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A MODULAR APPROACH

TO CUBIC THUE-MAHLER EQUATIONS

DOHYEONG KIM

Abstract. Let h(x, y) be a non-degenerate binary cubic form with integral
coefficients, and let S be an arbitrary finite set of prime numbers. By a clas-
sical theorem of Mahler, there are only finitely many pairs of relatively prime
integers x, y such that h(x, y) is an S-unit. In the present paper, we reverse
a well-known argument, which seems to go back to Shafarevich, and use the
modularity of elliptic curves over Q to give upper bounds for the number of
solutions of such a Thue-Mahler equation. In addition, our methods give an

effective method for determining all solutions, and we use Cremona’s Elliptic
Curve Database to give a wide range of numerical examples.
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1. Introduction

Let h(x, y) be a non-degenerate cubic form with integer coefficients, and let S
be a finite set consisting of s distinct prime numbers, say p1, p2, · · · , ps. Then the
Thue-Mahler equation

h(x, y) = ±
s∏

i=1

peii(1.1)

has finitely many solutions among relatively prime integers x, y and non-negative
integers e1, e2, · · · , es. In geometric terms, if we denote by ZS the ring of S-integers,
and by Y the affine variety defined as the complement of zeros of h(x, y) in a
projective line, then the solutions of the above Thue-Mahler equation, modulo
the identification of (x, y) and (−x,−y), bijectively correspond to the elements of
Y (ZS).

Received by the editor June 9, 2015 and, in revised form, November 27, 2015.
2010 Mathematics Subject Classification. Primary 11D59, 11F11, 11Y50.

c©2016 American Mathematical Society

1435

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/3139


1436 DOHYEONG KIM

Mahler gave an ineffective proof of the finiteness of Y (ZS), and Coates [5], [6], [7]
later obtained an effective proof of the finiteness of Y (ZS) using Baker’s estimate
of linear forms in logarithms together with its p-adic analogues. However, explicit
determination of Y (ZS) based on Baker’s method is often practically impossible due
to the astronomical size of the resulting upper bound for the height of a putative
solution t ∈ Y (ZS).

The aim of the current article is to present a new approach to Thue-Mahler
equations. In order to compute Y (ZS), we design a descent procedure, which
mimics the Kummer homomorphism for rational points on elliptic curves. More
precisely, we will construct a natural map

κ : Y (ZS) −→ {elliptic curves over Q up to Q-isomorphism}(1.2)

t �−→ Xt

which associates an elliptic curve Xt to an unknown solution t ∈ Y (ZS), and study
local properties of Xt. In particular, we will show that Xt has good reduction
outside S, the discriminant of h(x, y), that is, outside the primes dividing this
discriminant, and 2. We note that in the current article, elliptic curves and iso-
morphisms between them will be defined over Q. The aforementioned knowledge
about the reduction types of Xt allows one to compute, without knowing elements
of Y (ZS), a finite set of isomorphism classes of elliptic curves which contains the
image of κ. On the other hand, for an elliptic curve E, we will show that κ−1(E) is
naturally a zero dimensional algebraic variety defined by explicit polynomials with
rational coefficients, whose Q-points correspond to t ∈ Y (ZS) equipped with an
isomorphism from Xt to E. In particular, one can numerically compute κ−1(E)
from the coefficients of a Weierstrass equation for E.

Existence of such a map κ first allows us to bound the cardinality of Y (ZS)
from above, in terms of the number of elliptic curves whose conductor belongs to
a finite list of integers, where the list of possible conductors is obtained from the
coefficients of h(x, y) and S. The number of such elliptic curves can be bounded
from above either using the work [4] of Brumer and Silverman or the modularity
of elliptic curves. The former has better asymptotics, while the latter provides a
practical algorithm.

Theorem 1.1. Let S be a finite set of primes containing 2 and prime divisors
of the discriminant of h(x, y). Let G(S) be the number of isomorphism classes of
elliptic curves which have good reduction outside S. Then we have∣∣Y (ZS)

∣∣ ≤ |AutQ(Y )| ×G(S).(1.3)

Combining it with an upper bound for G(S), due to Brumer and Silverman, we
have for every ε > 0, ∣∣Y (ZS)

∣∣ ≤ |AutQ(Y )| × k2M
1
2+ε(1.4)

where M is the product of all prime numbers in S, and k2 is a constant depending
on ε.

In fact, one can identify AutQ(Y ) with a subgroup of the symmetric group acting
on zeros of h(x, y), so it has at most six elements.

We would like to stress that our proof is manifestly constructive, which ultimately
relies on the modularity of elliptic curves defined over the rational numbers. More
precisely, we give an explicit characterisation of the fibres of κ which allows us to
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compute Y (ZS) from κ(Y (ZS)), and the modularity of elliptic curves provides a
constructive finiteness of κ(Y (ZS)). In order to show that our approach to compute
Y (ZS) works in practice, we append the tables with the complete sets of solutions
of the following equations:

h(x, y) S Table
x(x− y)y {2, 7, 11, 13} 8.1
x(x− y)y {2, 3, 431} 8.2
x(x− y)y {2, 3, 5, 53} 8.3
(x2 + 7y2)y {2, 3, 5, 7} 8.4
(x2 + 7y2)y {2, 7, 11, 13} 8.5
(x2 + 3y2)y {2, 3, 11} 8.6
2(x2 + y2)y {2, 3, 7, 11} 8.7
(x2 + y2)y {2, 5, 13} 8.8
(x2 − 2y2)y {2, 7, 29} 8.9
(x2 − 2y2)y {2, 7, 29} 8.10
(x2 − 3y2)y {2, 5, 7, 11} 8.11
(x2 − 7y2)y {2, 3, 7, 11} 8.12

x3 − x2y − 4xy2 − y3 {2, 5, 13} 8.13
x3 − x2y − 2xy2 − 2y3 {2, 5, 19} 8.14

x3 + y3 {2, 3, 5} 8.15
x3 + 2y3 {2, 3, 5} 8.16
x3 − y3 {2, 3, 5} 8.17
x3 − 2y3 {2, 3, 5} 8.18

(1.5)

Note that we omitted the trivial solution h(1, 0) = 1 in the appended tables, and
that Table 8.3 had to be abbreviated due to a large number of solutions.

The choices of h(x, y) and S in (1.5) had to be restricted according to our com-
putational capability, and the choices are made to show the flexibility that we have.
The main restriction comes from one’s ability to find the c4 and c6 invariants of
all elliptic curves whose conductor divides the worst possible conductor given in
Proposition 2.1. Other computational difficulties are negligible. Computational
issues are further discussed in Section 7.

When we computed the solutions of the equations listed above, we exploited
Cremona’s Elliptic Curve Database, from which we read the coefficients of elliptic
curves with a specified conductor. After that, we compute κ−1(E) for each curve
E read from the database. Of course, it is a highly non-trivial task to establish a
complete list of isomorphism classes of elliptic curves of a specified conductor, and
we are outsourcing this job to Cremona. We note that this job is computationally
infeasible without modularity, and even with modularity it takes significant further
efforts to obtain a practically efficient algorithm. Nevertheless, the absence of
modularity is the main theoretical and practical obstacle to generalising our method
to number fields. Once we have the coefficients of the necessary elliptic curves, then
it takes no more then 20 seconds to generate each of the tables listed above.

The spectacular resolution of Fermat’s Last Theorem by means of modular meth-
ods as well as [1], [2], [3] and [9] uses the level lowering argument in a crucial way,
which allows one to produce an obstruction to the existence of a solution by showing
that a particular space of modular forms is zero dimensional. In contrast, we will be
using the modularity theorem in order to produce a complete set of solutions for a
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given Thue-Mahler equation, without an a priori guess on the number of solutions.
In particular, we do not use any form of level lowering.

We outline the contents of the paper. In Section 2, we define κ and study basic
properties of the elliptic curve Xt associated to t ∈ Y (ZS). In Section 3, we study
κ−1(E) for an elliptic curve E given in terms of a Weierstrass equation. In Sec-
tion 4, we prove the main theorem on the upper bound of the cardinality of Y (ZS)
and compare our upper bound with Evertse’s upper bound. The proof is mani-
festly constructive, and it provides an algorithm to determine Y (ZS). We discuss
the algorithmic aspect in Section 5. In Section 6, we explain how the algorithm
is implemented in the computer algebra package and discuss its performance. We
also list the cardinalities of Y (ZS) as we vary S. In Section 7, we recall the work
of Tzanakis and de Weger, which proposed, based on Baker’s method and further
optimisations, a practical algorithm for Thue-Mahler equations, and we compare
the natures of the two approaches. In Section 8, we specialise h(x, y) in order to
explain the connection to generalised Ramanujan-Nagell equations. Some partic-
ular generalised Ramanujan-Nagell equations are solved, from which we observe a
pattern in the distribution of the cardinality of Y (ZS) as S varies.

2. Definition of κ and its properties

Consider a binary cubic form

h(x, y) = ax3 + bx2y + cxy2 + dy3(2.1)

with relatively prime integer coefficients. We assume that the discriminant

δ = 3b2c2 + 6abcd− 4b3d− 4ac3 − a2d2(2.2)

of h(x, y) is non-zero or equivalently that h(x, y) has three projectively non-
equivalent zeros over an extension of Q.

Let P1
xy be the projective line with homogeneous coordinates x and y. Let Z be

the subscheme of P1
xy defined by h(x, y) = 0, and let Y be the complement

Y = P1 − Z,(2.3)

which we view as an affine variety embedded in P1
xy. In particular, a point t in

Y (R) for some ring R will be represented as a pair (xt : yt) ∈ P1(R) such that
h(xt, yt) is a unit in R.

The aim of this section is to introduce the map κ which associates an elliptic
curve to a point in Y (R) and to study its basic properties. We will first construct
a generically smooth map from some affine scheme X to Y , and the elliptic curve
associated to a point from Y will be the fibre of the point under this map. The
associated elliptic curve is naturally equipped with additional structures, which we
will analyse in this section.

2.1. Coordinates of Y . Our definition of Y as an open subscheme of P1
xy endows

Y with homogeneous coordinates x and y, but we would like to introduce another

coordinate ε of Y , which makes our later discussion simpler. Consider Ỹ ⊂ A3
xyε,

defined by

Ỹ : h(x, y)ε = 1(2.4)
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where h(x, y) is the defining equation of Z = P1 − Y . Let Gm act on A3
xyε with

weight 1, 1, and −3. That is to say, for any ring R, λ ∈ R×, and (x, y, ε) ∈ A3
xyε(R),

the action of λ is given by

λ · (x, y, ε) =
(
λx, λy, λ−3ε

)
.(2.5)

Because the action preserves (2.4), one can consider the quotient Gm\Ỹ , which
is just Y . Indeed, x and y are homogeneous coordinates of degree one, defining

the embedding Gm\Ỹ → P1. The coordinate ε of Y is redundant, but it will be
convenient for later purposes.

2.2. Construction of the family f : X → Y . We describe f : X → Y in this

subsection. We will define X as a quotient of X̃, where X̃ is an affine subscheme

of A3
xyε × A3

uvw. The defining equations of X̃ are

h(x, y)ε = 1,(2.6)

ε · w2 = h(u, v)(yu− xv).(2.7)

Now we let Gm × Gm act on X̃ in the following way. If R is a ring, (λ, μ) ∈
Gm(R)×Gm(R), and (x, y, ε, u, v, w) ∈ X̃, then we define

(λ, μ) · (x, y, ε, u, v, w) = (λx, λy, λ−3ε, μu, μv, λ2μ2w).(2.8)

Since (2.6) and (2.7) are preserved by the action (2.8), we may define

X = Gm ×Gm\X̃.(2.9)

Furthermore, the projection X̃ → Ỹ descends to X → Y , which we denote by f .

Remark 2.1. Geometrically speaking, X parametrises the double covers of P1

branched along the divisor Z ∪ {t} of degree four, as t varies in Y . However,
this does not uniquely characterise X, since there is more than one such double
cover which is not isomorphic to another over Q.

Remark 2.2. When h(x, y) = x(x − y)y, Y can be identified with the affine line
without 0 and 1 by taking λ = x/y as an affine coordinate. Then, the equation

w2 = u(u− v)v(u− λv)(2.10)

defines the Legendre family of elliptic curves over Y . Our family X → Y of elliptic
curves in this case is represented by

(x(x− y)y2)−1w2 = u(u− v)v(u− λv),(2.11)

so one can view it as a quadratic twist of the original Legendre family by x(x−y)y2.
This relation between Legendre family and our X is available because of the affine
coordinate λ for Y . When h(x, y) has no rational linear factor, such an affine
coordinate is not available, whence the original Legendre family does not directly
generalise. It is the advantage of the twisted family (2.11) that it generalises to
general h(x, y).
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2.3. Properties of f : X → Y . In this subsection, we study basic properties of
f : X → Y . For some ring R and t = (xt : yt) ∈ Y (R), the elliptic curve Xt is
defined by the equation

Xt : ε · w2 = h(u, v)(ytu− xtv),(2.12)

which may be interpreted as a quadratic twist of

X ′
t : w

2 = h(u, v)(ytu− xtv)(2.13)

by ε, although X ′
t does not patch together to form a family of elliptic curves over Y .

In fact,X ′
t is not even well-defined on the projective equivalence class of t = (xt : yt),

and only its quadratic twist Xt is well-defined. In any case, we can compute the
discriminant of the right hand side of (2.13), as well as prove its properties.

Proposition 2.1. The discriminant of the right hand side of (2.13) is

h(xt, yt)
2 · δ(2.14)

where δ is the discriminant of h(x, y). Furthermore, we have:

(1) if t ∈ Y (ZS), then X ′
t has good reduction outside S and 2δ;

(2) if an odd prime p ∈ S is a prime of bad reduction for X ′
t and p does not

divide 2δ, then h(x, y) = 0 has at least one solution modulo p;
(3) if p does not divide 2δ, then X ′

t has either good or multiplicative reduction.

Proof. The formula (2.14) follows from the representation of the discriminant in
terms of differences of roots. Indeed, if P (x) is a polynomial of one variable with
roots α1, · · · , αn, then the discriminant δP of P (x) is∏

i<j

(αi − αj)
2.(2.15)

If P (x) = (x− β)Q(x) and αn = β, then the above formula can be rewritten∏
i<n

(β − αi)
2 ×

∏
i<j<n

(αi − αj)
2,(2.16)

which equals P1(β)
2 · δQ.

If t ∈ Y (ZS) and (xt : yt) is some representative of t, then X ′
t has good reduction

away from S and 2δ. Indeed, a double cover of P1 branched along four distinct
points is smooth away from characteristic two.

Suppose p ∈ S does not divide 2δ and X ′
t has bad reduction at p. Since p does

not divide δ, h(x, y) has three distinct roots modulo p. Thus X ′
t has bad reduction

if and only if t coincides with one of three zeroes of h(x, y). In particular, t is a
solution of h(x, y) = 0 modulo p.

Assume that p does not divide 2δ and X ′
t has bad reduction at p. Then the right

hand side of (2.13) cannot have a cubic factor, since such a factor will force h(x, y)
to have at least a square factor modulo p, contradicting the assumption. In other
words, X ′

t has either good or multiplicative reduction. This completes the proof of
the proposition. �
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For Xt, we can prove the following.

Proposition 2.2. With the notation as in the previous proposition, the discrimi-
nant of (2.12) is

h(xt, yt)
4δ.(2.17)

In particular, for any t ∈ Y (ZS), Xt has good reduction outside S and 2δ.

Proof. This follows immediately from Proposition 2.1 and the description of the
discriminant in terms of differences of roots. �

Remark 2.3. The dependence of X ′
t on the choice of representative (xt : yt) is not so

serious, as far as we work with rational numbers. We can always take (xt : yt) such
that xt and yt are relatively prime integers and xt is non-negative. If we work over
a number field which has either class number larger than 1 or units other than ±1,
this is not straightforward. Working with X ′

t has the advantage that the conductor
of X ′

t is usually smaller than Xt and it has in some sense finer information about
t than Xt does. On the other hand, Xt is associated in a natural way to t, and its
isomorphism class is independent of the choice of a representative (xt : yt) for t, so
it is technically more convenient.

3. Defining equations for the fibres of κ

In the previous section, we defined a map

κ : t �→ Xt(3.1)

which associates an elliptic curve Xt to a solution t ∈ Y (ZS). The aim of the
present section is to describe κ−1(E) as a variety defined by explicit polynomials.

3.1. Some invariant theory. We briefly review some basic invariant theory of
binary forms that is relevant for us. We start with invariants of binary quartic
forms.

Let

q = A0u
4 +A1uv

3 +A2u
2v2 +A3uv

3 +A4v
4(3.2)

be a generic binary quartic form in u, v, with coefficients Ai’s. We choose

I2 =
1

12
A2

2 −
1

4
A1A3 +A0A4,(3.3)

I3 =
1

216
A3

2 −
1

48
A1A2A3 +

1

16
A0A

2
3 +

1

16
A2

1A4 −
1

6
A0A2A4(3.4)

as generators for the ring of invariants of binary quartic forms. Note that they have
rational coefficients, and their degrees are two and three respectively.

In fact, these two invariants are algebraically independent; in other words, the
ring of invariants is isomorphic to the polynomial ring in two variables. To stress
the dependence of the invariants on the coefficients, we denote by q(A) the quartic
form with coefficients A = (A0, A1, A2, A3, A4) and denote their invariants by I2(A)
and I3(A) respectively.
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Proposition 3.1. Let q(A) and q(A′) be two binary quartic forms with rational
coefficients. They are linearly equivalent over Q if and only if there exists λ ∈ Q×

such that

I2(A) = λ2(A′),(3.5)

I3(A) = λ3(A′)(3.6)

hold.

Proof. Classical invariant theory. �

Now we consider the invariant theory of a pair of binary forms. Let

q(A,B) = (A0u+A1v)(B0u
3 +B1u

2v +B2uv
2 +B3v

3)(3.7)

be a product of a binary linear form and a binary cubic form, where A = (A0, A1)
and B = (B0, · · · , B3) denote the coefficients of a linear form and a cubic form
respectively. Two invariants

c4(A,B) =− 16(−A2
1B

2
1 + 3A2

1B0B2 +A0A1B1B2(3.8)

− A2
0B

2
2 − 9A0A1B0B3 + 3A2

0B1B3),

c6(A,B) =− 32(2A3
1B

3
1 − 9A3

1B0B1B2 − 3A0A
2
1B

2
1B2(3.9)

+ 18A0A
2
1B0B

2
2 − 3A2

0A1B1B
2
2 + 2A3

0B
3
2 + 27A3

1B
2
0B3

− 27A0A
2
1B0B1B3 + 18A2

0A1B
2
1B3

− 27A2
0A1B0B2B3 − 9A3

0B1B2B3 + 27A3
0B0B

2
3)

generate the ring of invariants.
We digress for a discussion on the relation between the above invariants and

invariants of an elliptic curve often used in the literature. If an elliptic curve E is
given by

E : y2 = x3 + a2x
2 + a4x+ a6,(3.10)

then

c4(E) =16a22 − 48a4,(3.11)

c6(E) =− 64a32 + 288a2a4 − 864a6(3.12)

are often called the c4-invariant and c6-invariant of E. If we take A0 = 0, A1 =
1, B0 = 1, B1 = a2, B2 = a4, and B4 = a6, then c4(A,B) and c6(A,B) are
precisely the c4-invariant and c6-invariant of the elliptic curve defined by (3.10).
The discriminant of (3.10) is given by

δ(E) = −16(−a22a
2
4 + 4a32a6 + 4a34 − 18a2a4a6 + 27a26),(3.13)

and it can be alternatively written as

δ(E) = 2633(c4(E)3 − c6(E)2) = 1728(c4(E)3 − c6(E)2).(3.14)

The discriminant of q(A,B) is, viewed as a single binary quartic form, equal to

δ(q(A,B)) =− (−B2
1B

2
2 + 4B0B

3
2 + 4B3

1B3 − 18B0B1B2B3 + 27B2
0B

2
3)

× (−A3
1B0 +A0A

2
1B1 −A2

0A1B2 +A3
0B3)

2.(3.15)
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If we take A0 = 0, A1 = 1, B0 = 1, B1 = a2, B2 = a4, and B4 = a6, then two
discriminants are related by

16 · δ(q(A,B)) = δ(E).(3.16)

The relation between c4, c6 and the previously introduced I2 and I3 is more
straightforward. Indeed, they are related by

c4(q(A,B)) =192 · I2(q(A,B))

=263 · I2(q(A,B)),(3.17)

c6(q(A,B)) =− 13824 · I3(q(A,B))

=− 2933 · I3(q(A,B)),(3.18)

where we view q(A,B) as a product of two forms on the left hand side, while on the
right hand side we view it as a single quartic form whose coefficients are quadratic
forms in Ai’s and Bi’s.

Now we return to the invariant theory of q(A,B).

Proposition 3.2. Let q(A,B) and q(A′, B′) be two binary quartic forms with fac-
torisation as a product of a linear and a cubic factor, and suppose that the coeffi-
cients A,A′, B and B′ are rational numbers. They are linearly equivalent over the
rational numbers if and only if there exists λ ∈ Q× such that

c4(q(A,B)) =λ4c4(q(A
′, B′)),(3.19)

c6(q(A,B)) =λ6c6(q(A
′, B′))(3.20)

hold.

Proof. Classical invariant theory. �

3.2. Faithfulness of descent. The overall strategy is to study t ∈ Y (ZS) in terms
of Xt. In other words, we consider the map

κ : t �→ Xt(3.21)

and try to use κ in order to compute Y (ZS). To realise this, we will show two key
properties of κ:

(1) κ is an n-to-1 map, where n is an explicit integer less than six.
(2) Given a Weierstrass equation of an elliptic curve E, one can compute

κ−1(E).

Let us consider the first property of κ. Let E be an elliptic curve. We would like to
count the number of t ∈ Y (ZS) for which Xt is isomorphic to E, where E is given
as a Weierstrass equation

E : y2 + a1y + a3 = x3 + a2x
2 + a4x+ a6(3.22)

with rational coefficients. On the other hand, Xt is defined by

εw2 = h(u, v)(yu− xv)(3.23)

where h(x, y)ε = 1. We rewrite Xt as

w2 = h(u, v)(yu− xv)h(x, y)(3.24)

and let

Q(x, y, h) = (yu− xv) · h(u, v)h(x, y)(3.25)
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be the associated joint quartic form in u and v. In fact, one could write Q(x, y, h) =
Q(t, h), in the sense that Q(λx, λy, h) is rationally equivalent to Q(x, y, h) for any
λ ∈ Q×. For simplicity of notation, let

c4(x, y, h) = c4(Q(x, y, h)),(3.26)

c6(x, y, h) = c6(Q(x, y, h))(3.27)

be the invariants of Q(x, y, h). The set of all t ∈ Y (ZS) for which Xt is isomorphic
to E is defined by the equations

c4(x, y, h) = λ4c4(E),(3.28)

c6(x, y, h) = λ6c6(E),(3.29)

where c4(x, y, h) and c6(x, y, h) are homogeneous polynomials of degree eight and
twelve in x, y, respectively. In fact, we can eliminate λ from the above two equations
to obtain

J24(x, y, h, E) := λ12
(
c6(E)2c4(x, y, h)

3 − c4(E)3c6(x, y, h)
2
)
,(3.30)

which factors as

J24(x, y, h, E) =λ12 · h(x, y)6 · J6(x, y, h, E),(3.31)

where J6(x, y, h, E) is the homogeneous polynomial of degree six in variables x and
y, characterised by the above equality.

Proposition 3.3. The set of points t ∈ Y (ZS) for which Xt is isomorphic to E is
in bijection with the projective equivalence classes of solutions of J6(x, y, h, E) = 0
such that (3.28) and (3.29) have a common solution in λ. In particular, this set
has cardinality at most six.

Proof. We first show that J6(x, y, h, E), viewed as a homogeneous polynomial in x
and y, is not identically zero for an elliptic curve E and a non-degenerate binary
cubic form h(x, y). We work with complex numbers, although any algebraically
closed field of characteristic zero suffices for our purpose. Let (xi, yi) with i =
1, 2, · · · , r be a sequence of non-equivalent complex zeros of J6(x, y, h, E). They
are precisely the values for which

Qi(xi, yi, h) = (yiu− xiv) · h(u, v)h(xi, yi)(3.32)

becomes equivalent to

QE := v(u3 + a4(E)uv2 + a6(E)v3)(3.33)

as joint binary quartic forms in u and v. Here, two joint forms Qi and QE are called
equivalent if there exists a linear change of variables over complex numbers which
transforms yiu−xiv into v up to multiplication by a non-zero scalar and transforms
h(u, v) into u3 + a4(E)uv2 + a6(E)v3 up to multiplication by a non-zero scalar. If
we look at how the linear change of variables acts on the points of a projective line
with the homogeneous coordinates u and v, then such an equivalence sends (xi : yi)
to (1 : 0) and the zeros of h(u, v) to those of u3+a4(E)uv2+a6(E)v3. Since E is an
elliptic curve, u3 + a4(E)uv2 + a6(E)v3 has three distinct zeros. Thus there are six
projective automorphisms of the projective line which send the zeros of h(u, v) to
those of u3 + a4(E)uv2 + a6(E)v3. Thus r is at most six, and J6(x, y, h, E) cannot
be identically zero.
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If t = (x : y)∈Y (ZS), then h(x, y) �= 0. By (3.31), the vanishing of J24(x, y, h, E)
is equivalent to that of J6(x, y, h, E). If, further, t is such that Xt is isomorphic to
E, then clearly (3.28) and (3.29) have a common solution. Conversely, J6(x, y, h, E)
vanishes for each solution t = (x : y) of (3.28) and (3.29). Thus such t together
with λ gives rise to Xt equipped with an isomorphism to E. This completes the
proof. �

Corollary 3.1. For a fixed elliptic curve E, the number of t ∈ Y (ZS) for which
Xt is isomorphic to E is at most the cardinality of AutQ(Y ).

Proof. This is implicit in the proof of Proposition 3.3, observing that the isomor-
phisms between h(u, v) and u3+a4(E)uv2+a6(E)v3 form a torsor for AutQ(Y ). �

Before we move on, we analyse the coefficients of J6(x, y, h, E). As we mentioned
earlier, it is homogeneous of degree six in x and y. With respect to the coefficients
of h(x, y), namely a, b, c, and d, it is homogeneous of degree six as well. In terms
of coefficients of E, it has degree twelve in the following sense. If we write E as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,(3.34)

then J6(x, y, h, E) is a polynomial in variables a1, a2, a3, a4 and a6. If we take
the degree of am to be m, then J6(x, y, h, E) is homogeneous of degree twelve in
a1, · · · , a6. More concretely, if we take a model of E for which a1 = a2 = a3 = 0,
then each term of J6(x, y, h, E), viewed as a polynomial in a4 and a6, is either a34
or a26. Based on this observation, we arrange

J6(x, y, h, E) =
6∑

i=0

(
C∗

i (h)a
3
4 +D∗

i (h)a
2
6

)
x6−iyi(3.35)

where C∗
i (h) and D∗

i (h) are homogeneous polynomials of degree six in a, b, c, and
d. In fact, all of them have a large integer factor, so we let

C∗
i (h) = 22233Ci(h) and D∗

i (h) = 22233Di(h)(3.36)

and give formulas for Ci(h) and Di(h):

C0(h) = (2c3 − 9bcd+ 27ad2)2,

D0(h) = −27(−c2 + 3bd)3,

C1(h) = −6(2c3 − 9bcd+ 27ad2)(−bc2 + 6b2d− 9acd),

D1(h) = −81(−bc+ 9ad)(−c2 + 3bd)2,

C2(h) = −3(b2c4 − 24ac5 + 18b3c2d+ 90abc3d− 108b4d2

+ 216ab2cd2 − 567a2c2d2 + 486a2bd3),

D2(h) = −81(−c2 + 3bd)(2b2c2 − 3ac3 − 3b3d− 9abcd+ 81a2d2),

C3(h) = −2(13b3c3 − 72abc4 − 72b4cd+ 567ab2c2d

− 432a2c3d− 432ab3d2 + 243a2bcd2 + 729a3d3),

D3(h) = −27(−bc+ 9ad)(7b2c2 − 18ac3 − 18b3d+ 36abcd+ 81a2d2),
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C4(h) = −3(b4c2 + 18ab2c3 − 108a2c4 − 24b5d+ 90ab3cd

+ 216a2bc2d− 567a2b2d2 + 486a3cd2),

D4(h) = −81(−b2 + 3ac)(2b2c2 − 3ac3 − 3b3d− 9abcd+ 81a2d2),

C5(h) = 6(b2c− 6ac2 + 9abd)(2b3 − 9abc+ 27a2d),

D5(h) = −81(−bc+ 9ad)(−b2 + 3ac)2,

C6(h) = (2b3 − 9abc+ 27a2d)2,

D6(h) = −27(−b2 + 3ac)3.

The above coefficients seem to have certain invariant theoretic meanings, but for
the purpose of the current article, we only need to regard J6(x, y, h, E) as a defining
equation of κ−1(E) given as explicitly as possible.

4. Main theorems

Now we are ready to state and prove our main theorems. Before we state our
result, recall that the strategy was to consider

κ : t �→ Xt(4.1)

and study t in terms of Xt. In the previous subsection, we focused on the analysis
of κ−1(E) for a fixed E. What remains is to consider the image of κ.

Among several approaches to analyse the image of κ, the common fundamental
property of κ is that Xt has good reduction outside 2δ and S. It is convenient to
introduce notation for the number of such curves.

Definition 4.1. Let N be a positive integer. Let g(N) be the number of isomor-
phism classes of elliptic curves whose conductor is N . For a finite set S of primes,
let

M =
∏
p∈S

p(4.2)

and let G(S) be the number of isomorphism classes of elliptic curves which have
good reduction outside S.

Theorem 4.1. Let ε be any positive real. Then there exist positive numbers k1, k2
depending only on ε, such that

g(N) < k1N
1
2+ε,(4.3)

G(S) < k2M
1
2+ε(4.4)

hold. If we assume (a part of) the BSD conjecture and the generalised Riemann
hypothesis for the elliptic curves y2 = x3 + n, n ∈ Z, then there exist constants k4
and k5 for which

G(S) < k4M
k5

log log M(4.5)

holds.

Proof. See Brumer and Silverman [4], Theorem 1 and Theorem 4. �
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As a corollary of the above theorem, we obtain a first, rather crude, upper bound
for the cardinality of Y (ZS).

Theorem 4.2. Assume that S contains 2 and prime divisors of δ. Then

|Y (ZS)| < |AutQ(Y )| ×G(S).(4.6)

In particular, we have for every real ε > 0,

|Y (ZS)| < |AutQ(Y )| × k2M
1
2+ε(4.7)

where M is the product of all prime numbers in S, and k2 is the number from
Theorem 4.1. Under the assumption of the generalised Riemann hypothesis and the
BSD conjecture for the curve y2 = x3 + n, we have

|Y (ZS)| < |AutQ(Y )| × k4M
k5

log log M ,(4.8)

where k4 and k5 are absolute constants.

Proof. The first assertion follows from Proposition 3.3 and Corollary 3.1. The
second follows from the first assertion combined with Theorem 4.1. �

Remark 4.1. In the course of deriving the above upper bound, we have forgotten all
information of Xt except the divisors of the conductors of Xt. Numerical computa-
tions indicate that the reduction types at the primes dividing 2δ take a particular
form, which will facilitate practical computations.

4.1. Comparison with Evertse’s bound. Evertse proved the following remark-
able upper bound.

Theorem 4.3. Let h(x, y) be an integral binary form of degree n ≥ 3 which is di-
visible by at least three pairwise linearly independent linear forms in some algebraic
number field. Let p1, p2, · · · , ps be a sequence of distinct primes. The equation

|h(x, y)| =
s∏

i=1

peii(4.9)

in relatively prime integers x, y and non-negative integers e1, e2, · · · , es has at most

2× 7n
3(2s+3)(4.10)

solutions. There is an analogous explicit upper bound for number fields.

Proof. See Corollary 2 of [10]. �

We note that under the additional assumption that h(x, y) is irreducible, Evertse
[11] obtained an upper bound (5 · 106 · n)s which is significantly better than (4.10)
as n grows. Since we are only treating the case n = 3, both upper bounds have the
same asymptotic growth in s.

As a direct consequence of Theorem 4.3, we obtain

|Y (ZS)| < 754s+81(4.11)

when s is the cardinality of S. Let us take S to be the set

S = {p : p < T}(4.12)
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of all primes up to a positive number T . Then by the prime number theorem
s is asymptotically T/ log T . Therefore, Evertse’s bound can be rewritten, in a
logarithmic scale, as

log |Y (ZS)| = O

(
T

log T

)
.(4.13)

On the other hand, the standard estimate shows that

logM =
∑
p<T

log p = O(T )(4.14)

and our unconditional upper bound of Theorem 4.1 becomes

log |Y (ZS)| = O (T ) .(4.15)

The conditional upper bound of Theorem 4.1 becomes

log |Y (ZS)| = O

(
logM

log logM

)
= O

(
T

log T

)
,(4.16)

which is comparable to Evertse’s.
Putting aside the comparisons between the upper bounds for the cardinalities

Y (ZS), we point out the crucial difference between our method and Evertse’s in
terms of effectiveness. Evertse’s upper bound is ineffective, in the sense that it
does not provide an algorithm to decide Y (ZS). In contrast, our proof is manifestly
constructive, especially if one combines it with modularity of elliptic curves. We
elaborate on the constructive aspects of our method in the next section.

5. Algorithmic aspects

In this subsection, we elaborate on the algorithmic aspects of our proof. Ef-
fectiveness of a proof of the finiteness of Y (ZS) can be formulated in at least two
ways:

(1) to have an explicit upper bound on the height of t ∈ Y (ZS) in terms of the
coefficients of h(x, y) and S,

(2) to have a procedure which enables one to determine Y (ZS), in a provably
finite amount of time, for a numerically given h(x, y) and S.

The first version of effectiveness implies the second. Indeed, if T is such a bound,
then factoring h(m,n) as m and n vary among all integers with absolute value at
most T , one can determine Y (ZS). In fact, Baker’s method in principle provides
such an upper bound. However, the efficiency of such a procedure depends on
the size of T , and the astronomical size of the numbers obtained from Baker’s
bound often prevents one from computing Y (ZS) in practice. Our method directly
provides the second version of effectiveness without an a priori upper bound for
height of t ∈ Y (ZS), and we shall describe the procedure as it is implemented in a
computer algebra package in order to generate tables of numerical examples.

Recall that the principal tool for us is the map

κ : t �→ Xt(5.1)

which associates an elliptic curve Xt to a putative solution t. Computation of
κ−1(E) amounts to solving polynomials in one variable, such as J6(x, y, h, E). In
particular, κ−1(E) can be effectively decided once the coefficients of E are known.
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Thus, what remains is to determine all possible elliptic curves E for which κ−1(E)
is possibly non-empty.

Theorem 5.1. For a finite set S of prime numbers, the coefficients of isomorphism
classes of elliptic curves which have good reduction outside S can be determined
algorithmically.

Proof. We give a brief description. For details, especially practical issues, we refer
to Cremona. Using the modularity theorem, one may compute the isogeny classes
of elliptic curves by means of modular forms. The space of modular forms can be
computed using modular symbols for example. For each isogeny class of elliptic
curves, one can decide the isomorphism classes of elliptic curves contained in it.
In fact, there are at most eight isomorphism classes in a fixed isogeny class, by a
theorem of Kenku [12]. �

This modular approach allows us, as a by-product, to obtain a new bound for
the cardinality of Y (ZS).

Theorem 5.2. Let S contain all prime divisors of 2δ. Let

M1 =
∏
p∈S

p2+dp(5.2)

where d2 = 6, d3 = 3, and dp = 0 for p ≥ 5. Let X0(M1) be the modular curve of
level Γ0(M1), and let g0(M1) be its genus. Then,

|Y (ZS)| < 8× |AutQ(Y )| × g0(M1).(5.3)

Note that g0(M1) < M1.

Proof. The dimension of space of cusp forms of weight two on X0(M1) is equal to
the genus of X0(M1). For each rational Hecke eigenform of weight two, there are
at most eight isomorphism classes of elliptic curves by Kenku’s theorem. For each
elliptic curve, there are at most |AutQ(Y )| elements of Y (ZS). Thus we obtain the
claimed bound. �
Remark 5.1. The above bound is clearly worse than previous ones, as g0(M1) is
roughly M1. Nevertheless, the proof of the above bound uses the modularity theo-
rem as its key ingredient, and it has little to do with estimation of number of points
on the curve y2 = x3 + n.

In order to compute Y (ZS) in practice, one has to first tabulate the elliptic
curves. By a tabulation of elliptic curves, we shall mean the table of isomorphism
classes of elliptic curves, represented in a Weierstrass equation, ordered by their
conductors. In a sense this step of tabulation is a pre-computation, which only
depends on the discriminant of h(x, y), and the table can be used again and again.

6. Numerical examples

We give numerical examples in this section. As explained before, the crucial step
in working out a numerical example is to tabulate elliptic curves with a specified
conductor. We avoid this step by relying on Cremona’s Elliptic Curve Database.
In particular, we assume the following throughout.

Hypothesis. Cremona’s Elliptic Curve Datebase is complete (i.e., no curve is
omitted) up to conductor 350, 000.
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We will compute Y (ZS) based on Cremona’s database. The completeness of the
list of the solutions depends on the truth of the hypothesis. More specifically, we
need a complete list of elliptic curves which has good reduction outside 2δ and S.

We give some justification for introducing the above hypothesis. If some elliptic
curves with conductor less than 350, 000 turn out to be omitted in Cremona’s table,
then it is possible that these new elliptic curves give rise to new solutions, which
are not listed in the present paper. Such corrections can always be made upon each
discovery, if any, of omitted elliptic curves. On the other hand, it is clearly beyond
the scope of the current work to check that the computer codes which were used to
generate Cremona’s table contain no bugs.

6.1. Implementation and performance. In this subsection, we explain how we
implement the algorithm into a computer algebra package and its performance.
What we do not compute is the necessary table of elliptic curves. We assume that
a list of elliptic curves of a specified conductor is already available.

In order to faithfully follow the proof of finiteness of Y (ZS), we should compute
a set of elliptic curves which contains κ(Y (ZS)) and compute κ−1(E) for each curve
E in the set. For example, one might choose to compute the set of elliptic curves
whose conductor divides M1 of (5.2). However, this is computationally inefficient
for the following reason. When we replace E by its quadratic twist, J6(x, y, h, E) is
replaced by its multiple. It follows that one has to solve the same polynomial 2s+1

times when s is the cardinality of S. It turns out that working with X ′
t we avoid

this problem of solving J6(x, y, h, E) repeatedly.
The following proposition tells us why it is possible to compute Y (ZS) using X ′

t

instead of Xt.

Proposition 6.1. Let E be an elliptic curve. There exists t ∈ Y (ZS) such that Xt

is isomorphic to a quadratic twist of E if and only if J6(x, y, h, E) has a rational
solution.

Proof. Recall that we proved that J6(x, y, h, E), (3.28), and (3.29) have a common
solution if and only if E is isomorphic to Xt itself, without a quadratic twist.
Hence, the “only if” part is obvious, and we are left to prove the “if” part of the
proposition. It suffices to show that given a solution of J6(x, y, h, E), one can find a
quadratic twist E′ of E such that J6(x, y, h, E

′), (3.28), and (3.29) have a common
solution.

In order to see that finding such a quadratic twist E′ is possible, recall that
J24(x, y, h, E) was defined by

J24(x, y, h, E) := λ12
(
c6(E)2c4(x, y, h)

3 − c4(E)3c6(x, y, h)
2
)
.(6.1)

Let E be given by the equation

E : y2 = x3 + a4x+ a6(6.2)

and let E′ be the quadratic twist

E′ : y2 = x3 + a4r
2x+ a6r

3(6.3)



A MODULAR APPROACH TO CUBIC THUE-MAHLER EQUATIONS 1451

of E by r. Then the formula for J24(x, y, h, E), together with the relations (3.11)
and (3.12), tells us that

J24(x, y, h, E
′) = r6 · J24(x, y, h, E).(6.4)

In particular, from factorisation (3.31), it follows that

J6(x, y, h, E
′) = r6 · J6(x, y, h, E′).(6.5)

So what remains is to find a value of r, for a given zero (x0, y0) of J6(x, y, h, E
′)

(or J6(x, y, h, E)), for which

c4(x0, y0, h) = λ4c4(E
′),(6.6)

c6(x0, y0, h) = λ6c6(E
′)(6.7)

have a rational solution in λ. The above equations are nothing but the equations
(3.28) and (3.29) written for E′. Solving for λ, we get

λ2 =
c6(x0, y0, h)

c4(x0, y0, h)
× c4(E

′)

c6(E′)

=
c6(x0, y0, h)

c4(x0, y0, h)
× c4(E)

c6(E)
× r−1,(6.8)

so one can take

r =
c6(x0, y0, h)

c4(x0, y0, h)
× c4(E)

c6(E)
(6.9)

in order to render (6.6) and (6.7) to have solution λ = ±1. The assertion of the
proposition is proved. �

Based on Proposition 6.1, we proceed as follows in order to compute Y (ZS). Sup-
pose we are given h(x, y) and S. From this, one can compute the list of conductors
of X ′

t for t ∈ Y (ZS), with negligible computational cost. Using Cremona’s Elliptic
Curve Database, we get a sequence of elliptic curves E1, E2, · · · , Ek, for some finite
k, where each Ei is given in a Weierstrass form. Now we compute rational solutions
of J6(x, y, h, Ei) for each Ei. If there is a solution, say xt and yt, then we proceed
to compute h(xt, yt) and double check that the result is correct.

As we observed before, the coefficients of J6(x, y, h, E) have a large common
factor when we start from an elliptic curve with a1 = a2 = a3 = 0. More precisely,
we may take

J ′
6(x, y, h, E) = 2−22 · 3−3 · J6(x, y, h, E)(6.10)

whose coefficients are still integral.
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We give three examples of h and present corresponding J ′
6(x, y, h, E) for a generic

elliptic curve

E : y2 = x3 + a4x+ a6.(6.11)

Take

h1(x, y) = x2y − xy2 = x(x− y)y,(6.12)

which corresponds to the unit equation. In this case,

J ′
6(x, y, h1, E) = (x− 2y)2(x+ y)2(2x− y)2a34 + 27(x2 − xy + y2)3a26,(6.13)

which has a particularly nice factorisation. In this case, the solutions (2, 1), (1,−1),
and (1, 2) for h1(x, y) = ±2a are clearly visible from the factors of coefficients of
a4, corresponding to curves with a6 = 0. As a less trivial example, we take

E960e6 : x
3 − x2 − 21345x− 1190943,(6.14)

which is the minimal Weierstrass equation for elliptic curve “960e6” in Cremona’s
database. We make a change of variables x �→ x+ 1/3,

E : y2 = x3 − 64036

3
x− 32347568

27
,(6.15)

for which

J ′
6(x, y, h1, E)

(6.16)

=− 64(3x− 128y)(3x+ 125y)(125x− 128y)(125x+ 3y)(128x− 125y)(128x− 3y),

and indeed (3, 128) belongs to Y (ZS) for S = {2, 3, 5}, because 128 = 27, and
128− 3 = 125 = 53. The other five factors correspond to orbits of AutQ(Y ).

As an example for which κ−1(E) has no rational point, we take

E960e5 : y
2 = x3 − x2 − 18465x+ 971937,(6.17)

which is the curve “960e5”, which is just next to the previous one. After a routine
change of variables x �→ x+ 1/3, we obtain

J ′
6(x, y, h1, E) =− 64(25x2 − 13874xy + 25y2)(25x2 + 13824xy − 13824y2)(6.18)

× (13824x2 − 13824xy − 25y2),

which is a product of three irreducible quadratic polynomials. It follows that there
is no solution t ∈ Y (ZS) with S = {2, 3, 5} for which X ′

t is isomorphic to E960e5.
Let us consider a different cubic form,

h2(x, y) = x2y + 7y3 = (x2 + 7y2)y,(6.19)

which corresponds to the Ramanujan-Nagell equation. In this case,

J ′
6(x, y, h2, E) = 2274y2(9x2 + 7y2)2a34 − 3373(3x2 − 7y2)3a26(6.20)
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has again a nice factorisation. Take

E210e1 : y
2 + xy = x3 + 210x+ 900,(6.21)

which is isomorphic to

y2 = x3 +
10079

48
x+

762481

864
(6.22)

for which

J ′
6(x, y, h2, E) =

7

1024
(45x− 47y)(45x+ 47y)(2048x2 − 14805xy + 113561y2)

(6.23)

× (2048x2 + 14805xy + 113561y2).

The solution (47, 45) corresponds to

h2(47, 45) = 737280

= 214 · 32 · 5,(6.24)

which is an element of Y (ZS) for S = {2, 3, 5}.
Finally, take

h3(x, y) = x3 − x2y − 4xy2 − y3(6.25)

whose discriminant is 132. In this case,

J ′
6(x, y, h3, E) = 132(5x3 + 21x2y + 6xy2 − 5y3)2a34 + 33133(x2 + xy + y2)3a26,

(6.26)

which shows that the coefficients of a34 in general have irreducible factor of degree
three. Of course, the squares and cubes in the coefficients are expected, as we have
defined J6(x, y, h, E) by (3.30) and (3.31).

In practice, the coefficients a4 and a6 are very large, so it is difficult to factor
J ′
6(x, y, h, E) manually. Nonetheless, using suitable computer algebra packages,

one can factor such polynomials rather quickly. The author’s experience shows
that SageMathCloud is able to factor roughly 200 polynomials per second.

Take h(x, y) = h1(x, y) as above, and take S = {2, 7, 11, 13}. Then we need
a table of elliptic curves whose conductor divides 28 · 7 · 11 · 13 = 256256. Since
256256 < 350000 we may use Cremona’s Elliptic Curve Database, from which we
get 940 such curves. From them, we get 51 solutions, as we display in Table 8.1. It
took 4.13 seconds in CPU time to generate Table 8.1. A typical box in the table
looks like

(xt, yt)
h(xt, yt)

Factorisation of h(xt, yt)
Cremona’s label

Factorisation of the conductor

(6.27)

with five items listed vertically.
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Let us take S = {2, 3, 5, 7} for h2(x, y). In this case, we need elliptic curves of the
conductor dividing 28 · 3 · 5 · 72 = 188160, which is smaller than 350000. Cremona’s
table contains 4568 such curves, from which we find 33 solutions. It took 20.09
seconds in CPU time to generate Table 8.4.

Let us take S = {2, 5, 13} for h3(x, y). In this case, we need elliptic curves
of the conductor dividing 28 · 5 · 132 = 216320, which is smaller than 350000.
Cremona’s table contains 976 such curves, from which we find 35 solutions. It took
4.20 seconds in CPU time to generate Table 8.13. Since we wrote a computer code
which computes the solutions with yt �= 0, the trivial solution h(1, 0) = 1 is omitted
from the table.

Remark 6.1. Repeated 6’s on the exponent of 2 in the conductors appearing in
Table 8.1 can be perhaps predicted by considering connected components in the
Neron model. On the other hand, as the 2 divides the discriminant of h2(x, y),
various exponents of 2 appear in Table 8.4. Although we ignored further analysis
of conductors of X ′

t at the primes dividing 2δ, such an analysis might help practical
computations.

6.2. Statistics for x(x− y)y. In this section, we fix

h(x, y) = x(x− y)y(6.28)

and vary S in a few directions. Let us begin with the case when

S = {2, p}(6.29)

consists of 2 and one more prime p. Cremona’s database allows us to compute
Y (ZS) if

28 · p < 350000(6.30)

or p ≤ 1367. It follows that except for p = 5, 7, 17, 31, 257, we have

Y (ZS) = Y (Z{2}) = {(2 : 1), (1 : −1), (1 : 2)}.(6.31)

In fact, this case is less interesting since computation of Y (ZS) reduces to

2m − pn = ±1,(6.32)

which is a special case of Catalan’s equation. Since Catalan’s conjecture is known,
solutions of the above equation necessarily satisfy n = 1, and Y (ZS) has more than
three elements if and only if p is a prime of the form 2m ± 1. Thus, we are merely
verifying Catalan’s conjecture.

As another example, take

S = {2, 3, p}(6.33)

consisting of 2, 3 and another prime p > 3. Since

350000

28 · 3 < 456(6.34)
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one can use Cremona’s database for primes p up to 449, which is the 87th prime
number. In the next table we display

p : m

as p varies among the primes from 5 to 449, and Y (ZS) has 3 + 6m solutions.

5 : 16 7 : 12 11 : 9 13 : 8 17 : 8 19 : 7 23 : 6 29 : 5 31 : 5
37 : 5 41 : 5 43 : 5 47 : 5 53 : 4 59 : 4 61 : 5 67 : 4 71 : 4
73 : 6 79 : 4 83 : 4 89 : 4 97 : 5 101 : 4 103 : 3 107 : 4 109 : 4
113 : 4 127 : 4 131 : 4 137 : 4 139 : 4 149 : 3 151 : 3 157 : 3 163 : 4
167 : 3 173 : 3 179 : 4 181 : 3 191 : 4 193 : 4 197 : 3 199 : 3 211 : 4
223 : 3 227 : 4 229 : 4 233 : 3 239 : 4 241 : 4 251 : 4 257 : 4 263 : 3
269 : 4 271 : 3 277 : 3 281 : 3 283 : 4 293 : 3 307 : 4 311 : 3 313 : 3
317 : 3 331 : 3 337 : 4 347 : 3 349 : 3 353 : 3 359 : 3 367 : 3 373 : 3
379 : 3 383 : 4 389 : 3 397 : 3 401 : 3 409 : 3 419 : 3 421 : 3 431 : 5
433 : 4 439 : 3 443 : 3 449 : 3 // // // // //

Note that for S = {2, 3}, Y (ZS) has 21 elements, so in particular m = 3. The above
table indicates that m stabilises around 3, with a notable exception for p = 431. It
is mainly due to a rather surprising identity 431 = 29 − 34.

Now we take

S = {2, 3, 5, p}(6.35)

where p is a prime number which does not exceed 89. Note that Y{2,3,5} contains
99 = 3 + 6 × 16 elements, so a trivial lower bound for m in this case is 16. Using
our algorithm, we obtain the following table:

7 : 62 11 : 46 13 : 44 17 : 37 19 : 37 23 : 35 29 : 31 31 : 30 37 : 30 41 : 30 43 : 28
47 : 26 53 : 28 59 : 25 61 : 26 67 : 26 71 : 25 73 : 25 79 : 25 83 : 25 89 : 23 //

It indicates that Y (ZS) steadily decreases as p increases, although it is unclear
whether it will reach m = 16 at some point. Note an exceptional increment at
p = 53, for which we record the solutions and associated Cremona label in Table 8.3.
In fact, the number of possible elliptic curves tends to decrease as p increases. For
example, if p = 7, there are 1688 curves, while the corresponding number is 1080
for p = 87.

One wonders whether one can improve the bound on the cardinality of Y (ZS),
as S varies among certain subsets of prime numbers with fixed cardinality, such as
S = S0 ∪ {p} with varying p.

7. Comparison with the work of Tzanakis and de Weger

There has been an attempt to explicitly solve Thue-Mahler equations by
Tzanakis and de Weger, based on linear forms in logarithms. Theoretical foun-
dations for the two approaches are quite different, and in this section we compare
the two from a practical point of view.

In our approach, the computation of κ−1(E) for a given E is easy. There is a
formula for J6(x, y, h, E) to which we plug in the coefficients of E, and the rational
solutions of J6(x, y, h, E) can be found quickly. On the other hand, finding all
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possible candidates for E is difficult, although the modularity of elliptic curves
significantly facilitates it. The upshot is that in our approach, the modularity of
elliptic curves reduces the determination of all possible elliptic curves to a single
linear algebra problem on the space of modular forms. One can model the space
of modular forms using the space of modular symbols. As Cremona explains in
Section 2 of his article [8], computation of modular symbols of a given level can be
done rather quickly. On this Q-vector space of modular symbols, whose dimension
is quite large, one has to find all one-dimensional Hecke invariant rational subspaces
and compute sufficiently many Hecke eigenvalues in order to find approximated c4
and c6 invariants of a curve in the corresponding isogeny class. Given an isogeny
class, it is not so difficult to determine all isomorphism classes which belong to it.
To summarise, this linear algebra problem on a huge space of modular symbols
seems to lie at the bottleneck of our process.

The approach of Tzanakis and de Weger, as explained in the introduction of [14],
consists of three steps. The first is to obtain large bounds from an estimation of
linear forms in logarithms of possibly irrational algebraic numbers. The second is
to reduce the large bounds using the LLL lattice basis reduction algorithm. The
last step is to search for solutions below the bound, not by brute force, but by
using an algorithm to search for lattice points on a given sphere, a sieving process,
and enumeration of possibilities. The authors remark that the third process might
well be the computational bottleneck for their process. They worked out the two
following concrete examples:

x3 − 23x2y + 5xy2 + 24y3 = ±2e13e25e37e4 , δ = 52 · 44621,(7.1)

x3 − 3xy2 − y3 = ±3e117e219e3 , δ = 34,(7.2)

using their method. In order to solve the above equations using our method, we
need elliptic curves with conductors dividing 28 · 3 · 52 · 7 · 446212 > 5 × 1013 and
28 · 35 · 17 · 19 > 2× 107, which are not provided by Cremona’s database.

We observe that the tools of our method have little to do with those of Tzanakis
and de Weger. The computational bottlenecks of the two approaches are different:
ours is in linear algebra while theirs (seems to) be in the geometry of numbers. As
we vary h(x, y), we observe another difference. The computations we need to carry
out are mostly insensitive to h(x, y) except for the discriminant and S. Once the
database of elliptic curves is established one can use the same data for a different
h(x, y). The computations of Tzanakis and de Weger depend on the specific S-unit
equation which is sensitive to a chosen zero of h(x, y).

8. Generalised Ramanujan-Nagell equations

The goal of the current section is twofold. Firstly, we shall consider a special
form of h(x, y) and determine Y (ZS), from which we deduce the complete set of
solutions of certain generalised Ramanujan-Nagell equations. Secondly, we shall
analyse the statistical behaviour as we vary S as h(x, y) remains fixed.

The equation

x2 + 7 = 2n(8.1)

for integers x and n is often called the Ramanujan-Nagell equation in the literature.
One can relate it to the Thue-Mahler equation, since if we take

h(x, y) = (x2 + dy2)y,(8.2)
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then the solution (x, n) = (x0, n0) of the Ramanujan-Nagell equation leads to the
point (x, y) = (x0, 1) ∈ Y (ZS) for d = 7 and S = {2}. Conversely we can recover
the solutions of the Ramanujan-Nagell equation by computing Y (ZS). Thus one
may consider Thue-Mahler equations for (8.2) as a generalisation of the Ramanujan-
Nagell equation with h(x, y) as in (8.2).

In Table 8.4, we display the elements of Y (ZS) for d = 7 and S = {2, 3, 5, 7},
from which we conclude that

x2 + 7 = 2e13e25e37e4(8.3)

with positive x has seven solutions corresponding to x = 181, 21, 11, 7, 5, 3 and 1.
In Table 8.5, we find that

x2 + 7 = 2e17e211e313e4(8.4)

in positive x has fourteen solutions corresponding to x = 273, 181, 75, 53, 35, 31,
21, 13, 11, 9, 7, 5, 3, and 1.

For d = −7 and S = {2, 5, 7, 11}, Table 8.12 shows that we have particularly
few solutions. Indeed Y (ZS) has five elements, among which three elements satisfy
y = 1. In particular,

x2 − 7 = 2e15e27e311e4(8.5)

has only one solution x = 3 among positive integers.
As we vary S for a fixed d, such that −d is not a square, we observe a pattern

which we describe now. The pattern seems to persist for any such d, but let us take
d = 1 for clarity. In particular, we consider

h(x, y) = (x2 + y2)y(8.6)

in the rest of the present section.
Take S = {2, p}, for a prime p ≥ 3. Let the cardinality of Y (Z{2,p}) be m. We

shall divide it into two cases, depending on whether or not −1 is a quadratic residue
modulo p, and compare the variation of m. Note that Y (Z{2}) has three elements
corresponding to x = 0, 1 and −1. The table below lists

p : m

in the range of p for which −1 is a quadratic residue, and p ≤ 113:

5 : 15 13 : 9 17 : 9 29 : 7 37 : 5 41 : 7 53 : 5
61 : 5 73 : 5 89 : 5 97 : 5 101 : 5 109 : 3 113 : 7

(8.7)

On the other hand, we observe that

Y (Z{2,p}) = Y (Z{2})(8.8)

if −1 is quadratic non-residue modulo p and p ≤ 113.
The different behaviour of the cardinality of Y (ZS) continues when we take

S = {2, 3, p}. We can numerically verify that

Y (Z{2,3,p}) = Y (Z{2})(8.9)
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if −1 is quadratic non-residue modulo p and p < 455. In contrast, if −1 is a
quadratic residue modulo p and p < 455, then Y (Z{2,3,p}) is strictly larger than
Y (Z{2}) all the time. For instance, for p = 449,

(132 + 272) · 27 = 24246 = 3 · 33 · 449(8.10)

is associated to the curve “172416o1”, and similarly for p = 433,

(172 + 122) · 12 = 5196 = 24 · 3 · 433(8.11)

is associated to the curve “20784e2”. The numerical data suggests that the cardi-
nality of Y (Z{2,3,p}) is exactly five for most of p.

Now we take S = {2, 5, p}. Note that Y (Z{2,5}) consists of fifteen elements.
Based on the previous observation, one might conjecture that Y (Z{2,5,p}) consists
of fifteen elements if −1 is a quadratic non-residue module p. However, there is a
counterexample for p = 139. Indeed, one finds that

(292 + 2782) · 278 = 2 · 57 · 139,(8.12)

which is associated to the curve “11120e2”. Among the primes 5 < p ≤ 271 for
which −1 is a quadratic non-residue, we verify that

Y (Z{2,5,p}) = Y (Z{2,5})(8.13)

holds except p = 7, 11, 19, 31, 79, 139, 191. In these exceptional cases, Y (Z{2,5,p})−
Y (Z{2,5}) contains four elements when p = 7, 11, and two elements in the remaining
five cases. In contrast, if we take S = {2, 5, p} for a prime p for which −1 is a
quadratic residue, then Y (Z{2,5,p}) is strictly larger than Y (Z{2,5}), in the range
5 < p ≤ 271. The smallest cardinality of Y (Z{2,5,p}) is seventeen, which happens
precisely for p = 241. Up to sign of xt there is a unique element of Y (Z{2,5,241})
which does not belong to Y (Z{2,5}), which is

(152 + 42)4 = 964 = 22 · 241(8.14)

associated to the curve “15424d2”.
We conclude by formulating a precise question based on our observation. Let S0

be a fixed set of primes. For a positive real number X and i ∈ {1, 3}, let πi(X) be
the number of primes p less than X which are congruent to i modulo 4. Define

A1(S0) = lim inf
X→∞

1

π1(X)

⎛
⎝ ∑

p<X,p≡1(mod 4)

∣∣Y (ZS0∪{p})
∣∣
⎞
⎠(8.15)

and

A3(S0) = lim sup
X→∞

1

π3(X)

⎛
⎝ ∑

p<X,p≡3(mod 4)

∣∣Y (ZS0∪{p})
∣∣
⎞
⎠ .(8.16)

One might speculate that A1({2}) = 5 and A3({2}) = 3. To be on the conservative
side, one might ask whether

A1(S0) > A3(S0)(8.17)

holds. The author is not able to show that

A1(S0) ≥ A3(S0)(8.18)

holds for any particular S0.
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Table 8.1. (a, b, c, d) = (0, 1,−1, 0), δ = 1, S = {2, 7, 11, 13}

(−343, 169)
29679104

29 · 73 · 132
5824bd2
26 · 7 · 13

(−169, 7)
208208

24 · 7 · 11 · 132
64064a2

26 · 7 · 11 · 13

(−169, 343)
29679104

29 · 73 · 132
5824bd2
26 · 7 · 13

(−121, 7)
108416

27 · 7 · 112
4928h2

26 · 7 · 11

(−64, 13)
64064

26 · 7 · 11 · 13
64064k2

26 · 7 · 11 · 13
(−13, 1)

182
2 · 7 · 13
5824b2

26 · 7 · 13

(−13, 64)
64064

26 · 7 · 11 · 13
64064k2

26 · 7 · 11 · 13

(−11, 2)
286

2 · 11 · 13
9152bd2
26 · 11 · 13

(−7, 1)
56

23 · 7
448b2
26 · 7

(−7, 4)
308

22 · 7 · 11
4928m2
26 · 7 · 11

(−7, 121)
108416

27 · 7 · 112
4928h2

26 · 7 · 11

(−7, 169)
208208

24 · 7 · 11 · 132
64064a2

26 · 7 · 11 · 13

(−4, 7)
308

22 · 7 · 11
4928m2
26 · 7 · 11

(−2, 11)
286

2 · 11 · 13
9152bd2
26 · 11 · 13

(−1, 1)
2
2

256c2
28

(−1, 7)
56

23 · 7
448b2
26 · 7

(−1, 13)
182

2 · 7 · 13
5824b2

26 · 7 · 13

(1, 2)
−2

−1 · 2
256c2
28

(1, 8)
−56

−1 · 23 · 7
448b2
26 · 7

(1, 14)
−182

−1 · 2 · 7 · 13
5824b2

26 · 7 · 13
(2, 1)
2
2

256c2
28

(2, 13)
−286

−1 · 2 · 11 · 13
9152bd2
26 · 11 · 13

(4, 11)
−308

−1 · 22 · 7 · 11
4928m2
26 · 7 · 11

(7, 8)
−56

−1 · 23 · 7
448b2
26 · 7

(7, 11)
−308

−1 · 22 · 7 · 11
4928m2
26 · 7 · 11

(7, 128)
−108416

−1 · 27 · 7 · 112
4928h2

26 · 7 · 11

(7, 176)
−208208

−1 · 24 · 7 · 11 · 132
64064a2

26 · 7 · 11 · 13

(8, 1)
56

23 · 7
448b2
26 · 7

(8, 7)
56

23 · 7
448b2
26 · 7

(11, 4)
308

22 · 7 · 11
4928m2
26 · 7 · 11

(11, 7)
308

22 · 7 · 11
4928m2
26 · 7 · 11

(11, 13)
−286

−1 · 2 · 11 · 13
9152bd2
26 · 11 · 13

(13, 2)
286

2 · 11 · 13
9152bd2
26 · 11 · 13

(13, 11)
286

2 · 11 · 13
9152bd2
26 · 11 · 13

(13, 14)
−182

−1 · 2 · 7 · 13
5824b2

26 · 7 · 13
(13, 77)
−64064

−1 · 26 · 7 · 11 · 13
64064k2

26 · 7 · 11 · 13

(14, 1)
182

2 · 7 · 13
5824b2

26 · 7 · 13

(14, 13)
182

2 · 7 · 13
5824b2

26 · 7 · 13

(64, 77)
−64064

−1 · 26 · 7 · 11 · 13
64064k2

26 · 7 · 11 · 13

(77, 13)
64064

26 · 7 · 11 · 13
64064k2

26 · 7 · 11 · 13
(77, 64)
64064

26 · 7 · 11 · 13
64064k2

26 · 7 · 11 · 13

(121, 128)
−108416

−1 · 27 · 7 · 112
4928h2

26 · 7 · 11

(128, 7)
108416

27 · 7 · 112
4928h2

26 · 7 · 11

(128, 121)
108416

27 · 7 · 112
4928h2

26 · 7 · 11

(169, 176)
−208208

−1 · 24 · 7 · 11 · 132
64064a2

26 · 7 · 11 · 13
(169, 512)
−29679104

−1 · 29 · 73 · 132
5824bd2
26 · 7 · 13

(176, 7)
208208

24 · 7 · 11 · 132
64064a2

26 · 7 · 11 · 13

(176, 169)
208208

24 · 7 · 11 · 132
64064a2

26 · 7 · 11 · 13

(343, 512)
−29679104

−1 · 29 · 73 · 132
5824bd2
26 · 7 · 13

(512, 169)
29679104

29 · 73 · 132
5824bd2
26 · 7 · 13

(512, 343)
29679104

29 · 73 · 132
5824bd2
26 · 7 · 13

empty empty empty empty
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Table 8.2. (a, b, c, d) = (0, 1,−1, 0), δ = 1, S = {2, 3, 431}

(−431, 1)
186192

24 · 33 · 431
82752bd2
26 · 3 · 431

(−431, 81)
17874432

29 · 34 · 431
82752t2

26 · 3 · 431

(−81, 431)
17874432

29 · 34 · 431
82752t2

26 · 3 · 431

(−8, 1)
72

23 · 32
192c3
26 · 3

(−3, 1)
12

22 · 3
192d2
26 · 3

(−2, 1)
6

2 · 3
192b2
26 · 3

(−1, 1)
2
2

256c2
28

(−1, 2)
6

2 · 3
192b2
26 · 3

(−1, 3)
12

22 · 3
192d2
26 · 3

(−1, 8)
72

23 · 32
192c3
26 · 3

(−1, 431)
186192

24 · 33 · 431
82752bd2
26 · 3 · 431

(1, 2)
−2

−1 · 2
256c2
28

(1, 3)
−6

−1 · 2 · 3
192b2
26 · 3

(1, 4)
−12

−1 · 22 · 3
192d2
26 · 3

(1, 9)
−72

−1 · 23 · 32
192c3
26 · 3

(1, 432)
−186192

−1 · 24 · 33 · 431
82752bd2
26 · 3 · 431

(2, 1)
2
2

256c2
28

(2, 3)
−6

−1 · 2 · 3
192b2
26 · 3

(3, 1)
6

2 · 3
192b2
26 · 3

(3, 2)
6

2 · 3
192b2
26 · 3

(3, 4)
−12

−1 · 22 · 3
192d2
26 · 3

(4, 1)
12

22 · 3
192d2
26 · 3

(4, 3)
12

22 · 3
192d2
26 · 3

(8, 9)
−72

−1 · 23 · 32
192c3
26 · 3

(9, 1)
72

23 · 32
192c3
26 · 3

(9, 8)
72

23 · 32
192c3
26 · 3

(81, 512)
−17874432

−1 · 29 · 34 · 431
82752t2

26 · 3 · 431

(431, 432)
−186192

−1 · 24 · 33 · 431
82752bd2
26 · 3 · 431

(431, 512)
−17874432

−1 · 29 · 34 · 431
82752t2

26 · 3 · 431

(432, 1)
186192

24 · 33 · 431
82752bd2
26 · 3 · 431

(432, 431)
186192

24 · 33 · 431
82752bd2
26 · 3 · 431

(512, 81)
17874432

29 · 34 · 431
82752t2

26 · 3 · 431

(512, 431)
17874432

29 · 34 · 431
82752t2

26 · 3 · 431

empty empty empty
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Table 8.3. (a, b, c, d) = (0, 1,−1, 0), δ = 1, S = {2, 3, 5, 53}

(−6561, 64)
50880cd2

(−3072, 53)
50880bq2

(−256, 9)
50880y2

(−159, 1)
50880bx2

(−125, 3)
960e6

(−81, 25)
50880bw2

(−80, 1)
960g5

(−75, 53)
50880dz2

(−72, 53)
50880bv2

(−64, 6561)
50880cd2

(−53, 1)
10176f2

(−53, 27)
50880s2

(−53, 72)
50880bv2

(−53, 75)
50880dz2

(−53, 3072)
50880bq2

(−50, 3)
50880cw2

(−48, 5)
50880bt2

(−45, 8)
50880ea2

(−27, 5)
960o2

(−27, 53)
50880s2

(−25, 2)
960d2

(−25, 81)
50880bw2

(−24, 1)
960b3

(−16, 9)
960g3

(−15, 1)
960i2

(−9, 1)
960j2

(−9, 16)
960g3

(−9, 256)
50880y2

(−8, 1)
192c3

(−8, 45)
50880ea2

(−5, 1)
960f2

(−5, 3)
960c2

(−5, 4)
960l2

(−5, 27)
960o2

(−5, 48)
50880bt2

(−4, 1)
320b2

(−4, 5)
960l2

(−3, 1)
192d2

(−3, 2)
960n2

(−3, 5)
960c2

(−3, 50)
50880cw2

(−3, 125)
960e6

(−2, 1)
192b2

(−2, 3)
960n2

(−2, 25)
960d2

(−1, 1)
256c2

(−1, 2)
192b2

(−1, 3)
192d2

(−1, 4)
320b2

(−1, 5)
960f2

(−1, 8)
192c3

(−1, 9)
960j2

(−1, 15)
960i2

(−1, 24)
960b3

(−1, 53)
10176f2

(−1, 80)
960g5

(−1, 159)
50880bx2

(1, 2)
256c2

(1, 3)
192b2

(1, 4)
192d2

(1, 5)
320b2

(1, 6)
960f2

(1, 9)
192c3

(1, 10)
960j2

(1, 16)
960i2

(1, 25)
960b3

(1, 54)
10176f2

(1, 81)
960g5

(1, 160)
50880bx2

(2, 1)
256c2

(2, 3)
192b2

(2, 5)
960n2

(2, 27)
960d2

(3, 1)
192b2

(3, 2)
192b2

(3, 4)
192d2

(3, 5)
960n2

(3, 8)
960c2

(3, 53)
50880cw2

(3, 128)
960e6

(4, 1)
192d2

(4, 3)
192d2

(4, 5)
320b2

(4, 9)
960l2

(5, 1)
320b2

(5, 2)
960n2

(5, 3)
960n2

(5, 4)
320b2

(5, 6)
960f2

(5, 8)
960c2

(5, 9)
960l2

(5, 32)
960o2

(5, 53)
50880bt2

(6, 1)
960f2

(6, 5)
960f2

(8, 3)
960c2

(8, 5)
960c2

(8, 9)
192c3

(8, 53)
50880ea2

(9, 1)
192c3

(9, 4)
960l2

(9, 5)
960l2

(9, 8)
192c3

(9, 10)
960j2

(9, 25)
960g3

(9, 265)
50880y2

(10, 1)
960j2

(10, 9)
960j2

(15, 16)
960i2

(16, 1)
960i2

(16, 15)
960i2

(16, 25)
960g3

(24, 25)
960b3

(25, 1)
960b3

(25, 9)
960g3

(25, 16)
960g3

(25, 24)
960b3

(25, 27)
960d2

(25, 106)
50880bw2

(27, 2)
960d2

(27, 25)
960d2

(27, 32)
960o2

(27, 80)
50880s2

(32, 5)
960o2

(32, 27)
960o2

(45, 53)
50880ea2

(48, 53)
50880bt2

(50, 53)
50880cw2

(53, 3)
50880cw2

(53, 5)
50880bt2

(53, 8)
50880ea2

(53, 45)
50880ea2

(53, 48)
50880bt2

(53, 50)
50880cw2

(53, 54)
10176f2

(53, 80)
50880s2

(53, 125)
50880bv2

(53, 128)
50880dz2

(53, 3125)
50880bq2

(54, 1)
10176f2

(54, 53)
10176f2

(64, 6625)
50880cd2

(72, 125)
50880bv2

(75, 128)
50880dz2

(80, 27)
50880s2

(80, 53)
50880s2

(80, 81)
960g5

(81, 1)
960g5

(81, 80)
960g5

(81, 106)
50880bw2

(106, 25)
50880bw2

(106, 81)
50880bw2

(125, 53)
50880bv2

(125, 72)
50880bv2

(125, 128)
960e6

(128, 3)
960e6

(128, 53)
50880dz2

(128, 75)
50880dz2

(128, 125)
960e6

(159, 160)
50880bx2

(160, 1)
50880bx2

(160, 159)
50880bx2

(256, 265)
50880y2

(265, 9)
50880y2

(265, 256)
50880y2

(3072, 3125)
50880bq2

(3125, 53)
50880bq2

(3125, 3072)
50880bq2

(6561, 6625)
50880cd2

(6625, 64)
50880cd2

(6625, 6561)
50880cd2

empty empty empty
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Table 8.4. (a, b, c, d) = (0, 1, 0, 7), δ = −1 · 22 · 7, S = {2, 3, 5, 7}

(−181, 1)
32768
215

3136y5
26 · 72

(−119, 5)
71680

211 · 5 · 7
15680v1
26 · 5 · 72

(−47, 45)
737280

214 · 32 · 5
210e1

2 · 3 · 5 · 7

(−35, 9)
16128

28 · 32 · 7
294g1
2 · 3 · 72

(−31, 3)
3072
210 · 3
9408p1
26 · 3 · 72

(−21, 1)
448
26 · 7
3136r3
26 · 72

(−13, 7)
3584
29 · 7
14a1
2 · 7

(−11, 1)
128
27

3136k1
26 · 72

(−9, 5)
1280
28 · 5
70a1
2 · 5 · 7

(−7, 1)
56

23 · 7
3136h1
26 · 72

(−7, 3)
336

24 · 3 · 7
2352g1
24 · 3 · 72

(−7, 5)
1120

25 · 5 · 7
3920o1
24 · 5 · 72

(−5, 1)
32
25

3136bb1
26 · 72

(−3, 1)
16
24

112b1
24 · 7

(−1, 1)
8
23

224a1
25 · 7

(−1, 3)
192
26 · 3
21a4
3 · 7

(0, 1)
7
7

12544a2
28 · 72

(1, 1)
8
23

224a1
25 · 7

(1, 3)
192
26 · 3
21a4
3 · 7

(3, 1)
16
24

112b1
24 · 7

(5, 1)
32
25

3136bb1
26 · 72

(7, 1)
56

23 · 7
3136h1
26 · 72

(7, 3)
336

24 · 3 · 7
2352g1
24 · 3 · 72

(7, 5)
1120

25 · 5 · 7
3920o1
24 · 5 · 72

(9, 5)
1280
28 · 5
70a1
2 · 5 · 7

(11, 1)
128
27

3136k1
26 · 72

(13, 7)
3584
29 · 7
14a1
2 · 7

(21, 1)
448
26 · 7
3136r3
26 · 72

(31, 3)
3072
210 · 3
9408p1
26 · 3 · 72

(35, 9)
16128

28 · 32 · 7
294g1
2 · 3 · 72

(47, 45)
737280

214 · 32 · 5
210e1

2 · 3 · 5 · 7

(119, 5)
71680

211 · 5 · 7
15680v1
26 · 5 · 72

(181, 1)
32768
215

3136y5
26 · 72

empty empty
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Table 8.5. (a, b, c, d) = (0, 1, 0, 7), δ = −1 · 22 · 7, S = {2, 7, 11, 13}

(−273, 1)
74536

23 · 7 · 113
34496dc1
26 · 72 · 11

(−181, 1)
32768
215

3136y5
26 · 72

(−161, 13)
352352

25 · 7 · 112 · 13
112112o1

24 · 72 · 11 · 13

(−87, 91)
5963776

216 · 7 · 13
182a1

2 · 7 · 13

(−81, 13)
100672

26 · 112 · 13
112112bf1

24 · 72 · 11 · 13

(−75, 1)
5632
29 · 11

34496bf1
26 · 72 · 11

(−67, 49)
1043504

24 · 72 · 113
1232d1

24 · 7 · 11

(−57, 11)
45056
212 · 11
34496cf1
26 · 72 · 11

(−53, 1)
2816
28 · 11

34496do1
26 · 72 · 11

(−49, 13)
46592

29 · 7 · 13
1274j1

2 · 72 · 13

(−35, 1)
1232

24 · 7 · 11
34496z1

26 · 72 · 11

(−31, 1)
968

23 · 112
34496dj1
26 · 72 · 11

(−25, 7)
6776

23 · 7 · 112
2464d1

25 · 7 · 11

(−21, 1)
448
26 · 7
3136r3
26 · 72

(−19, 7)
4928

26 · 7 · 11
77c1
7 · 11

(−15, 13)
18304

27 · 11 · 13
2002c1

2 · 7 · 11 · 13

(−13, 1)
176

24 · 11
34496cs1
26 · 72 · 11

(−13, 7)
3584
29 · 7
14a1
2 · 7

(−11, 1)
128
27

3136k1
26 · 72

(−9, 1)
88

23 · 11
34496bb1
26 · 72 · 11

(−7, 1)
56

23 · 7
3136h1
26 · 72

(−7, 2)
154

2 · 7 · 11
8624h2

24 · 72 · 11

(−7, 11)
9856

27 · 7 · 11
1078l1

2 · 72 · 11

(−7, 13)
16016

24 · 7 · 11 · 13
112112i1

24 · 72 · 11 · 13
(−5, 1)

32
25

3136bb1
26 · 72

(−3, 1)
16
24

112b1
24 · 7

(−3, 4)
484

22 · 112
616e4

23 · 7 · 11

(−3, 7)
2464

25 · 7 · 11
1232e1

24 · 7 · 11

(−2, 1)
11
11

2464k1
25 · 7 · 11

(−1, 1)
8
23

224a1
25 · 7

(0, 1)
7
7

12544a2
28 · 72

(1, 1)
8
23

224a1
25 · 7

(2, 1)
11
11

2464k1
25 · 7 · 11

(3, 1)
16
24

112b1
24 · 7

(3, 4)
484

22 · 112
616e4

23 · 7 · 11

(3, 7)
2464

25 · 7 · 11
1232e1

24 · 7 · 11
(5, 1)
32
25

3136bb1
26 · 72

(7, 1)
56

23 · 7
3136h1
26 · 72

(7, 2)
154

2 · 7 · 11
8624h2

24 · 72 · 11

(7, 11)
9856

27 · 7 · 11
1078l1

2 · 72 · 11

(7, 13)
16016

24 · 7 · 11 · 13
112112i1

24 · 72 · 11 · 13

(9, 1)
88

23 · 11
34496bb1
26 · 72 · 11

(11, 1)
128
27

3136k1
26 · 72

(13, 1)
176

24 · 11
34496cs1
26 · 72 · 11

(13, 7)
3584
29 · 7
14a1
2 · 7

(15, 13)
18304

27 · 11 · 13
2002c1

2 · 7 · 11 · 13

(19, 7)
4928

26 · 7 · 11
77c1
7 · 11

(21, 1)
448
26 · 7
3136r3
26 · 72

(25, 7)
6776

23 · 7 · 112
2464d1

25 · 7 · 11

(31, 1)
968

23 · 112
34496dj1
26 · 72 · 11

(35, 1)
1232

24 · 7 · 11
34496z1

26 · 72 · 11

(49, 13)
46592

29 · 7 · 13
1274j1

2 · 72 · 13

(53, 1)
2816
28 · 11

34496do1
26 · 72 · 11

(57, 11)
45056
212 · 11
34496cf1
26 · 72 · 11

(67, 49)
1043504

24 · 72 · 113
1232d1

24 · 7 · 11

(75, 1)
5632
29 · 11

34496bf1
26 · 72 · 11

(81, 13)
100672

26 · 112 · 13
112112bf1

24 · 72 · 11 · 13

(87, 91)
5963776

216 · 7 · 13
182a1

2 · 7 · 13

(161, 13)
352352

25 · 7 · 112 · 13
112112o1

24 · 72 · 11 · 13

(181, 1)
32768
215

3136y5
26 · 72

(273, 1)
74536

23 · 7 · 113
34496dc1
26 · 72 · 11

empty empty empty empty empty
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Table 8.6. (a, b, c, d) = (0, 1, 0, 2), δ = −1 · 23, S = {2, 3, 11}

(−695, 8)
3865224

23 · 3 · 115
2112d4
26 · 3 · 11

(−241, 22)
1299078

2 · 310 · 11
2112n4
26 · 3 · 11

(−155, 4)
96228

22 · 37 · 11
2112j2

26 · 3 · 11

(−140, 1)
19602

2 · 34 · 112
8448e2

28 · 3 · 11

(−59, 16)
63888

24 · 3 · 113
2112e4

26 · 3 · 11

(−50, 9)
23958

2 · 32 · 113
8448q2
28 · 3 · 11

(−31, 8)
8712

23 · 32 · 112
2112r4

26 · 3 · 11

(−25, 32)
85536

25 · 35 · 11
66c2

2 · 3 · 11

(−22, 1)
486
2 · 35
768d4
28 · 3

(−19, 1)
363

3 · 112
4224s2

27 · 3 · 11

(−17, 2)
594

2 · 33 · 11
2112b2
26 · 3 · 11

(−14, 1)
198

2 · 32 · 11
8448f2

28 · 3 · 11
(−13, 8)
2376

23 · 33 · 11
66a2

2 · 3 · 11

(−8, 1)
66

2 · 3 · 11
8448c2

28 · 3 · 11

(−7, 4)
324

22 · 34
24a6
23 · 3

(−7, 6)
726

2 · 3 · 112
1056c4

25 · 3 · 11

(−5, 1)
27
33

384g2
27 · 3

(−5, 2)
66

2 · 3 · 11
2112i2

26 · 3 · 11
(−4, 1)

18
2 · 32
768c2
28 · 3

(−3, 1)
11
11

1408d2
27 · 11

(−2, 1)
6

2 · 3
768h1
28 · 3

(−2, 3)
66

2 · 3 · 11
8448t1

28 · 3 · 11

(−1, 1)
3
3

384b1
27 · 3

(−1, 2)
18

2 · 32
96b4
25 · 3

(−1, 4)
132

22 · 3 · 11
528a2

24 · 3 · 11

(−1, 11)
2673
35 · 11
4224j1

27 · 3 · 11

(0, 1)
2
2

256c2
28

(1, 1)
3
3

384b1
27 · 3

(1, 2)
18

2 · 32
96b4
25 · 3

(1, 4)
132

22 · 3 · 11
528a2

24 · 3 · 11
(1, 11)
2673
35 · 11
4224j1

27 · 3 · 11

(2, 1)
6

2 · 3
768h1
28 · 3

(2, 3)
66

2 · 3 · 11
8448t1

28 · 3 · 11

(3, 1)
11
11

1408d2
27 · 11

(4, 1)
18

2 · 32
768c2
28 · 3

(5, 1)
27
33

384g2
27 · 3

(5, 2)
66

2 · 3 · 11
2112i2

26 · 3 · 11

(7, 4)
324

22 · 34
24a6
23 · 3

(7, 6)
726

2 · 3 · 112
1056c4

25 · 3 · 11

(8, 1)
66

2 · 3 · 11
8448c2

28 · 3 · 11

(13, 8)
2376

23 · 33 · 11
66a2

2 · 3 · 11

(14, 1)
198

2 · 32 · 11
8448f2

28 · 3 · 11
(17, 2)

594
2 · 33 · 11
2112b2
26 · 3 · 11

(19, 1)

363
3 · 112
4224s2

27 · 3 · 11

(22, 1)

486
2 · 35
768d4
28 · 3

(25, 32)

85536
25 · 35 · 11

66c2
2 · 3 · 11

(31, 8)

8712
23 · 32 · 112

2112r4
26 · 3 · 11

(50, 9)

23958
2 · 32 · 113
8448q2
28 · 3 · 11

(59, 16)
63888

24 · 3 · 113
2112e4

26 · 3 · 11

(140, 1)
19602

2 · 34 · 112
8448e2

28 · 3 · 11

(155, 4)
96228

22 · 37 · 11
2112j2

26 · 3 · 11

(241, 22)
1299078
2 · 310 · 11
2112n4

26 · 3 · 11

(695, 8)
3865224
23 · 3 · 115
2112d4

26 · 3 · 11

empty
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Table 8.7. (a, b, c, d) = (0, 1, 0, 1), δ = −1 · 22, S = {2, 3, 7, 11}

(−1, 1)
2
2

128c1
27

(0, 1)
1
1

256c2
28

(1, 1)
2
2

128c1
27

Table 8.8. (a, b, c, d) = (0, 1, 0, 1), δ = −1 · 22, S = {2, 5, 13}

(−239, 1)
57122
2 · 134
1664k2
27 · 13

(−199, 32)
1300000
25 · 55 · 13
4160i2

26 · 5 · 13

(−83, 64)
703040

26 · 5 · 133
130a4
2 · 5 · 13

(−63, 16)
67600

24 · 52 · 132
4160a4
26 · 5 · 13

(−57, 1)
3250

2 · 53 · 13
8320d2
27 · 5 · 13

(−37, 16)
26000

24 · 53 · 13
4160n2
26 · 5 · 13

(−29, 2)
1690

2 · 5 · 132
4160p2
26 · 5 · 13

(−18, 1)
325

52 · 13
2080b2
25 · 5 · 13

(−12, 5)
845

5 · 132
2080f4

25 · 5 · 13

(−11, 2)
250
2 · 53
320c4
26 · 5

(−9, 13)
3250

2 · 53 · 13
8320a1
27 · 5 · 13

(−8, 1)
65

5 · 13
2080c2

25 · 5 · 13
(−7, 1)

50
2 · 52
640f2
27 · 5

(−7, 4)

260
22 · 5 · 13
4160c2

26 · 5 · 13

(−5, 1)

26
2 · 13
1664d2
27 · 13

(−3, 1)

10
2 · 5
640a2
27 · 5

(−3, 2)

26
2 · 13
52a1
22 · 13

(−3, 4)

100
22 · 52
40a4
23 · 5

(−2, 1)
5
5

160b2

25 · 5

(−1, 1)
2
2

128c1

27

(−1, 2)
10
2 · 5
80b1

24 · 5

(−1, 5)
130

2 · 5 · 13
8320b1

27 · 5 · 13

(−1, 8)
520

23 · 5 · 13
65a2

5 · 13

(0, 1)
1
1

256c2

28

(1, 1)
2
2

128c1
27

(1, 2)
10
2 · 5
80b1
24 · 5

(1, 5)
130

2 · 5 · 13
8320b1
27 · 5 · 13

(1, 8)
520

23 · 5 · 13
65a2
5 · 13

(2, 1)
5
5

160b2
25 · 5

(3, 1)
10
2 · 5
640a2
27 · 5

(3, 2)
26

2 · 13
52a1
22 · 13

(3, 4)
100

22 · 52
40a4
23 · 5

(5, 1)
26

2 · 13
1664d2
27 · 13

(7, 1)
50

2 · 52
640f2
27 · 5

(7, 4)
260

22 · 5 · 13
4160c2

26 · 5 · 13

(8, 1)
65

5 · 13
2080c2

25 · 5 · 13
(9, 13)
3250

2 · 53 · 13
8320a1
27 · 5 · 13

(11, 2)
250
2 · 53
320c4
26 · 5

(12, 5)
845

5 · 132
2080f4

25 · 5 · 13

(18, 1)
325

52 · 13
2080b2
25 · 5 · 13

(29, 2)
1690

2 · 5 · 132
4160p2
26 · 5 · 13

(37, 16)
26000

24 · 53 · 13
4160n2
26 · 5 · 13

(57, 1)
3250

2 · 53 · 13
8320d2
27 · 5 · 13

(63, 16)
67600

24 · 52 · 132
4160a4
26 · 5 · 13

(83, 64)
703040

26 · 5 · 133
130a4
2 · 5 · 13

(199, 32)
1300000
25 · 55 · 13
4160i2

26 · 5 · 13

(239, 1)
57122
2 · 134
1664k2
27 · 13

empty
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Table 8.9. (a, b, c, d) = (0, 1, 0,−2), δ = 23, S = {2, 5, 13, 17}

(−4855, 3328)
4725284096
28 · 13 · 175
14144v2

26 · 13 · 17

(−239, 169)
−169

−1 · 132
1664h2
27 · 13

(−71, 8)
39304
23 · 173
1088c4
26 · 17

(−37, 26)
442

2 · 13 · 17
14144s2

26 · 13 · 17

(−33, 20)
5780

22 · 5 · 172
5440h3

26 · 5 · 17

(−31, 25)
−7225

−1 · 52 · 172
10880f2
27 · 5 · 17

(−24, 17)
−34

−1 · 2 · 17
4352f2
28 · 17

(−23, 16)
272

24 · 17
1088i2
26 · 17

(−7, 4)
68

22 · 17
1088g2
26 · 17

(−7, 5)
−5

−1 · 5
640d2
27 · 5

(−7, 13)
−3757

−1 · 13 · 172
28288f2

27 · 13 · 17

(−6, 1)
34

2 · 17
4352d2
28 · 17

(−5, 2)
34

2 · 17
1088j2
26 · 17

(−4, 5)
−170

−1 · 2 · 5 · 17
21760q2
28 · 5 · 17

(−3, 2)
2
2

64a2
26

(−2, 1)
2
2

256a2
28

(−1, 1)
−1
−1

128c2
27

(0, 1)
−2

−1 · 2
256c2
28

(1, 1)
−1
−1

128c2
27

(2, 1)
2
2

256a2
28

(3, 2)
2
2

64a2
26

(4, 5)
−170

−1 · 2 · 5 · 17
21760q2
28 · 5 · 17

(5, 2)
34

2 · 17
1088j2
26 · 17

(6, 1)
34

2 · 17
4352d2
28 · 17

(7, 4)
68

22 · 17
1088g2
26 · 17

(7, 5)
−5

−1 · 5
640d2
27 · 5

(7, 13)
−3757

−1 · 13 · 172
28288f2

27 · 13 · 17

(23, 16)
272

24 · 17
1088i2
26 · 17

(24, 17)
−34

−1 · 2 · 17
4352f2
28 · 17

(31, 25)
−7225

−1 · 52 · 172
10880f2
27 · 5 · 17

(33, 20)
5780

22 · 5 · 172
5440h3

26 · 5 · 17

(37, 26)
442

2 · 13 · 17
14144s2

26 · 13 · 17

(71, 8)
39304
23 · 173
1088c4
26 · 17

(239, 169)
−169

−1 · 132
1664h2
27 · 13

(4855, 3328)
4725284096
28 · 13 · 175
14144v2

26 · 13 · 17

empty

Table 8.10. (a, b, c, d) = (0, 1, 0,−2), δ = 23, S = {2, 7, 29}

(−181, 128)
−896

−1 · 27 · 7
448c6
26 · 7

(−163, 116)
−39788

−1 · 22 · 73 · 29
12992bc2
26 · 7 · 29

(−45, 29)
9947
73 · 29
25984i2
27 · 7 · 29

(−41, 29)
−29

−1 · 29
3712p2
27 · 29

(−13, 16)
−5488

−1 · 24 · 73
448c4
26 · 7

(−11, 8)
−56

−1 · 23 · 7
448f2
26 · 7

(−10, 1)
98

2 · 72
1792f2
28 · 7

(−10, 7)
14
2 · 7

1792a2
28 · 7

(−9, 4)
196

22 · 72
448a3
26 · 7

(−5, 4)
−28

−1 · 22 · 7
448h2
26 · 7

(−4, 1)
14
2 · 7

1792e2
28 · 7

(−3, 1)
7
7

896d2
27 · 7

(−3, 2)
2
2

64a2
26

(−2, 1)
2
2

256a2
28

(−1, 1)
−1
−1

128c2
27

(−1, 2)
−14

−1 · 2 · 7
448d2
26 · 7

(0, 1)
−2

−1 · 2
256c2
28

(1, 1)
−1
−1

128c2
27

(1, 2)
−14

−1 · 2 · 7
448d2
26 · 7

(2, 1)
2
2

256a2
28

(3, 1)
7
7

896d2
27 · 7

(3, 2)
2
2

64a2
26

(4, 1)
14
2 · 7

1792e2
28 · 7

(5, 4)
−28

−1 · 22 · 7
448h2
26 · 7

(9, 4)
196

22 · 72
448a3
26 · 7

(10, 1)
98

2 · 72
1792f2
28 · 7

(10, 7)
14
2 · 7

1792a2
28 · 7

(11, 8)
−56

−1 · 23 · 7
448f2
26 · 7

(13, 16)
−5488

−1 · 24 · 73
448c4
26 · 7

(41, 29)
−29

−1 · 29
3712p2
27 · 29

(45, 29)
9947
73 · 29
25984i2
27 · 7 · 29

(163, 116)
−39788

−1 · 22 · 73 · 29
12992bc2
26 · 7 · 29

(181, 128)
−896

−1 · 27 · 7
448c6
26 · 7

empty empty empty
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Table 8.11. (a, b, c, d) = (0, 1, 0,−3), δ = 22 · 3, S = {2, 3, 7, 11}

(−122, 9)
131769

32 · 114
3168z3

25 · 32 · 11

(−111, 64)
2112

26 · 3 · 11
6336b4

26 · 32 · 11

(−97, 56)
56

23 · 7
4032bm5

26 · 32 · 7

(−85, 49)
1078

2 · 72 · 11
88704z2

27 · 32 · 7 · 11

(−69, 16)
63888

24 · 3 · 113
6336bi4

26 · 32 · 11

(−53, 7)
18634

2 · 7 · 113
88704cs2

27 · 32 · 7 · 11
(−47, 27)

594

2 · 33 · 11
12672i2

27 · 32 · 11

(−43, 24)
2904

23 · 3 · 112
6336bd3

26 · 32 · 11

(−38, 21)
2541

3 · 7 · 112
22176f4

25 · 32 · 7 · 11

(−31, 18)
−198

−1 · 2 · 32 · 11
6336m2

26 · 32 · 11

(−27, 1)
726

2 · 3 · 112
12672c2

27 · 32 · 11

(−19, 11)
−22

−1 · 2 · 11
12672bc2

27 · 32 · 11
(−15, 8)

264

23 · 3 · 11
6336e2

26 · 32 · 11

(−15, 14)
−5082

−1 · 2 · 3 · 7 · 112
44352c2

26 · 32 · 7 · 11

(−13, 4)
484

22 · 112
6336ck3

26 · 32 · 11

(−13, 7)
154

2 · 7 · 11
88704be2

27 · 32 · 7 · 11

(−12, 7)
−21

−1 · 3 · 7
2016b2

25 · 32 · 7

(−9, 4)
132

22 · 3 · 11
6336bh2

26 · 32 · 11
(−9, 7)
−462

−1 · 2 · 3 · 7 · 11
88704bk2

27 · 32 · 7 · 11

(−7, 3)
66

2 · 3 · 11
12672m2

27 · 32 · 11

(−7, 4)
4

22

576d3

26 · 32

(−6, 1)
33

3 · 11
3168b2

25 · 32 · 11

(−5, 1)
22

2 · 11
12672k2

27 · 32 · 11

(−5, 3)
−6

−1 · 2 · 3
1152k2

27 · 32
(−4, 3)
−33

−1 · 3 · 11
3168v2

25 · 32 · 11

(−3, 1)
6

2 · 3
1152o2

27 · 32

(−3, 2)
−6

−1 · 2 · 3
576a4

26 · 32

(−2, 1)
1
1

288c2

25 · 32

(−1, 1)
−2

−1 · 2
1152r2

27 · 32

(−1, 2)
−22

−1 · 2 · 11
6336ca2

26 · 32 · 11
(−1, 9)
−2178

−1 · 2 · 32 · 112
12672x2

27 · 32 · 11

(0, 1)
−3

−1 · 3
2304j2

28 · 32

(1, 1)
−2

−1 · 2
1152r2

27 · 32

(1, 2)
−22

−1 · 2 · 11
6336ca2

26 · 32 · 11

(1, 9)
−2178

−1 · 2 · 32 · 112
12672x2

27 · 32 · 11

(2, 1)
1
1

288c2

25 · 32
(3, 1)

6
2 · 3

1152o2

27 · 32

(3, 2)
−6

−1 · 2 · 3
576a4

26 · 32

(4, 3)
−33

−1 · 3 · 11
3168v2

25 · 32 · 11

(5, 1)
22

2 · 11
12672k2

27 · 32 · 11

(5, 3)
−6

−1 · 2 · 3
1152k2

27 · 32

(6, 1)
33

3 · 11
3168b2

25 · 32 · 11
(7, 3)
66

2 · 3 · 11
12672m2

27 · 32 · 11

(7, 4)
4

22

576d3

26 · 32

(9, 4)
132

22 · 3 · 11
6336bh2

26 · 32 · 11

(9, 7)
−462

−1 · 2 · 3 · 7 · 11
88704bk2

27 · 32 · 7 · 11

(12, 7)
−21

−1 · 3 · 7
2016b2

25 · 32 · 7

(13, 4)
484

22 · 112
6336ck3

26 · 32 · 11
(13, 7)
154

2 · 7 · 11
88704be2

27 · 32 · 7 · 11

(15, 8)
264

23 · 3 · 11
6336e2

26 · 32 · 11

(15, 14)
−5082

−1 · 2 · 3 · 7 · 112
44352c2

26 · 32 · 7 · 11

(19, 11)
−22

−1 · 2 · 11
12672bc2

27 · 32 · 11

(27, 1)
726

2 · 3 · 112
12672c2

27 · 32 · 11

(31, 18)
−198

−1 · 2 · 32 · 11
6336m2

26 · 32 · 11
(38, 21)
2541

3 · 7 · 112
22176f4

25 · 32 · 7 · 11

(43, 24)
2904

23 · 3 · 112
6336bd3

26 · 32 · 11

(47, 27)
594

2 · 33 · 11
12672i2

27 · 32 · 11

(53, 7)
18634

2 · 7 · 113
88704cs2

27 · 32 · 7 · 11

(69, 16)
63888

24 · 3 · 113
6336bi4

26 · 32 · 11

(85, 49)
1078

2 · 72 · 11
88704z2

27 · 32 · 7 · 11
(97, 56)

56

23 · 7
4032bm5

26 · 32 · 7

(111, 64)
2112

26 · 3 · 11
6336b4

26 · 32 · 11

(122, 9)
131769

32 · 114
3168z3

25 · 32 · 11

empty empty empty
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Table 8.12. (a, b, c, d) = (0, 1, 0,−7), δ = 22 · 7, S = {2, 5, 7, 11}

(−21, 8)
−56

−1 · 23 · 7
3136r4
26 · 72

(−3, 1)
2
2

6272b2
27 · 72

(0, 1)
−7

−1 · 7
12544a2
28 · 72

(3, 1)
2
2

6272b2
27 · 72

(21, 8)
−56

−1 · 23 · 7
3136r4
26 · 72

Table 8.13. (a, b, c, d) = (1,−1,−4,−1), δ = 132, S = {2, 5, 13}

(−157, 114)
65

5 · 13
54080bk2
26 · 5 · 132

(−43, 157)
−65

−1 · 5 · 13
54080bk2
26 · 5 · 132

(−17, 13)
625
54

54080di1
26 · 5 · 132

(−17, 14)
1625
53 · 13

54080bk1
26 · 5 · 132

(−11, 8)
5
5

54080cz1
26 · 5 · 132

(−9, 7)
125
53

54080bl2
26 · 5 · 132

(−7, 5)
−13

−1 · 13
10816bi1
26 · 132

(−4, 1)
−65

−1 · 5 · 13
54080cd1
26 · 5 · 132

(−4, 3)
5
5

54080cb1
26 · 5 · 132

(−4, 17)
−625
−1 · 54
54080di1
26 · 5 · 132

(−3, 1)
−25

−1 · 52
54080dc1
26 · 5 · 132

(−3, 2)
−5

−1 · 5
54080cx1
26 · 5 · 132

(−3, 4)

65
5 · 13

54080cd1
26 · 5 · 132

(−3, 11)

−5
−1 · 5

54080cz1
26 · 5 · 132

(−3, 17)

−1625
−1 · 53 · 13
54080bk1
26 · 5 · 132

(−2, 1)

−5
−1 · 5

54080co1
26 · 5 · 132

(−2, 3)

25
52

54080dc1
26 · 5 · 132

(−2, 7)

13
13

10816bi1
26 · 132

(−2, 9)
−125
−1 · 53
54080bl2

26 · 5 · 132

(−1, 1)
1
1

10816be1

26 · 132

(−1, 2)
5
5

54080co1

26 · 5 · 132

(−1, 3)
5
5

54080cx1

26 · 5 · 132

(−1, 4)
−5

−1 · 5
54080cb1

26 · 5 · 132

(0, 1)
−1
−1

10816be1

26 · 132
(1, 1)
−5

−1 · 5
54080co1
26 · 5 · 132

(1, 2)
−25

−1 · 52
54080dc1
26 · 5 · 132

(1, 3)
−65

−1 · 5 · 13
54080cd1
26 · 5 · 132

(2, 1)
−5

−1 · 5
54080cx1
26 · 5 · 132

(3, 1)
5
5

54080cb1
26 · 5 · 132

(5, 2)
−13

−1 · 13
10816bi1
26 · 132

(7, 2)
125
53

54080bl2
26 · 5 · 132

(8, 3)
5
5

54080cz1
26 · 5 · 132

(13, 4)
625
54

54080di1
26 · 5 · 132

(14, 3)
1625
53 · 13

54080bk1
26 · 5 · 132

(114, 43)
65

5 · 13
54080bk2
26 · 5 · 132

empty
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Table 8.14. (a, b, c, d) = (1,−1,−2,−2), δ = −1 · 23 · 19, S = {2, 5, 19}

(−81, 13)
−593750

−1 · 2 · 56 · 19
115520ck1
26 · 5 · 192

(−43, 89)
−972800

−1 · 211 · 52 · 19
3610i1

2 · 5 · 192

(−17, 16)
−9025

−1 · 52 · 192
12160i1
27 · 5 · 19

(−8, 9)
−1250

−1 · 2 · 54
24320s1
28 · 5 · 19

(−7, 1)
−380

−1 · 22 · 5 · 19
115520q1
26 · 5 · 192

(−3, 1)
−32

−1 · 25
23104r1
26 · 192

(−3, 4)
−95

−1 · 5 · 19
231040u1
27 · 5 · 192

(−2, 1)
−10

−1 · 2 · 5
24320j1
28 · 5 · 19

(−2, 3)
−38

−1 · 2 · 19
4864p1
28 · 19

(−1, 1)
−2

−1 · 2
608f1
25 · 19

(−1, 3)
−40

−1 · 23 · 5
190b1

2 · 5 · 19

(−1, 11)
−2432

−1 · 27 · 19
38a1
2 · 19

(0, 1)
−2

−1 · 2
4864j1
28 · 19

(1, 1)
−4

−1 · 22
23104bu1
26 · 192

(1, 2)
−25

−1 · 52
231040bx1
27 · 5 · 192

(1, 5)
−304

−1 · 24 · 19
23104bk1
26 · 192

(2, 1)
−2

−1 · 2
92416w1
28 · 192

(3, 1)
10
2 · 5

115520bx1
26 · 5 · 192

(4, 1)
38

2 · 19
92416h1
28 · 192

(5, 2)
19
19

46208b1
27 · 192

(7, 3)
16
24

23104l1
26 · 192

(9, 29)
−65536
−1 · 216
23104bt3
26 · 192

(11, 7)
−1280

−1 · 28 · 5
115520bh1
26 · 5 · 192

(13, 1)
2000
24 · 53

115520by1
26 · 5 · 192

(13, 9)
−2888

−1 · 23 · 192
23104bs2
26 · 192

(16, 7)
50

2 · 52
24320g1
28 · 5 · 19

(17, 9)
−1900

−1 · 22 · 52 · 19
115520bm1
26 · 5 · 192

(18, 11)
−4750

−1 · 2 · 53 · 19
24320p1
28 · 5 · 19

(25, 11)
38

2 · 19
23104bj1
26 · 192

(93, 41)
−760

−1 · 23 · 5 · 19
115520by2
26 · 5 · 192

(376, 177)
−6516050

−1 · 2 · 52 · 194
24320h1
28 · 5 · 19

empty empty empty empty empty

Table 8.15. (a, b, c, d) = (1, 0, 0, 1), δ = −1 · 33, S = {2, 3, 5}

(0, 1)
1
1

15552b2
26 · 35

(1, 1)
2
2

2304j2
28 · 32

(1, 2)
9
32

48a4
24 · 3

(2, 1)
9
32

48a4
24 · 3

empty empty

Table 8.16. (a, b, c, d) = (1, 0, 0, 2), δ = −1 · 22 · 33, S = {2, 3, 5}

(−37, 29)
−1875

−1 · 3 · 54
4320c1
25 · 33 · 5

(−5, 4)
3
3

432a4
24 · 33

(−4, 3)
−10

−1 · 2 · 5
8640cb1
26 · 33 · 5

(−3, 1)
−25

−1 · 52
4320j1

25 · 33 · 5

(−2, 1)
−6

−1 · 2 · 3
1728l1
26 · 33

(−1, 1)
1
1

864i1
25 · 33

(−1, 2)
15
3 · 5

2160w1
24 · 33 · 5

(0, 1)
2
2

15552b2
26 · 35

(1, 1)
3
3

1728h1
26 · 33

(2, 1)
10
2 · 5

1080j1
23 · 33 · 5

(4, 7)
750

2 · 3 · 53
540e2

22 · 33 · 5

empty
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Table 8.17. (a, b, c, d) = (1, 0, 0,−2), δ = −1 · 22 · 33, S = {2, 3, 5}

(−4, 7)
−750

−1 · 2 · 3 · 53
540e2

22 · 33 · 5

(−2, 1)
−10

−1 · 2 · 5
1080j1

23 · 33 · 5

(−1, 1)
−3

−1 · 3
1728h1
26 · 33

(0, 1)
−2

−1 · 2
15552b2
26 · 35

(1, 1)
−1
−1
864i1
25 · 33

(1, 2)
−15

−1 · 3 · 5
2160w1
24 · 33 · 5

(2, 1)
6

2 · 3
1728l1
26 · 33

(3, 1)
25
52

4320j1
25 · 33 · 5

(4, 3)
10
2 · 5

8640cb1
26 · 33 · 5

(5, 4)
−3

−1 · 3
432a4
24 · 33

(37, 29)
1875
3 · 54
4320c1
25 · 33 · 5

empty

Table 8.18. (a, b, c, d) = (1, 0, 0,−3), δ = −1 · 35, S = {2, 3, 5}

(−21, 17)
−24000

−1 · 26 · 3 · 53
2430g1
2 · 35 · 5

(−5, 1)
−128
−1 · 27
486a1
2 · 35

(−3, 1)
−30

−1 · 2 · 3 · 5
38880o1
25 · 35 · 5

(−1, 1)
−4

−1 · 22
1944j1
23 · 35

(−1, 2)
−25

−1 · 52
19440m1
24 · 35 · 5

(0, 1)
−3

−1 · 3
15552b2
26 · 35

(1, 1)
−2

−1 · 2
15552k1
26 · 35

(1, 3)
−80

−1 · 24 · 5
77760q1
26 · 35 · 5

(2, 1)
5
5

77760y1
26 · 35 · 5

(3, 1)
24

23 · 3
15552bw1
26 · 35

(3, 2)
3
3

15552bd1
26 · 35

(7, 5)
−32

−1 · 25
15552bo2
26 · 35

(9, 7)
−300

−1 · 22 · 3 · 52
77760v1
26 · 35 · 5

(11, 3)
1250
2 · 54

77760bv1
26 · 35 · 5

(13, 9)
10
2 · 5

77760cs1
26 · 35 · 5

(33, 19)
15360

210 · 3 · 5
77760b2
26 · 35 · 5

empty empty
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