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FINITE ELEMENT METHODS FOR SECOND ORDER LINEAR

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

IN NON-DIVERGENCE FORM

XIAOBING FENG, LAUREN HENNINGS, AND MICHAEL NEILAN

Abstract. This paper is concerned with finite element approximations of
W 2,p strong solutions of second-order linear elliptic partial differential equa-
tions (PDEs) in non-divergence form with continuous coefficients. A non-
standard (primal) finite element method, which uses finite-dimensional sub-
spaces consisting of globally continuous piecewise polynomial functions, is
proposed and analyzed. The main novelty of the finite element method is
to introduce an interior penalty term, which penalizes the jump of the flux

across the interior element edges/faces, to augment a non-symmetric piecewise
defined and PDE-induced bilinear form. Existence, uniqueness and error esti-
mate in a discrete W 2,p energy norm are proved for the proposed finite element
method. This is achieved by establishing a discrete Calderon–Zygmund-type
estimate and mimicking strong solution PDE techniques at the discrete level.
Numerical experiments are provided to test the performance of proposed finite
element methods and to validate the convergence theory.

1. Introduction

In this paper we consider finite element approximations of the following linear
elliptic PDE in non-divergence form:

Lu := −A : D2u = f in Ω,(1.1a)

u = 0 on ∂Ω.(1.1b)

Here, Ω ⊂ R
n is an open bounded domain with boundary ∂Ω, f ∈ Lp(Ω) (1 <

p < ∞) is given, and A = A(x) ∈
[
C0(Ω)

]n×n
is a positive definite matrix on Ω,

but not necessarily differentiable. Problems such as (1.1) arise in fully non-linear
elliptic Hamilton–Jacobi–Bellman equations, a fundamental problem in the field of
stochastic optimal control [12, 17, 25, 26], although, in general, Hamilton–Jacobi–
Bellman equations lead to discontinuous coefficient matrices. In addition, elliptic
PDEs in non-divergence form appear in the linearization and numerical methods
of fully non-linear second order PDEs [6, 11, 20].
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Since A is not smooth, the PDE (1.1a) cannot be written in divergence form,
and therefore notions of weak solutions defined by variational principles are not
applicable. Instead, the existence and uniqueness of solutions are generally sought
in the classical or strong sense. In the former case, Schauder theory states the
existence of a unique solution u ∈ C2,α(Ω) to (1.1) provided the coefficient matrix
and source function are Hölder continuous, and if the boundary satisfies ∂Ω ∈
C2,α. In the latter case, the Calderon–Zygmund theory states the existence and
uniqueness of u ∈ W 2,p(Ω) satisfying (1.1) almost everywhere provided f ∈ Lp(Ω),
A ∈ [C0(Ω)]n×n and ∂Ω ∈ C1,1. In addition, the existence of a strong solution to
(1.1) in two dimensions and on convex domains is proved in [2, 3, 18].

Due to their non-divergence structure, designing convergent numerical methods,
in particular, Galerkin-type methods, for problem (1.1) has been proven to be diffi-
cult. Very few such results are known in the literature. Nevertheless, while problem
(1.1) does not naturally fit within the standard Galerkin framework, several finite
element methods have been recently proposed. In [19] the authors considered mixed
finite element methods using Lagrange finite element spaces for problem (1.1). An
analogous discontinuous Galerkin (DG) method was proposed in [9]. The conver-
gence analysis of these methods for non-smooth A remains open. A discontinuous
Galerkin method for problem (1.1) with discontinuous coefficients satisfying the
Cordes condition was proposed and analyzed in [24]. Here, the authors estab-
lished optimal order estimates in h with respect to a H2-type norm. This method
has been extended to elliptic and parabolic Hamilton–Jacobi–Bellman equations in
[25,26] in which the C0-continuity condition on the coefficient matrix A is added to
the Cordes condition. Recently a two-scale, low-order finite element method based
on an regularized integral formulation of (1.1) was proposed in [21]. Here, dis-
crete Alexandroff–Bakelman–Pucci estimates are derived and, assuming the mesh
is weakly acute, the authors prove suboptimal convergence rates in the L∞-norm.

The primary goal of this paper is to develop and analyze a structurally simple
and computationally easy finite element method for problem (1.1). The method,
given in Definition 3.1 below, is a primal method using Lagrange finite element
spaces. The method is well defined for all polynomials with degree greater than
one and can be easily implemented on current finite element software. We note
that our finite element method resembles interior penalty discontinuous Galerkin
(DG) methods in its formulation because its bilinear form contains the jumps of
the fluxes across the element edges/faces. However, no interior penalty term is
used in the formulation, hence, our method is not a DG method per se. Moreover,
we prove that the proposed method is stable and converges with optimal order in
a discrete W 2,p-type norm on quasi-uniform meshes provided that the polynomial
degree of the finite element space is greater than or equal to two and if the mesh
is sufficiently fine. However, numerical experiments given in Section 4 suggest that
the polynomial restriction and mesh size restriction can be relaxed.

While the formulation and implementation of the finite element method is rel-
atively simple, the convergence analysis is quite involved, and it requires several
non-standard arguments and techniques. The overall strategy in the convergence
analysis is to mimic, at the discrete level, the stability analysis of strong solutions
of PDEs in non-divergence form (see [14, Section 9.5]). Namely, we exploit the fact
that, locally, the finite element discretization is a perturbation of a discrete elliptic
operator in divergence form with constant coefficients; see Lemma 3.1. The first
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I. Global stability estimate for
PDEs with constant coefficients

‖wh‖W2,p
h

(Ω)
� ‖L0,hwh‖Lp

h
(Ω)

II. Local stability estimate for
PDEs with constant coefficients

‖wh‖W2,p
h

(B)
� ‖L0,hwh‖Lp

h
(B′)

III. Local stability estimate for
PDEs in non-divergence form

‖wh‖W2,p
h

(B)
� ‖Lhwh‖Lp

h
(B′)

IV. Global Gärding-type inequality
for PDEs in non-divergence form

‖wh‖W2,p
h

(Ω)
� ‖Lhwh‖Lp

h
(Ω) + ‖wh‖Lp(Ω)

V. Global stability estimate for
PDEs in non-divergence form

‖wh‖W2,p
h

(Ω)
� ‖Lhwh‖Lp

h
(Ω)

Figure 1. Outline of the convergence proof.

step of the stability argument is to establish a discrete Calderon–Zygmund-type
estimate for the Lagrange finite element discretization of the elliptic operator in
(1.1) with constant coefficients, which is equivalent to a global inf-sup condition
for the discrete operator. The second step is to prove a local version of the global
estimate and inf-sup condition. With these results in hand, local stability estimates
for the proposed C0 discretization of (1.1) can be easily obtained. We then glue
these local stability estimates to obtain a global Gärding-type inequality. Finally,
to circumvent the lack of a (discrete) maximum principle, which is often used in the
PDE analysis, we use a non-standard duality argument to obtain a global inf-sup
condition for the proposed C0 discretization for problem (1.1). See Figure 1 for
an outline of the convergence proof. Since the method is linear and consistent,
the stability estimate naturally leads to the well-posedness of the method and the
energy norm error estimate.

The organization of the paper is as follows. In Section 2 the assumptions of the
PDE problem is stated, the notation is set, and some preliminary results are given.
Discrete W 2,p stability properties, including a discrete Calderon–Zygmund-type
estimate, of finite element discretizations of PDEs with constant coefficients are
established. In Section 3, we present the motivation and the formulation of our C0

discontinuous finite element method for problem (1.1). Mimicking the PDE analysis
from [14] at the discrete level, we prove a discrete W 2,p stability estimate for the
discretization operator. In addition, we derive an optimal order error estimate in
a discrete W 2,p-norm. Finally, in Section 4, we give several numerical experiments
which test the performance of the proposed C0 finite element method and validate
the convergence theory.
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2. Assumptions, notation, and preliminary results

2.1. The PDE problem. To make the presentation clear, we state the precise
assumptions on the non-divergence form PDE problem (1.1). Let A ∈ [C0(Ω)]n×n

be a positive definite matrix-valued function with

(2.1) λ|ξ|2A(x)ξ · ξ ≤ Λ|ξ|2 ∀ξ ∈ R
n, x ∈ Ω

and constants 0 < λ ≤ Λ < ∞. Under the above assumption, L is known to be
uniformly elliptic, hence, strong solutions (i.e., W 2,p solutions) of problem (1.1)
must satisfy the Aleksandrov maximum principle for p ≥ n [10, 14, 16].

By the W 2,p theory for the second order non-divergence form uniformly elliptic
PDEs [14, Chapter 9], we know that if ∂Ω ∈ C1,1, for any f ∈ Lp(Ω) with 1 < p <

∞, there exists a unique strong solution u ∈ W 2,p(Ω)∩W 1,p
0 (Ω) to (1.1) satisfying

(2.2) ‖u‖W 2,p(Ω) � ‖f‖Lp(Ω).

Moreover, when n = 2 and p = 2, it is also known that [2, 3, 13, 15, 18] the above
conclusion holds if Ω is a convex domain.

For the remainder of the paper, we shall always assume that A ∈ [C0(Ω)]n×n is
positive definite satisfying (2.1), and problem (1.1) has a unique strong solution u
which satisfies the Calderon–Zygmund estimate (2.2).

2.2. Mesh and space notation. Let Ω ⊂ R
n be a bounded open domain. We

shall use D to denote a generic subdomain of Ω and ∂D denotes its boundary.
W s,p(D) denotes the standard Sobolev spaces for s ≥ 0 and 1 ≤ p ≤ ∞, W 0,p(D) =
Lp(D) and W s,p

0 (Ω) to denote the subspace of W s,p(Ω) consisting functions whose
traces vanish up to order s − 1 on ∂Ω. (·, ·)D denotes the standard inner product
on L2(D) and (·, ·) := (·, ·)Ω. To avoid the proliferation of constants, we shall use
the notation a � b to represent the relation a ≤ Cb for some constant C > 0
independent of mesh size h.

Let Th := Th(Ω) be a quasi-uniform, simplical, and conforming triangulation of
the domain Ω. Denote by EI

h the set of interior edges in Th, EB
h the set of boundary

edges in Th, and Eh = EI
h ∪ EB

h the set of all edges in Th. We define the jump and
average of a vector function w on an interior edge e = ∂T+ ∩ ∂T− as follows:[[

w
]]∣∣

e
= w+ · n+

∣∣
e
+w− · n−

∣∣
e
,{{

w
}}∣∣

e
=

1

2

(
w+ · n+

∣∣
e
−w− · n−

∣∣
e

)
,

where w± = w
∣∣
T± and n± is the outward unit normal of T±.

For a normed linear space X, we denote by X∗ its dual and
〈
·, ·

〉
the pairing

between X∗ and X. The Lagrange finite element space with respect to the trian-
gulation is given by

Vh :=
{
vh ∈ H1

0 (Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th
}
,(2.3)

where Pk(T ) denotes the set of polynomials with total degree not exceeding k (≥ 1)
on T . We also define the piecewise Sobolev space with respect to the mesh Th:

W s,p(Th) :=
∏

T∈Th

W s,p(T ), W
(p)
h := W 2,p(Th) ∩W 1,p

0 (Ω),

Lp
h(Th) :=

∏
T∈Th

Lp(T ), W s,p
h (D) := W s,p(Th)

∣∣
D
, Lp

h(D) := Lp(Th)
∣∣
D
.
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For a given subdomain D ⊆ Ω, we also define Vh(D) ⊆ Vh and W
(p)
h (D) ⊆ W

(p)
h as

the subspaces that vanish outside of D by

Vh(D) : =
{
v ∈ Vh; v|Ω\D = 0

}
, W

(p)
h (D) :=

{
v ∈ W

(p)
h ; v|Ω\D = 0

}
.

We note that Vh(D) is non-trivial for rD > 2h, where rD is the radius of the largest
ball inscribed in D.

Associated with D ⊆ Ω, we define a semi-norm on W 2,p
h (D) for 1 < p < ∞:

‖v‖W 2,p
h (D) = ‖D2

hv‖Lp(D) +
( ∑

e∈EI
h

h1−p
e

∥∥[[∇v
]]∥∥p

Lp(e∩D)

) 1
p

.(2.4)

Here, D2
hv ∈ L2(Ω) denotes the piecewise Hessian matrix of v, i.e., D2

hv|T = D2v|T
for all T ∈ Th.

Let Qh : Lp(Ω) → Vh be the L2 projection defined by

(2.5)
(
Qhw, vh

)
=

(
w, vh

)
∀w ∈ L2(Ω), vh ∈ Vh.

It is well known that [8] Qh satisfies for any w ∈ Wm,p(Ω)

(2.6) ‖Qhw‖Wm,p(Ω) � ‖w‖Wm,p(Ω) m = 0, 1; 1 < p < ∞.

For any domain D ⊆ Ω with rD > 2h and any w ∈ Lp
h(D), we also introduce the

following mesh-dependent semi-norm

‖w‖Lp
h(D) := sup

0�=vh∈Vh(D)

(
w, vh

)
D

‖vh‖Lp′ (D)

, where
1

p
+

1

p′
= 1.(2.7)

By (2.5), it is easy to see that ‖ · ‖Lp
h(D) is a norm on Vh(D). Moreover, by (2.6),

‖wh‖Lp(Ω) = sup
v∈Lp′ (Ω)

(wh, v)

‖v‖Lp′ (Ω)

= sup
v∈Lp′ (Ω)

(wh,Qhv)

‖v‖Lp′ (Ω)

(2.8)

� sup
v∈Lp′ (Ω)

(wh,Qhv)

‖Qhv‖Lp′ (Ω)

≤ ‖wh‖Lp
h(Ω) ∀wh ∈ Vh.

2.3. Some basic properties of W
(p)
h functions. In this subsection we cite or

prove some basic properties of the broken Sobolev functions in W
(p)
h , and in par-

ticular, for piecewise polynomial functions. These results, which have independent
interest in themselves, will be used repeatedly in the later sections. We begin with
citing a familiar trace inequality followed by proving an inverse inequality.

Lemma 2.1 ([4]). For any T ∈ Th, there holds

‖v‖pLp(∂T ) �
(
hp−1
T ‖∇v‖pLp(T ) + h−1

T ‖v‖pLp(T )

)
∀v ∈ W 1,p(T )(2.9)

for any p ∈ (1,∞). Therefore by scaling, there holds
(2.10)∑

e∈EI
h

he‖v‖pLp(e∩D̄)
�

{
‖v‖pLp(D) ∀v ∈ Vh(D) (rD > 2h),

‖v‖pLp(D) + hp‖∇v‖pLp(D) ∀v ∈ W
(p)
h (D).

Lemma 2.2. For any vh ∈ Vh, 1 < p < ∞, and D ⊆ Ω with rD > 2h, there holds

‖vh‖W 2,p
h (D) � h−1‖vh‖W 1,p(Dh),(2.11)
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where

Dh = {x ∈ Ω : dist(x,D) ≤ h}.(2.12)

Proof. By (2.4), (2.9) and inverse estimates [4, 7], we have

‖vh‖W 2,p
h (D) = ‖D2

hvh‖Lp(D) +
( ∑

e∈EI
h

h1−p
e

∥∥[[∇vh
]]∥∥p

Lp(e∩D̄)

) 1
p

� ‖D2
hvh‖Lp(D) +

∑
T∈Th

T⊂Dh

(
h1−p
T

(
hp−1
T ‖D2vh‖pLp(T ) + h−1

T ‖∇vh‖pLp(T )

)) 1
p

� h−1‖vh‖W 1,p(Dh). �

The next lemma states a very simple fact about the discrete W 2,p-norm on
W 2,p

h (Ω).

Lemma 2.3. For any 1 < p < ∞, there holds

‖ϕ‖W 2,p
h (Ω) ≤ ‖ϕ‖W 2,p(Ω) ∀ϕ ∈ W 2,p(Ω).(2.13)

Next, we state some super-approximation results of the nodal interpolant with
respect to the discrete W 2,p-semi-norm. The derivation of the following results is
standard [22], but for completeness we give the proof in Appendix A

Lemma 2.4. Denote by Ih : C0(Ω) → Vh the nodal interpolant onto Vh. Let
η ∈ C∞(Ω) with |η|W j,∞(Ω) � d−j for 0 ≤ j ≤ k. Then for each T ∈ Th with
h ≤ d ≤ 1, there holds

hm‖ηvh − Ih(ηvh)‖Wm,p(D) �
h

d
‖vh‖Lp(Dh) for m = 0, 1,(2.14)

‖ηvh − Ih(ηvh)‖W 2,p
h (D) �

1

d2
‖vh‖W 1,p(Dh).(2.15)

Moreover, if k ≥ 2, there holds

‖ηvh − Ih(ηvh)‖W 2,p
h (D) �

h

d3
‖vh‖W 2,p(Dh).(2.16)

Here, D ⊂ Dh ⊂ Ω satisfy the conditions in Lemma 2.2.

To conclude this subsection, we state and prove a discrete Sobolev interpolation
estimate.

Lemma 2.5. There holds for all 2 ≤ p < ∞,

‖∇w‖2Lp(Ω) � ‖w‖Lp(Ω)‖w‖W 2,p
h (Ω) ∀w ∈ W

(p)
h .

Proof. Writing ‖∇w‖pLp(Ω) =
∫
Ω
|∇w|p−2∇w · ∇w dx and integrating by parts, we

find

‖∇w‖pLp(Ω) = −
∫
Ω

(
|∇w|p−2Δw + (p− 2)|∇w|p−4(D2

hw∇w) · ∇w
)
w dx

+
∑
e∈EI

h

∫
e

[[
|∇w|p−2∇w

]]
w ds

�
∑
T∈Th

∫
T

|∇w|p−2|D2
hw||w| dx+

∑
e∈EI

h

∫
e

[[
|∇w|p−2∇w

]]
w ds.(2.17)
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To bound the first term in (2.17) we apply Hölder’s inequality to obtain∫
Ω

|∇w|p−2|D2
hw||w| dx ≤

∥∥|∇w|p−2
∥∥
L

p
p−2

(Ω)‖D2w‖Lp(Ω)‖w‖Lp(Ω)(2.18)

= ‖∇w‖p−2
Lp(Ω)‖D

2
hw‖Lp(Ω)‖w‖Lp(Ω).

Likewise, by Lemma 2.1, we have∑
e∈EI

h

∫
e

[[
|∇w|p−2∇w

]]
w ds(2.19)

≤
∑
e∈EI

h

(
h

1
p
e

∥∥[[∇w
]]∥∥

Lp(e)

)p−2(
h

1−p
p

e ‖
[[
∇w

]]
‖Lp(e)

)(
h

1
p
e ‖w‖Lp(e)

)

� ‖∇w‖p−2
Lp(Ω)‖w‖Lp(Ω)

( ∑
e∈EI

h

h1−p
e

∥∥[[∇w
]]∥∥p

Lp(e)

) 1
p

� ‖∇w‖p−2
Lp(Ω)‖w‖Lp(Ω)‖w‖W 2,p

h (Ω).

Combining (2.17)–(2.19) we obtain the desired result. The proof is complete. �

2.4. Stability estimates for auxiliary PDEs with constant coefficients. In
this subsection, we consider a special case of (1.1a) when the coefficient matrix is a
constant matrix, A(x) ≡ A0 ∈ R

n×n. We introduce the finite element approxima-
tion (or projection) L0,h of L0 on Vh and extend L0,h to the broken Sobolev space

W
(p)
h . We then establish some stability results for the operator L0,h. These stabil-

ity results will play an important role in our convergence analysis of the proposed
C0 finite element method in Section 3.

Let A0 ∈ R
n×n be a positive definite matrix and set

L0w := −A0 : D2w = −∇ ·
(
A0∇w

)
.(2.20)

The operator L0 induces the following bilinear form:

(2.21) a0(w, v) :=
〈
L0w, v

〉
=

∫
Ω

A0∇w · ∇v dx ∀w, v ∈ H1
0 (Ω),

and the Lax–Milgram Theorem (cf. [10]) implies that L−1
0 : H−1(Ω) → H1

0 (Ω)
exists and is bounded. Moreover, if ∂Ω ∈ C1,1, the Calderon–Zygmund theory (cf.

[14, Chapter 9]) infers that L−1
0 : Lp(Ω) → W 2,p(Ω) ∩ W 1,p

0 (Ω) exists and there
holds

‖L−1
0 ϕ‖W 2,p(Ω) � ‖ϕ‖Lp(Ω) ∀ϕ ∈ Lp(Ω).(2.22)

Equivalently,

‖w‖W 2,p(Ω) �
∥∥L0w

∥∥
Lp(Ω)

∀w ∈ W 2,p ∩W 1,p
0 (Ω).(2.23)

The bilinear form naturally leads to a finite element approximation (or projec-
tion) of L0 on Vh, that is, we define the operator L0,h : Vh → Vh by(

L0,hwh, vh
)
:= a0(wh, vh) ∀vh, wh ∈ Vh.(2.24)

Remark 2.1. When A = I, the identity matrix, L0,h is exactly the finite element of
the discrete Laplacian, that is, L0,h = −Δh. By finite element theory [4], we know

that L0,h : Vh → Vh is one-to-one and onto, and therefore L−1
0,h : Vh → Vh exists.
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Recall the following DG integration by parts formula:∫
Ω

τ · ∇hv dx = −
∫
Ω

(∇h · τ )v dx+
∑
e∈EI

h

(∫
e

[[
τ
]]{{

v
}}

ds(2.25)

+

∫
e

{{
τ
}}

·
[[
v
]]
ds

)
+

∑
e∈EB

h

∫
e

(τ · ne)v ds,

which holds for any piecewise scalar-valued function v and vector-valued function τ .
Here, ∇h is defined piecewise, i.e., ∇h|T = ∇|T for all T ∈ Th. For any wh, vh ∈ Vh,
using (2.25) with τ = A0∇wh, we obtain

a0(wh, vh) = −
∫
Ω

(
A0 : D2

hwh

)
vh dx+

∑
e∈EI

h

∫
e

[[
A0∇wh

]]
vh ds.(2.26)

We note that the above new form of a0(·, ·) is not well defined on H1
0 (Ω)×H1

0 (Ω).

However, it is well defined on W
(p)
h ×W

(p′)
h with 1

p + 1
p′ = 1. Hence, we can easily

extend the domain of the operator L0,h to broken Sobolev space W
(p)
h . Precisely,

(abusing the notation) we define L0,h : W
(p)
h → (W

(p′)
h )∗ to be the operator induced

by the bilinear form a0(·.·) on W
(p)
h ×W

(p′)
h , namely,〈

L0,hw, v
〉
:= a0(w, v) ∀w ∈ W

(p)
h , v ∈ W

(p′)
h .(2.27)

A key ingredient in the convergence analysis of our finite element methods for
PDEs in non-divergence form is to establish global and local discrete Calderon–
Zygmund-type estimates similar to (2.23) for L0,h. These results are presented in
the following two lemmas.

Lemma 2.6. There exists h0 > 0 such that for all h ∈ (0, h0), there holds

‖wh‖W 2,p
h (Ω) � ‖L0,hwh‖Lp(Ω) ∀wh ∈ Vh.(2.28)

Proof. First note that (2.28) is equivalent to∥∥L−1
0,hϕh

∥∥
W 2,p

h (Ω)
� ‖ϕh‖Lp(Ω) ∀ϕh ∈ Vh.(2.29)

For any fixed ϕh ∈ Vh, let w := L−1
0 ϕh ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) and wh :=
L−1
0,hϕh ∈ Vh. Therefore, w and wh, respectively, are the solutions of the following

two problems:

a0(w, v) = (ϕh, v) ∀v ∈ H1
0 (Ω), a0(wh, vh) = (ϕh, vh) ∀vh ∈ Vh,(2.30)

and thus, wh is the elliptic projection of w.
By (2.23) we have

(2.31) ‖w‖W 2,p(Ω) � ‖ϕh‖Lp(Ω).

Using well-known Lp finite element estimate results [4, Theorem 8.5.3], finite ele-
ment interpolation theory, and (2.31) we obtain that there exists h0 > 0 such that
for all h ∈ (0, h0),

‖w − wh‖W 1,p(Ω) � ‖w − Ihw‖W 1,p(Ω) � h‖w‖W 2,p(Ω) � h‖ϕh‖Lp(Ω).(2.32)
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It follows from the triangle inequality, an inverse inequality (see Lemma 2.2),
the stability of Ih, (2.31) and (2.32) that

‖w − wh‖W 2,p
h (Ω) � ‖w − Ihw‖W 2,p

h (Ω) + ‖Ihw − wh‖W 2,p
h (Ω)

� ‖w‖W 2,p(Ω) + h−1‖Ihw − wh‖W 1,p(Ω)

� ‖ϕh‖Lp(Ω) + h−1‖Ihw − w‖W 1,p(Ω) + h−1‖w − wh‖W 1,p(Ω)

� ‖ϕh‖Lp(Ω).

Thus,
‖wh‖W 2,p

h (Ω) � ‖w − wh‖W 2,p
h (Ω) + ‖w‖W 2,p(Ω) � ‖ϕh‖Lp(Ω),

which yields (2.29), and hence, (2.28). �

Lemma 2.7. For x0 ∈ Ω and R > 0, define

BR(x0) := {x ∈ Ω : |x− x0| < R} ⊂ Ω.(2.33)

Let R′ = R+ d with d ≥ 2h. Then there holds

‖wh‖W 2,p
h (BR(x0))

�
∥∥L0,hwh‖Lp

h(BR′ (x0)) ∀wh ∈ Vh(BR(x0)).(2.34)

Proof. To ease notation, set BR := BR(x0) and BR′ := BR′(x0). Recalling (2.8),
we have by Lemma 2.6,

‖wh‖W 2,p
h (BR) = ‖wh‖W 2,p

h (Ω) � ‖L0,hwh‖Lp(Ω) � ‖L0,hwh‖Lp
h(Ω)

= sup
vh∈Vh

a0(wh, vh)

‖vh‖Lp′ (Ω)

.

Set R′′ = (R+R′)/2, so that R < R′′ < R′. Denote by χBR′′ the indicator function
of BR′′ := BR′′(x0). Since wh = 0 on Ω\BR, we have

a0(wh, vh) = a0(wh, χBR′′ vh) = a0(wh, Ih(χBR′′ vh)) ∀vh ∈ Vh.

Moreover, we have Ih(χBR′′vh) ∈ Vh(BR′) and

‖Ih(χBR′′vh)‖Lp′ (BR′ ) = ‖Ih(χBR′′vh)‖Lp′ (Ω) � ‖χBR′′ vh‖Lp′ (Ω) � ‖vh‖Lp′ (Ω).

Consequently,

‖wh‖W 2,p
h (BR) � sup

vh∈Vh

a0(wh, Ih(χBR′′vh))

‖Ih(χBR′′vh)‖Lp′ (BR′ )

≤ sup
vh∈Vh(BR′ )

a0(wh, vh)

‖vh‖Lp′ (BR′ )

= sup
vh∈Vh(BR′ )

(L0,hwh, vh)

‖vh‖Lp′ (BR′ )

= ‖L0,hwh‖Lp
h(BR′ ). �

3. Finite element methods and convergence analysis

3.1. Formulation of finite element methods. The formulation of our C0 finite
element method for non-divergence form PDEs is relatively simple, which is inspired
by the finite element method for diffusion-convection PDEs and relies only on an
unorthodox integration by parts.

To motivate its derivation, we first look at how one would construct standard
finite element methods for problem (1.1) when the coefficient matrix A belongs to
[C1(Ω)]n×n. In this case, since the divergence of A (taken row-wise) is well defined,
we can rewrite the PDE (1.1a) in divergence form as follows:

−∇ · (A∇u) + (∇ ·A) · ∇u = f.(3.1)
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Hence, the original non-divergence form PDE is converted into a “diffusion
-convection equation” with the “diffusion coefficient” A and the “convection co-
efficient” ∇ ·A.

A standard finite element method for problem (3.1) is readily defined as seeking
uh ∈ Vh such that∫

Ω

(A∇uh) · ∇vh dx+

∫
Ω

(∇ ·A) · ∇uhvh dx =

∫
Ω

fvh dx ∀vh ∈ Vh.(3.2)

Now come back to the case where A only belongs to [C0(Ω)]n×n. In our setting,
the formulation (3.2) is not viable any more because ∇ · A does not exist as a
function. To circumvent this issue, we apply the DG integration by parts formula
(2.25) to the first term on the left-hand side of (3.2) with τ = A∇uh and ∇ in (3.2)
is understood piecewise, we get

−
∫
Ω

(
A : D2

huh

)
vh dx+

∑
e∈EI

h

∫
e

[[
A∇uh

]]
vh ds =

∫
Ω

fvh dx ∀vh ∈ Vh.(3.3)

Here, we have used the fact that
[[
vh

]]
= 0 and vh|∂Ω = 0.

No derivative is taken on A in (3.3), so each of the terms is well defined on Vh.
This indeed yields the C0 formulation of this paper.

Definition 3.1. The C0 finite element method is defined by seeking uh ∈ Vh such
that

ah(uh, vh) = (f, vh) ∀vh ∈ Vh,(3.4)

where

ah(wh, vh) := −
∫
Ω

(
A : D2

hwh

)
vh dx+

∑
e∈EI

h

∫
e

[[
A∇wh

]]
vh ds,(3.5)

(f, vh) :=

∫
Ω

fvh dx ∀vh ∈ Vh.(3.6)

A few remarks are given below about the proposed C0 finite element method.

Remark 3.1. (a) The C0 finite element method (3.4) is a primal method with
the single unknown uh. It can be implemented on current finite element software
supporting element boundary integration.

(b) From its derivation we see that (3.4) is equivalent to the standard finite
element method (3.2) provided A is smooth. In addition, if A is constant, then
(3.4) reduces to

a0(uh, vh) = (f, vh) ∀vh ∈ Vh.

This feature will be crucially used in the convergence analysis later.
(c) In the one-dimensional and piecewise linear case (i.e., n = 1 and k = 1), the

method (3.4) on a uniform mesh {xi}Ni=1 is equivalent to

A(xi)
(
− ci−1 + 2ci − ci+1

)
= h2f(xi),

where uh =
∑N

i=1 ciϕ
(i)
h , and {ϕ(i)

h }Ni=1 represents the nodal basis for Vh.
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3.2. Stability analysis and well-posedness theorem. As in Section 2.4, us-
ing the bilinear form ah(·, ·) we can define the finite element approximation (or
projection) Lh of L on Vh, that is, we define Lh : Vh → Vh by(

Lhwh, vh
)
:= ah(wh, vh) ∀vh, wh ∈ Vh.(3.7)

Trivially, (3.4) can be rewritten as: Find uh ∈ Vh such that(
Lhuh, vh

)
= (f, vh) ∀vh ∈ Vh.

Similar to the argument for L0,h, we can extend the domain of Lh to the broken

Sobolev space W
(p)
h , that is, (abusing the notation) we define Lh : W

(p)
h → (W

(p′)
h )∗

by 〈
Lhw, v

〉
:= ah(w, v) ∀w ∈ W

(p)
h , v ∈ W

(p′)
h .(3.8)

The main objective of this subsection is to establish a W 2,p
h stability estimate

for the operator Lh on the finite element space Vh. From this result, the existence,
uniqueness and error estimate for (3.4) will naturally follow. The stability proof
relies on several technical estimates which we derive below. Essentially, the un-
derlying strategy, known as a perturbation argument in the PDE literature, is to
treat the operator Lh locally as a perturbation of a stable operator with constant
coefficients. The following lemma quantifies this statement.

Lemma 3.1. For any δ > 0, there exists Rδ > 0 and hδ > 0 such that for any
x0 ∈ Ω with A0 = A(x0),

‖(Lh − L0,h)w‖Lp
h(BRδ

(x0)) � δ‖w‖W 2,p
h (BRδ

(x0))
∀w ∈ W

(p)
h , ∀h ≤ hδ.(3.9)

Proof. Since A is continuous on Ω, it is uniformly continuous. Therefore, for every
δ > 0 there exists Rδ > 0 such that if x, y ∈ Ω satisfy |x − y| < Rδ, there holds
|A(x)−A(y)| < δ. Consequently for any x0 ∈ Ω

‖A−A0‖L∞(BRδ
) ≤ δ,(3.10)

with BRδ
:= BRδ

(x0).

Set hδ = min{h0,
Rδ

4 } and consider h ≤ hδ, w ∈ W
(p)
h and vh ∈ Vh(BRδ

). Since

(L0,h − Lh)w ∈ W
(p)
h , it follows from (2.8), (2.26), (3.5), (3.10), and (2.6) that(

(L0,h − Lh)w, vh
)

= −
∫
BRδ

(
(A0 −A) : D2

hw
)
vh dx+

∑
e∈EI

h

∫
e∩B̄Rδ

[[
(A0 −A)∇w

]]
vh ds

≤ ‖A−A0‖L∞(BRδ
)

(
‖D2

hw‖Lp(BRδ
)‖vh‖Lp′ (BRδ

)

+
(∑
e∈EI

h

h1−p
e

∥∥[[∇w
]]∥∥p

Lp(e∩B̄Rδ
)

) 1
p
(∑
e∈EI

h

he‖vh‖p
′

Lp′ (e∩B̄Rδ
)

) 1
p′
)

� ‖A−A0‖L∞(BRδ
)‖w‖W 2,p

h (BRδ
)‖vh‖Lp′ (BRδ

) � δ‖w‖W 2,p
h (BRδ

)‖vh‖Lp′ (BRδ
).

The desired inequality now follows from the definition of ‖ · ‖Lp
h(BRδ

). �

Lemma 3.2. There exists R1 > 0 and h1 > 0 such that for any x0 ∈ Ω

‖wh‖W 2,p
h (BR1

(x0))
� ‖Lhwh‖Lp

h(BR2
(x0)) ∀wh ∈ Vh(BR1

(x0)), ∀h ≤ h1,(3.11)

with R2 = 2R1.
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Proof. For δ0 > 0 to be determined below, let R1 = 1
2Rδ0 as in Lemma 3.1. Let

h1 = R1

2 and set Bi = BRi
(x0). Then by Lemmas 2.7 and 3.1 with d = R1 and

A0 = A(x0), we have for any wh ∈ Vh(B1)

‖wh‖W 2,p
h (B1)

� ‖L0,hwh‖Lp
h(B2) ≤ ‖(L0,h − Lh)wh‖Lp

h(B2) + ‖Lhwh‖Lp
h(B2)

� δ0‖wh‖W 2,p
h (B2)

+ ‖Lhwh‖Lp
h(B2)

= δ0‖wh‖W 2,p
h (B1)

+ ‖Lhwh‖Lp
h(B2).

For δ0 sufficiently small (depending only on A), we can kick back the first term on
the right-hand side. This completes the proof. �

Lemma 3.3. Let R1 and h1 be as in Lemma 3.2. For any x0 ∈ Ω, there holds

‖Lhw‖Lp
h(BR1

(x0)) � ‖w‖W 2,p
h (BR1

(x0))
∀w ∈ W

(p)
h , ∀h ≤ h1.(3.12)

Proof. Set B1 = BR1
(x0). By the definition of Lh, (2.8), (2.10) and (2.6), we have

for any vh ∈ Vh(B1)

(Lhw, v) = −
∫
B1

(A : D2
hw)vh dx+

∑
e∈EI

h

∫
e∩B̄1

[[
A∇w

]]
vh ds

� ‖D2
hw‖Lp(B1)‖vh‖Lp′ (B1)

+
(∑
e∈EI

h

h1−p
e

∥∥[[∇w
]]∥∥p

Lp(e∩B̄1)

) 1
p
(∑
e∈EI

h

he‖vh‖p
′

Lp′ (e∩B̄1)

) 1
p′

�
(
‖D2

hw‖Lp(B1) +
( ∑

e∈EI
h

h1−p
e

∥∥[[∇w
]]∥∥p

Lp(e)

) 1
p
)
‖vh‖Lp′ (B1)

� ‖w‖W 2,p
h (B1)

‖vh‖Lp′ (B1)
.

The desired inequality now follows from the definition of ‖ · ‖Lp
h(B1). �

Lemma 3.4. Let h1 be as in Lemma 3.2. Then there holds for h ≤ h1

‖wh‖W 2,p
h (Ω) � ‖Lhwh‖Lp(Ω) + ‖wh‖Lp(Ω) ∀wh ∈ Vh.(3.13)

Proof. We divide the proof into two steps.

Step 1. For any x0 ∈ Ω, let R1 and h1 be as in Lemma 3.2, let R2 = 2R1, R3 = 3R1,
and set Bi = BRi

(x0) for i = 0, 1, 2. Let η ∈ C3(Ω) be a cut-off function satisfying

0 ≤ η ≤ 1, η
∣∣
B1

= 1, η
∣∣
Ω\B2

= 0, ‖η‖Wm,∞(Ω) = O(d−m), m = 0, 1, 2.

(3.14)
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We first note that ηwh ∈ W
(p)
h (B2) and Ih(ηwh) ∈ Vh(B3) for any wh ∈ Vh.

Therefore, by Lemmas 2.4 (with d = R1) and 3.2, we have

‖wh‖W 2,p
h (B1)

= ‖ηwh‖W 2,p
h (B1)

≤ ‖ηwh − Ih(ηwh)‖W 2,p
h (B1)

+ ‖Ih(ηwh)‖W 2,p
h (B1)

� 1

R2
1

‖wh‖W 1,p(B2) + ‖Ih(ηwh)‖W 2,p
h (B1)

� 1

R2
1

‖wh‖W 1,p(B2) + ‖Lh(Ih(ηwh))‖Lp
h(B2)

� 1

R2
1

‖wh‖W 1,p(B2) + ‖Lh(ηwh)‖Lp
h(B2)

+ ‖Lh(ηwh − Ih(ηwh))‖Lp
h(B2).

Applying Lemmas 3.3 and 2.4, we obtain

‖wh‖W 2,p
h (B1)

� 1

R2
1

‖wh‖W 1,p(B2) + ‖Lh(ηwh)‖Lp
h(B2)(3.15)

+ ‖ηwh − Ih(ηwh)‖W 2,p
h (B2)

� 1

R2
1

‖wh‖W 1,p(B3) + ‖Lh(ηwh)‖Lp
h(B3).

To derive an upper bound of the last term in (3.15), we write for vh ∈ Vh(B3),(
Lh(ηwh), vh

)
= −

∫
B3

A : D2
h(ηwh)vh dx+

∑
e∈EI

h

∫
e∩B̄3

[[
A∇(ηwh)

]]
vh ds

= −
∫
B3

(
ηA : D2

hwh + 2A∇η · ∇wh + whA : D2
hη

)
vh dx

+
∑
e∈EI

h

∫
e∩B̄3

[[
A∇wh

]]
ηvh ds

=
(
Lhwh, Ih(ηvh)

)
−

∫
B3

(
2A∇η · ∇wh + whA : D2

hη
)
vh dx

−
∫
B3

(A : D2
hwh)(ηvh − Ih(ηvh)) dx+

∑
e∈EI

h

∫
e∩B̄3

[[
A∇wh

]]
(ηvh − Ih(ηvh)) ds.

By Hölder’s inequality, Lemmas 2.1–2.2, 2.4, and (3.14) we obtain(
Lh(ηwh), vh

)
� ‖Lhwh‖Lp

h(B3)‖Ih(ηvh)‖Lp′ (B3)
+R−2

1 ‖wh‖W 1,p(B3)‖vh‖Lp′ (B3)

+ ‖wh‖W 2,p
h (B3)

(
‖ηvh − Ih(ηvh)‖Lp′ (B3)

+ h‖∇(ηvh − Ih(ηvh))‖Lp′ (B3)

)
�

(
‖Lhwh‖Lp

h(B3) +
1

R2
1

‖wh‖W 1,p(B3)

)
‖vh‖Lp′ (B3)

,

which implies that

‖Lh(ηwh)‖Lp
h(B3) � ‖Lhwh‖Lp

h(B3) +
1

R2
1

‖wh‖W 1,p(B3).

Applying this upper bound to (3.15) yields

‖wh‖W 2,p
h (B1)

� ‖Lhwh‖Lp
h(B3) +

1

R2
1

‖wh‖W 1,p(B3) ∀wh ∈ Vh.(3.16)
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Step 2. We now use a covering argument to obtain the global estimate (3.13). To
this end, let {xj}Nj=1 ⊂ Ω withN = O(R−n

1 ) sufficiently large (but independent of h)

such that Ω =
⋃N

j=1 BR1
(xj). Setting Sj = BR1

(xj) and S̃j = BR2
(xj) = B2R1

(xj),

we have by (3.16)

‖wh‖pW 2,p
h (Ω)

≤
N∑
j=1

‖wh‖pW 2,p
h (Sj)

�
N∑
j=1

(
‖Lhwh‖pLp

h(S̃j)
+

1

R2p
1

‖wh‖pW 1,p(S̃j)

)

� 1

R2p
1

‖wh‖pW 1,p(Ω) +
N∑
j=1

‖Lhwh‖pLp
h(S̃j)

.

Since Vh(S̃j) ⊆ Vh, we have

N∑
j=1

‖Lhwh‖pLp
h(S̃j)

=
N∑
j=1

∣∣∣∣ sup
0�=vh∈Vh(S̃j)

(
Lhwh, vh

)
‖vh‖Lp′ (S̃j)

∣∣∣∣
p

=

N∑
j=1

∣∣∣∣ sup
0�=vh∈Vh(S̃j)

(
Lhwh, vh

)
‖vh‖Lp′ (Ω)

∣∣∣∣
p

≤ N

∣∣∣∣ sup
0�=vh∈Vh

(
Lhwh, vh

)
‖vh‖Lp′ (Ω)

∣∣∣∣
p

� 1

Rn
1

‖Lhwh‖pLp
h(Ω)

.

Consequently, since R1 is independent of h, we have

‖wh‖W 2,p
h (Ω) �

1

R
n
p

1

‖Lhwh‖Lp
h(Ω) +

1

R2
1

‖wh‖W 1,p(Ω) � ‖Lhwh‖Lp
h(Ω) + ‖wh‖W 1,p(Ω).

Finally, an application of Lemma 2.5 yields

‖wh‖W 2,p
h (Ω) � ‖Lhwh‖Lp

h(Ω) + ‖wh‖
1
2

Lp(Ω)‖wh‖
1
2

W 2,p
h (Ω)

.

Applying the Cauchy–Schwarz inequality to the last term completes the proof. �

Using arguments analogous to those in Lemma 3.4, we also have the following
stability estimate for the formal adjoint operator. Due to its length and technical
nature, we give the proof in the appendix.

Lemma 3.5. There exists an h2 > 0 such that

‖vh‖Lp′ (Ω) � sup
0�=wh∈Vh

(Lhwh, vh)

‖wh‖W 2,p
h (Ω)

∀vh ∈ Vh,(3.17)

provided h ≤ h∗ := min{h1, h2} and k ≥ 2.

Remark 3.2. Denote by L∗
h the formal adjoint operator of Lh. Then inequality

(3.17) is equivalent to the stability estimate

‖vh‖Lp′ (Ω) � sup
0�=wh∈Vh

(L∗
hvh, wh)

‖wh‖W 2,p
h (Ω)

∀vh ∈ Vh.(3.18)

Thus, the adjoint operator L∗
h is injective on Vh. Since Vh is finite dimensional, L∗

h

on Vh is an isomorphism. This implies that Lh is also an isomorphism on Vh; the
stability of the operator is addressed in the next theorem, the main result of this
section.
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Theorem 3.1. Suppose that h ≤ min{h1, h2}, and k ≥ 2. Then there holds the
following stability estimate:

‖wh‖W 2,p
h (Ω) � ‖Lhwh‖Lp

h(Ω) ∀wh ∈ Vh.(3.19)

Consequently, there exists a unique solution to (3.4) satisfying

‖uh‖W 2,p
h (Ω) � ‖f‖Lp(Ω).(3.20)

Proof. For a given wh ∈ Vh, Lemma 3.5 guarantees the existence of a unique
ψh ∈ Vh satisfying

(Lhvh, ψh) =

∫
Ω

wh|wh|p−2vh dx ∀vh ∈ Vh.(3.21)

By (3.17) we have

‖ψh‖Lp′ (Ω) � sup
0�=vh∈Vh

(Lhvh, ψh)

‖vh‖W 2,p
h (Ω)

= sup
0�=vh∈Vh

∫
Ω
wh|wh|p−2vh dx

‖vh‖W 2,p
h (Ω)

� ‖wh‖p−1
Lp(Ω).

The last inequality is an easy consequence of Hölder’s inequality, Lemma 2.5 and
the Poincaré–Friedrichs inequality. Taking vh = wh in (3.21), we have

‖wh‖pLp(Ω) = (Lhwh, ψh) ≤ ‖Lhwh‖Lp
h(Ω)‖ψh‖Lp′ (Ω) ≤ ‖Lhwh‖Lp

h(Ω)‖wh‖p−1
Lp(Ω),

and therefore

‖wh‖Lp(Ω) � ‖Lhwh‖Lp
h(Ω).

Applying this estimate in (3.4) proves (3.19).
Finally, to show existence and uniqueness of the finite element method (3.4)

it suffices to show the estimate (3.20). This immediately follows from (3.19) and
Hölder’s inequality:

‖uh‖W 2,p
h (Ω) � ‖Lhuh‖Lp

h(Ω) = sup
0�=vh∈Vh

(Lhuh, vh)

‖vh‖Lp′ (Ω)

= sup
0�=vh∈Vh

∫
Ω
fvh dx

‖vh‖Lp′ (Ω)

≤ ‖f‖Lp(Ω). �

Remark 3.3. The stability result given in Theorem 3.1 requires the mesh condition
h ≤ min{h1, h2}, where the constants h1, h2 depend on the modulus of continuity of
A. However, numerical experiments (cf. Section 4) suggest that this mesh condition
as well as the polynomial condition k ≥ 2 can be relaxed.

3.3. Convergence analysis. The stability estimate in Theorem 3.1 immediately
gives us the following error estimate in the W 2,p

h semi-norm.

Theorem 3.2. Assume that the hypotheses of Theorem 3.1 are satisfied. Let u ∈
W 2,p(Ω) and uh ∈ Vh denote the solution to (1.1) and (3.4), respectively. Then
there holds

‖u− uh‖W 2,p
h (Ω) � inf

wh∈Vh

‖u− wh‖W 2,p
h (Ω).(3.22)

Consequently, if u ∈ W s,p(Ω), for some s ≥ 2, there holds

‖u− uh‖W 2,p
h (Ω) � h�−2‖u‖W �,p(Ω),

where � = min{s, k + 1}.
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Proof. By Theorem 3.1 and the consistency of the method, we have ∀vh ∈ Vh

‖uh − wh‖W 2,p
h (Ω) � ‖Lh(uh − wh)‖Lp

h(Ω) = sup
0�=vh∈Vh

(Lh(uh − wh), vh)

‖vh‖Lp′ (Ω)

= sup
0�=vh∈Vh

ah(uh − wh, vh)

‖vh‖Lp′ (Ω)

= sup
0�=vh∈Vh

ah(u− wh, vh)

‖vh‖Lp′ (Ω)

= sup
0�=vh∈Vh

(Lh(u− wh), vh)

‖vh‖Lp′ (Ω)

� ‖u− wh‖W 2,p
h (Ω).

Applying the triangle inequality yields (3.22). �

4. Numerical experiments

In this section we present several numerical experiments to show the efficacy of
the finite element method, as well as to validate the convergence theory. In addition,
we perform numerical experiments where the coefficient matrix is not continuous
and/or degenerate. While these situations violate some of the assumptions given
in Section 2.1, the tests show that the finite element method is effective for these
cases as well.

Test 1: Hölder continuous coefficients and smooth solution. In this test
we take Ω = (−0.5, 0.5)2, the coefficient matrix to be

A =

(
|x|1/2 + 1 −|x|1/2
−|x|1/2 5|x|1/2 + 1

)
and choose f such that u = sin(2πx1) sin(πx2) exp(x1 cos(x2)) as the exact solution.

2−2 2−4 2−6 2−8

10−10

10−8

10−6

10−4

10−2

100

Test 1: H1 Error

k = 1
k = 2
k = 3
k = 4

2−2 2−4 2−6 2−8

10−6

10−4

10−2

100

102

Test 1: H2 Error

k = 1
k = 2
k = 3
k = 4

Figure 2. The H1 (left) and piecewise H2 (right) errors for Test
Problem 1 with polynomial degree k = 1, 2, 3, 4. The figures show
that the H1 error converges with order O(hk), and the piecewise
H2 error converges with order O(hk−1).

The resulting H1 and piecewise H2 errors for various values of polynomial de-
gree k and discretization parameter h are depicted in Figure 2. The figure clearly
indicates that the errors have the following behavior:

|u− uh|H1(Ω) = O(hk), ‖D2
h(u− uh)‖L2(Ω) = O(hk−1).



FEM FOR ELLIPTIC PDES IN NON-DIVERGENCE FORM 2041

The second estimate is in agreement with Theorem 3.2. In addition, the numerical
experiments suggest that (i) the method converges with optimal order in the H1-
norm and (ii) the method is convergent in the piecewise linear case (k = 1).

Test 2: Uniformly continuous coefficients and W 2,p solution. For the second
set of numerical experiments, we take the domain to be the square Ω = (0, 1/2)2,
and take the coefficient matrix to be

A =

⎛
⎜⎝− 5

log(|x|) + 15 1

1 − 1

log(|x|) + 3

⎞
⎟⎠ .

We choose the data such that the exact solution is given by u = |x|7/4. We note
that u ∈ Wm,p(Ω) for (7 − 4m)p > −8. In particular, u ∈ W 2,p(Ω) for p < 8 and
u ∈ W 3,p(Ω) for p < 8/5.

In order to apply Theorem 3.2 to this test problem, we recall that the kth degree
nodal interpolant of u with k ≥ 2 satisfies

‖D2
h(u− Ihu)‖L2(Ω) ≤ Ch2−2/p‖u‖W 3,p(Ω)

for p < 2. Since u ∈ W 3,p(Ω) for p < 8/5, Theorem 3.2 then predicts the conver-
gence rate

‖D2
h(u− uh)‖L2(Ω) ≤ C‖D2

h(u− Ihu)‖L2(Ω) = O(h3/4−ε)

for any ε > 0. Note that a slight modification of these arguments also shows that
|u− Ihu|H1(Ω) = O(h7/4−ε).

The errors of the finite element method for Test 2 using piecewise linear, qua-
dratic and cubic polynomials are depicted in Figure 3. As predicted by the theory,
the H2 error converges with order ≈ O(h3/4) if the polynomial degree is greater
than or equal to two. Similar to the first test problem, the numerical experiments
also show that the H1 error converges with optimal order, i.e., |u − uh|H1(Ω) =

O(h7/4−ε).
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Test 2: H1 Error

k = 1
k = 2
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Test 2: H2 Error

k = 1
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Figure 3. The H1 (left) and piecewise H2 (right) errors for Test
Problem 2 with polynomial degree k = 1, 2, 3. The figures show
that the H1 error converges with order O(hmin{k,7/4−ε}), where as
the piecewise H2 error converges with order O(hmin{k,7/4−ε}−1).
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Test 3: Degenerate coefficients and W 2,p solution. For the third set of test
problems, we take Ω = (0, 1)2,

A =
16

9

(
x
2/3
1 −x

1/3
1 x

1/3
2

−x
1/3
1 x

1/3
2 x

2/3
2

)
,

and exact solution u = x
4/3
1 − x

4/3
2 . We remark that the choice of the matrix and

solution is motivated by Aronson’s example for the infinity-Laplace equation. In
particular, the function u satisfies the quasi-linear PDE Δ∞u = 0, where Δ∞u :=
(D2u∇u) · ∇u = (D2u) : (∇u(∇u)T ). Noting that A = ∇u(∇u)T , we see that
−A : D2u = 0 =: f .

Unlike the first two test problems, the matrix is not uniformly elliptic, as
det(A(x)) = 0 for all x ∈ Ω. Therefore, the theory given in the previous sec-
tions does not apply. We also note that the exact solution satisfies the regularity
u ∈ Wm,p(Ω) for (4 − 3m)p > −1, and therefore u ∈ W 2,p(Ω) ∩ W 1,∞(Ω) for
p < 3/2.

The resulting errors of the finite element method using piecewise linear and
quadratic polynomials are plotted in Figure 4. While this problem is outside the
scope of the theory, the experiments show that the method converges, and the
following rates are observed:

‖u− uh‖L2(Ω) = O(h4/3), |u− uh|H1(Ω) = O(h5/6).

2−2 2−4 2−6 2−8
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10−4

10−3

Test 3: L2 Error

k = 1
k = 2

2−2 2−4 2−6 2−8

10−3

10−2

10−1

Test 3: H1 Error

k = 1
k = 2

Figure 4. The L2 (left) and H1 (right) errors for the degenerate
Test Problem 3 with polynomial degree k = 1 and k = 2. The
figures show that the L2 error converges with order ≈ O(h4/3) and
the H1 error converges with order ≈ O(h5/6).

Test 4: Discontinuous coefficients and smooth solution. In the final set of
test problems, we set the domain to be Ω = (−1, 1)2, the coefficient matrix as (cf.
Figure 6)

A =

(
2 sin

(
π(20x1x2 + 1/2)

)
x1x2

|x1||x2|
sin

(
π(20x1x2 + 1/2

)
x1x2

|x1||x2| 2

)
,
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and choose the source function such that the exact solution is

u =
sin(2π(x2

1 + x2)) sin(5πx2)

2 + x2
1 cos(2πx2)

.

The H1 errors and piecewise H2 errors are plotted in Figure 5 for polynomial
degrees k = 1, 2, 3. Again, while the theory given in the previous section does not
include the case of discontinuous coefficients, the numerical experiments suggest
that the method is stable and convergence rates of order O(hk) and O(hk−1) are
observed in the H1- and H2-norms, respectively.
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Test 4: H2 Error
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Figure 5. The H1 (left) and piecewise H2 (right) errors for Test
Problem 4 with discontinuous coefficient matrix A. As h → 0+, the
H1 error converges with order O(hk), and the H2 error converges
with order O(hk−1).

Figure 6. The graph of the off-diagonal entries of the coefficient
matrix A in Test 4.
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Appendix A. Super approximation result

Here, we provide the proof of Lemma 2.4. As a first step, we use standard
interpolation estimates [4, 7] to obtain for 0 ≤ m ≤ k + 1,

hmp‖ηvh − Ih(ηvh)‖pWm,p(T ) � hp(k+1)|ηvh|pWk+1,p(T )
.(A.1)

Since |η|W j,∞(T ) � d−j and |vh|Hk+1(T ) = 0, we find

|ηvh|Wk+1,p(T ) �
∑

|α|+|β|=k+1

∫
T

|Dαη|p|Dβvh|p dx(A.2)

�
k∑

j=0

1

dp(k+1−j)
|vh|pW j,p(T ) �

k∑
j=0

h−jp

dp(k+1−j)
‖vh‖pLp(T ),

where an inverse estimate was applied to derive the last inequality. Combining
(A.2) with (A.1) and using the hypothesis h ≤ d then gives us

hmp‖ηvh − Ih(ηvh)‖pWm,p(T ) �
k∑

j=0

hp(k+1−j)

dp(k+1−j)
‖vh‖pLp(T ) �

hp

dp
‖vh‖pLp(T ).

Therefore for m ∈ {0, 1} we have

hmp‖ηvh − Ih(ηvh)‖pWm,p(D) ≤
∑
T∈Th

T∩D �=∅

hmp‖ηvh − Ih(ηvh)‖pWm,p(T )

�
∑
T∈Th

T∩D �=∅

hp

dp
‖vh‖pLp(T ) ≤

hp

dp
‖vh‖pLp(Dh)

.

Thus, (2.14) is satisfied.
To obtain the second estimate (2.15), we first use (A.1), (A.2) as an inverse

estimate to get

‖D2(ηvh − Ih(ηvh))‖pLp(T ) � hp(k−1)|ηvh|pWk+1,p(T )
�

k∑
j=0

hp(k−1)

dp(k+1−j)
|vh|pW j,p(T )

(A.3)

� 1

d2p
‖vh‖pLp(T ) +

k∑
j=1

hk−j

dp(k+1−j)
‖vh‖pW 1,p(T )

� 1

d2p
‖vh‖pLp(T ) +

1

dp
‖vh‖pW 1,p(T ) �

1

d2p
‖vh‖pW 1,p(T ).

By similar arguments we find

h−p‖∇(ηvh − Ih(ηvh))‖pLp(T ) � hp(k−1)|ηvh|pWk+1,p(T )
� 1

d2p
‖vh‖pW 1,p(T ).(A.4)
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Therefore by Lemma 2.9 and (A.3)–(A.4), we obtain

‖ηvh − Ih(ηvh)‖pW 2,p
h (D)

≤
∑
T∈Th

T∩D �=∅

‖D2(ηvh − Ih(ηvh))‖pLp(T )

+
∑
e∈EI

h

h1−p
e

∥∥[[∇(ηvh − Ih(ηvh))
]]∥∥p

Lp(e∩D̄)

�
∑
T∈Th

T∩D �=∅

[
‖D2(ηvh − Ih(ηvh))‖pLp(T ) + h−p‖∇(ηvh − Ih(ηvh))

∥∥p
Lp(T )

]

�
∑
T∈Th

T∩D �=∅

1

d2p
‖vh‖pW 1,p(T ) ≤

1

d2p
‖vh‖pW 1,p(Dh)

.

Taking the pth root of this last expression yields the estimate (2.15). The proof of
(2.16) uses the exact same arguments and is therefore omitted.

Appendix B. Proof of Lemma 3.5

To prove Lemma 3.5 we introduce the discrete W−2,p-type norm

‖r‖W−2,p
h (D) := sup

0�=vh∈Vh(D)

(r, vh)D
‖vh‖W 2,p′ (D)

,(B.1)

and the W−1,p-norm (defined for Lp functions)

‖r‖W−1,p(D) = sup
0�=v∈W 1,p′ (D)

(r, v)D
‖v‖W 1,p′ (D)

= sup
v∈W 1,p′

‖v‖
W1,p′ (D)

=1

(r, v)D dx.(B.2)

The desired estimate (3.17) is then equivalent to

‖vh‖Lp′ (Ω) � ‖L∗
hvh‖W−2,p′

h (Ω)
∀vh ∈ Vh,(B.3)

where we recall that L∗
h is the adjoint operator of Lh. Due to its length, we break

up the proof of (B.3) into three steps.

Step 1 (A local estimate). The first step in the derivation of (3.17) (equivalently,
(B.3)) is to prove a local version of this estimate, analogous to Lemma 3.2. To
this end, for fixed x0 ∈ Ω, let δ0, Rδ0 , R1 := 1

3Rδ0 and B1 := BR1
(x0) be as

in Lemmas 3.1–3.2, with δ0 > 0 to be determined. For a fixed vh ∈ Vh(B1), let

ϕ ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) satisfy Lϕ = vh|vh|p

′−2 in Ω with

‖ϕ‖W 2,p(Ω) � ‖|vh|p
′−1‖Lp(Ω) � ‖vh‖p

′−1

Lp′ (B1)
.(B.4)

Multiplying the PDE by vh, integrating over Ω, and using the consistency of Lh

yields

‖vh‖p
′

Lp′ (B1)
= ‖vh‖p

′

Lp′ (Ω)
= (Lϕ, vh) = (Lhϕ, vh).

Therefore, for any ϕh ∈ Vh, there holds

‖vh‖p
′

Lp′ (B1)
= (Lhϕh, vh) + (Lh(ϕ− ϕh), vh)(B.5)

= (L∗
hvh, ϕh) + (L0,h(ϕ− ϕh), vh) + ((Lh − L0,h)(ϕ− ϕh), vh),
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where L0,h is given by (2.24) with A0 ≡ A(x0). Now take ϕh ∈ Vh to be the elliptic
projection of ϕ with respect to L0,h, i.e.,

(L0,h(ϕ− ϕh), wh) = 0 ∀wh ∈ Vh.

Lemma 2.6 ensures that ϕh is well defined and satisfies the estimate

‖ϕh‖W 2,p
h (Ω) � ‖L0,hϕh‖Lp

h(Ω) = ‖L0,hϕ‖Lp
h(Ω) � ‖ϕ‖W 2,p(Ω) � ‖vh‖p

′−1

Lp′ (B1)
.(B.6)

Combining Lemma 3.1, (B.4)–(B.6) and (B.1), we have

‖vh‖p
′

Lp′ (B1)
= (L∗

hvh, ϕh) +
(
(Lh − L0,h)(ϕ− ϕh), vh

)
≤ ‖L∗

hvh‖W−2,p′
h (Ω)

‖ϕh‖W 2,p
h (Ω) + ‖(Lh − L0,h)(ϕ− ϕh)‖Lp

h(B1)‖vh‖Lp′ (B1)

≤ ‖L∗
hvh‖W−2,p′

h (B1)
‖vh‖p

′−1

Lp′ (B1)
+ δ0‖ϕ− ϕh‖W 2,p

h (B1)
‖vh‖Lp′ (B1)

≤ ‖L∗
hvh‖W−2,p′

h (B1)
‖vh‖p

′−1

Lp′ (B1)
+ δ0‖vh‖p

′

Lp′ (B1)
.

Taking δ0 sufficiently small and rearranging terms gives the local stability estimate
for finite element functions with compact support:

‖vh‖Lp′ (B1)
� ‖L∗

hvh‖W−2,p′
h (B1)

∀vh ∈ Vh(B1).(B.7)

Step 2 (A global Gärding-type inequality). We now follow the proof of Lemma 3.4
to derive a global Gärding-type inequality for the adjoint problem. Let R1 be given
in the first step of the proof, R2 = 2R1, and R3 = 3R1. Let η ∈ C3(Ω) satisfy the
conditions in Lemma 3.4 (cf. (3.14)). By the triangle inequality and (B.7) we have
for any vh ∈ Vh

‖vh‖Lp′ (B1)
= ‖ηvh‖Lp′ (B1)

≤ ‖ηvh − Ih(ηvh)‖Lp′ (B1)
+ ‖Ih(ηvh)‖Lp′ (B1)

� ‖ηvh − Ih(ηvh)‖Lp′ (B1)
+ ‖L∗

h(Ih(ηvh))‖W−2,p′
h (B1)

� ‖ηvh − Ih(ηvh)‖Lp′ (B1)
+ ‖L∗

h(Ih(ηvh)− ηvh)‖W−2,p′
h (B1)

+ ‖L∗
h(ηvh)‖W−2,p′

h (B1)
.

Applying Lemmas 3.3, Lemma 2.4 (with d = R1) and an inverse estimate yields

‖vh‖Lp′ (B1)
� ‖ηvh − Ih(ηvh)‖Lp′ (B2)

+ ‖L∗
h(ηvh)‖W−2,p′

h (B1)
(B.8)

� h

R1
‖vh‖Lp′ (B3)

+ ‖L∗
h(ηvh)‖W−2,p′

h (B3)

� 1

R1
‖vh‖W−1,p′ (B3)

+ ‖L∗
h(ηvh)‖W−2,p′

h (B3)
.

The goal now is to replace L∗
h(ηvh) appearing in the right-hand side of (B.8) by

L∗
hvh plus low order terms. To this end, we write for wh ∈ Vh(B3) (cf. 2.24),

(L∗
h(ηvh), wh) = ah(wh, ηvh) = ah(whη, vh) +

[
ah(wh, ηvh)− ah(whη, vh)

](B.9)

= ah(Ih(whη), vh) + ah(whη − Ih(whη), vh) +
[
ah(wh, ηvh)− ah(whη, vh)

]
=: I1 + I2 + I3.
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To derive an upper bound of I1, we use (B.1) and properties of the interpolant and
cut-off function η:

I1 = (L∗
hvh, Ih(ηwh)) ≤ ‖L∗

hvh‖W−2,p′ (B3)
‖Ih(ηwh)‖W 2,p(B3)

(B.10)

� ‖L∗
hvh‖W−2,p′ (B3)

‖ηwh‖W 2,p
h (B3)

� 1

R2
1

‖L∗
hvh‖W−2,p′(B2)

‖wh‖W 2,p
h (B3)

.

Next, we apply Lemmas 3.3, 2.4 and an inverse estimate to bound I2:

I2 = (Lh(ηwh − Ih(ηwh)), vh) � ‖ηwh − Ih(ηwh)‖W 2,p
h (B3)

‖vh‖Lp′ (B3)
(B.11)

� h

R3
1

‖wh‖W 2,p
h (B3)

‖vh‖Lp′ (B3)
� 1

R3
1

‖wh‖W 2,p
h (B3)

‖vh‖W−1,p′(B3)
.

To estimate I3, we add and subtract a0(wh, ηvh)−a0(whη, vh) and expand terms
to obtain

I3 = a0(wh, ηvh)− a0(whη, vh)

(B.12)

+
[
ah(wh, ηvh)− ah(whη, vh)−

(
a0(wh, ηvh)− a0(whη, vh)

)]
= −

∫
B3

(
whA0 : D2η + 2A0∇η · ∇wh

)
vh dx

−
∫
B3

(
wh(A−A0) : D

2η + 2(A−A0)∇η · ∇wh

)
vh dx =: K1 +K2.

Applying Hölder’s inequality and Lemmas C.1–D.1 yields

K1 ≤ ‖whA0 : D2η‖W 1,p(B3)‖vh‖W−1,p′ (B3)
+ 2

∣∣∣ ∫
B3

(A0∇η · ∇wh)vh dx
∣∣∣(B.13)

�
( 1

R3
1

‖wh‖W 1,p(B3) +
1

R2
1

‖wh‖W 2,p
h (B3)

)
‖vh‖W−1,p′ (B3)

� 1

R2
1

‖wh‖W 2,p
h (B3)

‖vh‖W−1,p′ (B3)
.

Similarly, by Lemma C.1 and (3.10), we obtain

K2 ≤ ‖A−A0‖L∞(B3)

(
‖wh‖Lp(B3)‖D2η‖L∞(Ω)(B.14)

+ ‖∇wh‖Lp(B3)‖∇η‖L∞(Ω)

)
‖vh‖Lp′ (B3)

� δ0
(
R2

3‖D2η‖L∞(Ω) +R3‖∇η‖L∞(Ω)

)
‖wh‖W 2,p

h (B3)
‖vh‖Lp′ (B3)

� δ0‖wh‖W 2,p
h (B3)

‖vh‖Lp′ (B3)
.

Combining (B.12)–(B.14) results in the following upper bound of I3:

I3 � 1

R2
1

‖wh‖W 2,p
h (B3)

‖vh‖W−1,p′ (B3)
+ δ0‖wh‖W 2,p

h (B3)
‖vh‖Lp′ (B3)

.(B.15)

Applying the estimates to (B.10)–(B.11), (B.15) to (B.9) results in

(L∗
h(ηvh), wh) �

1

R3
1

(
‖L∗

hvh‖W−2,p′ (B3)
+ ‖vh‖W−1,p′ (B3)

)
‖wh‖W 2,p

h (B3)

+ δ0‖vh‖Lp′ (B3)
‖wh‖W 2,p

h (B3)
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and therefore by (B.1),

‖L∗
h(ηvh)‖W−2,p′

h (B3)
� 1

R3
1

(
‖L∗

hvh‖W−2,p′ (B3)
+ ‖vh‖W−1,p′ (B3)

)
+ δ0‖vh‖Lp′ (B3)

.

(B.16)

Combining (B.16) and (B.8) yields

‖vh‖Lp′ (B1)
� 1

R3
1

(
‖L∗

hvh‖W−2,p′
h (B3)

+ ‖vh‖W−1,p′(B3)

)
+ δ0‖vh‖Lp′ (B3)

.

Finally, we use the exact same covering argument in the proof of Lemma 3.4 to
obtain

‖vh‖Lp′ (Ω) � ‖L∗
hvh‖W−2,p′

h (Ω)
+ ‖vh‖W−1,p′ (Ω) + δ0‖vh‖Lp′ (Ω).

Taking δ0 sufficiently small and kicking back the last term then yields the Gärding-
type estimate

‖vh‖Lp′ (Ω) � ‖L∗
hvh‖W−2,p′

h (Ω)
+ ‖vh‖W−1,p′ (Ω).(B.17)

Step 3 (A duality argument). In the last step of the proof, we shall combine a
duality argument and (B.17) to obtain the desired result (B.3).

Define the set

X = {g ∈ W 1,p
0 (Ω) : ‖g‖W 1,p(Ω) = 1}.

Since X is precompact in Lp(Ω), and due to the elliptic regularity estimate
‖ϕ‖W 2,p(Ω) � ‖Lϕ‖Lp(Ω), the set

W = {ϕ ∈ W 2,p ∩W 1,p
0 (Ω) : Lϕ = g, ∃g ∈ X}

is precompact in W 2,p(Ω). Therefore by [23, Lemma 5], for every ε > 0, there
exists a h2(ε,W ) > 0 such that for each ϕ ∈ W and h ≤ h2 there exists ϕh ∈ Vh

satisfying

‖ϕ− ϕh‖W 2,p
h (Ω) ≤ ε for k ≥ 2.(B.18)

Note that (B.18) implies ‖ϕh‖W 2,p
h (Ω) ≤ ‖ϕ‖W 2,p(Ω) + ε � 1.

For g ∈ X we shall use ϕg ∈ W to denote the solution to Lϕg = g. We then
have by Lemma 3.3, for any vh ∈ Vh and ϕh ∈ Vh,∫

Ω

vhg dx = (Lhϕg, vh) = (L∗
hvh, ϕh) + (Lh(ϕg − ϕh), vh)

� ‖L∗
hvh‖W−2,p′

h (Ω)
‖ϕh‖W 2,p

h (Ω) + ‖ϕg − ϕh‖W 2,p
h (Ω)‖vh‖Lp′ (Ω).

Choosing ϕh so that (B.18) is satisfied (with ϕ = ϕg) and using the definition of

the W−1,p′
-norm (B.2) results in

‖vh‖W−1,p′ (Ω) � ‖L∗
hvh‖W−2,p′

h (Ω)
+ ε‖vh‖Lp′ (Ω).

Finally we apply this last estimate in (B.17) to obtain

‖vh‖Lp′ (Ω) � ‖L∗
hvh‖W−2,p′

h (Ω)
+ ε‖vh‖Lp′ (Ω).

Taking ε sufficiently small and kicking back a term to the left-hand side yields
(B.3). This completes the proof.
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Appendix C. A discrete Poincaré estimate

Lemma C.1. There holds for any wh ∈ Vh(D) with diam(D) ≥ h,

‖wh‖Wm,p(D) � diam(D)2−m‖wh‖W 2,p
h (D) m = 1, 2.

Proof. Denote by Vc,h ⊂ H2(Ω) ∩H1
0 (Ω) the Argyris finite element space [4], and

let Eh : Vh → Vc,h be the enriching operator constructed in [5] by averaging. The
arguments in [5] and scaling show that, for wh ∈ Vh(D),

Ehwh ∈ H2
0 (Dh), ‖wh − Ehwh‖Wm,p(D) � h2−m‖wh‖W 2,p

h (D) (m = 0, 1, 2),

(C.1)

where Dh is given by (2.12). Since Ehwh ∈ H2
0 (Dh) and diam(D) ≥ h, the usual

Poincaré inequality gives

‖Ehwh‖Wm,p(Dh) � diam(Dh)
2−m‖Ehwh‖W 2,p(Dh) � diam(D)2−m‖wh‖W 2,p

h (D).

Therefore by adding and subtracting terms, we obtain for m = 0, 1,

‖wh‖Wm,p(D) ≤ ‖Ehwh‖Wm,p(D) + ‖wh − Ehwh‖Wm,p(D)

� diam(D)2−m‖wh‖W 2,p
h (D) + h2−m‖wh‖W 2,p

h (D)

� diam(D)2−m‖wh‖W 2,p
h (D),

where again, we have used the assumption h ≤ diam(D). The proof is complete. �

Appendix D. A discrete Hölder inequality

Lemma D.1. For any smooth function η, and wh ∈ Vh(D), vh ∈ Vh, there holds∫
D

(∇η · ∇wh)vh dx � ‖η‖W 2,∞(D)‖wh‖W 2,p
h (D)‖vh‖W−1,p′ (D).

Proof. Let Eh : Vh → Vc be the enriching operator in Lemma C.1 satisfying (C.1).
Since Ehwh ∈ H2(D) we have∫

D

(∇η · ∇(Ehwh))vh dx � ‖∇η · ∇(Ehwh)‖W 1,p(D)‖vh‖W−1,p′ (D)

� ‖η‖W 2,∞(D)‖Ehwh‖W 2,p(D)‖vh‖W−1,p′ (D)

� ‖η‖W 2,∞(D)‖wh‖W 2,p
h (D)‖vh‖W−1,p′ (D)

Combining this estimate with the triangle inequality, (C.1), and an inverse estimate
gives∫

D

(∇η · ∇wh)vh dx =

∫
D

(∇η · ∇(Ehwh))vh dx+

∫
D

(∇η · ∇(wh − Ehwh))vh dx

� ‖η‖W 2,∞(D)

(
‖wh‖W 2,p

h (D)‖vh‖W−1,p′ (D)

+ ‖wh − Ehwh‖W 1,p(D)‖vh‖Lp′ (D)

)
� ‖η‖W 2,∞(D)‖wh‖W 2,p

h (D)‖vh‖W−1,p′ (D). �
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