fact, Grandmont, Guillard and
Farhat [9] have proven that a monotone finite volume ALE method satisfies the
local maximum principle if and only if the method satisfies a dGCL. Finally, we
apply the maximum-principle-satisfying limiter in [31] to ensure the local maximum
principle for the ALE-DG method.

2.4.3. Total variation stability. In order to stabilize the Runge-Kutta DG method
for static grids, Cockburn and Shu have developed TVD and TVB limiters (cf.
[2,5,27] and [6]). The limiters ensure that the cell average values of the DG solution
become stable in the sense of the seminorm

|un
h|TVM :=

N∑
j=1

∣∣�+u
n
j

∣∣ .
In this section, we prove that the classical TVD and TVB limiters can be applied
for our ALE-DG method, too. The main difference in our proof compared to the
results in [2, 5, 27] and [6] is that we have to control an extra term resulting from
the time-dependent cells.

As in the section before we consider the ALE-DG method merely for the Lax-
Friedrichs flux (2.52). In order to obtain the total variation stability property in the
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average values, we follow the discussion in [2]. Therefore, we apply for all v, w ∈ R

the notation

η (v, w) := sign (v)− sign (w) .

First of all, we subtract the equation (2.62) for j from the equation (2.62) for j+1.
Afterward, we sum over all j and obtain

(2.66)
∣∣un+1

h

∣∣
TVM

− |un
h|TVM +Θ+ Ξω = 0.

The quantity Θ in (2.66) is given by

Θ :=

N∑
j=1

(
p
(
un
j+1, u

n,−
h,j+ 3

2

, un,+

h,j+ 1
2

)
− p
(
un
j , u

n,−
h,j+ 1

2

, un,+

h,j− 1
2

))
η
(
�+u

n
j ,�+u

n+1
j

)
+

N∑
j=1

�t

�n+1
j

(
ĝ+

(
ωj− 1

2
, un,−

h,j+ 1
2

)
− ĝ+

(
ωj− 1

2
, un,−

h,j− 1
2

))
η
(
�−u

n
j ,�+u

n+1
j

)
−

N∑
j=1

�t

�n+1
j

(
ĝ−
(
ωj+ 1

2
, un,+

h,j+ 1
2

)
− ĝ−

(
ωj+ 1

2
, un,+

h,j− 1
2

))
η
(
�+u

n
j ,�−u

n+1
j

)
,

where for all piecewise continuous functions v, w ∈ L2 (Ω),

p
(
v, w−, w+

)
:= v − �t

�n+1
j+1

ĝ+

(
ωj+ 1

2
, w−

)
+

�t

�n+1
j

ĝ−
(
ωj+ 1

2
, w+

)
.

The other quantity Ξω in equation (2.66) results from the grid velocity. It is given
by

Ξω :=
1

2

N∑
j=1

�t

�n+1
j+1

aj+1,∓
(
ωj+ 3

2
− ωj+ 1

2

)
η
(
�+u

n
j ,�+u

n+1
j

)
+

1

2

N∑
j=1

�t

�n+1
j

bj,∓
(
ωj+ 1

2
− ωj− 1

2

)
η
(
�+u

n
j ,�+u

n+1
j

)
+

N∑
j=1

1

2

�t

�n+1
j

(
ωj+ 1

2
− ωj− 1

2

)(
un,−
h,j+ 1

2

− un
j

)
cj,±

+

N∑
j=1

1

2

�t

�n+1
j

(
ωj+ 1

2
− ωj− 1

2

)(
un
j − un,+

h,j− 1
2

)
dj,±,

where

aj,− := −
(
un
j − un,+

h,j− 1
2

)
, bj,− := −

(
un,−
h,j+ 1

2

− un
j

)
,

cj,+ := η
(
�+u

n
j ,�−u

n+1
j

)
, dj,+ := η

(
�−u

n
j ,�+u

n+1
j

)
if
(
ωj+ 1

2
− ωj− 1

2

)
≥ 0 and

aj,+ := un,−
h,j+ 1

2

− un
j , bj,+ := un

j − un,+

h,j− 1
2

,

cj,− := −η
(
�−u

n
j ,�+u

n+1
j

)
, dj,− := −η

(
�+u

n
j ,�−u

n+1
j

)
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if
(
ωj+ 1

2
− ωj− 1

2

)
≤ 0. Hence, the ALE-DG method is total variation diminishing

stable in the average values if we can ensure that Θ + Ξω ≥ 0. In fact, the sum is
positive if the ALE-DG solution satisfies the following conditions:

sign
(
�+u

n
j

)
= sign (rj,∓ − sj,∓) ,(2.67)

sign
(
�−u

n
j

)
= sign

(
un,−
h,j+ 1

2

− un,−
h,j− 1

2

)
,(2.68)

sign
(
�+u

n
j

)
= sign

(
un,+

h,j+ 1
2

− un,+

h,j− 1
2

)
,(2.69)

where

rj,∓ := p
(
un
j+1, u

n,−
h,j+ 3

2

, un,+

h,j+ 1
2

)
+

1

2

�t

�n+1
j+1

(
ωj+ 3

2
− ωj+ 1

2

)
aj+1,∓

and

sj,∓ := p
(
un
j , u

n,−
h,j+ 1

2

, un,+

h,j− 1
2

)
− 1

2

�t

�n+1
j

(
ωj+ 1

2
− ωj− 1

2

)
bj,∓.

In addition,

sign
(
�+u

n
j

)
= sign

(
un,−
h,j+ 1

2

− un
j

)
,(2.70)

sign
(
�−u

n
j

)
= sign

(
un
j − un,+

h,j− 1
2

)
(2.71)

if ωj+ 1
2
− ωj− 1

2
≥ 0 and

sign
(
�−u

n
j

)
= sign

(
un,−
h,j+ 1

2

− un
j

)
,(2.72)

sign
(
�+u

n
j

)
= sign

(
un
j − un,+

h,j− 1
2

)
(2.73)

if ωj+ 1
2
−ωj− 1

2
≤ 0. In general the ALE-DG solution does not satisfy the conditions

above. Therefore, the solution has to be revised by a postprocessing procedure.
Next, we prove that the TVD limiters of Cockburn and Shu revise the ALE-DG
solution such that the conditions (2.67) - (2.73) are satisfied. Let ũh be the ALE-
DG solution revised by a TVD limiter. Then, ũh satisfies for all j = 1, · · · , N the
conditions

(2.74) ũn,−
h,j+ 1

2

= m
(
un,−
h,j+ 1

2

− un
j ,�−u

n
j ,�+u

n
j

)
+ un

j

and

(2.75) ũn,+

h,j− 1
2

= un
j −m

(
un
j − un,+

h,j− 1
2

,�−u
n
j ,�+u

n
j

)
,

where the function m (·) is the minmod function for all a ∈ R
s given by

m (α1, · · · , αs) :=

{
σ min
1≤τ≤s

ατ , if σ = sgn (α1) = · · · = sign (αs) ,

0, else.

The following result indicates that the TVD limiters can be applied for the forward
Euler time discretization of the ALE-DG method.

Proposition 2.11. Let u0 ∈ BV (Ω)∩L1 (Ω) and ũh be the solution of the forward
Euler time discretization of the ALE-DG method revised by a conservative TVD
limiter, such that ũh satisfies (2.74) and (2.75). The initial data for the method
are the L2 projection of the function u0, the grid velocity satisfying the conditions
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(ω1), (ω2) as well as (ω3), the quantity h := max
t∈[tn,tn+1]

h (t) ∈ (0, 1) and the CFL

condition

(2.76)
�t

ρh
≤ 1

C0,1 + 4λ

being satisfied. Then, for all n = 0, . . . ,K,

|un
h|TVM ≤ |u0|BV(Ω) .

Proof. We prove that for the revised ALE-DG solution ũh the sum Θ + Ξω in
equation (2.66) becomes nonnegative. Therefore, we have to prove that ũh satisfies
the conditions (2.67) - (2.73). Since ũh satisfies the equations (2.74) and (2.75),
the conditions (2.70) - (2.73) are obviously fulfilled. Moreover, we obtain

ũn,−
h,j+ 1

2

− ũn,−
h,j− 1

2

= ũn,−
h,j+ 1

2

− un
j +�−u

n
j −
(
ũn,−
h,j− 1

2

− un
j−1

)
.

Since �−u
n
j = 0, the equations (2.74) and (2.75) imply that ũn,−

h,j+ 1
2

− ũn,−
h,j− 1

2

= 0.

Next, by the definition of the minmod function and (2.74) as well as (2.75) we
obtain

(2.77) 0 ≤

⎛⎝1−
ũn,−
h,j− 1

2

− un
j−1

�−u
n
j

+
ũn,−
h,j+ 1

2

− un
j

�−u
n
j

⎞⎠ ≤ 2

if �−u
n
j 	= 0. Hence, (2.68) is satisfied, since

ũn,−
h,j+ 1

2

− ũn,−
h,j− 1

2

=

⎛⎝1−
ũn,−
h,j− 1

2

− un
j−1

�−u
n
j

+
ũn,−
h,j+ 1

2

− un
j

�−u
n
j

⎞⎠�−u
n
j .

Likewise,

(2.78) 0 ≤

⎛⎝1−
un
j+1 − ũn,+

h,j+ 1
2

�+u
n
j

+
un
j − ũn,+

h,j− 1
2

�+u
n
j

⎞⎠ ≤ 2

if �+u
n
j 	= 0. Thus, the condition (2.69) can be proven similarly.

It remains to prove that condition (2.67) is satisfied. Note that rj,∓ − sj,∓=0
if �+u

n
j = 0. Therefore, in the following we assume that �+u

n
j 	= 0. Since ũh

satisfies the equations (2.74) as well as (2.75), by the mean value theorem, the
mesh regularity property (2.5), (2.77) and (2.78) we obtain

�t

�n+1
j+1

∣∣∣∣∣∣
ĝ+

(
ωj+ 1

2
, ũn,−

h,j+ 3
2

)
− ĝ+

(
ωj+ 1

2
, ũn,−

h,j+ 1
2

)
�+u

n
j

∣∣∣∣∣∣ ≤ 2λ�t

ρh

and

�t

�n+1
j

∣∣∣∣∣∣
ĝ−

(
ωj+ 1

2
, un,+

h,j+ 1
2

)
− ĝ−

(
ωj+ 1

2
, un,+

h,j− 1
2

)
�+u

n
j

∣∣∣∣∣∣ ≤ 2λ�t

ρh
.

In addition, the equations (2.74) and (2.75) yield∣∣∣∣aj+1,∓
�+u

n
j

∣∣∣∣ ≤ 1 and

∣∣∣∣ bj,∓
�+u

n
j

∣∣∣∣ ≤ 1.
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Thus, since the grid velocity satisfies the condition (ω3) and h ∈ (0, 1), by the mesh
regularity property (2.5) as well as (2.65) we obtain

1

2

�t

�n+1
j+1

∣∣∣∣(ωj+ 3
2
− ωj+ 1

2

) aj+1,∓
�+u

n
j

∣∣∣∣ ≤ C0,1�t

2ρh

and
1

2

�t

�n+1
j

∣∣∣∣(ωj+ 1
2
− ωj− 1

2

) bj,∓
�+u

n
j

∣∣∣∣ ≤ C0,1�t

2ρh
.

Therefore, the CFL condition (2.76) provides∣∣�+u
n
j

∣∣ ≥ �t

�n+1
j+1

∣∣∣ĝ+ (ωj+ 1
2
, ũn,−

h,j+ 3
2

)
− ĝ+

(
ωj+ 1

2
, ũn,−

h,j+ 1
2

)∣∣∣
+

�t

�n+1
j

∣∣∣ĝ− (ωj+ 1
2
, un,+

h,j+ 1
2

)
− ĝ−

(
ωj+ 1

2
, un,+

h,j− 1
2

)∣∣∣
+

1

2

�t

�n+1
j+1

∣∣∣(ωj+ 3
2
− ωj+ 1

2

)
aj+1,∓

∣∣∣+ 1

2

�t

�n+1
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∣∣∣ .(2.79)

Hence, the condition (2.67) is satisfied, since for all a, b ∈ R with |a| > |b| it follows
that sign (a) = sign (a− b). Since the TVD limiter is a conservative limiter, the
function uh evaluated in the semi-norm |·|TVM has the same value as the revised
function ũh evaluated in the same semi-norm. Therefore, by applying successively
the inequality resulting from the equation (2.66), we obtain

|un
h|TVM ≤

∣∣u0
h

∣∣
TVM

.

Since u0
h is the L2 projection of the function u0 ∈ BV (Ω), we obtain the result. �

To maintain the high order accuracy at local extrema, a TVB limiter has been
introduced (cf. [2, 5,27] and [6]). The TVB limiter based on the modified minmod
function

(2.80) m (α1, · · · , αs) :=

{
α1, if |α1| ≤ M̃

(
�n

j

)2
,

m (α1, · · · , αs) , else.

Selection options for the parameter M̃ have been discussed in [5]. Further, Cock-
burn and Shu have proven that the TVB limiter provides TVB stability and does
not affect the accuracy of the method. We have a similar result for the forward
Euler time discretization of the ALE-DG method with the TVB limiter.

Proposition 2.12. Let uh be the solution of the forward Euler time discretization
of the ALE-DG method and ũh be the solution of the method revised by a conser-
vative TVB limiter, such that ũh satisfies (2.74) and (2.75) for the function (2.80)
instead of the minmod function. Suppose for smooth solutions of (1.1) uh is a
(k + 1)-th order accurate approximation. Then under the same assumption as in
Proposition 2.11 it holds that for all n = 0, · · · ,K,

|un
h|TVM ≤ |u0|BV(Ω) + (4C0,1 + 16λ) M̃ |Ω|T,

where |Ω| denotes the Lebesgue measure of the set Ω and tK = T . Moreover, for
smooth solutions of (1.1) ũh is a (k + 1)-th order accurate approximation.

This result can be proven by similar arguments as in [27] and the last proof.
Therefore, we omit a proof in this paper.
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Table 3.1. Errors at time T = 0.1 for Burgers’ equation.

u− uS
h u− uS

h u− uM
h u− uM

h
N L∞ norm order L2 norm order L∞ norm order L2 norm order

10 4.34E-03 – 9.10E-04 – 4.74E-03 – 9.87E-04 –
P 2 20 7.53E-04 2.53 1.25E-04 2.86 8.10E-04 2.55 1.28E-04 2.95

40 1.14E-04 2.72 1.70E-05 2.88 1.25E-04 2.70 1.72E-05 2.90
80 1.60E-05 2.83 2.28E-06 2.90 1.76E-05 2.83 2.32E-06 2.89
160 2.13E-06 2.91 3.00E-07 2.93 2.36E-06 2.90 3.08E-08 2.91

P 3 10 5.55E-04 – 7.46E-05 – 5.10E-04 – 7.47E-05 –
20 4.16E-05 3.74 5.21E-06 3.84 3.58E-05 3.83 5.09E-06 3.88
40 3.12E-06 3.74 3.66E-07 3.83 2.71E-06 3.72 3.51E-07 3.86
80 2.11E-07 3.89 2.49E-08 3.88 1.83E-07 3.89 2.43E-08 3.85
160 1.37E-08 3.94 1.66E-09 3.91 1.19E-08 3.94 1.64E-09 3.89

3. Numerical experiments

In this section, we display the performance of the ALE-DG method. We adopt
TVD Runge-Kutta methods (cf. Gottlieb and Shu [11]) for the time discretization,
which are convex combinations of the forward Euler method. Thus, by an adequate
adjustment of the CFL condition, the results for the forward Euler discretization
can be extended to TVD Runge-Kutta methods.

Example 3.1 (Burgers’ equation).

We solve Burgers’ equation with periodic boundary condition:{
∂tu+ ∂x

(
u2

2

)
= 0, x ∈ [0, 1],

u(x, 0) = 1
4 + 1

2 sin(π(2x− 1)).

The exact solution is smooth at T = 0.1 and has a well developed shock at T = 0.4.
Here we choose the time step small enough to demonstrate the spatial error only.

To maintain the stability, the TVB limiter is used with the parameter M̃ = 20.
In Table 3.1 we compare the convergence history of the ALE-DG method by

using piecewise P 2 and P 3 polynomial elements with different cell numbers N
at T = 0.1 on the static uniform grid and the moving grid xj+ 1

2
(tn) = xj+ 1

2
(0) +

0.4 sin(tn)(xj+ 1
2
(0)−1)xj+ 1

2
(0) respectively. The moving grid starts from a uniform

grid initially, and we use uS
h and uM

h to denote the numerical solutions on the
static and moving grid respectively. It can be seen that numerically the optimal
convergence order can be obtained for both grids. Note that the ALE-DG method
on a static grid is the original DG method in [2, 5]. In Table 3.2 we show the
convergence of the ALE-DG scheme for both grids when the shock is developed.
With the help of the TVB limiter, the ALE-DG scheme is uniformly high order
in regions of smoothness. Moreover, in Figure 3.1 we compare the exact and the
ALE-DG solutions with N = 80 and k = 4 at time T = 0.4. It is shown that shocks
are captured in a few elements without production of spurious oscillations.

In Table 3.3 the convergence history of the ALE-DG method with different poly-
nomial degree k is displayed on the same static and moving grids with the cell
number N = 40 at time T = 0.1 and T = 0.4. We can see that the ALE-DG
method maintains the spectral convergence property of the DG method. This in-
dicates the efficiency of the ALE-DG method using polynomials of higher degree.
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Table 3.2. Errors in smooth regions Ω = {x : |x− shock| ≥ 0.1}
at time T = 0.4 for Burgers’ equation.

u− uS
h u− uS

h u− uM
h u− uM

h

N L∞ error order L2 error order L∞ error order L2 error order

10 5.81E-03 – 1.11E-03 – 1.72E-02 – 2.45E-03 –
P 2 20 1.75E-04 5.05 3.81E-05 4.86 8.61E-04 4.32 8.47E-05 4.85

40 2.41E-05 2.86 4.05E-06 3.23 3.26E-05 4.72 4.12E-06 4.36
80 3.33E-06 2.86 4.59E-07 3.14 4.58E-06 2.83 4.90E-07 3.07
160 4.37E-07 2.93 5.41E-08 3.08 6.09E-07 2.91 5.57E-08 3.14

P 3 10 2.26E-03 – 4.27E-04 – 5.39E-03 – 8.85E-04 –
20 9.99E-06 7.82 1.51E-06 8.14 1.83E-04 4.88 1.81E-05 5.61
40 8.40E-07 3.57 8.83E-08 4.10 1.25E-06 7.19 9.66E-08 7.55
80 6.19E-08 3.76 5.37E-09 4.04 9.52E-08 3.71 5.95E-09 4.02
160 4.17E-09 3.89 3.29E-10 4.03 6.49E-09 3.87 3.63E-10 4.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2
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0.2

0.4

0.6

0.8
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h

uexact

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2
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0.6

0.8

uM
h

uexac t

Figure 3.1. Comparison of the exact and the ALE-DG solutions
uS
h (top, on the static grid) and uM

h (bottom, on the moving grid)
with N = 80, k = 4 at time T = 0.4 .
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Table 3.3. L∞ errors at time T = 0.1 and T = 0.4 in a smooth
region for Burgers’ equation with N = 40.

T =0.1 T =0.4
k u− uS

h u− uM
h u− uS

h u− uM
h

1 1.89E-03 1.77E-03 7.21E-04 7.25E-04
2 1.14E-04 1.25E-04 2.41E-05 3.25E-05
3 3.12E-06 2.71E-06 8.40E-07 1.25E-06
4 1.21E-07 1.44E-07 3.33E-08 5.47E-08
5 4.25E-09 3.40E-09 1.30E-09 2.40E-09
6 1.53E-10 1.97E-10 5.36E-11 1.09E-10
7 3.98E-12 3.55E-12 2.42E-12 5.07E-12
8 1.38E-13 1.52E-13 1.45E-13 3.50E-13
9 7.88E-15 4.14E-14 1.61E-14 7.70E-14

Table 3.4. Errors of the ALE-DG solutions uM̃
h in smooth regions

at time T = 0.1 and T = 0.4 for Burgers’ equation.

T = 0.1 T = 0.1 T = 0.4 T = 0.4

N L∞ error order L2 error order L∞ error order L2 error order

10 4.46E-03 – 9.28E-04 – 5.76E-03 – 1.10E-03 –
P 2 20 7.61E-04 2.55 1.25E-04 2.89 1.76E-04 5.03 3.24E-05 5.09

40 1.14E-04 2.74 1.67E-05 2.90 2.41E-05 2.87 3.51E-06 3.21

80 1.60E-05 2.83 2.26E-06 2.89 3.33E-06 2.86 4.00E-07 3.13
160 2.43E-06 2.72 3.05E-07 2.89 4.37E-07 2.93 5.05E-08 2.99

P 3 10 5.10E-04 – 7.08E-05 – 2.02E-03 – 3.40E-04 –
20 3.58E-05 3.83 4.82E-06 3.88 9.78E-06 7.69 1.19E-06 8.16
40 2.71E-06 3.72 3.40E-07 3.83 8.15E-07 3.58 7.30E-08 4.03
80 1.83E-07 3.89 2.31E-08 3.88 6.19E-08 3.72 4.42E-09 4.05
160 1.18E-08 3.95 1.55E-09 3.90 4.17E-09 3.89 2.70E-10 4.03

In Table 3.4, we test the accuracy of the ALE-DG solutions uM̃
h on another

moving grid which does not satisfy the grid assumption (ω3). The grid is defined
as xj+ 1

2
(tn) = xj+ 1

2
(0) + 0.4 sin(tn)H(xj+ 1

2
(0)− 0.5)(xj+ 1

2
(0)− 1))xj+ 1

2
(0), where

H(x) is the Heaviside step function. The table shows the convergence history before
and after shock formulated at time T = 0.1 and T = 0.4 respectively. On this grid
the method can still maintain the accuracy in smooth regions.

Example 3.2 (Euler’s equations).

We consider Euler’s equations of gas dynamics for a polytropic gas:

∂tu+ ∂x

(
f(u)

)
= 0, x ∈ [0, 1],

u = (ρ,m,E)T , f(u) = vu+ (0, p, pv)T ,

with

p = (γ − 1)(E − 1

2
ρv2), m = ρv,
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Table 3.5. Errors of the density at time T = 1.2 for Euler’s equations.

ρ− ρSh ρ− ρSh ρ− ρMh ρ− ρMh
N L∞ norm order L2 norm order L∞ norm order L2 norm order

10 2.63E-03 – 9.95E-04 – 5.14E-03 – 1.48E-03 –
P 2 20 3.87E-04 2.77 1.42E-04 2.78 7.88E-04 2.70 2.20E-04 2.75

40 5.10E-05 2.92 1.87E-05 2.93 1.06E-04 2.89 2.94E-05 2.91
80 6.46E-06 2.98 2.38E-06 2.98 1.36E-05 2.96 3.75E-06 2.97
160 8.08E-07 3.00 2.98E-07 2.99 1.71E-06 2.99 4.71E-07 2.99

P 3 10 7.23E-05 – 1.92E-05 – 1.91E-04 – 3.60E-05 –
20 4.40E-06 4.04 1.07E-06 4.16 1.27E-05 3.90 1.97E-06 4.19
40 2.74E-07 4.01 6.65E-08 4.01 8.07E-07 3.98 1.15E-07 4.10
80 1.71E-08 4.00 4.14E-09 4.00 5.10E-08 3.98 6.99E-09 4.04
160 1.07E-09 4.00 2.59E-10 4.00 3.20E-09 3.99 4.30E-10 4.02

Table 3.6. L∞ errors at time T = 1.2 for Burgers’ equation and
Euler’s equations with constant solutions u = 1 and (ρ, v, p) =
(1, 1, 1).

u− uM
h ρ− ρMh

N P 2 P 3 P 2 P 3

10 4.44E-15 9.77E-15 4.44E-15 5.77E-15
20 9.99E-15 1.24E-14 5.77E-15 9.66E-15
40 1.24E-14 2.51E-14 9.55E-15 1.78E-14
80 2.22E-14 1.89E-14 1.77E-14 2.45E-14
160 2.80E-14 3.62E-14 3.24E-14 3.30E-14

where γ = 1.4 is used in the following computation. Two sets of initial conditions
are considered. One is a smooth function (plain wave)

(ρ, v, p) = (1 + 0.5 sin(2π(x− t)), 1, 1),

with periodic boundary condition. The other is a modified Sod shock tube problem
(Riemann problem) with left and right state:

(ρL, vL, pL) = (1, 0.75, 1), (ρR, vR, pR) = (0.125, 0, 1).

In Table 3.5 the convergence history of the density given by the ALE-DG method
with piecewise P 2 and P 3 polynomial elements is displayed at time T = 1.2, where
ρSh is the ALE-DG solution on the static uniform grid and ρMh is the ALE-DG
solution on the same moving grid as in the last test. We can see that the optimal
convergence order can be obtained numerically for both grids. In Figure 3.2 we
compare the exact and the ALE-DG solutions uS

h and uM
h on static and moving

grids with N = 200 and k = 4 at time T = 0.2. The TVB limiter is used with

M̃ = 20. It is shown that both solutions converge to the entropy solution and the
performance is similar.

In these numerical experiments we do not consider the methodology of how
to move the grid, but the scenario when the grid is chosen at two adjacent time
levels. These tests show that the ALE-DG method maintains the properties of
the DG method for static grids, such as uniformly high order accuracy and shock
capturing. Furthermore, Table 3.6 shows that the ALE-DG method satisfies the
geometric conservation law numerically as we proved.
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Figure 3.2. Comparison of the exact and the ALE-DG solutions
uS
h (left column, on the static grid) and uM

h (right column, on
the moving grid) for the modified Sod shock tube problem with

N = 200, k = 4 at time T = 0.2 and M̃ = 20.

4. Conclusions

In this paper, we developed an ALE-DG method that satisfies the geometric con-
servation law on moving grids using a time-dependent approximation space. We
began the paper with theoretical results by proving a cell entropy inequality and
L2 stability. We also gave error estimates for the ALE-DG method with monotone
numerical fluxes and an upwind flux separately. For the fully discrete scheme, the
geometric conservation law and the local maximum principle have been proven.
Moreover, for shock capturing, conditions for TVD/TVB limiter have been estab-
lished. Numerically, it has been shown that our ALE-DG method is uniformly high
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order accurate and shock capturing. In this paper, we have merely considered how
to develop the ALE-DG scheme after the grids are chosen at two adjacent time
levels. In future work, we will consider the methodology of how to move the grid
efficiently and combine it with our ALE-DG method. Also, the generalization of
the method to multidimensional problems is in preparation.
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