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MONOTONICITY PROPERTIES OF THE ZEROS OF FREUD

AND SUB-RANGE FREUD POLYNOMIALS:

ANALYTIC AND EMPIRICAL RESULTS

WALTER GAUTSCHI

Abstract. Freud and sub-range Freud polynomials are orthogonal with re-
spect to the weight function w(t) = |t|μ exp(−|t|ν), μ > −1, ν > 0, supported
on the whole real line R, resp. on strict subintervals thereof. The zeros of these
polynomials are studied here as functions of ν and shown, analytically and em-
pirically by computation, to collectively increase or decrease on appropriate
intervals of the variable ν.

1. Introduction

Freud polynomials are commonly defined to be orthogonal with respect to the
weight function

(1.1) w(t) = w(t;μ, ν) = |t|μe−|t|ν , μ > −1, ν > 0,

supported on the whole real line R. Here we also consider “sub-range” Freud
polynomials, which are orthogonal with respect to the same weight function (1.1),
but on strict subintervals of R. Specifically, lower and upper symmetric sub-range
Freud polynomials are orthogonal on an interval [−c, c], 0 < c < ∞, resp. on
two disjoint intervals [−∞,−c] ∪ [c,∞], and become ordinary Freud polynomials
when c → ∞, resp. c → 0. Likewise, lower and upper one-sided sub-range Freud
polynomials are orthogonal on [0, c], 0 < c < ∞, resp. on [c,∞], and become half-
range Freud polynomials when c → ∞, resp. c → 0.

Our interest is in the zeros of these polynomials, in particular their monotonicity
properties when considered functions of the parameter ν. Analytic results can
be derived from a well-known theorem dealing with the dependence of the zeros
of orthogonal polynomials on a parameter. While of limited scope, these results
contain statements valid for arbitrary parameters μ > −1 and arbitrary degrees
n. They are presented and discussed in Section 2. A more comprehensive study of
the zeros, at present, is possible only through experimental computation. Results
obtained along these lines are described in Section 3. For computational details,
however, we must refer to [2].
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2. Analytic results

The standard result for dealing with zeros of an orthogonal polynomial that
depends on a parameter is Markov’s theorem (Theorem 6.12.1 of [3]). We apply it
here to Freud and sub-range Freud polynomials, where the parameter in question
is ν.

2.1. One-sided sub-range Freud polynomials.

Theorem 1. (a) Let ν0 > 0 and 0 < c ≤ e−1/ν0 . Denote by πn the lower one-
sided sub-range Freud polynomial of degree n orthogonal on [0, c] with respect to the
weight function

(2.1) w(t; c, μ, ν) = tμe−tν , t ∈ [0, c].

Then all zeros of πn are monotonically increasing on [ν0,∞) as functions of ν, for
every μ > −1 and n = 1, 2, 3, . . . .

(b) Let ν0 > 0 and c ≥ e−1/ν0 . Denote by πn the upper one-sided sub-range Freud
polynomial of degree n orthogonal on [c,∞] with respect to the weight function

(2.2) w(t; c, μ, ν) = tμe−tν , t ∈ [c,∞].

Then all zeros of πn are monotonically decreasing on (0, ν0) as functions of ν, for
every μ > −1 and n = 1, 2, 3, . . . .

Proof. (a) Let the zeros of πn, in decreasing order, be

τ1(ν) > τ2(ν) > · · · > τn(ν) > 0.

Then, according to Theorem 6.12.1 of [3], the regularity assumptions of which being
all satisfied, the zero τk(ν), for k fixed, is an increasing [decreasing] function of ν
provided

f(t) :=
∂w(t; c, μ, ν)/∂ν

w(t; c, μ, ν)
, 0 < t < c,

is an increasing [decreasing] function of t on (0, c). An elementary computation will
show that, irrespective of the value of μ,

f(t) = −tν ln t.

Now

f ′(t) = −tν−1(ν ln t+ 1),

which is positive on the interval (0, t0) and negative on t > t0, where t0 = e−1/ν .
Since by assumption c ≤ e−1/ν0 , we have, for ν ≥ ν0,

(2.3) 0 < t < c ≤ e−1/ν0 ≤ e−1/ν = t0,

hence f ′(t) > 0 on (0, c). By the cited theorem, therefore, τk(ν) for each k is an
increasing function of ν on [ν0,∞), as claimed.
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(b) We now have, in place of (2.3), when ν < ν0,

t ≥ c ≥ e−1/ν0 > e−1/ν = t0,

so that f ′(t) is negative on (c,∞), and the assertion follows as in part (a) from
Theorem 6.12.1 of [3]. �

Part (a) of Theorem 1 is of limited scope insofar as it deals only with intervals
of orthogonality [0, c], 0 < c < 1. (In the limit c = 1, that is, ν0 = ∞, it provides
no information at all.) It is also of limited interest, since the zeros, in this case,
are almost constant functions of ν (see Example 1 below). In this regard, part (b)
of the theorem has a wider scope, covering intervals [c,∞], 0 < c < ∞, and in the
case c ≥ 1, that is, ν0 = ∞, provides monotonicity information valid on the whole
interval 0 < ν < ∞. (In the other limit case c = 0, that is, ν0 = 0, it again is
devoid of content.)

We illustrate Theorem 1 by numerical examples. To compute the desired zeros,
we first compute the first N recurrence coefficients of the respective orthogonal
polynomials from the first 2N moments of the weight function, using the classical
Chebyshev algorithm in sufficiently high precision (cf. [1, §2.1.7]). The moments
are always expressible in terms of the gamma and incomplete gamma functions.
Thereafter, the zeros of the orthogonal polynomial of degree n can be obtained
(in ordinary working precision) for all n ≤ N by well-known eigenvalue/vector
techniques (cf. [1, §3.1.1]).
Example 1. The zeros of πn (of Theorem 1(a)) for n = 15 and n = 30, when
ν0 = 3, c = e−1/3 = .7165 . . . , μ = 0, and 3 ≤ ν ≤ 10.

Here, the monotone growth of the zeros is extremely slow. When n = 15, the
slope is as small as 3.64 × 10−7 and never larger than 8.78 × 10−4. For n = 30,
the corresponding numbers are 4.77 × 10−8 and 4.52 × 10−4. Thus, the zeros
are practically constant as functions of ν. Plots of them are shown in Figure 1 for
n = 15 and n = 30. It was determined that monotone growth of all zeros holds even

3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

nu
3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

nu

Figure 1. The zeros of πn in the case ν0 = 3 of Theorem 1(a)
for n = 15 (on the left) and n = 30 (on the right).

for smaller values of ν, namely for ν ≥ 1.6926 when n = 15, and for ν ≥ 1.7064
when n = 30. Thus, Theorem 1(a) is not sharp with regard to the interval of
monotonicity.
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Example 2. The zeros of πn (of Theorem 1(b)) for n = 15 and c = 1 (ν0 = ∞),
μ = 0, and 0 < ν ≤ 10.

In Figure 2 the zeros of πn are shown for n = 15, on the left when 0 < ν < 2,
and on the right when 2 ≤ ν ≤ 10. In the former case, some of the zeros are very
large, so that the plot is logarithmic in the y-axis. It is seen, and has been checked,
that all zeros, as predicted by the theorem, are monotonically decreasing.
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Figure 2. The zeros of πn in the case c = 1 of Theorem 1(b) for
n = 15 on 0 < ν < 2 (on the left) and 2 ≤ ν ≤ 10 (on the right).

The graphs look similar for values of c greater than 1 but, of course, lie above the
horizontal line at height c. They require much higher precision (250-digit arithmetic
when c = 6) to produce.

2.2. Symmetric sub-range Freud polynomials.

Theorem 2. (a) Let ν0 > 0 and 0 < c ≤ e−1/(2ν0). Denote by π∗
n the symmetric

sub-range Freud polynomial of degree n orthogonal on [−c, c] with respect to the
weight function

(2.4) w(t; c, μ, ν) = |t|μe−|t|ν , t ∈ [−c, c].

Then all positive zeros of π∗
n are monotonically increasing on [2ν0,∞] as functions

of ν, for every μ > −1 and n = 2, 3, . . . .
(b) Let ν0 > 0 and c ≥ e−1/(2ν0). Denote by π∗

n the symmetric sub-range Freud
polynomial of degree n orthogonal on [−∞,−c] ∪ [c,∞] with respect to the weight
function

(2.5) w(t; c, μ, ν) = |t|μe−|t|ν , t ∈ [−∞,−c] ∪ [c,∞].

Then all positive zeros of π∗
n are monotonically decreasing on (0, 2ν0) as functions

of ν, for every μ > −1 and n = 2, 3, . . . .

Proof. (a) Since in this case the weight function is even and the interval of orthog-
onality is symmetric with respect to the origin, the orthogonal polynomial of even
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degree 2n is π∗
2n(t) = π+

n (t
2) and the one of odd degree is π∗

2n+1(t) = tπ−
n (t

2), where

π±
n is orthogonal on [0, c2] relative to the weight function w±(t) = t∓1/2w(t1/2)

(cf. [1, Theorem 1.18]). Thus, the positive zeros of π∗
2n, resp. π

∗
2n+1, are the square

root of the zeros of π+
n , resp. π

−
n . The weight functions for the latter polynomials

are t(μ−1)/2e−tν/2

, resp. t(μ+1)e−tν/2

. To both of them, part (a) of Theorem 1 can
be applied if ν is replaced by ν/2 and c by c2, showing that the square root of
the zeros of π±

n , hence also the zeros themselves, are monotonically increasing on
[ν0,∞) if c2 ≤ e−1/ν0 and ν/2 ≥ ν0, that is, if c ≤ e−1/(2ν0) and ν ≥ 2ν0.

(b) The polynomials π±
n are now orthogonal on [c2,∞] with respect to the weight

function w±. The proof then proceeds as in part (a), but applying part (b) of
Theorem 1, again replacing ν by ν/2 and c by c2. �

As to the scope and sharpness of Theorem 2, here remarks similar to those after
Theorem 1 also apply.

3. Empirical results

For simplicity, we concentrate on the case μ = 0, but will indicate what effect
other values of μ may have on our results. Also with regard to the range of ν-values,
we will generally assume 0 < ν ≤ 10, which seems to be the interval in which the
more interesting monotonicity properties of the zeros play out.

As already noted, there are significant gaps in part (a) of the theorems of Sec-
tion 2 with regard to intervals of orthogonality covered, and deficiencies in part
(b) with regard to sharpness. Here, we fill the gaps and remove the deficiencies by
numerical computation.

3.1. Lower one-sided sub-range Freud polynomials. The interval of orthog-
onality [0, c], 0 < c < 1, is covered by Theorem 1(a) of Section 2.1. It is not a
particularly interesting case, since all zeros are essentially constant as functions of
ν. The same is still true when c = 1 (the limiting case ν0 = ∞ of Theorem 1(a)),
as is shown in Figure 3, depicting the zeros of πn for n = 15 and n = 30.
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Figure 3. The zeros of πn when c = 1 for n = 15 (on the left)
and n = 30 (on the right).
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To provide an idea of how the zeros behave when c > 1, we look at the case
c = 2 and show graphs of them in Figure 4 for n = 1, 7, 15, and 30. The case n = 1
is somewhat special, the zero decreasing to a minimum value and increasing almost
imperceptively thereafter. For n > 1, the appearance of the graphs resembles that
of a waterfall, a gentle one when c is relatively small, and a more precipitous one for
larger c; see, e.g., Figure 5, where c = 6. Although it may appear that all zeros are
collectively decreasing, this is not quite true; there are exceptional intervals early
on, when ν ≤ ν1, where ν1 = 1.392, 1.420, 1.420 for respectively n = 7, 15, 30, and
also for ν much larger than 10. But all these exceptions occur in the flat parts of
the graphs and are quite minute and not visible to the naked eye.
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Figure 4. The zeros of πn when c = 2 for n = 1, 7, 15, 30 (from
top left to bottom right).

3.2. Upper one-sided sub-range Freud polynomials. Theorem 1(b) covers
intervals [c,∞] with 0 < c < ∞. It is sharp when c ≥ 1 (ν0 = ∞), in which case
all zeros decrease monotonically on 0 < ν < ∞. Plots of them have been shown in
Figure 2, for 0 < ν ≤ 10.

Here we wish to discuss in detail the sharpness of Theorem 1(b) for selected
values of c < 1; specifically, for given ν0 we compute the true interval (0, ν∗0 ) on
which all zeros decrease monotonically, for all n ≥ 1 and all μ > −1.

To begin with, we found evidence, by numerical experimentation, that any in-
terval of monotonicity expands as either n, μ, or both, are increased. The least
favorable case, therefore, is n = 1 and μ > −1 very close to −1, say, μ = −.99999.
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Figure 5. The zeros of πn when c = 6 for n = 15 (on the left)
and n = 30 (on the right).

In this case it is relatively straightforward to compute the desired interval (0, ν∗0 )
as a function of ν0. Results for selected values of ν0 are shown in Table 1. It can be
seen that these intervals are significantly larger than the intervals (0, ν0) claimed
in Theorem 1(b), but like the latter become smaller with decreasing ν0, that is,
decreasing c.

Table 1. Worst-case intervals (0, ν∗0 ) of monotonic decrease of
all zeros (n = 1 and μ ≈ −1).

ν0 c = e−1/ν0 ν∗0 ν0 c = e−1/ν0 ν∗0
6 .8464. . . 39.336 .6 .1887. . . 5.1103
4 .7788. . . 26.594 .5 .1353. . . 4.5158
2 .6065. . . 13.877 .4 .0820. . . 3.9393
1 .3678. . . 7.5703 .3 .0356. . . 3.3930
.9 .3291. . . 6.9481 .2 6.738×10−3 2.8985
.8 .2865. . . 6.3295 .1 4.540×10−5 2.4861
.7 .2396. . . 5.7162

Notice that in the last few entries of Table 1 we are getting very close to the
case of half-range Freud polynomials. The fact that the corresponding intervals
(0, ν∗0 ) remain finite, and even become a bit smaller, suggests that the zeros of the
half-range Freud polynomials are not likely to collectively decrease for arbitrary
n ≥ 1 and μ > −1. We will confirm and quantify this computationally in the next
subsection.

3.3. Half-range Freud polynomials. Here we explore computationally how ν∗0 ,
the upper endpoint of the interval (0, ν∗0 ) in which all zeros decrease monotonically,
depends on n for μ = μ− = −.9999999, about the least favorable value of μ, and also
for μ = −1/2, 0, 1/2, and 1. The results are shown in Table 2. Notice the extent of
monotonic expansion of the interval (0, ν∗0 ) when n and/or μ are increased. We can
see from this table that, for example, all zeros of the half-range Freud polynomial
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πn, for any μ > −1 (more precisely, μ ≥ μ−), decrease monotonically for all ν in
the interval (0, 10] when n ≥ 2, and for all ν in the interval (0, 100] when n ≥ 6.

Table 2. The intervals (0, ν∗0 ) of monotonic decrease of all zeros
of half-range Freud polynomials πn in dependence of n and μ.

μ = μ− μ = −1/2 μ = 0 μ = 1/2 μ = 1
n ν∗0 n ν∗0 n ν∗0 n ν∗0 n ν∗0
1 2.1662 1 4.5574 1 6.8949 1 9.2204 1 11.541
2 11.541 2 15.371 2 19.204 2 23.039 2 26.874
3 26.874 3 32.233 3 37.593 3 42.955 3 48.318
4 48.318 4 55.207 4 62.098 4 68.990 4 75.882
5 75.882 5 84.303 5 92.725 5 101.15
6 109.57
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Figure 6. The zeros of the half-range Freud polynomial πn of
degree n = 15 on the interval 0 < ν < 2 (on the left) and 2 ≤ ν ≤
10 (on the right) when μ = 0.

We show plots of the zeros in Figure 6 for n = 15 and μ = 0.

3.4. Lower symmetric sub-range Freud polynomials. Symmetric intervals
[−c, c] for 0 < c < 1 are covered by Theorem 2(a). Since all zeros are then practically
constant as functions of ν, even in the limit case c = 1 (that is, ν0 = ∞), when the
theorem is devoid of content, the case 0 < c ≤ 1 is not of particular interest. For
the more interesting cases c > 1, we again must rely on computational exploration.

One expects that the behavior of the positive zeros of π∗
n will be similar to that

of all zeros of πn in the asymmetric case. This is indeed borne out by numerical
computation. One finds again the waterfall-like descent of all positive zeros, the
steepness of the descent being larger the larger the parameter c. It does not seem
necessary, therefore, to illustrate this pictorially.
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3.5. Upper symmetric sub-range Freud polynomials. As in the asymmetric
case of Section 3.2, also here in the symmetric case there is a need to sharpen part
(b) of Theorem 2, that is, to determine, for given ν0, the exact interval (0, ν∗0 ) of
monotone decrease of all positive zeros in the worst-case scenario of μ very close
to −1 and n = 1. (Increasing μ and/or n, as in the asymmetric case, yields larger
intervals (0, ν∗0 ).) Results analogous to those in Table 1 are shown in Table 3.

Table 3. Worst-case intervals (0, ν∗0 ) of monotonic decrease of
all positive zeros (n = 1 and μ ≈ −1).

ν0 c = e−1/(2ν0) ν∗0 ν0 c = e−1/(2ν0) ν∗0
6 .9200. . . 78.671 .6 .4345. . . 10.221
4 .8824. . . 53.189 .5 .3678. . . 9.0315
2 .7788. . . 27.753 .4 .2865. . . 7.8786
1 .6065. . . 15.141 .3 .1888. . . 6.7860
.9 .5737. . . 13.896 .2 8.208×10−2 5.7970
.8 .5352. . . 12.659 .1 6.737×10−3 4.9722
.7 .4895. . . 11.432

Here again, the last few entries, pertaining to cases very close to ordinary Freud
polynomials, suggest that also the zeros of Freud polynomials are not likely to
collectively decrease without some qualifications.

3.6. Freud polynomials. Computations analogous to those carried out in Sec-
tion 3.3 have been made for the case of Freud polynomials. With notation as in
Section 3.3, the results are shown in Table 4. Notice again the monotonic behavior
of the intervals (0, ν∗0 ) for increasing n and/or μ. It can be seen that all positive
zeros of the Freud polynomial π∗

n decrease monotonically on the interval (0, 10] if
n ≥ 3, and on the interval (0, 100] if n ≥ 9.

Table 4. The intervals (0, ν∗0 ) of monotonic decrease of all posi-
tive zeros of Freud polynomials π∗

n in dependence of n and μ.

μ = μ− μ = −1/2 μ = 0 μ = 1/2 μ = 1
n ν∗0 n ν∗0 n ν∗0 n ν∗0 n ν∗0
2 4.3325 2 6.7519 2 9.1147 2 11.457 2 13.790
3 13.790 3 16.117 3 18.441 3 20.762 3 23.082
4 23.082 4 26.910 4 30.741 4 34.574 4 38.408
5 38.408 5 42.242 5 46.077 5 49.913 5 53.749
6 53.749 6 59.106 6 64.465 6 69.825 6 75.186
7 75.186 7 80.548 7 85.910 7 91.273 7 96.636
8 96.636 8 103.52
9 124.20



864 WALTER GAUTSCHI

0 0.5 1 1.5 2

10
0

10
5

10
10

10
15

10
20

10
25

10
30

nu
2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

nu

Figure 7. The positive zeros of the Freud polynomial π∗
n for

n = 15 on 0 < ν < 2 (on the left) and 2 ≤ ν ≤ 10 (on the right).

Plots of the zeros for n = 15 are shown in Figure 7. In the process of producing
these plots it was checked that all zeros indeed decrease on (0, 10].
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