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LOCALIZED SPECTRUM SLICING

LIN LIN

Abstract. Given a sparse Hermitian matrix A and a real number μ, we con-
struct a set of sparse vectors, each approximately spanned only by eigenvectors
of A corresponding to eigenvalues near μ. This set of vectors spans the col-
umn space of a localized spectrum slicing (LSS) operator, and is called an LSS
basis set. The sparsity of the LSS basis set is related to the decay properties
of matrix Gaussian functions. We present a divide-and-conquer strategy with
controllable error to construct the LSS basis set. This is a purely algebraic

process using only submatrices of A, and can therefore be applied to general
sparse Hermitian matrices. The LSS basis set leads to sparse projected ma-
trices with reduced sizes, which allows the projected problems to be solved
efficiently with techniques using sparse linear algebra. As an example, we
demonstrate that the LSS basis set can be used to solve interior eigenvalue
problems for a discretized second order partial differential operator in one-
dimensional and two-dimensional domains, as well as for a matrix of general
sparsity pattern.

1. Introduction

Let A be an n × n large, sparse, Hermitian matrix. In many applications in
science and engineering, one would like to find eigenvalues and eigenfunctions of A
near a given real number μ. As a motivating problem, we consider A to be obtained
from a certain discretization (e.g., finite difference or finite element discretization)
of a second order partial differential operator of the form −Δ+ V (x), where Δ is
the Laplacian operator, and V (x) is a potential function. Depending on the context
and the choice of V , this type of problem can arise from quantum mechanics, wave
propagation, electromagnetism, etc.

When μ locates inside the spectrum of A, the eigenvalues to be computed are
called interior eigenvalues. These interior eigenvalues and corresponding eigenfunc-
tions are in general difficult to compute. Since n is large and A is sparse, iterative
methods such as inverse power method [13], preconditioned conjugate gradient type
of methods [5, 6, 17], and shift-inverse Lanczos type of methods [19, 29] are desir-
able. The effectiveness of such methods often depends on the availability of a good
preconditioner that can approximately apply (A − μI)−1 to vectors, and such a
preconditioner can be difficult to construct.

Another type of method that has recently received an increasing amount of
attention is based on the construction of a matrix function fμ(A), where the corre-
sponding scalar function fμ(z) only takes significant values on a small interval near
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μ on the real line. Such a matrix function fμ(A) can be called a spectrum slicing
operator, since for any vector v ∈ Cn, fμ(A)v is approximately only spanned by
eigenvectors of A corresponding to eigenvalues near μ, and the vector fμ(A)v is
said to be spectrally localized. The spectrum slicing operator can be simultaneously
applied to a set of random vectors V = [v1, . . . , vp]. When p is large enough but is
still small compared to n, the subspace spanned by

W = fμ(A)V

will approximately contain the subspace of all eigenvectors corresponding to eigen-
values near μ. Let

AW = W ∗AW, BW = W ∗W,

then the desired eigenvalues and eigenvectors can be computed via the solution of
a generalized eigenvalue problem,

(1.1) AWC = BWCΘ.

In practice fμ(A) can be constructed through relatively high order Chebyshev poly-
nomials [28], or contour integral based methods [25,27]. It should be noted that con-
tour integral based methods still require solving equations of the form (A− zI)−1v
where z is close to μ in the complex plane, either through direct methods or iterative
methods.

In general the spectrum slicing operator fμ(A) is a dense matrix. Therefore the
matrix W = fμ(A)V is in general a dense matrix, regardless of how the initial
matrix V ∈ Cn×p is chosen. Furthermore, the matrices AW , BW are in general
dense matrices that do not reveal much structure to be further exploited, and the
solution of the projected problem (1.1) may still be expensive when p is large.

1.1. Contribution. In this paper, we consider the use of a simple choice of Gauss-
ian function with a positive number σ

(1.2) fσ,μ(z) = e−
(z−μ)2

σ2 ,

and the corresponding matrix Gaussian function fσ,μ(A) is spectrally localized near
μ with width proportional to σ. We demonstrate that under a proper choice of σ,
fσ,μ(A) can have many entries that are small in magnitude, so that after truncating
these small entries the resulting matrix is close to being a spectrum slicing operator
but is also sparse. In this sense, fσ,μ(A) is called a localized spectrum slicing (LSS)
operator. The parameter σ plays a crucial role in terms of the computational
efficiency, since it balances the spatial locality (measured by the sparsity of the
truncated fσ,μ(A)), and spectral locality (measured by the approximate rank of
fσ,μ(A)). We also remark that the use of the Gaussian function in (1.2) is not
essential, and other smooth approximation of the Dirac-δ function can be used as
well.

We demonstrate that the LSS operator fσ,μ(A) can be constructed in a divide-
and-conquer method with controllable error using only a sequence of submatrices of
A withO(n) cost, under certain assumptions of the behavior of the sparsity, spectral
radius, and sizes of submatrices of A as n increases. The column space of the LSS
operator is spanned by a sparse matrix U ∈ Cn×p, and the subspace spanned by
U will approximately contain the subspace of eigenvectors to be computed. As a
result, the projected matrices

(1.3) AU = U∗AU, BU = U∗U



LOCALIZED SPECTRUM SLICING 2347

are sparse matrices. In this aspect, the matrix U can be regarded as a specially
tailored basis set for representing the subspace approximately spanned by eigenvec-
tors of A near μ, and each column of U is localized both spectrally and spatially.
In the following text U is called a localized spectrum slicing (LSS) basis set. The
LSS basis set can be constructed without explicitly constructing the LSS operator.
The generalized eigenvalue problem for the sparse projected matrices AU , BU may
be solved both by direct methods and by methods using sparse linear algebra tech-
niques. During the construction of the LSS operator and/or the LSS basis set, a
good global preconditioner for (A− μI)−1 is not needed. We demonstrate the con-
struction of the LSS basis set and its use for solving interior eigenvalues problems
for matrices obtained from discretizing second order partial differential operators,
and find that the use of the LSS basis set can be more efficient than solving the
global problem directly for matrices of large sizes. We also apply the LSS method
to a general matrix from the University of Florida matrix collection [8].

1.2. Related work. The spectral locality of the LSS operator is valid by construc-
tion. Comparatively the spatial locality of the LSS operator is less obvious, and is
given more precisely by the decay properties of matrix functions that are analytic
in a certain region in the complex plane (see e.g. [1–3]). The decay properties of
matrix functions were first realized for matrix inverse A−1 (i.e., f(z) = z−1), where
A is a banded, positive definite matrix [9,10]. The method for showing decay prop-
erties relies on whether f(z) can be well approximated by a low order Chebyshev
polynomial evaluated at the eigenvalues of A, and this method is therefore general-
izable to any analytic function f(z) for banded matrices A. In order to generalize
from banded matrices to general sparse matrices, decay properties should be defined
using geodesic distances of the graph induced by A. These techniques have been
shown in [1, 3] and the references therein, for demonstrating the decay properties
of, e.g., Fermi-Dirac operators in electronic structure theory. These techniques are
directly used for showing the decay properties of the LSS operator in this work,
which then allows the construction of the divide-and-conquer method. In physics
literature, such decay property is dubbed the “near-sightedness property” and is
vastly studied using various models (see e.g. [18,24,26]). The decay property is also
used for constructing linear scaling algorithms [4, 12] for density functional theory
calculations.

1.3. Contents. The rest of this paper is organized as follows. We introduce the
decay properties of matrix functions and in particular the localized spectrum slicing
operator in section 2. Based on the decay properties, section 3 describes a divide-
and-conquer algorithm for constructing the LSS operator and the LSS basis set,
and provides the error bound and computational complexity. The computation of
interior eigenvalues and a domain partitioning strategy for general sparse matrices
are also discussed. We demonstrate numerical results using the LSS basis set for
solving interior eigenvalue problems in section 4, and discuss the conclusion and
future work in section 5.

2. Preliminaries

2.1. Notation. The (i, j)-th element of a matrix A ∈ C
n×n is denoted by Aij .

The submatrix of A corresponding to a set of row indices I and a set of column
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indices J is denoted by AI,J . Using MATLAB notation, all elements in the i-
th row of A are denoted by Ai,:, and all elements in a set of rows I are denoted
by AI,:. Similarly, all elements in the j-th column of A are denoted by A:,j , and
all elements for a set of columns J are denoted by A:,J . The k-th power of A is
denoted by Ak. The matrix p-norm of A is denoted by ‖A‖p, and the vector p-norm
of a vector u is denoted by ‖u‖p (p ≥ 1). The max norm of a matrix is denoted
by ‖A‖max ≡ maxi,j{|Aij |}, which is the same as the ∞-norm of a vector of length
n2, formed by all the elements of A. The Hermitian conjugate of A is denoted by
A∗. Depending on the context, we may also refer to a matrix as an operator.

A Hermitian matrix A induces an undirected graph G = (V , E) with V = {i|i =
1, . . . , n}, and E = {(i, j)|Aij �= 0, 1 ≤ i, j ≤ n}. Each element in V is called a
vertex, and each element in E is called an edge. The cardinality of a set of indices
I is denoted by |I|.

A Hermitian matrix A ∈ Cn×n has the eigendecomposition

(2.1) AX = XΛ.

Here Λ = diag[λ1, . . . , λn] is a diagonal matrix containing the (real) eigenvalues of A
and we assume λ1 ≤ λ2 ≤ · · · ≤ λn are ordered nondecreasingly. X = [x1, . . . , xn]
and xi is the eigenvector corresponding to the eigenvalue λi. If all eigenvalues (and
corresponding eigenvectors) to be computed are within a small interval (μ−c, μ+c)
on the real line with λ1 < μ−c < μ+c < λn, then this problem is called an interior
eigenvalue problem.

2.2. Decay property of matrix functions. In this section, we provide a short
but self-contained description of the decay properties of fσ,μ(A). More details on
the description of the decay properties of general matrix functions can be found
in [1] and the references therein.

Let k be a nonnegative integer, and let Pk be the set of all polynomials of degrees
less than or equal to k with real coefficients. Without loss of generality we assume
the eigenvalues of A are within the interval (−1, 1). For a real continuous function
f on [−1, 1], the best approximation error is defined as

(2.2) Ek(f) = min
p∈Pk

{
‖f − p‖∞ ≡ max

−1≤x≤1
|f(x)− p(x)|

}
.

Consider an ellipse in the complex plane C with foci in−1 and 1, and let a > 1, b > 0
be the half axes so that the vertices of the ellipse are a,−a, ib,−ib, respectively.
Let the sum of the half axes be χ = a + b, then using the identity a2 − b2 = 1 we
have

a =
χ2 + 1

2χ
, b =

χ2 − 1

2χ
.

Thus the ellipse is determined only by χ, and such ellipse is denoted by Eχ. Then
Bernstein’s theorem [23] is stated as follows.

Theorem 2.1 (Bernstein). Let f(z) be analytic in Eχ with χ > 1, and f(z) is a
real-valued function for real z. Then

(2.3) Ek(f) ≤
2M(χ)

χk(χ− 1)
,

where

(2.4) M(χ) = sup
z∈Eχ

|f(z)|.
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Using Theorem 2.1, a more quantitative description of the approximation prop-
erties for fσ,μ(z) in (1.2) is given in Theorem 2.2.

Theorem 2.2. Let fσ,μ(z) be a Gaussian function defined in (1.2), then for any
α > 0,

(2.5) Ek(fσ,μ) ≤
2

ασ
eα

2

(1 + ασ)−k.

Proof. For any μ ∈ (−1, 1), σ > 0, the Gaussian function fσ,μ is analytic in any
ellipse Eχ with χ > 1, then

M(χ) = sup
z≡x+iy∈Eχ

|fσ,μ(x+ iy)| ≤ sup
z≡x+iy∈Eχ

e
y2

σ2 ≤ e
(χ− 1

χ
)2

4σ2 .

For any α > 0, let

(2.6) χ = 1 + ασ,

then χ− 1
χ ≤ 2ασ, and

(2.7) M(1 + ασ) ≤ eα
2

.

Using Theorem 2.1, (2.5) is the direct consequence of (2.7) and the choice of χ in
(2.6). �

For the graph G = (V , E) associated with the matrix A and vertices i, j ∈ V ,
a path linking i, j is given by a sequence of edges p = {(i0 ≡ i, i1), (i1, i2), . . . ,
(il, il+1 ≡ j)} where i1, . . . , il ∈ V , and each element in p is an edge in E . The
length of the path p is defined to be l+ 1. If p = {(i, j)}, then the length of p is 1.
The geodesic distance d(i, j) between vertices i and j is defined as the length of the
shortest path between i and j. It should be noted that for structurally symmetric
matrices, i.e., Aij �= 0 implies Aji �= 0 for all indices i, j, the geodesic distance is
symmetric, i.e., d(i, j) = d(j, i). In particular, Hermitian matrices are structurally
symmetric. If d(i, j) > 1, then Aij = 0. If d(i, j) = ∞, then there is no path
connecting i and j. More generally, for any positive integer k, if d(i, j) > k, then
(Ak)ij = 0, where Ak is the k-th power of the matrix A.

The precise statement of the spatial locality of the matrix function fσ,μ(A) is
given by the decay properties along the off-diagonal direction in Theorem 2.3. For
a given column j, the magnitude of each element fσ,μ(A)i,j decays exponentially
with respect to the geodesic distance d(i, j).

Theorem 2.3. Let A be a sparse and Hermitian matrix with all eigenvalues con-
tained in the interval (−1, 1). For any α > 0, σ > 0, let

(2.8) ρ = (1 + ασ)−1, K =
2

ρασ
eα

2

,

then for all d(i, j) ≥ 1, i, j = 1, · · · , n,

(2.9) |fσ,μ(A)ij | ≤ Kρd(i,j),

where d(i, j) is the geodesic distance between vertices i and j.

Proof. For any integer k ≥ 0, there exists a polynomial pk ∈ Pk such that

‖fσ,μ(A)− pk(A)‖2 = ‖fσ,μ − pk‖∞ = Ek(fσ,μ) ≤ Kρk+1.
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The last inequality follows from Theorem 2.2. Now consider all edges (i, j) such
that the geodesic distance d(i, j) = k + 1, and then pk(A)ij = 0. Therefore,

|fσ,μ(A)ij | = |fσ,μ(A)ij − pk(A)ij | ≤ ‖fσ,μ(A)− pk(A)‖2 ≤ Kρk+1 = Kρd(i,j).

�
Remark 2.4. As suggested in (2.8), ρ,K only depend on σ but not on μ. Therefore
the decay properties of the matrix function fσ,μ(A) seem to be independent of the
shift μ. This is because an upper bound for M(χ) is given in Theorem 2.2 that is
valid for all μ. Numerical results in section 4 indicate that the preconstant of the
exponential decay may have a strong dependency on μ, and such dependency can
be specific to the matrix under study.

Remark 2.5. In Theorem 2.3 there is an arbitrary positive constant α. For any
given α > 0, the off-diagonal entries of |fσ,μ(A)ij | should decay exponentially with
respect to the geodesic distance. By optimizing α together with the degree of the
Chebyshev polynomial k, the actual decay rate can be slightly faster than exponen-
tial. Figure 2.1 gives an example of the magnitude of the first column |fσ,μ(A):,1|
where A is a discretized Laplacian operator in 1D with periodic boundary condi-
tions, with σ = 1.0, μ = 2.0 and σ = 1.0, μ = 10.0, respectively. Although the
discretized 1D Laplacian matrix is a banded matrix, all its eigenfunctions are plane
waves which are fully delocalized in the global domain. Nonetheless the upper
bound of the decay rate of the LSS operator is clearly exponential as shown in
Figure 2.1.
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Figure 2.1. Log-scale plot of the magnitude of the first column
|fσ,μ(A):,1|. A is a discretized Laplacian operator in 1D with pe-
riodic boundary conditions, with σ = 1.0 and μ = 2.0, 1.0, respec-
tively.

Remark 2.6. In order to limit the numerical rank of fσ,μ(A) in practice, it is desir-
able to use a small σ. With fixed α and assume ασ < 1, we have

ρd(i,j) = (1 + ασ)−d(i,j) ≤ e−
1
2ασd(i,j).

Here σ reflects the spectral locality, and d(i, j) reflects the spatial locality. This
reveals the balance between the spectral and spatial locality, tuned by one param-
eter σ.
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3. Localized spectrum slicing

3.1. Algorithm. Using the decay properties of the LSS operator fσ,μ(A) in The-
orem 2.3, a set of basis functions called the LSS basis set can be constructed in a
divide-and-conquer fashion. Below we demonstrate that if the smearing parame-
ter σ is large enough, then the localized spectrum slicing operator fσ,μ(A) can be
approximately computed using submatrices of A. The size of each submatrix is
independent of the size of A. This is important for reducing the computational
complexity and for parallel computation.

Proposition 3.1. Let A, B be n×n Hermitian matrices. The graph induced by B
is a spanning subgraph of the graph G induced by A, and the geodesic distance d(i, j)
is defined using the graph G. We assume for a given integer j,m (1 ≤ j,m ≤ n),

Ail = Bil, ∀i, l s.t. d(j, i) ≤ m, d(j, l) ≤ m.

Then for any integer k (1 ≤ k ≤ m),

(Ak)il = (Bk)il, ∀i, l s.t. d(j, i) ≤ m− k + 1, d(j, l) ≤ m− k + 1.

Proof. The statement is apparently correct for k = 1. Assume the statement for
k − 1 is proved, and we prove the statement is true for k. First,

(Ak)il =
∑
p

Aip(A
k−1)pl, (Bk)il =

∑
p

Bip(B
k−1)pl.

In the summation above, Aip(A
k−1)pl is nonzero only if Aip �= 0. Similarly,

Bip(B
k−1)pl is nonzero only if Bip �= 0. Since the graph induced by B is a sub-

graph of the graph induced by A, Bip �= 0 implies Aip �= 0, and therefore we
only need to consider p such that Aip �= 0, i.e., d(i, p) = 1. Consider i such that
d(j, i) ≤ m− k + 1, then p satisfies

d(j, p) ≤ d(j, i) + d(i, p) = m− k + 2 = m− (k − 1) + 1.

Also, for any l such that d(j, l) ≤ m− k + 1 < m− (k − 1) + 1, by the assumption
that the statement for k−1 is proved, we have (Ak−1)pl = (Bk−1)pl. Together with
d(j, i) ≤ m, d(j, p) ≤ m, we have Aip = Bip. Therefore,

(Ak)il =
∑
p

Aip(A
k−1)pl =

∑
p

Bip(B
k−1)pl = (Bk)il

is valid for all i, l such that d(j, i) ≤ m− k + 1, d(j, l) ≤ m− k + 1. �

Using Proposition 3.1, Theorem 3.2 shows that the j-th column of fσ,μ(A) can
be accurately computed from fσ,μ(B), as long as the columns of A and B are
sufficiently close in the vicinity of j in the sense of the geodesic distance.

Theorem 3.2. Let A, B be n× n Hermitian matrices with eigenvalues in (−1, 1).
For a given j and an even integer m (1 ≤ j,m ≤ n),

Ail = Bil, ∀i, l s.t. d(j, i) ≤ m, d(j, l) ≤ m.

Then

|fσ,μ(A)ij − fσ,μ(B)ij | ≤ 2Kρ
m
2 +1,

for all i such that d(j, i) ≤ m/2 + 1, where the constants K, ρ are given in (2.8).
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Proof. For any i, j and k ≥ 0 we have

|fσ,μ(A)ij − fσ,μ(B)ij | ≤ |fσ,μ(A)ij − pk(A)ij |+ |pk(A)ij − pk(B)ij |
+ |fσ,μ(B)ij − pk(B)ij |.

Take k = m
2 . For any i such d(j, i) ≤ m − k + 1 = m

2 + 1, by Proposition 3.1,
pk(A)ij = pk(B)ij . Also from Theorem 2.2, we have

|fσ,μ(A)ij − pk(A)ij | ≤ ‖fσ,μ(A)− pk(A)‖2 ≤ Kρ
m
2 +1,

|fσ,μ(B)ij − pk(B)ij | ≤ ‖fσ,μ(B)− pk(B)‖2 ≤ Kρ
m
2 +1,

and hence the result. �

Theorem 3.2 shows that in order to compute any column j of the matrix fσ,μ(A)
up to certain accuracy, it is only necessary to have a matrix that shares the same
columns as A up to a certain distance away from j. Together with the decay
property of each column of fσ,μ(A), this allows the j-th column of fσ,μ(A) to be
constructed in a divide-and-conquer manner. For instance, for a given integer m
we can define

(3.1) Bil =

{
Ail, ∀i, l s.t. d(j, i) ≤ m, d(j, l) ≤ m,

0, otherwise,

which is simply a submatrix of A. As a submatrix, ‖B‖2 ≤ ‖A‖2 and the assump-
tion of the spectral radius in Theorem 3.2 is satisfied.

In practice it would be very time consuming to construct an approximate matrix
for each column of j, since the rank of the LSS operator fσ,μ(A) is often much
smaller compared to n. For structured matrices such as matrices obtained from
finite difference or finite element discretization of PDE operators, it is often possible
to partition the domain into well structured disjoint columns sets, and apply the
truncated LSS operator to each column set. The cost for generating such a partition
can be very small if the structure of the matrix is known a priori. For the discussion
below, we assume that the partition V = {1, . . . , n} into M simply connected
disjoint sets {Eκ}Mκ=1 is given, i.e.,

V =

M⋃
κ=1

Eκ and Eκ ∩ Eκ′ = ∅, κ �= κ′.

For general sparse matrices, such partitions may not be readily available. We
discuss the choice of domain partitioning strategy in section 3.4.

For each Eκ and an integer m, we define an associated set

(3.2) Qκ = {i|d(i, j) ≤ m, ∀j ∈ Eκ} .

Theorem 3.2 implies that the submatrix (fσ,μ(A)):,Eκ
can be constructed by a

submatrix of A defined as

(3.3) (Aκ)ij =

{
Aij , i, j ∈ Qκ,

0, otherwise.

In the following discussion, we refer to Eκ as an element, and to Qκ as an extended
element associated with Eκ. It should be noted that the zero entries of Aκ outside
the index set Qκ do not need to be explicitly stored.
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Remark 3.3. The choice in (3.1) takes a submatrix of A to compute the localized
spectrum slicing operator. From the point of view of partial differential operators,
this is similar to imposing the zero Dirichlet boundary condition on some local
domains. However, the zero Dirichlet boundary condition may not be the optimal
choice. Generalization of other types of boundary conditions can be considered as
well to construct the local matrices Aκ.

Since A is Hermitian and sparse, and so is Aκ. The latter has the eigendecom-
position

(3.4) AκXκ = XκDκ.

Here Dκ is a diagonal matrix. Note that Aκ only takes nonzero values on the
extended element Qκ. The entries of each column of Xκ outside the index set Qκ

can be set to zero, and such zero entries do not need to be explicitly stored. This
is equivalent to solving an eigenvalue problem of size |Qκ| × |Qκ|. Define

(3.5) fσ,μ(Aκ) ≡ Xκfσ,μ(Dκ)X
∗
κ.

Using Theorem 3.2, fσ,μ(A)Qκ,Eκ
can be approximated by fσ,μ(Aκ), in the sense

that

|fσ,μ(A)ij − fσ,μ(Aκ)ij | ≤ 2Kρ
m
2 +1, ∀i ∈ Qκ, j ∈ Eκ.

Since fσ,μ is spectrally localized, in practice not all eigenvalues and eigenvectors of
Aκ as in (3.4) are needed. Instead only a partial eigendecomposition is needed to
compute all eigenvalues of Aκ in the interval (μ− cσ, μ+ cσ). Due to the fast decay
properties of Gaussian functions, in practice c can be chosen to be 2 ∼ 4 to be
sufficiently accurate. We denote by sκ the column dimension of Xκ in the partial
eigendecomposition of Aκ.

The factorized representation in (3.5) also allows the computation of a set of vec-
tors approximately spanning the column space of fσ,μ(Aκ), through a local singular
value decomposition (SVD) procedure, i.e.,

(3.6) ‖fσ,μ(Dκ)((Xκ)Qκ,:)
∗ − ŨκS̃κṼ

∗
κ ‖2 ≤ τ̃ .

Here τ̃ is SVD truncation criterion. The size of the matrix for the SVD decompo-
sition is sκ × |Qκ|. In practice τ̃ may also be chosen using a relative criterion as

τ̃ = τ (S̃κ)1,1 is used in our numerical experiment, where we assume (S̃κ)1,1 is the
largest singular value in (3.6). In practice this can be performed by only keeping

the singular values in the diagonal matrix S̃κ that are larger than τ̃ . Then we can
define

(3.7) Uκ = XκŨκ, Vκ = S̃κṼ
∗
κ .

We combine all Uκ together

(3.8) U ≡ [U1, . . . , UM ],

and U is the LSS basis set that is both spectrally localized and spatially localized.
We denote by nb the total number of columns of U , which is also referred to as the
size of the LSS basis set. Using the LSS basis set, an approximation to the LSS
operator is defined as

(3.9) f̃ij =

{
(Uκ)i,:(Vκ):,j , i ∈ Qκ, j ∈ Eκ, for some κ,

0, otherwise.
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Then f̃ is an n×n sparse matrix, and the error in the max norm for approximating
the LSS operator fσ,μ(A) is given in Theorem 3.4.

Theorem 3.4. Let A be an n × n Hermitian matrix with eigenvalues in (−1, 1),
and the induced graph is partitioned into M elements {Eκ}. For each element Eκ,
there is an extended element Qκ given in (3.2), a submatrix Aκ given in (3.3), and

matrices Uκ, Vκ satisfying (3.6) and (3.7). Let f̃ be an n × n matrix defined in
(3.9), then

(3.10) ‖fσ,μ(A)− f̃‖max ≤ 2Kρ
m
2 +1 + τ̃ .

Proof. For each element κ, from (3.6) we have

max
i∈Qκ,j∈Eκ

|fσ,μ(Aκ)ij − f̃ij | = max
i∈Qκ,j∈Eκ

|fσ,μ(Aκ)ij − (Uκ)i,:(Vκ):,j |

≤ ‖fσ,μ(Aκ)− UκVκ‖2 ≤ ‖Xκ‖2τ̃ = τ̃ .
(3.11)

Using Theorem 3.2 and the definition of the extended element (3.2),

(3.12) max
i∈Qκ,j∈Eκ

|fσ,μ(A)ij − fσ,μ(Aκ)ij | ≤ 2Kρ
m
2 +1.

For vertices i /∈ Qκ, j ∈ Eκ, f̃ij = 0. Then from Theorem 2.3 and using ρ < 1, we
get

(3.13) max
i/∈Qκ,j∈Eκ

|fσ,μ(A)ij − f̃ij | = |fσ,μ(A)ij| ≤ Kρm+1 ≤ Kρm/2+1.

Combining equations (3.11), (3.12), (3.13), we have

‖fσ,μ(A)− f̃‖max = max
1≤i,j≤n

|fσ,μ(A)ij − f̃ij |

=max
κ

{
max

{
max

i∈Qκ,j∈Eκ

|fσ,μ(A)ij − f̃ij |, max
i/∈Qκ,j∈Eκ

|fσ,μ(A)ij − f̃ij |
}}

=max
κ

{
max{2Kρ

m
2 +1 + τ̃ , Kρm/2+1}

}
= 2Kρ

m
2 +1 + τ̃ . �

Remark 3.5. Theorem 3.4 indicates that in order to accurately approximate the
LSS operator, the SVD truncation criterion τ̃ must be small enough. However,
the result in Theorem 3.4 is only an upper bound of the error. Numerical results
in section 4 indicate that accurate eigenvalues may be obtained even when τ̃ is
relatively large.

Finally, we summarize the algorithm for finding the divide-and-conquer method
for constructing the LSS basis set in Algorithm 1.

3.2. Complexity. In order to simplify the analysis of the complexity of Algo-
rithm 1 for finding the LSS basis set, we make the assumption that the set of n
vertices is equally divided into M elements, so that |Eκ| = n

M ≡ |E|. As n increases
we assume |E| can be kept as a constant, i.e., the number of elements M increases
proportionally with respect to n. |Qκ| = cQn

M ≡ cQ|E|, where cQ is a small number
denoting the ratio between the size of the extended element and the size of the
element. For instance, for the discretized 1D and 2D Laplacian operators in the
numerical examples, cQ is set to be 3 and 9, respectively.

Denote by sκ the column dimension of Xκ in the partial eigendecomposition of
Aκ, and by tκ the column dimension of Uκ with tκ ≤ sκ. For simplicity we assume
{sκ}, {tκ} are uniform, i.e., sκ = s, tκ = t, κ = 1, . . . ,M . If Aκ is treated as a dense
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Algorithm 1: Localized spectrum slicing basis set.

Input:

(1) Sparse Hermitian matrix A, center μ, width σ, SVD truncation tolerance
τ̃ .

(2) Number of elements M , partition of elements {Eκ}Mκ=1 and extended
elements {Qκ}Mκ=1.

Output: LSS basis set {Uκ}Mκ=1.

for κ = 1, . . . ,M do
Compute the (partial) eigendecomposition according to (3.4);
Compute the local SVD decomposition according to (3.6) and only keep singular
vectors with singular values larger than τ̃ ;

Compute Uκ with matrix multiplication according to (3.7);

end

matrix for the computation of the local eigendecomposition of Aκ, then the cost is
cEig,d|Qκ|3. The cost of the SVD decomposition is cSVD|Eκ|s2κ. The cost of matrix
multiplication to obtain Uκ is cMM|Qκ|sκtκ. So the total cost for finding the LSS
basis set is proportional to

M∑
κ=1

cEig,d|Qκ|3 + cSVD|Eκ|s2κ + cMM|Qκ|sκtκ

= n
(
cEig,dc

3
Q|E|2 + cSVDs

2 + cMMcQst
)
.

(3.14)

If we assume that as n increases, the spectral radius of A does not increase, then
all constants in the parenthesis in the right-hand side of (3.14) are independent of
n, and the overall computational complexity for finding the LSS basis set is O(n).

In practice the constant for the finding the local eigendecomposition can be large
due to the term |E|2 in (3.14). Since Aκ is still a sparse matrix on Qκ, iterative
methods can be used to reduce the computational cost to cEig,i|Qκ|s2κ. This modifies
the overall complexity to be

n
(
cEig,icQs

2 + cSVDs
2 + cMMcQst

)
.

However, it should be noted that the preconstant cEig,i might be larger than cEig,d.
Whether a direct or an iterative method should be used to solve the local eigenvalue
problem may depend on a number of practical factors such as the size of the local
problem, and the availability of efficient preconditioner on the local domain, etc.

3.3. Compute interior eigenvalues. Using the LSS basis set in (3.8), one may
compute the interior eigenvalues near μ together with its associated eigenvectors.
This can be done by using the projected matrices AU , BU according to (1.3). Due
to the spatial sparsity of U , AU , BU are also sparse matrices, and can be assembled
efficiently with local computation. First, the matrix multiplication Z = AU can be
performed locally. This is because each column of Uκ is localized in Qκ, then

(3.15) Zκ = AUκ ≈ AκUκ.

Second, denote by

(AU )κ′,κ = U∗
κ′Zκ, (BU )κ′,κ = U∗

κ′Uκ,

then for each κ it is sufficient to loop over elements Eκ′ so that Qκ′∩Qκ is nonempty.
The details for constructing the projected matrices are given in Algorithm 2.
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Algorithm 2: Assembly of the projected matrices.

Input:

(1) Sparse Hermitian matrix A.

(2) Number of elements M , partition of elements {Eκ}Mκ=1, extended ele-
ments {Qκ}Mκ=1, submatrices {Aκ}Mκ=1, LSS basis set {Uκ}Mκ=1 with total
number of basis functions nb.

Output: Projected matrices AU , BU .
Let AU , BU be zero matrices of size nb × nb.
for κ = 1, . . . ,M do

Compute Zκ ← AκUκ;

for κ′ so that Qκ′ ∩Qκ �= ∅ do
Compute (AU )κ′,κ ← U∗

κ′Zκ;

Compute (BU )κ′,κ ← U∗
κ′Uκ;

end

end

Symmetrize AU ← 1
2
(AU +A∗

U ), BU ← 1
2
(BU +B∗

U ).

After AU , BU are assembled, the eigenvalues and corresponding eigenvectors near
μ can be solved in various ways. When the size of the LSS basis set nb is small, one
can treat AU , BU as dense matrices and solve the generalized eigenvalue problem

(3.16) AUC = BUCΘ,

and only keep the Ritz values Θ = diag[θ1, . . . , θnb
] and corresponding Ritz vectors

C near μ. Each column of the Ritz vector Cj can be partitioned according to the
element partition {Eκ} as

Cj = [C1,j , . . . , CM,j ]
T .

Then an approximate eigenvector for A can be computed as

(3.17) X̃j = UCj =
∑
κ

UκCκ,j .

We remark that in the computation of interior eigenvalues, spurious eigenvalues
may appear. A spurious eigenvalue is a Ritz value θj near the vicinity of μ as

obtained from (3.16), but the corresponding vector X̃j as given in (3.17) is not an
approximate eigenvector. The appearance of a spurious eigenvalue is also referred
to as spectral pollution [14, 16], and could be identified by computing the residual

(3.18) Rj = AX̃j − X̃jθj .

A Ritz value θj corresponding to large residual norm ‖Rj‖2 should be removed.
Note that the residual can also be computed with local computation

(3.19) Rj =
∑
κ

(ZκCκ,j − UκCκ,jθj) ,

where Zκ is given in (3.15). Our numerical experience indicates that the use of the
residual is an effective way for identifying spurious eigenvalues when the LSS basis
set is accurate enough for approximating the subspace spanned by the eigenvectors
to be computed. In such a case the norm of the residual for most Ritz values is
small and the norm of the residual for the spurious eigenvalue stands out. When
the basis set cannot accurately capture all the eigenvalues in the prescribed interval
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especially for those clustered near the boundary of the interval, it becomes more
difficult to identify all the spurious eigenvalues.

3.4. Domain partitioning for general sparse matrices. For a general sparse
matrix A, we discuss here the strategy to partition the associated undirected graph
G = (V , E) intoM elements {Eκ}Mκ=1. Intuitively we would like to choose a partition
that keeps all Eκ to have similar sizes, while minimizing the number of edges

that is being cut by the partition, i.e.,
∑M

κ,κ′=1

∑
i∈Eκ,j∈Eκ′ wij . Here wij = 1 if

Aij �= 0 and 0 otherwise. This is called a minimal M -cut problem. It is known
that the minimal M -cut problem is NP-hard. Various heuristic methods have been
developed. Here we use the nested dissection approach [11] as implemented in
the METIS [15] package. The nested dissection approach can find an approximate
minimal 2-cut of the graph, and then recursively partitions each part of the graph,
with iterative adjustment of the size of Eκ. For each κ we define a neighbor list Nκ,
which consists of κ itself, as well as other element indices κ′ such that there exists
at least one pair of indices i ∈ Eκ, j ∈ Eκ′ and Aij �= 0. Then the extended element
Qκ is defined as the collection of all indices in Eκ′ such that κ′ ∈ Nκ. Algorithm 3
gives a pseudo-code for generating the elements {Eκ}, the neighbor lists {Nκ}, and
the extended elements {Qκ}. In terms of implementation, the partition of the graph
is given by a graph partition map ξ such that Eκ = {i ∈ V|ξ(i) = κ}, and ξ can be
directly returned from a graph partitioning package such as METIS.

Algorithm 3: Generating the set of elements {Eκ} and neighboring elements
for a general sparse matrix.

Input: Sparse Hermitian matrix A of size n× n. Number of elements M .

Output: Eκ, Nκ, Qκ, κ = 1, . . . ,M .
ξ = GraphPartition(A).
Eκ = {i ∈ V|ξ(i) = κ}, κ = 1, . . . ,M .
Nκ = {κ} ∪ {κ′|∃i ∈ Eκ′ , j ∈ Eκ, Aij �= 0}, κ = 1, . . . ,M .
Qκ = {i ∈ V|i ∈ Eκ′ , κ′ ∈ Nκ}, κ = 1, . . . ,M.

4. Numerical results

In this section we demonstrate the accuracy and efficiency of the divide-and-
conquer procedure for computing the LSS operator and the LSS basis set, and
for computing interior eigenvalues. All the computation is performed on a single
computational thread of an Intel i7 CPU processor with 64 gigabytes (GB) of
memory using MATLAB. The matrix A is obtained from a discretized second order
partial differential operator −Δ+ V in one dimension (1D) and in two dimension
(2D) with periodic boundary conditions, and a general matrix from the University
of Florida matrix collection.

4.1. One-dimensional case. In the 1D case, the global domain is Ω = [0, L].
The Laplacian operator is discretized using a 3-point finite difference stencil. The
domain is uniformly discretized into n = cnM grid points so that xi = (i − 1)h,
with the grid spacing h ≡ L/n = 0.1. All the n grid points (vertices) are uniformly
and contiguously partitioned into M elements {Eκ}Mκ=1. For simplicity let Qκ be
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the union of Eκ and its two neighbors taking into account the periodic boundary
condition, i.e.,

Qκ =

⎧⎪⎨⎪⎩
EM ∪ E1 ∪E2, κ = 1,⋃κ+1

κ′=κ−1 Eκ, κ = 2, . . . ,M − 1,

EM−1 ∪ EM ∪E1, κ = M.

The potential V (x) is given by the sum of nw exponential functions as

(4.1) V (x) = −
nw∑
i=1

aie
− dist(x,Ri)

δi .

Here {Ri} are a set of equally spaced points. The distance between two points x
and x′ is defined to be the minimal distance between x and all the periodic images
of x′, i.e.,

dist(x, x′) = min
x̃′=x′+kL,k∈Z

|x− x̃′|.

In order to study the performance of the algorithm for systems of increasing sizes,
we set L = 20nw so that the length of the computational domain is proportional
to the number of potential wells nw. To show that we do not take advantage of
the periodicity of the potential, we introduce some randomness in each exponential
function. We choose ai ∼ N (5.0, 1.0), which is a Gaussian random variable with a
mean value 5.0 and a standard deviation 1.0. Similarly, the width of the exponential
function δi ∼ N (2.0, 0.2). One realization of the potential with nw = 8 is given
in Figure 4.1(a), with the partition of elements indicated by black dashed lines.
For the choice of parameter μ = 2.0 and σ = 1.0, Figure 4.1(b) shows the function
fσ,μ(λ) evaluated on the eigenvalues of A plotted in log-scale in the interval (−5, 10),
and the LSS operator fσ,μ(A) is spectrally localized. Figure 4.1(c) demonstrates
the histogram of the eigenvalues (unnormalized spectral density) for all eigenvalues
of A.
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Figure 4.1. (a) One realization of the 1D potential with nw = 8.
The domain is partitioned into 8 equally sized elements separated
by black dashed lines. (b) The function fσ,μ(A) with σ = 1.0 and
μ = 2.0 viewed spectrally in the interval (−5, 15) plotted in the log
scale. The spectral radius of A is 199.89. (c) The histogram of the
eigenvalues of A.
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Figure 4.2(a)-(c) demonstrates the behavior of the exact LSS operator fσ,μ(A)
with σ = 1.0 and increasing value of μ. In Figure 4.2, [fσ,μ(A)](x, y) should be
interpreted using its discretized matrix element [fσ,μ(A)]ij for x = (i − 1)h, y =
(j − 1)h. We find that as μ increases, the off-diagonal elements of f decay rapidly
and remain to be well approximated by a banded (and therefore sparse) matrix with
increasing bandwidth. Figure 4.2(d)-(f) demonstrates the quality of the divide-

and-conquer approximation f̃ to the LSS operator. Here we first demonstrate the

accuracy of f̃ without the truncation using SVD decomposition (i.e., the SVD
truncation criterion τ̃ = 0 as in (3.6)). When μ = −2.0, the approximation is
nearly exact. When μ increases to 20.0 the relative error is around 10% since the
support size of each column of f already extends beyond each extended element
Qκ.
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Figure 4.2. The LSS operator fσ,μ(A) with σ = 1.0 for (a) μ =
−2.0; (b) μ = 2.0; (c) μ = 20.0. The max error between the LSS

operator and its divide-and-conquer approximation f̃σ,μ(A) for (d)
μ = −2.0; (e) μ = 2.0; (f) μ = 20.0.

A more complete picture of the μ-dependence for approximating the LSS opera-
tor is given in Figure 4.3. Figure 4.3(a) shows the max norm error of the divide-and-
conquer approximation to the LSS operator for μ traversing the entire spectrum of
A from −3.0 to 200.0. The error increases rapidly as μ initially increases, achieves
its maximum at μ = 100 and then starts to decrease. Figure 4.3(b) shows the
same picture but zooms into the interval near μ = 0. As μ increases above 10.0,
the vectors spanning columns of fσ,μ(A) are approximately linear combination of
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high frequency Fourier modes, and Figure 4.3(a) shows that the Fourier modes are
increasingly more difficult to localize as the frequency increases. Figure 4.3(c)-(d)
shows similar behavior for σ = 2.0. The profile of the error with respect to μ
closely resembles a Gaussian function. Compared to the case with σ = 1.0 the
error significantly reduces for all μ, indicating the balance between spatial locality
and spectral locality with varying σ.
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Figure 4.3. Max norm error of the LSS operator traversing the
entire spectrum of A for (a) σ = 1.0; (b) σ = 1.0, zoom-in; and (c)
σ = 2.0; (d) σ = 2.0, zoom-in.

Figure 4.4(a) demonstrates the max norm error of the LSS operator for μ = 2.0
with increasing value of σ. When σ is less than 0.25 the LSS operator is very
localized spectrally, but the matrix is almost dense. Therefore the divide-and-
conquer approximation leads to large error. As σ increases above 0.25, the max
norm error decreases exponentially with the increase of σ. We observe that the
choice of σ is crucial: by varying σ from 0.5 to 1.5, the error is reduced by over 6
orders of magnitude from 10−4 to below 10−10.

Next we study the effect of grid refinement by varying the grid size from h = 0.20
to h = 0.033. For 3-point finite difference stencil the spectral radius of A, denoted
by ΔE is proportional to 1/h2, and in practice ΔE increases from 50 to 1800.
We note that Theorem 3.2 indicates that the error should be determined by the
ratio σ/ΔE, and therefore the size of the extended element as characterized by
the geodesic distance m should increase proportionally to ΔE to preserve accuracy.
Here instead we fix the number of elements to be 8 as the grid refines. Therefore
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m ∼ 1/h ∼
√
ΔE, and we should expect that the error increases as the grid refines.

Figure 4.4(b) shows that max norm error of the LSS operator for μ = 2.0, σ = 1.0,
with increasing ΔE. As the ratio σ/ΔE decreases over one order of magnitude, the
max norm error does not increase, but rather decreases by more than a factor of 2.
We note that this numerical result does not contradict the theoretical prediction,
since Theorem 2.2 only provides an upper bound of the decay rate, and the actual
decay rate can be faster. This behavior has been recently verified analytically for
discretized Schrödinger type operators [20]. Note that as the grid refines, the
change towards the high end of the spectrum is often larger than the change at
the low end of the spectrum. Figure 4.4 indicates that the accuracy of the LSS
operator is relatively insensitive to the change in the high end of the spectrum,
and it may be possible to construct the LSS operator with improved discretization
scheme, without sacrificing too much in terms of the spatial locality.
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Figure 4.4. Max norm error of the LSS operator for (a) μ =
2.0,ΔE = 199.89 and increasing value of σ; (b) μ = 2.0, σ = 1.0
and increasing value of ΔE.

So far the numerical results are obtained for the divide-and-conquer approxi-
mation to the LSS operator with τ̃ = 0. Next we apply the SVD truncation to
obtain the LSS basis set {Uκ}Mκ=1 for varying SVD relative truncation criterion.
In our numerical experiments, we use τ as the relative SVD truncation criterion

with respect to the largest singular value of S̃κ. Figure 4.5 shows the error of the
approximation to the LSS operator with τ being 0.001, 0.01, 0.1, respectively. As
indicated in (3.6), the max norm error of the approximation of the LSS operator is
approximately proportional to τ , as τ becomes dominant in (3.10).

The LSS basis set comes from the SVD decomposition of f̃ on each element.
Figure 4.6(a) shows the 1-st LSS basis function on two elements κ = 2 and κ = 6,
respectively, and Figure 4.6(b) shows the 5-th LSS basis function on the same two
elements for μ = 2.0, σ = 1.0. It is clear that each LSS basis function is well
localized in each extended element Qκ and its center is in Eκ.

Figure 4.5 seems to suggest that in order to accurately compute the interior eigen-
values, a very tight SVD criterion τ is needed. However, we note that many of the
LSS basis functions associated with the small singular values actually corresponds
to the tail of the Gaussian function in (1.2) which are away from μ. Therefore, in
order to compute the interior eigenvalues near μ accurately, it is possible to use a
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Figure 4.5. Error of the divide-and-conquer approximation to the
LSS operator with σ = 1.0, μ = 2.0 and different SVD relative
truncation criterion (a) τ = 10−3; (b) τ = 10−2; (c) τ = 10−1.
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Figure 4.6. Example of the LSS basis function on two elements
κ = 2 and κ = 6 for (a) the 1-st LSS basis function and (b) the
5-th LSS basis function.

much larger value of τ . Figure 4.7(a) shows the difference between the 24 eigenval-
ues of A within the interval (μ−0.5σ, μ+0.5σ) and the corresponding Ritz values of
A with τ = 0.1. The computed Ritz values are highly accurate and the maximum
error is under 5 × 10−6 even though a large SVD truncation criterion τ is used.
Section 3.3 discusses the identification of spurious eigenvalues using the residual for
each computed Ritz value. Indeed, within the interval (μ− 0.5σ, μ+ 0.5σ) we find
25 Ritz values, and the 1 additional Ritz value should be a spurious eigenvalue.
Figure 4.7(b) shows ‖Rj‖2 for each Ritz value, and we identify that the 11-th Ritz
value has a much larger residual than the rest and should be removed. After re-
moving this spurious eigenvalue, the remaining Ritz values become an accurate
approximation to the eigenvalues as indicated in Figure 4.7(a).

While the accuracy of the divide-and-conquer approximation to the LSS operator
improves as the SVD truncation criterion τ decreases, using a very small value of
τ may result in ill-conditioned projection matrices AU and BU , i.e., some of the
LSS basis functions can be approximately represented as the linear combination
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Figure 4.7. (a) Difference between the 24 eigenvalues and corre-
sponding Ritz values within the interval (μ− 0.5σ, μ+ 0.5σ) with
σ = 1.0, μ = 2.0. (b) The 2-norm of the residual for each of the 25
Ritz values. The 11-th Ritz value has a large residual norm and is
a spurious eigenvalue.

10
−3

10

τ

−2
10

−1

10
5

10
10

co
n
d

cond(A
U
)

cond(B
U
)

(a)

10
−3

10
−2

10
−1

80

100

120

140

160

n
b

τ

(b)

Figure 4.8. (a) The condition number of AU and BU ; and (b) the
number of basis functions, with varying SVD relative truncation
criterion τ . Here μ = 2.0, σ = 1.0.

of other LSS basis functions. Figure 4.8(a) shows the condition number of AU ,
BU with respect to τ . The condition numbers are below 104 when τ ≥ 0.1, and
increase very rapidly to 1013 for τ = 10−3. In the latter case, numerical results
obtained from the generalized eigenvalue solver cannot be trusted. Decreasing τ
also leads to increasing the size of the LSS basis set. As τ decreases from 10−1 to
10−3, the number of LSS basis functions increases from 87 to 173. The accuracy
of the LSS basis set for different values of τ is given in Table 4.1. When τ is too
small, the number of computed Ritz values is less than 24 due to the very large
condition number of the generalized eigenvalue problem, and the difference between
the eigenvalues and the Ritz values is not a meaningful quantity to report and is
reported as N/A. The error of the Ritz values reaches its minimum near τ = 0.032
at only 7.59 × 10−8, and then starts to increase as τ increases. We observe that
even if τ = 0.316, the absolute (and relative) error of the Ritz values is still within
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0.2%. For this case the dimension of the projected generalized eigenvalue problem
is 62, which is much smaller compared to the dimension of A which is 1600.

Table 4.1. The number of computed Ritz values in the interval
(μ − 0.5σ, μ + 0.5σ) with σ = 1.0, μ = 2.0 (spurious eigenval-
ues removed). If the number of Ritz values match the number
of eigenvalues in the interval (24), then the third column gives the
maximum difference between the eigenvalues and the Ritz values.
Otherwise the third column gives N/A.

τ # Ritz values maxj |λj − θj |
0.001 1 N/A
0.003 19 N/A
0.010 24 2.49× 10−6

0.032 24 7.59× 10−8

0.100 24 4.40× 10−6

0.316 24 1.50× 10−3

Even for the 1D simple example, the LSS basis set can be an efficient way to
compute interior eigenvalue problems compared to the solution of the eigenvalue
problem directly. For comparison of efficiency and accuracy, MATLAB’s sparse
eigenvalue solver eigs is used for the matrix A. We acknowledge that eigsmay not be
the best eigensolver to use for large interior eigenvalue problems, and other choices
such as preconditioned conjugate gradient type of solvers, or Jacobi-Davidson type
of solvers may give better results. We also remark that the current implementation
of the LSS solver is only for proof of principle, and many of its components can be
further optimized before a more thorough performance study is to be performed.
Here we consider systems of increasing size by changing nw in the potential function
in (4.1) from 8 to 256. Correspondingly the number of grid points n increases from
1600 to 51200, and the number of elements increases proportionally from 8 to 256.
μ = 2.0, σ = 1.0, τ = 3 × 10−2 is used for all systems to compute the eigenvalues
within the interval (μ−0.5σ, μ+0.5σ). Figure 4.9 shows the time for computing the
interior eigenvalues near μ using MATLAB’s sparse eigenvalue solver eigs (“Global
total”), and the time using the LSS basis set (“LSS total”). The tolerance for eigs is
set to 10−5. The breakdown of the time cost for the LSS solver includes the time for
constructing the LSS basis set (“LSS basis”), the time for assembling the projected
matrix (“Assembly”), and the time for solving the projected eigenvalue problem
(“LSS solve”). Figure 4.10 shows the sparsity pattern of AU for n = 6400, and the
sparsity pattern of BU is by definition the same. The number of nonzero elements
is 15.6% of the total number of elements in AU . The sparsity of the projected
matrices is not used in our example here, but can be exploited using alternative
methods.

Since the size of the local problem is small, the local eigenvalue problem on each
Qκ is performed using MATLAB’s dense eigenvalue solver eig, and so is the solution
of the generalized eigenvalue problem for the projected matrix. The time for the
global solver scales cubically with respect to n, and the constructing the LSS basis
and the assembly of the projected matrix increases linearly with respect to n. The
solution of the generalized eigenvalue problem also scales cubically with respect to
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n, and therefore does not dominate in the LSS solver until n = 51200. The cross-
over time between the LSS solver and the global solver is around n = 10000. For
n = 51200, the LSS solver costs 46.6 sec, which is 11.2 times faster than the global
solver which costs 520.8 sec.

Figure 4.9(b) shows the accuracy of the LSS solver. The Ritz values remain
as accurate approximation to the eigenvalues as the number of eigenvalues in the
interval increases from 24 to 706.
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Figure 4.9. (a) Comparison of time cost between the global solver
and the LSS solver for 1D interior eigenvalue problem with in-
creasing system size. See text for details of the comparison. (b)
Maximum error of the Ritz values.
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Figure 4.10. Sparsity pattern for AU for n = 6400.

4.2. Two-dimensional case. The setup of the 2D example is similar to that in 1D.
The global domain is Ω = [0, L] × [0, L], and the Laplacian operator is discretized
using a 5-point finite difference stencil. The grid spacing is chosen to be h =
1.0. The potential function V (x, y) is given by the sum of periodized exponential
functions with random perturbation in terms of heights, widths and positions of
the exponential functions. This can be viewed as a model potential for a crystal
under thermal noise. One realization of this potential is given in Figure 4.11. Let
the number of elements M is a square number and the number of grid points n
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is divisible by M . Then all n grid points (vertices) are uniformly partitioned into√
M ×

√
M elements. We also assume each extended element Qκ contains Eκ and

its 8 nearest neighbor elements. Figure 4.11 shows the partition of the 2D domain
into 8× 8 = 64 elements separated by black dashed lines.

Figure 4.11. One realization of the 2D potential. The domain is
partitioned into 8 × 8 = 64 elements separated by black dashed
lines.

We compare the accuracy of the LSS basis set by comparing the eigenvalues
within the interval (μ − σ, μ + σ) with μ = −1.0, σ = 1.0. The SVD relative
truncation criterion τ is set to be 10−1. Figure 4.12(a) shows the error of Ritz
values compared to all the 828 eigenvalues within the interval, and the error of all
Ritz values is very small, within 7× 10−5. Figure 4.12(b) shows the residual of the
Ritz values. For all the Ritz values the residual are below 7×10−3 and no spurious
eigenvalue is identified for this case.
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Figure 4.12. (a) Error of the Ritz values. (b) The 2-norm of
residual corresponding to Ritz values for the 2D problem with
μ = −1.0, σ = 1.0, τ = 10−1.

Finally we demonstrate the performance of the LSS solver for a 2D problem
with increasing size. The number of grid points n increases from 1600 to 25600,
and the number of elements increases proportionally from 16 to 256. Figure 4.13
shows the time for computing the interior eigenvalues near μ using MATLAB’s
sparse eigenvalue solver eigs (“Global total”), and the time using the LSS basis set
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Figure 4.13. (a) Comparison of time cost between the global solver
and the LSS solver for 2D interior eigenvalue problem with in-
creasing system size. See text for details of the comparison. (b)
Maximum error of the Ritz values.

(“LSS total”). The tolerance for eigs is set to 10−5. The breakdown of the LSS
solver includes the time for constructing the LSS basis set (“LSS basis”), the time
for assembling the projected matrix (“Assembly”), and the time for solving the
projected eigenvalue problem (“LSS solve”). Again the local eigenvalue problem
on each Qκ is performed using MATLAB’s dense eigenvalue solver eig, and so is
the solution of the generalized eigenvalue problem for the projected matrix. The
crossover point between the global solver and the LSS solver is around n = 3000.
For n = 25600, the LSS solver costs 143 sec, which is 8.3 times faster than the
global solver which costs 1183 sec.

Figure 4.13(b) shows the accuracy of the LSS solver. The Ritz values remain
as an accurate approximation to the eigenvalues as the number of eigenvalues in
the interval increases with respect to the system size and no spurious eigenvalue is
observed for all cases.

4.3. Sparse matrix with general sparsity pattern. For a general sparse ma-
trix, we take the turon-mmatrix from the University of Florida matrix collection [8].
The dimension of the matrix is 189924, with 1690876 number of nonzeros. The LU
factorization procedure for this matrix is relatively expensive. Using the approxi-
mate minimum degree (AMD) ordering strategy provided through the symamd com-
mand in MATLAB [7]. The number of nonzeros in L and U are 364176421 with a
fill-in ratio (i.e., the ratio between the number of nonzeros in L,U and the number
of nonzeros in A) is 215. The LU factorization takes 952 sec, and each triangular
solve U−1(L−1b) for a random right-hand side vector b takes 0.52 sec, compared to
each matrix vector multiplication Ax which takes 0.006 sec. The spectral radius of
this matrix is 86. The sparsity pattern of this matrix, together with the histogram
of the eigenvalues (unnormalized spectral density) in the interval (1, 7) is given in
Figure 4.14(a), (b), respectively.

In order to apply the LSS method to this unstructured matrix, we use the strat-
egy in section 3.4 and use the METIS [15] package interfaced by the metismex

program1 with MATLAB for generating the graph partitioning map ξ.

1https://github.com/dgleich/metismex
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Figure 4.14. (a) Sparsity pattern and (b) histogram of the eigen-
values in the interval (1, 7). (c) Accuracy of the Ritz values for the
interior eigenvalues in the interval (3.5, 4.5) of the turon-m matrix.

We set μ = 4.0, σ = 0.5. As in Figure 4.14(b), μ = 4.0 indeed corresponds to
interior eigenvalues. We select this region mainly because the spectral density is
relatively low so that the computation can be treated on a single computational
core. The matrix is partitioned into 16 elements using METIS. The matrix partition
routine is efficient and only takes 0.55 sec. Due to the large size of the submatrix
on a single extended element, we use eigs to solve 500 eigenvalues on each extended
element with tolerance set to 10−5, and set the SVD relative truncation criterion
τ to be 0.05. The size of the projected matrix is 8000, which is much reduced
compared to the dimension of A. The projected generalized eigenvalue problem is
solved with the dense eigenvalue solver eig.

We compare the accuracy of the LSS basis set by comparing the eigenvalues
within the interval (μ − σ, μ + σ) = (3.5, 4.5). There are 914 eigenvalues in this
interval, and eigs takes 1886 sec to converge to tolerance with 10−5. For LSS,
the time for computing the basis functions for all 16 elements is 3989 sec . The
time for constructing the projected matrix is 12 sec, and the time for solving the
projected matrix is 93 sec. For the projected matrix, we find 919 eigenvalues in
total, and identified 5 spurious spurious eigenvalues. After removing the spurious
eigenvalues with the largest residual, the accuracy of the Ritz values compared to
the true eigenvalues are given in Figure 4.14(c). In this case, the LSS method
is more expensive. This is mainly due to the cost for constructing the LSS basis
functions. However, this part can be potentially performed independently for each
element and without inter-element communication on parallel computers.

5. Conclusion

In this paper, we present a method for constructing a novel basis set called the
localized spectrum slicing (LSS) basis set. Each function in the LSS basis set is
localized both spectrally and spatially, and therefore can be used as an efficient way
for representing eigenvectors of a general sparse Hermitian matrix corresponding
to a relatively narrow range of eigenvalues. The LSS basis set uses the decay
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properties of analytic matrix functions, and can be constructed in a divide-and-
conquer method. We show that by carefully tuning one parameter σ, spatial locality
and spectral locality of the basis functions can be balanced. The projected matrices
can be sparse matrices with reduced sizes.

In terms of the future work, the Gaussian function used in the LSS operator
is a smooth approximation to the Dirac-δ function. The same concept of locality
can be used to approximate other matrix functions, such as matrix sign functions.
This aspect is, e.g., closely related to the recently developed adaptive local basis
functions [21] and element orbitals [22] for constructing efficient basis functions for
solving the Kohn-Sham density functional theory. The LSS basis set can also be
used to efficiently characterize the eigenvectors close to the null space of A, which
could potentially be used to construct preconditioners to accelerate linear solves for
indefinite problems.

From an efficiency point of view, in the current implementation, the local eigen-
value problem is solved mostly using a dense eigenvalue solver. This is still feasible
for the 1D and 2D model problems presented in the numerical section in this paper,
but for 3D problems this is going to be too expensive. Efficient iterative solvers, or
local Chebyshev expansion based schemes should be used instead. Another prac-
tical issue is to control the condition number of the LSS basis set when the SVD
truncation criterion is small. An efficient way to identify a subset of well conditioned
LSS basis functions will be useful to improve the robustness of the algorithm.

The balance between spatial and spectral locality is an important topic in Fourier
analysis and multi-resolution analysis. Because the construction of the LSS basis
set is completely algebraic and can be applied to any sparse Hermitian matrix, it
is possible to extend the current work to construct multi-resolution basis functions
tailored for given matrices, or multi-resolution basis functions for operators on
graphs. On the other hand, since the LSS basis set is generated from numerical
computation rather than from closed form representation, additional difficulty may
arise due to the presence of numerical noise. These topics will be studied in the
future.
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