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CONVERGENCE OF A BOUNDARY INTEGRAL METHOD

FOR 3D INTERFACIAL DARCY FLOW

WITH SURFACE TENSION

DAVID M. AMBROSE, YANG LIU, AND MICHAEL SIEGEL

Abstract. We study convergence of a boundary integral method for 3D in-
terfacial flow with surface tension when the fluid velocity is given by Darcy’s
Law. The method is closely related to a previous method developed and im-
plemented by Ambrose, Siegel, and Tlupova, in which one of the main ideas
is the use of an isothermal parameterization of the free surface. We prove

convergence by proving consistency and stability, and the main challenge is to
demonstrate energy estimates for the growth of errors. These estimates follow
the general lines of estimates for continuous problems made by Ambrose and
Masmoudi, in which there are good estimates available for the curvature of the
free surface. To use this framework, we consider the curvature and the position
of the free surface each to be evolving, rather than attempting to determine
one of these from the other. We introduce a novel substitution which allows
the needed estimates to close.

1. Introduction

Boundary integral methods are a family of commonly used methods for comput-
ing solutions of initial value problems for fluid interface problems, and there are
two main reasons for their popularity. One is that when such methods apply, by re-
ducing the computation to the boundary, the dimension of the problem is reduced;
another reason is that boundary integral methods tend to be very accurate. For
interfacial flow problems with surface tension, one disadvantage is that boundary
integral methods can be very stiff. For example, for interfacial flow with surface
tension with the fluid velocities given by Darcy’s Law, a fully explicit method would
face a third-order timestepping constraint, and if the velocities were instead given
by the incompressible Euler equations, there would be a 3/2-order timestepping
constraint. For more information on boundary integral methods for interfacial fluid
flow, we refer the interested reader to the recent survey by Baker [9].

A breakthrough for boundary integral methods for interfacial flow with surface
tension for two-dimensional fluids was made by Hou, Lowengrub, and Shelley (HLS)
[18], [19]. HLS removed the stiffness from the problem by reformulating the problem
using a geometric description of the free surface rather than using Cartesian vari-
ables, by using a convenient parameterization of the free surface, and by writing the
evolution equations with a small-scale decomposition (SSD), extracting the most
singular terms from singular integrals such as the Birkhoff-Rott integral. These
choices made the evolution equations semilinear, which allows straightforward use
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of an implicit-explicit timestepping scheme [8], removing the strong stiffness con-
straint and leaving at worst a first-order timestepping constraint. The HLS work
was subsequently extended by Nie to axisymmetric flow in 3D [22]. For doubly
periodic interfaces in three-dimensional flows, Ambrose and Siegel introduced a
non-stiff method for a model problem for interfacial Darcy flow with surface ten-
sion [6], and Ambrose, Siegel, and Tlupova subsequently treated the full interfacial
Darcy problem with surface tension [7]

The method of [7] builds upon both the HLS numerical works and the analytical
works of Ambrose and Masmoudi [2], [4], [5]. The work of Ambrose and Masmoudi
gives well-posedness proofs for various problems in 3D interfacial fluid flow, again
using a convenient parameterization of the free surface and making estimates for the
mean curvature of the interface. The numerical method of [7] follows these ideas,
using an isothermal parameterization for the free surface (see Section 2 below for
more detail on this choice of parameterization), finding an SSD for the problem,
and using an implicit-explicit timestepping scheme, thus removing the stiffness.
One additional difficulty for the 3D problem which was not present in 2D is that a
fast method for computing the velocity integral was needed, and a method based
on Ewald summation was therefore developed in [7].

For the HLS method and other boundary integral methods for interfacial fluid
flow, convergence of the methods has been established by several authors. Beale,
Hou, and Lowengrub proved convergence of a boundary integral method for the
2D water wave without surface tension [12]; the water wave is the problem with a
single fluid bounded above by a free surface, with the fluid velocity given by the
Euler equations. Extensions of this to 3D are [11] and [21]. For 2D flow with surface
tension, Ceniceros and Hou proved the convergence of the HLS method, in both the
Darcy and Euler cases [15]. In these convergence proofs, the most important step
is always to establish estimates for the growth of errors when proving stability. The
estimates of these papers, generally speaking, built upon estimates for solutions of
the linearized equations of motion proved by some of the same authors [13], [20].

While such estimates for the linearized motion of interfaces in 3D fluids with
surface tension have been established [21], we are unaware of any proof in the
literature of convergence of a boundary integral method for 3D interfacial flow in
the presence of surface tension. This is the subject of the present work. As in [15],
we study a semicontinuous problem, making discretizations in space but leaving
time as continuous. We study the same problem as in [7], and consider the method
of the current work to be a version of the method of [7]. We prove convergence of
the method we develop by establishing consistency and stability.

As we have mentioned above, the most important step of the convergence proof
is the proof of energy estimates in the stability analysis. The estimates we establish
are thus related to the estimates of Ambrose and Masmoudi, as in the papers [2],
[3], [4], [5]. For 3D interfacial flow problems, Ambrose and Masmoudi were able to
establish estimates for the growth of the mean curvature of the interface, and then
use these estimates to establish well-posedness of the initial value problems. In the
current work, we follow this general framework, but there are of course additional
challenges in the spatially discrete setting.

One main challenge is that in the continuous setting, the regularity of the free
surface was able to be inferred from the regularity of the mean curvature: if we know
that the surface is in the spaceHs and the curvature is in the spaceHs, for example,
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then we may infer that the surface is in fact in the space Hs+2. In the spatially
discrete setting, with exact relationships between quantities either not holding or
being more complicated, we are not able to make the corresponding inference.
To deal with this difficulty, we introduce a novel substitution, replacing the free
surface in the evolution equations by using a formula involving the curvature, before
discretizing (see Section 5 for details). This substitution allows the energy estimates
to close, yielding stability of the numerical method.

In making the energy estimates, we use in a fundamental way that the Darcy
flow problem is of a parabolic nature. With a positive value of the surface tension
parameter, there is a gain of 3/2 of a spatial derivative at positive times [3]. (In
the zero surface tension case, if a stability condition is satisfied, the problem is still
a forward parabolic problem, but the smoothing effect is instead 1/2 of a spatial
derivative [26].) In future work, incompressible Euler problems (such as the Kelvin-
Helmholtz or Rayleigh-Taylor problems) will be treated, and this parabolic effect
will not be available. For these problems, the energy estimates will then need to be
made somewhat more carefully.

The plan of the paper is as follows: In Section 2, we discuss the governing
equations for 3D interfacial flow with surface tension, and give a boundary integral
formulation related to the works [4] and [7]. In Section 3, we continue to develop
the boundary integral formulation by working through the SSD. In Section 4 we
develop evolution equations for the mean curvature of the interface and related
quantities. We are then able to discretize the problem, and we give the numerical
method in Section 5. The main theorem of the paper, Theorem 5.1, is stated at
the end of Section 5. We prove consistency of this method in Section 6. In Section
7, we discuss bounds for discretized versions of some integral operators; these are
of use in Section 8, in which stability, and ultimately convergence, are proved.

2. The problem and its boundary integral formulation

In this section we describe the 3D Darcy flow problem for which our numerical
method is designed and represent it using a boundary integral formulation. The
model problem is similar to that of [6,7] and, hence, here we skip some of the details
on formulating the governing equations.

We consider the flow of two immiscible, incompressible fluids that are sepa-
rated by a free interface in a three-dimensional porous media, in which case the
velocities of the fluids are determined by Darcy’s law. In this paper, we use bold
face letters to denote vector variables. Suppose that the interface is parameter-
ized by the spatial variable α = (α1, α2) = (α, β). Under the boundary inte-
gral formulation, the state of the system at time t is specified by the interface
X(α, t) = (x(α, t), y(α, t), z(α, t)). Throughout this paper we often suppress the
time variable t and sometimes even the spatial variable α as long as the involved
terms do not lack clarity. For example, we often use X and X′ to denote X(α, t)
and X(α′, t), respectively.

The flow is assumed to be of infinite depth in the z direction and 2π-periodic in
both of the horizontal x and y directions; that is, X(α + (2k1π, 2k2π)) = X(α) +
(2k1π, 2k2π, 0), where k1, k2 are arbitrary integers. We denote the unit tangent and
normal vectors by

(2.1) t1 =
Xα

|Xα|
, t2 =

Xβ

|Xβ |
, n = t1 × t2,
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respectively. The fundamental forms of the interface are defined as follows:

E = Xα ·Xα, F = Xα ·Xβ , G = Xβ ·Xβ ,

L = −Xα · nα, M = −Xα · nβ , N = −Xβ · nβ.
(2.2)

Following [2, 4, 6, 7], we choose an isothermal parameterization, that is, E = G,
F = 0 (this requires a certain symmetry for the free surface; we discuss this more
below). In general, motion of the fluids is driven by gravity and surface tension and
a prescribed far-field pressure gradient, which produces a constant fluid velocity

V∞k̂ as z → ±∞, where k̂ is the unit vector in the z-direction. For simplicity, in
this paper, we consider only the effect of surface tension, neglecting the effect of
gravity and assuming V∞ = 0. We use V = V(α, t) to denote the velocity of the
interface. Decomposing V in normal and tangential directions, we get

(2.3)
dX

dt
= V = Un+ V1Xα + V2Xβ ,

where

(2.4) U = V · n, V1 =
V · t1√

E
, V2 =

V · t2√
E

.

The normal component U can be calculated from

(2.5) U = W · n,

where W is the velocity of the interface under a Lagrangian frame. It is given by
the Birkhoff-Rott formula

(2.6) W = − 1

4π
PV

∫
η′ × X−X′

|X−X′|3
dα′,

where η = μαXβ − μβXα is the unnormalized vortex sheet strength and μ is
the dipole strength. We will also use the notation r1 = μα, r2 = μβ and hence
η = r1Xβ−r2Xα. Here in this paper we assume that the two fluids are of the same
density and the same viscosity; these assumptions allow us to focus on the motion
due to surface tension, which is the highest-order of these effects. Therefore, as
shown in [6], we have

(2.7) r1 = Bκα, r2 = Bκβ,

where κ is the mean curvature and B is the positive coefficient of surface tension.
Because of the isothermal parameterization, we have

(2.8) ΔX = 2κN,

where N = Xα×Xβ . Here, the operator Δ is the Laplacian in the parameter space,
i.e.,

Δ = ∂2
α + ∂2

β .

The mean curvature κ can be calculated from

(2.9) κ = ΔX · n

2E
=

L+N

2E
.

Let G(x) = (4πr)−1, where r = |x|. Then (2.6) can be written as

(2.10) W = PV

∫
η′ ×∇XG(X(α)−X(α′))dα′.
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The tangential velocities V1, V2 are calculated from the isothermal assumption
E = G, F = 0 which is maintained by imposing

(2.11) Et = Gt, Ft = 0.

Remark 2.1. To use this form of the isothermal parameterization, we are assuming a
certain symmetry on the solutions, namely that the average arclength with respect
to α is equal to the average arclength with respect to β. If this symmetry is initially
present, it will be maintained at positive times. Such a parameterization is not
always possible when insisting that the parameters (α, β) are from the set [0, 2π]×
[0, 2π], as we are. As discussed in [7], one may introduce a proportionality factor
λ, and then require that E = λ(t)G, with λ satisfying a certain evolution equation.
As in [7], for the sake of simplicity we study surfaces for which we may take λ = 1.
A sufficiently smooth doubly periodic surface always admits a global isothermal
parameterization [16], and thus by allowing for the general case where λ is not
required to equal 1, we could treat any such surface.

From (2.2) and (2.3), we get

Et =(Xα ·Xα)t = 2Xαt ·Xα = 2
(
(Un)α + (V1Xα)α + (V2Xβ)α

)
·Xα,(2.12)

Gt =(Xβ ·Xβ)t = 2Xβt ·Xβ = 2
(
(Un)β + (V1Xα)β + (V2Xβ)β

)
·Xβ ,(2.13)

Ft =(Xα ·Xβ)t = Xαt ·Xβ +Xβt ·Xα

=
(
(Un)α + (V1Xα)α + (V2Xβ)α

)
·Xβ

+
(
(Un)β + (V1Xα)β + (V2Xβ)β

)
·Xα.

(2.14)

Using E = G, F = 0 and the product rule to expand (2.12), (2.13), (2.14) and
then plugging them into (2.11), we get

V1α − V2β =
U (L−N)

E
,(2.15)

V1β + V2α =
2UM

E
.(2.16)

Furthermore, these equations can be rewritten as

ΔV1 =

(
U(L−N)

E

)
α

+

(
2UM

E

)
β

,(2.17)

ΔV2 =

(
2UM

E

)
α

−
(
U(L−N)

E

)
β

.(2.18)

We select the unique solutions for V1 and V2 from (2.15) and (2.16) (or (2.17) and
(2.18)) by setting their means to be zero. Define the inverse of Δ in terms of its
Fourier symbol:

̂(Δ−1f)k =

{
0, |k| = 0,

−f̂k/|k|2, |k| �= 0.
(2.19)

Then V1 and V2 are given by

V1 = Δ−1
((

U(L−N)
E

)
α
+
(
2UM
E

)
β

)
,(2.20)

V2 = Δ−1

((
2UM
E

)
α
−
(

U(L−N)
E

)
β

)
.(2.21)
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We remark here that the formulas (2.20), (2.21) and the formulas in the preceding
calculations are slightly different than those appearing in prior works such as [4] or
[7]. This is because the choice not to normalize the tangent vectors, and using Xα

and Xβ instead, in (2.3), simplifies some of the intermediate calculations.
We assume that the model problem represented by equations (2.3), (2.5), (2.6),

(2.15) and (2.16) (or equivalently, (2.17) and (2.18)) is well-posed and has a suf-
ficiently smooth solution X up to time T > 0. Furthermore, the interface X is
assumed to be nonsingular under the α parameterization. This implies that for all
α,α′ ∈ R2, t ∈ [0, T ], and for some uniform constant c > 0 that does not depend
on α, α′ or t, we have

(2.22) |X(α, t)−X(α′, t)| ≥ c |α−α′| .

The condition (2.22) is known as the chord-arc condition, and has been used in
many analytical works, such as [4], [25]. Furthermore, we must assume that for
the solution of the continuous problem, the component E of the first fundamental
form remains bounded away from zero; thus, we assume that there exists a uniform
constant c such that for all α ∈ R2 and for all t,

(2.23) |E(α, t)| > c > 0.

3. Small-scale decomposition

In this section, following [4], we rewrite the Birkhoff-Rott integral, given in (2.6),
to separate the dominant terms at small scales, i.e., the higher order terms. We
then rewrite the formula for the normal velocity U, separating out the highest-order
terms, finding a formula that will be used in our numerical method. First we divide

the kernel −4πG(X−X′) = X−X′

|X−X′|3 in (2.6) as follows:

(3.1)
X−X′

|X−X′|3
= Ĥ+ Ĝ+ K̂,

where

Ĥ = Ĥ1 + Ĥ2, Ĝ = Ĝ11 + Ĝ12 + Ĝ22,(3.2)

Ĥ1 =
X′

α(α− α′)

E
′ 3
2 |α−α′|3

, Ĥ2 =
X′

β(β − β′)

E
′ 3
2 |α−α′|3

,(3.3)

Ĝ11 =

(
X′

αα

2E
′ 3
2

− 3E′
αX

′
α

4E
′ 5
2

)
(α− α′)2

|α−α′|3
,(3.4)

Ĝ12 =

⎛⎝X′
αβ

E
′ 3
2

−
3
(
E′

αX
′
β + E′

βX
′
α

)
4E

′ 5
2

⎞⎠ (α− α′)(β − β′)

|α−α′|3
,(3.5)

Ĝ22 =

(
X′

ββ

2E
′ 3
2

−
3E′

βX
′
β

4E
′ 5
2

)
(β − β′)2

|α−α′|3
,(3.6)

K̂ =
X−X′

|X−X′|3
− Ĥ− Ĝ.(3.7)

In this decomposition, Ĥ is the most singular part of the kernel, Ĝ is the weakly
singular part and K̂ is the remaining nonsingular part.
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We use H[X], G[X] and K[X] to denote the following integral operators that
act on a 3D vector-valued function f(α):

H[X]f(α, β) =
1

4π
PV

∫
f(α′, β′)× Ĥ dα′,(3.8)

G[X]f (α, β) =
1

4π
PV

∫
f(α′, β′)× Ĝ dα′,(3.9)

K[X]f(α, β) =
1

4π
PV

∫
f(α′, β′)× K̂ dα′.(3.10)

Conditions for the finiteness of these integrals is discussed following (3.21). Then
the Birkhoff-Riot integral (2.6) can be rewritten as

(3.11) W = −H[X]η −G[X]η −K[X]η.

The classical Riesz transforms are defined as

H1f(α, β) =
1

2π
PV

∫
f(α′, β′)(α− α′)

|α−α′|3
dα′,(3.12)

H2f(α, β) =
1

2π
PV

∫
f(α′, β′)(β − β′)

|α−α′|3
dα′,(3.13)

and their Fourier symbols are, for l ∈ {1, 2},

(3.14)
(
Ĥlf

)
k
=

{
−i kl

|k| f̂k, |k| �= 0,

0, |k| = 0.

Here the Fourier transform is defined by

(3.15) f̂k =

∫
e−ik·αf(α)dα.

Then, the leading order part of (2.6) corresponding to Ĥ can be written as

(3.16) H[X]η = −1

2

(
H1

(
r1n√
E

)
+H2

(
r2n√
E

))
.

From the Fourier symbols, we see that Hl, l = 1, 2, are bounded operators on the
Soblev spaces Hs(R2), for all s ≥ 0.

For the weakly singular part, following [4], we define for a function f with zero

mean (that is,
∫ 2π

0

∫ 2π

0
f(α)dα = 0) the transforms Gij , (i, j) = (1, 1), (1, 2), (2, 2):

G11f(α, β) =
1

4π
PV

∫
f(α′, β′)(α− α′)2

|α−α′|3
dα′,(3.17)

G12f(α, β) =
1

4π
PV

∫
f(α′, β′)(α− α′)(β − β′)

|α−α′|3
dα′,(3.18)

G22f(α, β) =
1

4π
PV

∫
f(α′, β′)(β − β′)2

|α−α′|3
dα′.(3.19)

The Fourier symbols of Gij , (i, j) = (1, 1), (1, 2), (2, 2) are:
(3.20)(

Ĝ11f
)
k
=

k22

2 |k|3
f̂k,

(
Ĝ22f

)
k
=

k21

2 |k|3
f̂k,

(
Ĝ12f

)
k
=

(
Ĝ21f

)
k
= − k1k2

2 |k|3
f̂k,

for k �= 0. These follow from formulas [23] for the Fourier transforms of so-called
higher Riesz transforms, which give the symbols for G12, G21, and G11 − G22. The
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symbol for G11+G22 for a function of zero mean is determined from the well-known
formula for the Fourier transform of r−1 = |α′|−1. Combining these gives (3.20).

From the Fourier symbols, we see that the operators Gij possess a smoothing
property [2, 4] on the Soblev spaces Hs(R2), s ≥ 0, which will be explained more

clearly in Section 7. The weakly singular part of (2.6) corresponding to Ĝ can be
written as

G[X]η =G11

(
η ×

(
Xαα

2E
3
2

− 3EαXα

4E
5
2

))
+ G22

(
η ×

(
Xββ

2E
3
2

− 3EβXβ

4E
5
2

))
+ G12

(
η ×

(
Xαβ

E
3
2

− 3 (EαXβ + EβXα)

4E
5
2

))
.

(3.21)

Here it is understood that to make the integrals finite, the mean of the argument
of Gij is subtracted off.

We point out the following relationships between ∂αl
and Hl that will be useful

to our reformulation of U :

Lemma 3.1. The following equalities hold for the operators ∂αl
, Hl:

H1∂α2
= ∂α2

H1 = H2∂α1
= ∂α1

H2.(3.22)

Proof. The results follow immediately from the Fourier symbols of ∂αl
and Hl. �

To facilitate later discussion, we introduce some notation. Define the operator

(3.23) Λ = H1∂α +H2∂β ,

whose Fourier symbol is

(3.24)
(
Λ̂f

)
k
= |k|f̂k.

For an operator A acting on 3D vector-valued functions of the parameter α, and
for such a function f(α) and a scalar function g(α), we denote by [A,f ]g the
commutator A(fg)− fAg. For example, we have

[Hi,f ]g = Hi(fg)− fHig, i ∈ {1, 2},(3.25)

[Gij ,f ]g = Gij(fg)− fGijg, (i, j) ∈ {(1, 1), (1, 2), (2, 2)}.(3.26)

Similar notation will be used to denote commutators corresponding to discretized
operators in later discussions.

We take the dot product of (3.16) with n, and we introduce commutators to
write the result as

H[X]η · n = −1

2

(
H1

(
r1√
E

)
+H2

(
r2√
E

))
− 1

2
n · [H1,n]

r1√
E

− 1

2
n · [H2,n]

r2√
E
.

(3.27)

We also wish to rewrite (3.21). To do this, however, we need a few geometric
identities, which follow from the isothermal parameterization:

(Xα ×Xαα) · n = −1

2
Eβ, (Xβ ×Xαα) · n = −1

2
Eα,

(Xα ×Xαβ) · n =
1

2
Eα, (Xβ ×Xαβ) · n = −1

2
Eβ ,

(Xα ×Xββ) · n =
1

2
Eβ, (Xβ ×Xββ) · n =

1

2
Eα.
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Using these equations and introducing commutators as is convenient, we take the
dot product of (3.21) with n and write the result as follows:

G[X]η · n = G11

( 1
2r1Eα + 1

4r2Eβ

E
3
2

)
+ G22

( 1
4r1Eα + 1

2r2Eβ

E
3
2

)
+ G12

( 1
4r1Eβ + 1

4r2Eα

E
3
2

)
− [G11,n]

(
η ×

(
Xαα

2E
3
2

− 3EαXα

4E
5
2

))
− [G22,n]

(
η ×

(
Xββ

2E
3
2

− 3EβXβ

4E
5
2

))
− [G12,n]

(
η ×

(
Xαβ

E
3
2

− 3 (EαXβ + EβXα)

4E
5
2

))
=

Eα

2E
G11(

r1√
E
) +

Eβ

4E
G11(

r2√
E
) +

Eα

4E
G22(

r1√
E
) +

Eβ

2E
G22(

r2√
E
)

+
Eβ

4E
G12(

r1√
E
) +

Eα

4E
G12(

r2√
E
)

− [G11,n]

(
η ×

(
Xαα

2E
3
2

− 3EαXα

4E
5
2

))
− [G22,n]

(
η ×

(
Xββ

2E
3
2

− 3EβXβ

4E
5
2

))
− [G12,n]

(
η ×

(
Xαβ

E
3
2

− 3 (EαXβ + EβXα)

4E
5
2

))
+ [G11,

Eα

2E
]
r1√
E

+ [G11,
Eβ

4E
]
r2√
E

+ [G22,
Eα

4E
]
r1√
E

+ [G22,
Eβ

2E
]
r2√
E

+ [G12,
Eβ

4E
]
r1√
E

+ [G12,
Eα

4E
]
r2√
E
.

(3.28)

Using the definition U = W · n and combining (3.11), (3.27) and (3.28), we have
the following formula for U :

U =
1

2

(
H1

(
r1√
E

)
+H2

(
r2√
E

))
+

1

2
n · [H1,n]

r1√
E

+
1

2
n · [H2,n]

r2√
E

− Eα

2E
G11(

r1√
E
)− Eβ

4E
G11(

r2√
E
)− Eα

4E
G22(

r1√
E
)

− Eβ

2E
G22(

r2√
E
)− Eβ

4E
G12(

r1√
E
)− Eα

4E
G12(

r2√
E
)

+ [G11,n]

(
η ×

(
Xαα

2E
3
2

− 3EαXα

4E
5
2

))
+ [G22,n]

(
η ×

(
Xββ

2E
3
2

− 3EβXβ

4E
5
2

))
+ [G12,n]

(
η ×

(
Xαβ

E
3
2

− 3 (EαXβ + EβXα)

4E
5
2

))
− [G11,

Eα

2E
]
r1√
E

− [G11,
Eβ

4E
]
r2√
E

− [G22,
Eα

4E
]
r1√
E

− [G22,
Eβ

2E
]
r2√
E

− [G12,
Eβ

4E
]
r1√
E

− [G12,
Eα

4E
]
r2√
E

−K[X]η · n.

(3.29)
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We use S to denote the part of (3.29) which does not include the commutators and
which does not include K; that is,

S =
1

2

(
H1

(
r1√
E

)
+H2

(
r2√
E

))
− Eα

2E
G11(

r1√
E
)− Eβ

4E
G11(

r2√
E
)

− Eα

4E
G22(

r1√
E
)− Eβ

2E
G22(

r2√
E
)− Eβ

4E
G12(

r1√
E
)− Eα

4E
G12(

r2√
E
).

(3.30)

We will further decompose S later (to be precise, in the next section, we will give
a decomposition of ΔS), but for now, we will mention that it includes the leading-
order part of U.

Use T to denote the sum of the commutator terms in (3.29):

T =
1

2
n · [H1,n]

r1√
E

+
1

2
n · [H2,n]

r2√
E

+ [G11,n]

(
η ×

(
Xαα

2E
3
2

− 3EαXα

4E
5
2

))
+ [G22,n]

(
η ×

(
Xββ

2E
3
2

− 3EβXβ

4E
5
2

))
+ [G12,n]

(
η ×

(
Xαβ

E
3
2

− 3 (EαXβ + EβXα)

4E
5
2

))
− [G11,

Eα

2E
]
r1√
E

− [G11,
Eβ

4E
]
r2√
E

− [G22,
Eα

4E
]
r1√
E

− [G22,
Eβ

2E
]
r2√
E

− [G12,
Eβ

4E
]
r1√
E

− [G12,
Eα

4E
]
r2√
E
.

(3.31)

We also use the notation K to denote the last remainder:

(3.32) K = −K[X]η · n.

With (3.30), (3.31) and (3.32), the formula for U can be rewritten as

(3.33) U = S + T +K.

In our numerical method we need to add a corrector term to balance off the error
generated by K̂. As suggested in [10,11,21], we make use of the following identity:

(3.34)

∫
∇xG(X−X′)×N′dα′ = 0.

Define

(3.35) Cn =
η(α)

|N(α)| ·
∫

∇xG(X(α)−X(α′))×N(α′)dα′.
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From (3.34) we immediately see that Cn = 0. We do a similar small-scale decom-
position of Cn based on (3.1):

Cn =
η(α)

|N(α)| ·
∫

∇xG(X(α)−X(α′))×N(α′)dα′

= − η(α)

4π |N(α)| ·
∫

X−X′

|X−X′|3
×N(α′)dα′

= − η(α)

4π |N(α)| ·
∫ (

Ĥ+ Ĝ+ K̂
)
×N(α′)dα′

= − η

2 |N| ·
(
H1

(
Xα

E
3
2

×N

)
+H2

(
Xβ

E
3
2

×N

))
− η

|N| · G11

((
Xαα

2E
3
2

− 3EαXα

4E
5
2

)
×N

)
− η

|N| · G12

((
Xαβ

E
3
2

− 3 (EαXβ + EβXα)

4E
5
2

)
×N

)
− η

|N| · G22

((
Xββ

2E
3
2

− 3EβXβ

4E
5
2

)
×N

)
− η

|N| ·K[X]N.

(3.36)

Since Cn = 0, we are able to subtract it from U in (3.33) without changing the
value of U ; we thus obtain the desired decomposition of U :

(3.37) U = S + T +K − Cn.

4. Evolution equations

For purposes that will be made clear in our numerical scheme, we consider X,
Xα, Xβ and κ as independent variables. Recall that the evolution equation for X
is given by

(4.1)
dX

dt
= V = Un+ V1Xα + V2Xβ ,

where U can be calculated from (3.37), (3.30), (3.31), (3.32), (3.36) and V1, V2 are
determined by (2.20) and (2.21). We immediately obtain the evolution equations
for Xα and Xβ :

Xαt = Vα = (Un+ V1Xα + V2Xβ)α ,(4.2)

Xβt = Vβ = (Un+ V1Xα + V2Xβ)β .(4.3)

Now we consider the evolution equation for κ. As shown in [4], from (2.9) and (4.1)
we get

(4.4) (
√
Eκ)t =

1

2
√
E

(Uα + V1L+ V2M)α +
1

2
√
E

(Uβ + V1M + V2N)β ,

(4.5) Et = 2V1αE + V1Eα + V2Eβ − 2UL.
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Upon combining these, we find

κt =
1

2E
ΔU +

κ

2E
(2UL− 2V1αE − V1Eα − V2Eβ)

+
1

2E

(
(V1L+ V2M)α + (V1M + V2N)β

)
.

(4.6)

From (3.37), we get

(4.7) ΔU = ΔS +ΔT +ΔK −ΔCn.

Then, from (3.30), and since Δ = −Λ2, ΛH1 = −∂α, and ΛH2 = −∂β, we get

ΔS =
1

2
Λ

(
∂α

(
r1√
E

)
+ ∂β

(
r2√
E

))
−Δ

(
Eα

2E
G11 +

Eα

4E
G22 +

Eβ

4E
G12

)(
r1√
E

)
−Δ

(
Eβ

4E
G11 +

Eβ

2E
G22 +

Eα

4E
G12

)(
r2√
E

)
.

(4.8)

Next, we substitute (2.7) into the first terms on the right-hand side of (4.8):

(4.9)

ΔS =
B

2
Λ

((
κα√
E

)
α

+

(
κβ√
E

)
β

)
−Δ

(
Eα

2E
G11 +

Eα

4E
G22 +

Eβ

4E
G12

)(
r1√
E

)
−Δ

(
Eβ

4E
G11 +

Eβ

2E
G22 +

Eα

4E
G12

)(
r2√
E

)
= − B

2
√
E
Λ3κ+R,

where

R =
B

2

[
Λ∂α,

1√
E

]
κα +

B

2

[
Λ∂β ,

1√
E

]
κβ

−Δ

(
Eα

2E
G11 +

Eα

4E
G22 +

Eβ

4E
G12

)(
r1√
E

)
−Δ

(
Eβ

4E
G11 +

Eβ

2E
G22 +

Eα

4E
G12

)(
r2√
E

)
.

(4.10)

As a result, ΔU can be written as

(4.11) ΔU = − B

2
√
E
Λ3κ+R+ΔT +ΔK −ΔCn.

Plugging (4.11) into (4.6), we now rewrite the evolution equation for κ:

κt =− B

4E3/2
Λ3κ+

1

2E
(R +ΔT +ΔK −ΔCn)

+
κ

2E
(2UL− 2V1αE − V1Eα − V2Eβ)

+
1

2E

(
(V1L+ V2M)α + (V1M + V2N)β

)
.

(4.12)
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5. Numerical method

In this section we describe our numerical method. A semidiscretization scheme is
used here to facilitate the stability analysis, i.e., the time axis is not discretized. To
discretize the spatial differential operators, we lay a uniform Cartesian grid with grid
width h = 2π

N on the α domain. As mentioned earlier, we consider X, Xα, Xβ and
κ as independent variables and the corresponding numerical approximations Xh,
Xαh, Xβh and κh are solved from their evolution equations obtained by discretizing
(4.1), (4.2), (4.3) and (4.12). We use Uh, V1h and V2h to denote the numerical
approximations of U , V1 and V2. Other notation is defined similarly.

5.1. Discretized operators. The spatial derivatives are discretized spectrally.
Recall that for a 2π-periodic function, u(α), its discrete Fourier transform is given
by

(5.1) ũk = h2

(N
2 ,N2 )∑

(j1,j2)=(−N
2 +1,−N

2 +1)

u(αj)e
−ik·jh,

where j = (j1, j2), k1, k2 = −N
2 + 1, · · · , N

2 . The inverse formula is

(5.2) uj =
1

(2π)2

(N
2 ,N2 )∑

(k1,k2)=(−N
2 +1,−N

2 +1)

ũ(αj)e
ik·jh.

Using the discrete Fourier transform, we define the discrete derivatives D1h, D2h

by

(5.3) (D̃lhfh)k = iklf̃hk.

Because of the isothermal assumption of the unit vectors and the fundamental
forms, only n, E, L, M and N appear in the evolution equations (4.1), (4.2), (4.3)
and (4.12). They are calculated from the independent variables Xh, Xαh, Xβh,
and κh as follows:

nh =
Xαh ×Xβh

Eh
, Eh = Xαh ·Xαh,

Lh = −Xαh ·D1hnh, Mh = −Xαh ·D2hnh, Nh = −Xβh ·D2hnh.
(5.4)

The discrete dipole strength ηh is calculated from

(5.5) ηh = r1hXβh − r2hXαh,

where

(5.6) r1h = BD1hκh, r2h = BD2hκh.

We need to state the evolution equations for Xh, Xαh, Xβh and κh. First
consider Xh. Recalling (4.1), we introduce Vh,

(5.7) Vh = Uhnh + V1hXαh + V2hXβh.

In the above equation, we need to discretize (3.37) to calculate Uh, which requires
discretizing (3.30), (3.31), (3.32) and (3.36). In (3.30), we discretize the Riesz
transforms H1 and H2 spectrally without filtering. The discretized operators Hs

lh,
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l = 1, 2, can be expressed in terms of their discrete Fourier symbols:

(5.8)
(
H̃s

lhfh

)
k
= −i

kl
|k| f̃hk, l = 1, 2, k1, k2 = −N

2
+ 1, · · · , N

2
�= 0,

and zero for k = 0.
The Gij operators are also discretized similarly and the corresponding discrete

operators Gs
ij,h can be expressed as follows:

(
G̃s
11,hfh

)
k
=

k22

2 |k|3
f̂hk,

(
G̃s
22,hfh

)
k
=

k21

2 |k|3
f̂hk,(

G̃s
12,hfh

)
k
=

(
G̃s
21,hfh

)
k
= − k1k2

2 |k|3
f̂hk,

(5.9)

for k1, k2 = −N
2 + 1, · · · , N

2 �= 0.
Naturally, from (5.3) and (5.8), the spectral discretization of the operator Λ

defined in (3.23) is

(5.10) Λh = Hs
1hD1h +Hs

2hD2h,

and its discrete Fourier symbol is

(5.11)
(
Λ̃hfh

)
k
= |k|f̃hk, l = 1, 2.

The discrete approximation of the higher order term S is calculated as follows:

Sh =
1

2

(
Hs

1h

(
r1h√
Eh

)
+Hs

2h

(
r2h√
Eh

))
− D1hEh

2Eh
Gs
11,h(

r1h√
Eh

)− D2hEh

4Eh
Gs
11,h(

r2h√
Eh

)

− D1hEh

4Eh
Gs
22,h(

r1h√
Eh

)− D2hEh

2Eh
Gs
22,h(

r2h√
Eh

)

− D2hEh

4Eh
Gs
12,h(

r1h√
Eh

)− D1hEh

4Eh
Gs
12,h(

r2h√
Eh

).

(5.12)

The integrals in T andK are discretized using the standard point vortex method.
For a function fh(α) defined on R2

h, the standard point vortex approximation of
the principal integral of fh on R2

h is defined as

(5.13) P.V.

∫ p

h

fh(xi) =
∑

j�=i, j∈Z2

fh(Xj)h
2.

We often use the notation
∫ p

h
with superscript p to indicate a standard point vortex

integral. Also, we use Hp
lh and Gp

ij,h to denote the standard point vortex approxi-
mations of Hl and Gij .



CONVERGENCE OF A BOUNDARY INTEGRAL METHOD 2759

The approximation of T is obtained from discretizing (3.31):

Th =
1

2
nh · [Hp

1h,nh]
r1h√
Eh

+
1

2
nh · [Hp

2h,nh]
r2h√
Eh

+ [Gp
11,h,nh]

(
ηh ×

(
D1hXαh

2E
3
2

h

− 3XαhD1hEh

4E
5
2

h

))

+ [Gp
22,h,nh]

(
ηh ×

(
D2hXβh

2E
3
2

h

− 3XβhD2hEh

4E
5
2

h

))

+ [Gp
12,h,nh]

(
ηh ×

(
D1hXβh

E
3
2

h

− 3 (XβhD1hEh +XαhD2hEh)

4E
5
2

h

))

− [Gp
11,h,

D1hEh

2Eh
]
r1h√
Eh

− [Gp
11,h,

D2hEh

4Eh
]
r2h√
Eh

− [Gp
22,h,

D1hEh

4Eh
]
r1h√
Eh

− [Gp
22,h,

D2hEh

2Eh
]
r2h√
Eh

− [Gp
12,h,

D2hEh

4Eh
]
r1h√
Eh

− [Gp
12,h,

D1hEh

4Eh
]
r2h√
Eh

.

(5.14)

For the operators appearing inside commutators (such as Riesz transforms), note
that we have specified point-vortex versions of the discretized operators rather than
spectral versions. This is so that we may use the smoothing properties of these
commutators, which are detailed below in Section 7. Another possible choice here
would be to use spectral versions, but to introduce a dealiasing filter, as described
in [14]; we choose instead to work with a version of the method which requires no
filtering.

Discretizing (3.32), we get

(5.15) Kh = −Kp
h[Xh]ηh = − 1

4π
P.V.

∑
j�=i, j∈Z2

ηh(Xjh)× K̂hh
2,

where K̂h is defined as follows:

K̂h =
Xh −X′

h

|Xh −X′
h|

3 − Ĥh − Ĝh,(5.16)

Ĥh = Ĥ1h + Ĥ2h,(5.17)

Ĥ1h =
X′

αh(α− α′)

E
′ 3
2

h |α−α′|3
, Ĥ2h =

X′
βh(β − β′)

E
′ 3
2

h |α−α′|3
,(5.18)

Ĝh = Ĝ11,h + Ĝ12,h + Ĝ22,h,(5.19)

Ĝ11,h =

(
D1hX

′
αh

2E
′ 3
2

h

− 3X′
αhD1hE

′
h

4E
′ 5
2

h

)
(α− α′)2

|α−α′|3
,(5.20)

Ĝ12,h =

⎛⎝D1hX
′
βh

2E
′ 3
2

h

−
3
(
X′

βhD1hE
′
h +X′

αhD2hE
′
h

)
4E

′ 5
2

h

⎞⎠ (α− α′)(β − β′)

|α−α′|3
,(5.21)

Ĝ22,h =

(
D2hX

′
βh

2E
′ 3
2

h

−
3X′

βhD2hE
′
h

4E
′ 5
2

h

)
(β − β′)2

|α−α′|3
.(5.22)
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So far we have obtained the approximations of S, T and K in (3.37). Further-
more, we need to discretize (3.36) to get an approximation of Cn which will serve

as a corrector term to balance off the error generated by the nonsingular kernel K̂
in (3.32). We have Cn = 0 in the continuous problem, but in the discrete problem
this is not the case due to discretization errors. As before, using the same spectral
schemes to discretize Hl and Gij , and using the standard point vortex method to
discretize K[X]N, we obtain the following approximation of Cn:

Ch
n =

ηh(α)

|Nh(α)| ·
∫
h

∇xG(Xh(α)−X′
h(α))×Nh(α

′)dα′

=− ηh

4π |Nh|
·
∫
h

Xh −X′
h

|Xh −X′
h|

3 ×Nh(α)dα′

=− ηh

2 |Nh|
·
(
Hs

1h

(
Xαh

E
3
2

h

×Nh

)
+Hs

2h

(
Xβh

E
3
2

h

×Nh

))

− ηh

|Nh|
· Gs

11,h

((
D1hXαh

2E
3
2

h

− 3XαhD1hEh

4E
3
2

h

)
×Nh

)

− ηh

|Nh|
· Gs

12,h

((
D1hXβh

2E
3
2

h

− 3 (XβhD1hEh +XαhD2hEh)

4E
3
2

h

)
×Nh

)

− ηh

|Nh|
· Gs

22,h

((
Xβh

2E
3
2

h

− 3D2hEhD2hXβh

4E
3
2

h

)
×Nh

)
+

ηh

|Nh|
·Kp

h[X]Nh,

(5.23)

where in the first two equalities we used
∫
h
to denote the mixed integration scheme

which calculates the singular and weakly singular integrals using spectral schemes
without filtering and the remaining nonsingular integrals using the standard point
vortex method. As before we use

∫ p

h
to indicate the standard point vortex integral

and the last term is defined similarly to (5.15):

(5.24) Kp
h[Xh]Nh =

1

4π
P.V.

∫ p

h

Nh(α
′)× K̂hdα

′.

With (5.12), (5.14), (5.15) and (5.23), we obtain the following approximation of U
from (3.37):

(5.25) Uh = Sh + Th +Kh − Ch
n.

As mentioned earlier, we treat Xh, Xαh, Xβh and κh as independent variables.
Plugging (5.4), (5.5) and (5.6) into (5.12), (5.14), (5.15) and (5.23), we can see the
latter are all functions of Xh, Xαh, Xβh. Then from (5.25), we can write Uh as a
function of Xh, Xαh, Xβh and κh, denoted by

Uh = Uh (Xh,Xαh,Xβh, κh) .(5.26)
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Here we use the Uh notation in order to avoid writing down the lengthy formula of
Uh in terms of Xh, Xαh, Xβh, and κh, but the formula is explicit and computed in
our numerical scheme.

We discretize (2.20), (2.21) to calculate the tangential velocities V1h, V2h. Here
both are assumed to be of mean zero for uniqueness. We have the following:

V1h = Δ−1
h

(
D1h

(
Uh (Lh −Nh)

Eh

)
+D2h

(
2UhMh

Eh

))
,(5.27)

V2h = Δ−1
h

(
D1h

(
2UhMh

Eh

)
−D2h

(
Uh (Lh −Nh)

Eh

))
,(5.28)

where the discrete inverse Laplace operator Δ−1
h is defined in terms of its discrete

Fourier symbol:

˜(Δ−1
h fh

)
k
=

{
0, |k| = 0,

−f̃hk/|k|2, |k| �= 0.
(5.29)

Similarly to the normal velocity, we can also write V1h and V2h as explicit func-
tions of Xh, Xαh, Xβh, and κh. We use the following notation:

V1h = V1h (Xh,Xαh,Xβh, κh) ,(5.30)

V2h = V2h (Xh,Xαh,Xβh, κh) .(5.31)

5.2. Discretized evolution equations. We are almost ready to give the discrete
evolution equations. We introduce the notation V0,

(5.32) V0
h (Xh,Xαh,Xβh, κh) = Uhnh + V1hXαh + V2hXβh.

One might reasonably expect the evolution equation for dXh

dt to be given by

V0
h (Xh,Xαh,Xβh, κh) . Instead, however, we need to be more careful than this

to be able to make energy estimates to demonstrate stability.
In studying the continuous version of problems of this kind, as in, for example,

[2], exact relationships between the quantitiesX, Xα,Xβ , and κ are frequently used
when making estimates. For the discretized problem, however, these exact relation-
ships cannot be expected to hold. As we have mentioned previously, part of our
resolution of this problem is to treat Xh, Xαh, Xβh, and κh as being independent
of each other, severing the link between them, and writing their evolution equations
in terms of all of these different quantities. When making energy estimates in the
continuous problem, the exact relationships allow us to infer the highest regularity
of X from the regularity of κ : the surface X is two derivatives smoother than κ.
Obviously we cannot do this for the discretized problem, as we do not assume that,
at positive times, κh and Xh have a precise relationship. Thus, we need to deal
with the question of the regularity of the discretized surface in a different way than
in the continuous problem.

In Section 8 below, we will study the stability of the method by making energy
estimates; the energy functional is given in (8.36). As can be seen there, the energy
includes the L2

h norm of Xh. We thus must ensure that the right-hand sides of our
discretized evolution equations do not contain terms which require derivatives of
Xh to estimate. Similarly, the energy includes only the L2

h norms of Xαh and Xβh,
so the right-hand sides of the discretized evolution equations also should not contain
terms which require higher derivatives of Xαh or Xβh when making estimates.
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To ensure the requisite boundedness properties, we employ a substitution rule.
Recall that in the continuous problem, we have (2.8) because of the isothermal pa-
rameterization. Suggested by this and the periodicity assumption on the interface,
in the numerical scheme, we will make use of a version of the following substitution:

X = Δ−1 (2κN) + (α,β, 0), N = Xα ×Xβ ,

Xα = ∂αΔ
−1 (2κN) + (1, 0, 0), Xβ = ∂βΔ

−1 (2κN) + (0, 1, 0).
(5.33)

We thus define an operator M that acts on functions of Xh, Xαh and Xβh by
using a version of (5.33) to replace these three variables. More precisely, for a
function Φ (Xh,Xαh,Xβh, κh), we have

(5.34) MΦ (Xh,Xαh,Xβh, κh)

= Φ
(
Δ−1

h (2κhNh) + (αh,βh, 0), D1hΔ
−1
h (2κhNh) + (1, 0, 0),

D2hΔ
−1
h (2κhNh) + (0, 1, 0), κh

)
,

where Nh = Xαh ×Xβh. In fact, we will need to apply the operator M multiple
times in some cases. We now give an example of what this means. Take, for
example,

Φ(Xh) = D3
1hXh.

Even though this is an artificial example, we mention that for such a function Φ, its
norm cannot be estimated using only ‖Xh‖L2

h
, and this is the reason for making such

a substitution. We first compute MΦ(Xh), and then we will compute M2Φ(Xh).
Right away, we have
(5.35)
MΦ(Xh) = D3

1h

(
Δ−1

h (2κhNh) + (αh, βh, 0)
)
= D3

1h

(
Δ−1

h (2κh(Xαh ×Xβh))
)
.

We notice that the right-hand side of (5.35) cannot be estimated by a norm of κh

and ‖Xαh‖L2
h
and ‖Xβh‖L2

h
; again, even though this is only an artificial example,

this is the reason for making another substitution (i.e., for continuing on to compute
M2Φ). Continuing on, we find the following:

(5.36) M2Φ(Xh) = D3
1h

(
Δ−1

h

(
2κh

((
D1hΔ

−1
h (2κhNh) + (1, 0, 0)

)
×
(
D2hΔ

−1
h (2κhNh) + (0, 1, 0)

))))
,

where as before, we have Nh = Xαh ×Xβh. Notice that on the right-hand side of
(5.36), we have four factors of D1h, and all occurrences of Xαh or Xβh occur inside

two instances of Δ−1
h ; thus, we do not require derivatives of Xαh or Xβh to estimate

this. In this example, then, we can estimate M2Φ(Xh) using one derivative of κh

and zero derivatives of Xαh and Xβh. This completes the example, and we return
now to the task of defining the discretized evolution equations.

We apply the operator M once to define the evolution equation for Xh:

(5.37)
dXh

dt
= Vh (Xh,Xαh,Xβh, κh) := MV0

h.

Similarly, applying M again, we form the evolution equations for Xαh and Xβh:

dXαh

dt
= Ψ1h (Xh,Xαh,Xβh, κh) ,(5.38)

dXβh

dt
= Ψ2h (Xh,Xαh,Xβh, κh) ,(5.39)
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where

Ψ1h (Xh,Xαh,Xβh, κh) = MD1hVh,

Ψ2h (Xh,Xαh,Xβh, κh) = MD2hVh.
(5.40)

We discretize (4.12) to obtain the evolution equation for κh. We use the notation
D1h, D2h, Eh, Lh, Mh, Nh, Uh, V1h, V2h, Th, Kh, C

h
n to denote the same discrete

terms as before. The approximation of R is obtained by discretizing (4.10), but
before doing so, we will rewrite the commutators which appear there. The product
rule and the identity Λ∂α = H1Δ yield the following:[
Λ∂α,

1√
E

]
κα = H1

(
Δκα√

E

)
− 1√

E
H1Δκα + 2H1

(
∇κα · ∇

(
1√
E

))
+H1

(
καΔ

(
1√
E

))
=

[
H1,

1√
E

]
κα + 2H1

(
∇κα · ∇

(
1√
E

))
+H1

(
καΔ

(
1√
E

))
.

Similarly, we have[
Λ∂β ,

1√
E

]
κβ=

[
H2,

1√
E

]
Δκβ + 2H2

(
∇κβ · ∇

(
1√
E

))
+H2

(
κβΔ

(
1√
E

))
.

Using these formulas for the commutators, we can express the discretized version
of R as

Rh =
B

2

[
Hp

1h,
1√
Eh

]
ΔhD1hκh +BHs

1h

(
∇hD1hκh · ∇h

(
1√
Eh

))
+

B

2
Hs

1h

(
(D1hκh)Δh

(
1√
Eh

))
+

B

2

[
Hp

2h,
1√
Eh

]
ΔhD2hκh +BHs

2h

(
∇hD2hκh · ∇h

(
1√
Eh

))
+

B

2
Hs

2h

(
(D2hκh)Δh

(
1√
Eh

))
−Δh

(
D1hEh

2Eh
Gs
11,h +

D1hEh

4Eh
Gs
22,h +

D2hEh

4Eh
Gs
12,h

)
r1h√
Eh

−Δh

(
D2hEh

4Eh
Gs
11,h +

D2hEh

2Eh
Gs
22,h +

D1hEh

4Eh
Gs
12,h

)
r2h√
Eh

.

(5.41)

Then with (5.41), (5.14), (5.23), (5.15), (5.4), (5.26), (5.30) and (5.31), the right-
hand side of (4.12) can be discretized as

Γ0
h :=− B

4E
3/2
h

Λ3
hκh +

1

2Eh

(
Rh +ΔhTh +ΔhKh −ΔhC

h
n

)
+

κh

2Eh
(2UhLh − 2(D1hV1h)Eh − V1h(D1hEh)− V2hD2hEh)

+
1

2Eh
(D1h (V1hLh + V2hMh) +D2h (V1hMh + V2hNh)) .

(5.42)

Similarly to (5.26), here we write the right-hand side of (5.42) as a function of
Xh,Xαh,Xβh and κh; that is, we may write Γ0

h = Γ0
h (Xh,Xαh,Xβh, κh) . We then
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apply (5.33) six times. The evolution equation for κh is then given by the following:

(5.43)
dκh

dt
= Γh (Xh,Xαh,Xβh, κh) ,

where

(5.44) Γh (Xh,Xαh,Xβh, κh) = M6Γ0
h (Xh,Xαh,Xβh, κh) .

We close this section by stating the main result in this paper on the convergence
properties of our modified point vortex method consisting of the evolution equations
(5.37), (5.38), (5.39), (5.43).

Theorem 5.1. Suppose the model problem is well-posed and has a sufficiently
smooth solution X up to time T > 0. In addition, we assume that X is non-
singular and satisfies conditions (2.22) and (2.23). Then the modified point vor-
tex method described by (5.37), (5.38), (5.39) and (5.43) is stable and third-order
accurate. More precisely, there exists a positive number h0(T ) such that for all
0 < h < h0(T ), we have

(5.45) ‖X−Xh‖L2
h
≤ C(T )h3,

where ‖·‖L2
h
is the discrete l2 norm over a period of α, i.e.,

‖x‖2L2
h
=

N/2∑
i,j=−N/2+1

|xi,j |2 h2,

and C(T ) > 0 is a constant that does not depend on h.

The proof of Theorem 5.1 will be the content of the remaining sections.

6. Consistency of the modified point vortex method

In this section, we prove that the modified point vortex method has an error
expansion in odd powers of h and is third-order accurate inX, second-order accurate
in Xα, Xβ, and first-order accurate in κ. Our approach is similar to that used in
[21] and we only provide a sketch of the proof.

As seen in Section 5, the evolution equations (5.38) and (5.39) are obtained by
taking spectral derivatives D1h, D2h of (5.37), and the evolution equation (5.43)
is basically obtained by taking Δh of (5.37) except that we reformulated ΔS in
the continuous problem. Therefore, we only need to prove the O(h3) accuracy of
equation (5.37). Recall that the tangential velocities V1h and V2h are also spectrally
calculated from and of lower order than Uh. Therefore, it suffices to prove the O(h3)
accuracy of the normal velocity approximation Uh. Furthermore, the term Sh in
the decomposition (5.25) for Uh is spectrally calculated, so we need only consider
the errors of the standard point vortex approximation in Th, Kh, and the part of
Ch

n in (5.23) that is approximated by the point vortex method.
Let −v(α,α′)/(4π) be the integrand of the part of Uh that is computed from the

standard point vortex approximation. Then from (2.6), (3.29), (3.30), and (5.24)
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we have

v(α,α′) = n(α) · η(α′)× X−X′

|X−X′|3
+

r1(α
′)(α− α′)

E
1
2 (α′) |α−α′|3

+
r2(α

′)(β − β′)

E
1
2 (α′) |α−α′|3

−
(
1
2r1(α

′)Eα(α) + 1
4r2(α

′)Eβ(α)
)
(α− α′)2

E(α)E
1
2 (α′) |α−α′|3

−
(
1
4r1(α

′)Eα(α) + 1
2r2(α

′)Eβ(α)
)
(β − β′)2

E(α)E
1
2 (α′) |α−α′|3

−
(
1
4r1(α

′)Eβ(α) + 1
4r2(α

′)Eα(α)
)
(α− α′)(β − β′)

E(α)E
1
2 (α′) |α−α′|3

+
η(α)

|N(α)| ·N(α′)× K̂.

(6.1)

Since v(α,α′) is the corresponding integrand of the standard point vortex integral
of (5.25), it suffices to show the following:
(6.2)

P.V.

∫
v(α,α′)dα′−P.V.

∫ p

h

v(α,α′)dα′ = C3h
3+C5h

5+ · · ·+C2n+1h
2n+1+ · · · ,

where
∫ p

h
denotes the standard point vortex approximation and C3, C5, · · · are

constants.
This error expansion can be proved using an argument similar to that presented

in [21]. Define a smooth cut-off function fδ such that: (i) fδ(|x|) = 1 for |x| ≤ δ/2;
(ii) fδ(|x|) = 0 for |x| ≥ δ. Here the constant δ > 0 is taken to be small and
independent of h. Then decompose v as follows:

(6.3) v(α,α′) = v(α,α′)fδ(|α−α′|) + v(α,α′)(1− fδ(|α−α′|)).

As noted in [21], classical error analysis shows that the far-field part under point
vortex approximation is spectrally accurate; see, e.g. [17]. More precisely, we have
(6.4)∣∣∣∣∫ v(α,α′)(1− fδ(|α−α′|))dα′ −

∫ p

h

v(α,α′)(1− fδ(|α−α′|))dα′
∣∣∣∣ ≤ ChM ,

where M is the regularity of X.
For the near-field part, we Taylor-expand v(α,α′) in terms of α − α′. This is

done by Taylor-expanding n and X−X′

|X−X′|3 in (6.1). We get

(6.5) v(α,α′) = m−2(α
′ −α)+m−1(α

′ −α)+m0(α
′ −α)+m1(α

′ −α)+ · · · ,

where ml(α) are homogeneous functions of degree l.
For any even number l, ml is an odd function. Therefore, ml(α

′−α)fδ(|α−α′|)
is also an odd function of α − α′ and hence it does not contribute to either the
continuous or the discrete principal integral, that is,

(6.6)

∫
ml(α,α′)fδ(|α−α′|)dα′ −

∫ p

h

ml(α,α′)fδ(|α−α′|)dα′ = 0.

The Taylor expansion also shows that, crucially, m−1(α
′ −α) = 0. As a result,

the first term in (6.5) that contributes to the error of the point vortex approximation



2766 DAVID M. AMBROSE, YANG LIU, AND MICHAEL SIEGEL

of the near-field is the m1 term. It is proved in [21] that for any integer l ≥ 1, we
have
(6.7)∫

ml(α,α′)fδ(|α−α′|)dα′ −
∫ p

h

ml(α,α′)fδ(|α−α′|)dα′ = Cl+2h
l+2 +O(hM),

where M again denotes the regularity of X. This completes the consistency proof.

7. Boundedness properties of the discretized integral operators

In this section we derive boundedness properties of the involved discrete integral
operators and commutators in (5.26). The results are largely analogues of the
properties for the corresponding continuous integrals presented in [4]. Some related
arguments and results from [11, 21] are also adopted here.

First we introduce some notation. For some constant s ≥ 0, as an analogue of the
continuous Sobolev space Hs, we introduce the discrete Sobolev space Hs

h ⊂ L2
h.

For any fh ∈ L2
h, define its discrete Sobolev space norm as

(7.1) ‖fh‖Hs
h
= ‖(1 + Λs

h) fh‖L2
h
.

The collection of all fh ∈ L2
h such that ‖fh‖Hs

h
is bounded is called the discrete

Sobolev space of order s and denoted by Hs
h throughout this paper. In particular,

when s = 0, Hs
h = L2

h. For the discrete Sobolev norm ‖·‖Hs
h
, we have the following

result:

Lemma 7.1. Suppose that f is a 2π-doubly-periodic and sufficiently smooth func-
tion on R2. Consider a discrete 2π-doubly-periodic function gh ∈ Hs

h for some
constant s ≥ 0. Then the product function fgh ∈ Hs

h. More precisely, we have

(7.2) ‖fgh‖Hs
h
≤ C ‖gh‖Hs

h
,

for some constant C > 0 that only depends on f .

Proof. This result can be proved by calculating the Hs
h norm from the definition

(7.1), applying the Plancherel theorem and writing f̂gh as a circular convolution

of f̂ and ĝh. By assumption f is sufficiently smooth and periodic, hence we have∣∣∣f̂k∣∣∣ ≤ C |k|−q for some constant C > 0 that only depends on f and any q > 0.

This result is useful in the proof and the rest is skipped here. �

Consider a function fh ∈ Hs
h for some constant s ≥ 0. For another constant

m ≤ s, we use Am(fh) to denote a term such that for any constant k, 0 ≤ k ≤ s−m,
we have

‖Am(fh)‖Hk
h
≤ C ‖fh‖Hk+m

h
,(7.3)

where C > 0 denote constants that do not depend on h. If gh is such a term,
we write gh ∈ Am(fh). In particular, when the Am(fh) term is of the form Ihfh,
where Ih is an operator acting on L2

h, we say that Ih is Am or Ih ∈ Am, for the
constant s. We often do not mention s as long as there is no ambiguity. From this
definition, we see that for all m ≤ n ≤ s, we have Am ∈ An and AmAn ∈ Am+n,
AnAm ∈ Am+n. Also, we often write Am(fh) +Am(gh) as Am(fh, gh).



CONVERGENCE OF A BOUNDARY INTEGRAL METHOD 2767

Now we are ready to state some boundedness properties of the discrete operators
in our numerical scheme. For the spectrally discretized derivatives and integral
operators described in Section 5, we have

Lemma 7.2. For any 2π-doubly-periodic function fh ∈ Hs
h, where s ≥ 1 is some

constant, the spectrally discretized operators Dlh, l = 1, 2, Λh are A1, Hs
lh, l = 1, 2,

are A0, G
s
ij,h, (i, j) = (1, 1), (1, 2), (2, 2), are A−1, and Δ−1

h is A−2.

Proof. The results are immediate from the definition of Am and the discrete Fourier
symbols of these operators. �

For the point vortex integral operators Hp
lh, l = 1, 2, and Gp

ij,h, (i, j) = (1, 1),

(1, 2), (2, 2), we have the following boundedness properties:

Lemma 7.3. For any 2π-doubly-periodic function fh ∈ Hs
h, where s ≥ 0 is some

constant, the standard point vortex approximations of the Riesz transforms, Hp
lh, l =

1, 2, are A0, and the point vortex integral operators Gp
ij,h, (i, j) = (1, 1), (1, 2), (2, 2),

are A−1.

Proof. We will only prove that Hp
lh, l = 1, 2, are A0, since the result for Gp

ij,h,

(i, j) = (1, 1), (1, 2), (2, 2), can be proved similarly. For any 2π-double-periodic
function fh ∈ Hs

h, we have

Hp
lhfh(α) =

1

2π
P.V.

∫ p

h

fh(α
′)

αl − α′
l

|α−α′|3
dα′ =

1

2π
P.V.

∫
h

fh(α
′)gl(α−α′)dα′,

(7.4)

where

gl(α) =

{
0, |α| = 0,

αl/|α|3, |α| > 0.
(7.5)

We see that Hp
lh, l = 1, 2, are discrete convolution operators with kernels 1

2π gl. The
discrete Fourier symbols of Hp

lh, l = 1, 2, are presented in [21]:(
H̃p

lhfh

)
k
=

{
0, |k| = 0,

− ikl

|k| bl(kh)f̃k, |k| > 0,
(7.6)

where l = 1, 2, k = (k1, k2), k1, k2 = −N
2 + 1, · · · , N

2 and

b1(kh) =
1

2π
P.V.

∑
j�=0

j1 sin(j1k1h) cos(j2k2h)

(j21 + j22)
3/2

,(7.7)

b2(kh) =
1

2π
P.V.

∑
j�=0

j2 sin(j2k2h) cos(j1k1h)

(j21 + j22)
3/2

.(7.8)

It can be shown that the above infinite series converge. Hence, from Parseval’s
theorem for discrete Fourier transforms, we see that Hp

lh, l = 1, 2, are A0. �

For a sufficiently smooth 2π-periodic function f on R2, we consider the commu-
tator [Hp

lh, f ](·). It has the following boundedness properties:

Lemma 7.4. Suppose that f is a sufficiently smooth 2π-doubly-periodic function
on R2. Then when acting on any 2π-doubly-periodic function gh ∈ Hs

h, where s ≥ 0
is some constant, the commutator operators [Hp

lh, f ](·), l = 1, 2, are A−1.
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Proof. The is the discrete version of the result presented by Theorem 6.6 in [4]. For
any 2π-doubly-periodic function gh ∈ Hs

h, we have

(7.9) [Hp
lh, f ]gh = P.V.

∫ p

h

(f(α′)− f(α))
(αl − α′

l)

|α−α|3
gh(α

′)dα′.

We treat α as a perturbation of α′ and make a Taylor expansion of f(α)−f(α′)
in terms of α−α′ with remainder:

(7.10) [Hp
lh, f ]gh = P.V.

∫ p

h

⎛⎝ ∑
|m|=1

Dmf(α′)(α−α′)m

+
∑

|m|=2

Rm(α′)(α−α′)m

⎞⎠ (αl − α′
l)

|α−α|3
gh(α

′)dα′,

where m = (m1,m2) is a two-dimensional multi-index with m1, m2 being nonneg-
ative integers and Rm are the remainders from the Taylor expansion. Note that all
the terms Dmf , |m| = 1, and Rm, |m| = 2, are sufficiently smooth and 2π-periodic

functions, and all these discrete integral operators with kernels (α − α′)m
(αl−α′

l)

|α−α|3
are discrete convolution operators that are A−1 as seen from their discrete Fourier
symbols similar to that in the proof for Theorem 7.3. Hence, we conclude that
[Hp

lh, f ] = A−1 using Lemma 7.1. �

In particular, when f = n in Lemma 7.4, we have

Lemma 7.5. For any 2π-double-periodic function gh ∈ Hs
h, where s ≥ 0 is a

constant, the operators n · [Hp
lh,n](·), l = 1, 2, are A−2.

Proof. This is the discrete version of the result presented by Theorem 6.7 in [4].
We apply the same argument used in the proof of Lemma 7.4 and notice that in
the Taylor expansion of n(α)− n(α′), the first term vanishes because n · ∂αn = 0.
The rest of the proof is similar and the details are skipped. �

Regarding the boundedness properties of the commutators [Gp
ij,h, f ](·), we have

the following result.

Lemma 7.6. Suppose that f is a sufficiently smooth 2π-doubly-periodic function
on R2. Then for any 2π-double-periodic function gh ∈ Hs

h, where s ≥ 0 is some
constant, the commutator operators [Gp

ij,h, f ](·), (i, j) = (1, 1), (1, 2), (2, 2), are A−2.

Proof. This is the discretized version of the result presented by Theorem 6.6 in [4]
and the proof is similar to that of the previous Lemma 7.4. The key is to Taylor-
expand f(α′) − f(α) and consider the kernels of the related discrete convolution
operators. We skip the details. �

At last, we consider the boundedness properties of the remaining operator
Kp

h[X](·).

Lemma 7.7. Acting on any 2π-doubly-periodic function fh ∈ Hs
h, for some con-

stant s ≥ 0, the discrete integral operator Kp
h[X](·) is A−2.

Before giving the proof, we mention that it would in fact be sufficient for the
operatorKp

h[X]· to be A−3/2, and in fact, in [4], the first author and Masmoudi used
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the corresponding continuous operator to gain 3/2 of a derivative. Nonetheless, it
actually gains two derivatives.

Proof. This is the discrete version of the result presented by Lemma 6.1 in [4]. We

do a Laurent expansion of X−X′

|X−X′|3 in terms of (α − α′)m, where m = (m1,m2),

m1,m2 ≥ −1, are integers and |m| = m1 +m2 ≥ −1. The first two terms are Ĥ

and Ĝ. Hence the kernel K̂ consists of terms like Rm(α − α′)m, |m| ≥ 1. Then
similar to the previous proofs, applying Lemma 7.1, we obtain the conclusion. �

8. Proof of the main theorem

In this section, we perform a stability analysis of the numerical method pre-
sented in Section 5, and this will complete the proof of the main convergence result
(Theorem 5.1). For a discretized operator Ih acting on L2

h, we use either Er(I) or
the dotted notation İ to denote the related error on I(X):

(8.1) Er(I) = İ = Ih(X)− Ih(Xh).

For example, for the normal velocity we have Er(U) = U̇ = U − Uh. With this
notation, what we need to prove is the following: When h is sufficiently small, on
[0, T ] we have

(8.2)
∥∥∥Ẋ∥∥∥

L2
h

≤ Ch3,

where C > 0 is a uniform constant on [0, T ] that does not depend h. The proof
is based on an extension argument. First we assume that for some small T ∗,
0 < T ∗ < T and some sufficiently large constant s > 0, we have

(8.3)
∥∥∥Ẋ∥∥∥

L2
h

≤ Chs,

on [0, T ∗], where C > 0 is a uniform constant that does not depend on h. Notice
that the discrete systems are continuous in time t, and at t = 0, we start with the
exact solution of the interface, that is, X(αh, 0) = Xh(αh, 0). Hence there exists a
T ∗ > 0 such that (8.3) holds for us to start with. Then we use an energy estimate
to show that the time interval on which (8.3) holds can be extended to [0, T ]. We
therefore need to properly construct an energy and estimate the related error terms.

Consider two discrete operators I1h, I2h. The error for the product term I1(X) ·
I2(X) is

(8.4) Er(I1 · I2) = İ1 · I2 + I1 · İ2 − İ1 · İ2.
Suppose that I1 = Am and I2 = An, for some constants m,n ≥ 0. From the

assumption (8.3), we get
∥∥∥İ1∥∥∥

L2
h

≤ Chs−m,
∥∥∥İ2∥∥∥

L2
h

≤ Chs−n, for some uniform

constant C > 0 on [0, T ∗] that does not depend on h. Then we can conclude that∥∥∥İ1∥∥∥
L∞

h

≤ C ′hs−m−1,
∥∥∥İ2∥∥∥

L∞
h

≤ C ′hs−n−1 on [0, T ∗] for some constant C ′ ≥ 0

that only depends on C. Hence İ1 · İ2 = hs−n−1Am and İ1 · İ2 = hs−m−1An.
Given the assumption that s is sufficiently large, we know that this nonlinear error
term İ1 · İ2 can be merged into either İ1 or İ2 in (8.4). (In fact, we mention that
it is sufficient to take s = 3.) For this reason, we may neglect the nonlinear errors

such as İ1 · İ2 and often skip them in the equations without further explanation.
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We have proved in Section 6 the consistency of our modified point vortex method:

Xt = Vh (X,Xα,Xβ , κ) +O(h3),(8.5)

Xαt = Ψ1h (X,Xα,Xβ , κ) +O(h2),(8.6)

Xβt = Ψ2h (X,Xα,Xβ , κ) +O(h2),(8.7)

κt = Γh (X,Xα,Xβ, κ) +O(h).(8.8)

However, in the energy estimate analysis, extending [0, T ∗] will require higher ac-
curacy. As shown in [21], this technical difficulty can be resolved using Strang’s
technique [24]. Recall the assumption that the actual solution X is sufficiently
smooth. Then, for any sufficiently large number r > 0, there is an O(h3) pertur-

bation of the exact solution X, denoted by X̃, such that the modified point vortex

approximation of X̃ is of accuracy O(hr) (and similar statements hold for Xα,Xβ ,
and κ). More precisely, we have

X̃t = Vh

(
X̃, X̃α, X̃β , κ̃

)
+O(hr),(8.9)

X̃αt = Ψ1h

(
X̃, X̃α, X̃β , κ̃

)
+O(hr−1),(8.10)

X̃βt = Ψ2h

(
X̃, X̃α, X̃β , κ̃

)
+O(hr−1),(8.11)

κ̃t = Γh

(
X̃, X̃α, X̃β , κ̃

)
+O(hr−2).(8.12)

The appropriate value of r for our purposes will be chosen at the end of the proof of

Theorem 5.1 below. Also, X̃ is also sufficiently smooth by the way it is constructed.
Then, to prove the main convergence result (Theorem 5.1), it suffices to show that
when h is sufficiently small, on [0, T ] we have∥∥∥X̃−Xh

∥∥∥
L2

h

≤ C(T )h3,(8.13) ∥∥∥X̃α −Xαh

∥∥∥
L2

h

≤ C(T )h2,(8.14) ∥∥∥X̃β −Xβh

∥∥∥
L2

h

≤ C(T )h2,(8.15)

‖κ̃− κh‖L2
h
≤ C(T )h,(8.16)

where C(T ) > 0 are constants that do not depend h and the tilde notation is used to

denote the corresponding terms related to X̃. With this in mind, in the remaining
part of the paper, we assume that the modified point vortex approximation is
sufficiently accurate itself, by which we mean

Xt = Vh (X,Xα,Xβ , κ) +O(hr),(8.17)

Xαt = Ψ1h (X,Xα,Xβ , κ) + O(hr−1),(8.18)

Xβt = Ψ2h (X,Xα,Xβ , κ) + O(hr−1),(8.19)

κt = Γh (X,Xα,Xβ , κ) +O(hr−2),(8.20)

where r > 0 is a sufficiently large constant and the O(hr), O(hr−1), O(hr−2) nota-
tion is used to denote terms that are bounded by Chr, Chr−1, Chr−2, respectively,
for some uniform constant C > 0 on [0, T ] that is independent of h.
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First, we consider the errors on the velocities U̇ , V̇1 and V̇2, taking into account
the operator M. We recall the definition (5.34) of M, and we consider the error in
MU in the following lemma.

Lemma 8.1. The error in the normal velocity satisfies Er(MU) = A1(κ̇) +

A0(Ẋ, Ẋα, Ẋβ).

Proof. From (5.26), we have

(8.21) Er(MU) = Er(MS) + Er(MT ) + Er(M(K − Ch
n)).

From (5.12), treating the nonlinear errors as described above, and applying
Lemma 7.1 and Lemma 7.2, we get

(8.22) Er(MS) = A1(κ̇) +A0(Ẋα, Ẋβ).

From (5.14), applying Lemma 7.1, Lemma 7.3, Lemma 7.4, Lemma 7.5, and Lemma
7.6, we get

(8.23) Er(MT ) = A0(κ̇, Ẋα, Ẋβ).

For the final piece, it is not necessary to consider the effect of the operator M,
so we dispense with it for convenience (be assured that the required result with M
follows from the result without M). From (5.23), applying Lemma 7.1 and Lemma
7.2, we get

K̇ − Ċh
n =−Kp

h[X]η̇ · n− 1

4π

∫ p

h

η × Er
(
K̂
)
dα′ · n

− 1

4π

∫ p

h

N× Er
(
K̂
)
dα′ · η

|N|
+A0(κ̇, Ẋα, Ẋβ)

=
−1

4π |N|

∫ p

h

(
N ·

(
η′ × Er

(
X−X′

|X−X′|3

))

+η ·
(
N′ × Er

(
X−X′

|X−X′|3

)))
dα′

−Kp
h[X]η̇ · n+A0(κ̇, Ẋα, Ẋβ).

(8.24)

We note that on the right-hand side of (8.24), we have used the fact that

(8.25)
η̇

|N|

∫ p

h

N′ ×∇xG(X−X′) dα′ = A0(κ̇, Ẋα, Ẋβ);

this is true because on the left-hand side of (8.25), by the arguments of Section
6, this integral (which is identically zero in the continuous case) is, for instance,
O(h3). This smallness allows for control of η̇ in the product. For the integral on the
right-hand side of (8.24), we use the scalar triple product identity A1 · (A2×A3) =
A3 · (A1 ×A2); this yields the following:

K̇ − Ċh
n =− 1

4π |N|

∫ p

h

Er

(
X−X′

|X−X′|3

)
· (N× η′ −N′ × η) dα′

−Kp
h[X]η̇ · n+A0(κ̇, Ẋα, Ẋβ).

(8.26)
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Using Lemma 7.7 to gain one derivative, we get

(8.27) Kp
h[X]η̇ · n = A0(κ̇, Ẋα, Ẋβ).

From its Taylor expansion, we can see that the term N×η′−N′×η adds additional
smoothing to the integral; we note that this smoothing in the integral is the reason
to include the discretization of the term Cn in the numerical scheme. We can thus
show that

(8.28)
1

4π |N|

∫ p

h

Er

(
X−X′

|X−X′|3

)
· (N× η′ −N′ × η) dα′ = A0(Ẋ).

Therefore, we have

(8.29) K̇ − Ċh
n = A0(κ̇, Ẋα, Ẋβ , Ẋ).

Combining (8.21), (8.22), (8.23) and (8.29), we complete the proof. �

For the errors on the tangential velocities V1, V2, we have the following result.

Lemma 8.2. The errors in the tangential velocities satisfy

Er(MV1) = A0(κ̇, Ẋα, Ẋβ , Ẋ),(8.30)

Er(MV2) = A0(κ̇, Ẋα, Ẋβ , Ẋ).(8.31)

Proof. This is immediate from the definition (5.27), (5.28) and Lemma 8.1. �

In addition to Lemma 8.1 and Lemma 8.2, applying Lemma 7.1 multiple times,
we obtain the evolution equations for the errors Ẋ, Ẋα, Ẋβ and κ̇. We state them
in the following Lemma; these representations of these equations are fundamental
to our ability to prove the energy estimate, and the introduction of the operator
M in Section 5.2 is essential to our ability to give this lemma.

Lemma 8.3. The evolution equations for the errors Ẋ, Ẋα, Ẋβ and κ̇ can be
written as follows:

Ẋt = A1(κ̇) +A0(Ẋ, Ẋα, Ẋβ) +O(hr),(8.32)

Ẋαt = A2(κ̇) +A0(Ẋ, Ẋα, Ẋβ) +O(hr−1),(8.33)

Ẋβt = A2(κ̇) +A0(Ẋ, Ẋα, Ẋβ) +O(hr−1),(8.34)

κ̇t = − B

4E3/2
Λ3κ̇+A2(κ̇) +A−3(Ẋ, Ẋα, Ẋβ) +O(hr−2).(8.35)

Proof. These equations can be obtained from (5.37), (5.38), (5.39) and (5.43) re-
spectively, using Lemma 8.1, Lemma 8.2, and Lemma 7.1, as well as the other
lemmas such as Lemma 7.7. We note that the reason that on the right-hand side
of 8.35, the form of the term A−3(Ẋ, Ẋα, Ẋβ)) is due to the introduction of the
M operator; without the operator M, the corresponding terms would be much less
regular. �

Recall that we have assumed (8.3) on [0, T ∗], for some sufficiently large constant
s > 0, and we have verified this assumption in Section 6 with the value s = 3.
Now we use an energy estimate method to prove that the time interval on which
(8.3) holds in fact can be extended to [0, T ] and this will complete the proof of
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Theorem 5.1. Let (·, ·) denote the inner product on L2
h. In particular, for fh ∈ L2

h,

we have ‖fh‖2L2
h
= (fh, fh). The energy E is defined as follows:

E =
1

2
(Λ3κ̇,Λ3κ̇) +

1

2
(κ̇, κ̇) +

1

2
(Ẋα, Ẋα) +

1

2
(Ẋβ, Ẋβ) +

1

2
(Ẋ, Ẋ).(8.36)

This energy controls three derivatives of κ̇, and zero derivatives of Ẋ, Ẋα, and Ẋβ .
However, we note that we will be able to see the expected parabolic smoothing
effect associated with Darcy flow, and we will thus be able to control more than
three derivatives of κ̇; this will be important in what follows.

To begin, we take the time derivative of (8.36):

Et =
1

2
(Λ3κ̇,Λ3κ̇)t +

1

2
(κ̇, κ̇)t +

1

2
(Ẋα, Ẋα)t +

1

2
(Ẋβ, Ẋβ)t +

1

2
(Ẋ, Ẋ)t

=(Λ3κ̇,Λ3κ̇t) + (κ̇, κ̇t) + (Ẋα, Ẋαt) + (Ẋβ , Ẋβt) + (Ẋ, Ẋt).
(8.37)

Substituting from the evolution equations (8.32), (8.33), (8.34), and (8.35), this
becomes

Et =
(
Λ3κ̇,Λ3

(
− B

4E3/2
Λ3κ̇+A2(κ̇) +A−3(Ẋ, Ẋα, Ẋβ) + O(hr−2)

))
+ (κ̇, A3(κ̇) +A−3(Ẋ, Ẋα, Ẋβ) +O(hr−2))

+ (Ẋα, A2(κ̇) +A0(Ẋ, Ẋα, Ẋβ) +O(hr−1))

+ (Ẋβ, A2(κ̇) +A0(Ẋ, Ẋα, Ẋβ) +O(hr−1))

+ (Ẋ, A1(κ̇) +A0(Ẋ, Ẋα, Ẋβ) +O(hr)).

(8.38)

We continue to rewrite this; the important steps for now are that we write
(Λ3κ̇,Λ3A2(κ̇)) = (A4(κ̇), A4(κ̇)), and that we pull 1

E3/2 through Λ3/2, incurring a

commutator. Since the commutator of Λ1/2 and a smooth function (such as 1
E3/2 )

is smoothing by one derivative (this can be seen by direct computation in Fourier
space, but the interested reader could also consult equation (7.3) of [1]), the contri-
bution of this commutator to the inner product is again of the form (A4(κ̇), A4(κ̇)).
We thus have the following:

Et =
(
− B

4E3/2
Λ9/2κ̇,Λ9/2κ̇

)
+ (A4(κ̇), A4(κ̇))

+
(
Λ3κ̇, A0(Ẋ, Ẋα, Ẋβ)

)
+
(
Λ3κ̇, O(hr−5)

)
+ (κ̇, A3(κ̇) +A−3(Ẋ, Ẋα, Ẋβ) +O(hr−2))

+ (Ẋα, A2(κ̇) +A0(Ẋ, Ẋα, Ẋβ) +O(hr−1))

+ (Ẋβ , A2(κ̇) +A0(Ẋ, Ẋα, Ẋβ) +O(hr−1))

+ (Ẋ, A1(κ̇) +A0(Ẋ, Ẋα, Ẋβ) +O(hr)).

(8.39)

Using elementary inequalities, we get the following:

Et ≤− B

4
(E−3/4Λ9/2κ̇, E−3/4Λ9/2κ̇) + (A4(κ̇), A4(κ̇)) + C(κ̇, κ̇) + C(Λ3κ̇,Λ3κ̇)

+ C(A0(Ẋ, Ẋα, Ẋβ), A0(Ẋ, Ẋα, Ẋβ)) + Chr−5
∥∥∥Λ3κ̇+ κ̇+ Ẋα + Ẋβ + Ẋ

∥∥∥
L2

h

.

(8.40)



2774 DAVID M. AMBROSE, YANG LIU, AND MICHAEL SIEGEL

Using Lemma 7.1 and Young’s inequality, we can show that

(8.41) (A4(κ̇), A4(κ̇)) ≤
B

4
(E−3/4Λ9/2κ̇, E−3/4Λ9/2κ̇) + C0E ,

for some constant C0 > 0. We point out that this is true because the right-hand
side includes terms controlling both more and fewer derivatives than are present
on the left-hand side; to be specific, the right-hand side contains terms with both
9/2 spatial derivatives of κ̇ and also zero derivatives of κ̇. Furthermore, it is also
necessary to know here that E is bounded, both from above and away from zero
(cf. (2.23)). This term is then controlled, and we note that this is how we have
used the beneficial parabolic smoothing.

Observing the important cancellation when combining (8.40) and (8.41), we
arrive at the following:

(8.42) Et ≤ C ′E 1
2

(
E 1

2 + hr−5
)
,

for some other constant C ′ > 0. Then, using Gronwall’s inequality, we get

(8.43) E(t) ≤ C(T )hr−5,

where C(T ) > 0 is a constant that does not depend on h, t or T ∗. Finally, recall
that r is chosen to be sufficiently large. In fact, as long as r − 5 > s (with s = 3,
as noted above), we can see that the assumption (8.3) holds on an interval greater
than [0, T ∗]; to be explicit, we may take r = 9. Hence we can extend [0, T ∗] until
T ∗ < T . This completes the proof of Theorem 5.1.
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