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CONVERGENCE OF A BOUNDARY INTEGRAL METHOD
FOR 3D INTERFACIAL DARCY FLOW
WITH SURFACE TENSION

DAVID M. AMBROSE, YANG LIU, AND MICHAEL SIEGEL

ABSTRACT. We study convergence of a boundary integral method for 3D in-
terfacial flow with surface tension when the fluid velocity is given by Darcy’s
Law. The method is closely related to a previous method developed and im-
plemented by Ambrose, Siegel, and Tlupova, in which one of the main ideas
is the use of an isothermal parameterization of the free surface. We prove
convergence by proving consistency and stability, and the main challenge is to
demonstrate energy estimates for the growth of errors. These estimates follow
the general lines of estimates for continuous problems made by Ambrose and
Masmoudi, in which there are good estimates available for the curvature of the
free surface. To use this framework, we consider the curvature and the position
of the free surface each to be evolving, rather than attempting to determine
one of these from the other. We introduce a novel substitution which allows
the needed estimates to close.

1. INTRODUCTION

Boundary integral methods are a family of commonly used methods for comput-
ing solutions of initial value problems for fluid interface problems, and there are
two main reasons for their popularity. One is that when such methods apply, by re-
ducing the computation to the boundary, the dimension of the problem is reduced;
another reason is that boundary integral methods tend to be very accurate. For
interfacial flow problems with surface tension, one disadvantage is that boundary
integral methods can be very stiff. For example, for interfacial flow with surface
tension with the fluid velocities given by Darcy’s Law, a fully explicit method would
face a third-order timestepping constraint, and if the velocities were instead given
by the incompressible Euler equations, there would be a 3/2-order timestepping
constraint. For more information on boundary integral methods for interfacial fluid
flow, we refer the interested reader to the recent survey by Baker [9].

A breakthrough for boundary integral methods for interfacial flow with surface
tension for two-dimensional fluids was made by Hou, Lowengrub, and Shelley (HLS)
[18], [19]. HLS removed the stiffness from the problem by reformulating the problem
using a geometric description of the free surface rather than using Cartesian vari-
ables, by using a convenient parameterization of the free surface, and by writing the
evolution equations with a small-scale decomposition (SSD), extracting the most
singular terms from singular integrals such as the Birkhoff-Rott integral. These
choices made the evolution equations semilinear, which allows straightforward use
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of an implicit-explicit timestepping scheme [§], removing the strong stiffness con-
straint and leaving at worst a first-order timestepping constraint. The HLS work
was subsequently extended by Nie to axisymmetric flow in 3D [22]. For doubly
periodic interfaces in three-dimensional flows, Ambrose and Siegel introduced a
non-stiff method for a model problem for interfacial Darcy flow with surface ten-
sion [6], and Ambrose, Siegel, and Tlupova subsequently treated the full interfacial
Darcy problem with surface tension [7]

The method of [7] builds upon both the HLS numerical works and the analytical
works of Ambrose and Masmoudi [2], [], [5]. The work of Ambrose and Masmoudi
gives well-posedness proofs for various problems in 3D interfacial fluid flow, again
using a convenient parameterization of the free surface and making estimates for the
mean curvature of the interface. The numerical method of 7] follows these ideas,
using an isothermal parameterization for the free surface (see Section 2 below for
more detail on this choice of parameterization), finding an SSD for the problem,
and using an implicit-explicit timestepping scheme, thus removing the stiffness.
One additional difficulty for the 3D problem which was not present in 2D is that a
fast method for computing the velocity integral was needed, and a method based
on Ewald summation was therefore developed in [7].

For the HLS method and other boundary integral methods for interfacial fluid
flow, convergence of the methods has been established by several authors. Beale,
Hou, and Lowengrub proved convergence of a boundary integral method for the
2D water wave without surface tension [12]; the water wave is the problem with a
single fluid bounded above by a free surface, with the fluid velocity given by the
Euler equations. Extensions of this to 3D are [11] and [21]. For 2D flow with surface
tension, Ceniceros and Hou proved the convergence of the HLS method, in both the
Darcy and Euler cases [I5]. In these convergence proofs, the most important step
is always to establish estimates for the growth of errors when proving stability. The
estimates of these papers, generally speaking, built upon estimates for solutions of
the linearized equations of motion proved by some of the same authors [13], [20].

While such estimates for the linearized motion of interfaces in 3D fluids with
surface tension have been established [2I], we are unaware of any proof in the
literature of convergence of a boundary integral method for 3D interfacial flow in
the presence of surface tension. This is the subject of the present work. As in [15],
we study a semicontinuous problem, making discretizations in space but leaving
time as continuous. We study the same problem as in [7], and consider the method
of the current work to be a version of the method of [7]. We prove convergence of
the method we develop by establishing consistency and stability.

As we have mentioned above, the most important step of the convergence proof
is the proof of energy estimates in the stability analysis. The estimates we establish
are thus related to the estimates of Ambrose and Masmoudi, as in the papers [2],
[B], [4], [B]. For 3D interfacial flow problems, Ambrose and Masmoudi were able to
establish estimates for the growth of the mean curvature of the interface, and then
use these estimates to establish well-posedness of the initial value problems. In the
current work, we follow this general framework, but there are of course additional
challenges in the spatially discrete setting.

One main challenge is that in the continuous setting, the regularity of the free
surface was able to be inferred from the regularity of the mean curvature: if we know
that the surface is in the space H® and the curvature is in the space H?®, for example,
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then we may infer that the surface is in fact in the space H*T2. In the spatially
discrete setting, with exact relationships between quantities either not holding or
being more complicated, we are not able to make the corresponding inference.
To deal with this difficulty, we introduce a novel substitution, replacing the free
surface in the evolution equations by using a formula involving the curvature, before
discretizing (see Section 5 for details). This substitution allows the energy estimates
to close, yielding stability of the numerical method.

In making the energy estimates, we use in a fundamental way that the Darcy
flow problem is of a parabolic nature. With a positive value of the surface tension
parameter, there is a gain of 3/2 of a spatial derivative at positive times [3]. (In
the zero surface tension case, if a stability condition is satisfied, the problem is still
a forward parabolic problem, but the smoothing effect is instead 1/2 of a spatial
derivative [26].) In future work, incompressible Euler problems (such as the Kelvin-
Helmholtz or Rayleigh-Taylor problems) will be treated, and this parabolic effect
will not be available. For these problems, the energy estimates will then need to be
made somewhat more carefully.

The plan of the paper is as follows: In Section 2, we discuss the governing
equations for 3D interfacial flow with surface tension, and give a boundary integral
formulation related to the works [4] and [7]. In Section 3, we continue to develop
the boundary integral formulation by working through the SSD. In Section 4 we
develop evolution equations for the mean curvature of the interface and related
quantities. We are then able to discretize the problem, and we give the numerical
method in Section 5. The main theorem of the paper, Theorem B.], is stated at
the end of Section 5. We prove consistency of this method in Section 6. In Section
7, we discuss bounds for discretized versions of some integral operators; these are
of use in Section 8, in which stability, and ultimately convergence, are proved.

2. THE PROBLEM AND ITS BOUNDARY INTEGRAL FORMULATION

In this section we describe the 3D Darcy flow problem for which our numerical
method is designed and represent it using a boundary integral formulation. The
model problem is similar to that of [6[7] and, hence, here we skip some of the details
on formulating the governing equations.

We consider the flow of two immiscible, incompressible fluids that are sepa-
rated by a free interface in a three-dimensional porous media, in which case the
velocities of the fluids are determined by Darcy’s law. In this paper, we use bold
face letters to denote vector variables. Suppose that the interface is parameter-
ized by the spatial variable @ = («1,0a2) = («,5). Under the boundary inte-
gral formulation, the state of the system at time ¢ is specified by the interface
X(a,t) = (z(a,t),y(a,t), z(a, t)). Throughout this paper we often suppress the
time variable ¢ and sometimes even the spatial variable a as long as the involved
terms do not lack clarity. For example, we often use X and X' to denote X (e, t)
and X(a/,t), respectively.

The flow is assumed to be of infinite depth in the z direction and 27-periodic in
both of the horizontal x and y directions; that is, X(a + (2k17, 2kom)) = X(a) +
(2ky7, 2kom, 0), where ki, ko are arbitrary integers. We denote the unit tangent and
normal vectors by

Xa X3

2.1 t, = Loty = =P n=t X to,
21 XL RTx MR
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respectively. The fundamental forms of the interface are defined as follows:
E=X,-X,, F=X,-X3, G=Xg- Xa,

(2‘2) Lz—Xa-na, ]\4:—)§a~1’1g7 N:—Xg~l’lg.

Following [214L[6L[7], we choose an isothermal parameterization, that is, E = G,
F = 0 (this requires a certain symmetry for the free surface; we discuss this more
below). In general, motion of the fluids is driven by gravity and surface tension and
a prescribed far-field pressure gradient, which produces a constant fluid velocity
Vook as 2 — 400, where k is the unit vector in the z-direction. For simplicity, in
this paper, we consider only the effect of surface tension, neglecting the effect of
gravity and assuming Vo, = 0. We use V = V(a,t) to denote the velocity of the
interface. Decomposing V in normal and tangential directions, we get

dX
where
V-t V-t
(2.4) U=V-n, Vi=-2t Vo=-—>

VE '
The normal component U can be calculated from
(2.5) U=W :n,

where W is the velocity of the interface under a Lagrangian frame. It is given by
the Birkhoff-Rott formula

1 , X -X’ ,
(2.6) W= 47TPV/77 X X _X/|3doz7
where 1 = puoXg — pgX, is the unnormalized vortex sheet strength and p is
the dipole strength. We will also use the notation r1 = pq, r2 = ug and hence
1n =r1Xg —12X,. Here in this paper we assume that the two fluids are of the same
density and the same viscosity; these assumptions allow us to focus on the motion
due to surface tension, which is the highest-order of these effects. Therefore, as
shown in [6], we have

(2.7) 1 = BKqo, T2 = Bkg,

where k is the mean curvature and B is the positive coefficient of surface tension.
Because of the isothermal parameterization, we have

(2.8) AX = 2kN

where N = X, x X 3. Here, the operator A is the Laplacian in the parameter space,
ie.,

A =03+ 05
The mean curvature k can be calculated from
n L+ N
2. =AX. . — = .
(2:9) " 9E ~  2E

Let G(x) = (47r)~1, where r = |x|. Then (Z.6) can be written as

(2.10) W = PV/n’ x VxG(X(a) — X(a'))da'.
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The tangential velocities Vi, V5 are calculated from the isothermal assumption
E = G, F =0 which is maintained by imposing

(211) Et = Gt, Ft = 0

Remark 2.1. To use this form of the isothermal parameterization, we are assuming a
certain symmetry on the solutions, namely that the average arclength with respect
to « is equal to the average arclength with respect to §. If this symmetry is initially
present, it will be maintained at positive times. Such a parameterization is not
always possible when insisting that the parameters (o, 8) are from the set [0, 27] x
[0,27], as we are. As discussed in [7], one may introduce a proportionality factor
A, and then require that £ = A(t)G, with A satisfying a certain evolution equation.
As in [7], for the sake of simplicity we study surfaces for which we may take A = 1.
A sufficiently smooth doubly periodic surface always admits a global isothermal
parameterization [16], and thus by allowing for the general case where A is not
required to equal 1, we could treat any such surface.

From (Z2)) and 23), we get
(212) B =(Xo - Xa), = 2Xat - Xo = 2 ((Un)a + (ViXa), + (VaX3),) - Xa,

(2.13) Gy = (Xﬂ 'Xﬁ)t = 2X5t . X@ =2 ((Un)ﬂ -+ (VIXa)ﬁ + (V2X5),3> . )(57
F; Z(Xa . Xﬁ)t =Xt - Xﬁ +X6t - Xa
@214) = ((Un)a+ (ViXa), + (VaXs),) - X5
+ (Un)s + (M Xa); + (12Xg), ) - X

Using £ = G, F = 0 and the product rule to expand [212)), 213), I4) and
then plugging them into (2.I1]), we get

U(L-N
(2.15) Vie — Vap = %,
2UM

Furthermore, these equations can be rewritten as

(2.17) AV, = (@)a + (@)5

o1 v (20) (V20

We select the unique solutions for V4 and V3 from (ZI5) and ZI8) (or (ZI7) and
[21I])) by setting their means to be zero. Define the inverse of A in terms of its
Fourier symbol:

s 0, k| =0,
2.19 AL = ~
(2.19) (87 {—fk/|k|2, K| #0.

Then V; and V5 are given by
(2.20) Vi =A1 ((@)Oﬁ (25),).

(2.21) Vo =A! ((%)a _ (U(LE_N)’)5> :
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We remark here that the formulas ([2.20)), (2.21) and the formulas in the preceding
calculations are slightly different than those appearing in prior works such as [4] or
[7]. This is because the choice not to normalize the tangent vectors, and using X,
and Xpg instead, in ([2.3), simplifies some of the intermediate calculations.

We assume that the model problem represented by equations (23), (Z3]), [26),
@I5) and @2I6) (or equivalently, (ZI7) and (2.I]))) is well-posed and has a suf-
ficiently smooth solution X up to time 7" > 0. Furthermore, the interface X is
assumed to be nonsingular under the o« parameterization. This implies that for all
a,a’ € R? t € [0,7], and for some uniform constant ¢ > 0 that does not depend
on «, &’ or t, we have

(2.22) X(a,t) — X(a/,t)] > c|la—a.

The condition (Z22)) is known as the chord-arc condition, and has been used in
many analytical works, such as [], [25]. Furthermore, we must assume that for
the solution of the continuous problem, the component E of the first fundamental
form remains bounded away from zero; thus, we assume that there exists a uniform
constant ¢ such that for all & € R? and for all ¢,

(2.23) |E(e,t)] > ¢ > 0.

3. SMALL-SCALE DECOMPOSITION

In this section, following [4], we rewrite the Birkhoff-Rott integral, given in (26,
to separate the dominant terms at small scales, i.e., the higher order terms. We
then rewrite the formula for the normal velocity U, separating out the highest-order
terms, finding a formula that will be used in our numerical method. First we divide
the kernel —4rG(X — X/) = X=X in ([Z8) as follows:

XX
X -X - - .
X - X/|
where
(32) I:I:I:I1+I:Ig, G’IG11+G12+G22,
. Xl (a—a') X%(ﬁ—ﬂ’)
e M et af T B aal
A X! 3E' X!\ (a—a)?
34 G — ao [e] a
34) . <2E AE'S > o — o'’
!/ I ! !/
(3.5) G [ Kos ° (X + BpX0) \ (o= ar)(8- 8)
' E': AFE'3 la —o)?
27 \erd 4E3 Jja—a
. X-X .
3.7 K=——<-H-G
(3.7) XX

In this decomposition, H is the most singular part of the kernel, G is the weakly
singular part and K is the remaining nonsingular part.
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We use H[X], G[X] and K[X] to denote the following integral operators that
act on a 3D vector-valued function f(c)

(3.8) H[X] f(a, 8) = —PV/f ) x H de,
(3.9) G[X]f(a, B) = —PV/f ) x G det,
(3.10) K[X]f(a, 3 PV/f ) % K do/.

Conditions for the finiteness of these integrals is discussed following ([B2]). Then
the Birkhoff-Riot integral (2.8]) can be rewritten as

(3.11) W = —-H[X]n — G[X]|n — K[X]n.
The classical Riesz transforms are defined as

(3.12) Hif(o, B) = /f (@ =) oy,
Ia O<’|

(3.13) Hof (o, B) = / fla ) do!,
|a a’l

and their Fourier symbols are, for [ € {1, 2},

~ —ifsfis k| #0
3.14 H = k] 52 ’
(3.14) ( lf)k {0, k| = 0.

Here the Fourier transform is defined by
(3.15) fe = /e’ik'“f(a)da

Then, the leading order part of (Z.0) corresponding to H can be written as
rin 21

(3.16) Xt = (10 () + e (2 ).

From the Fourier symbols, we see that H;, [ = 1,2, are bounded operators on the
Soblev spaces H*®(R?), for all s > 0.
For the weakly singular part, following [4], we define for a function f with zero

mean (that is, Ozﬂ 027r f(a)da = 0) the transforms G;;, (¢,j) = (1,1),(1,2),(2,2):

2
(317) gllf(a ﬂ /f ) do/,

Ia a’l
a’|

2
(319) Gon (0, ) = / [l |a al| Y o
The Fourier symbols of G;;, (¢ (', i) =(1,1),(1,2),(2,2) are:
(3.20)

— — ]flkg
(Gu7), =5 ‘k|3fk, (927), =5 |k|3fk, (927), = (97), = —5 e

for k # 0. These follow from formulas [23] for the Fourier transforms of so-called
higher Riesz transforms, which give the symbols for Gia, Go1, and G171 — Gao. The
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symbol for G1 4+ Goo for a function of zero mean is determined from the well-known
formula for the Fourier transform of r~! = |a/|~!. Combining these gives ([3.20).

From the Fourier symbols, we see that the operators G;; possess a smoothing
property [2,4] on the Soblev spaces H*(R?), s > 0, which will be explained more
clearly in Section [l The weakly singular part of (28] corresponding to G can be
written as

X.. 3B,X, Xss  3EsXg
GX]n = _ 266 _ 2EBRB
Xin =61 (" . <2E% AES )) +Gaz <n x (2}3% AES

Xaog 3 (EaXp+ EsXa)
o <nx <E 4E% ))
Here it is understood that to make the integrals finite, the mean of the argument
of G;; is subtracted off.
We point out the following relationships between 0,, and #; that will be useful
to our reformulation of U:

(3.21)

Lemma 3.1. The following equalities hold for the operators Oy,, Hi:
(3.22) H100y = Oa,H1 = H20n, = Ou, Ha.
Proof. The results follow immediately from the Fourier symbols of d,, and #H;. O

To facilitate later discussion, we introduce some notation. Define the operator

(3.23) A =H104 + H20p,
whose Fourier symbol is
(3.24) (A7), = Il fi

For an operator A acting on 3D vector-valued functions of the parameter o, and
for such a function f(a) and a scalar function g(a), we denote by [A, f]g the
commutator A(fg) — fAg. For example, we have

(3.25) [Hi flg = Hi(fg) — fHig, i€{1,2},

(326) [glj7f]g:glj(fg) _.fgl]ga (17]) € {(1a1)7(1a2)7(2’2)}

Similar notation will be used to denote commutators corresponding to discretized
operators in later discussions.

We take the dot product of (BI0) with n, and we introduce commutators to
write the result as

Y a3 () ()
- %n~ [Hl,n]% - %n‘ [Hzan}%-

We also wish to rewrite B2I). To do this, however, we need a few geometric
identities, which follow from the isothermal parameterization:

1 1
(Xa XXaa)'n:_EE ) (Xﬂ XXaa)'n:_EEoca

1 1
(XaXXa,@)~n:§Ea7 (XﬁXXaﬁ)~n:—§Eﬂ,

1 1
(XaXX[g/@)~l’1:§ B (Xﬁ XX55)~HZ§EQ.
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Using these equations and introducing commutators as is convenient, we take the
dot product of (B2I)) with n and write the result as follows:

(3.28)

G[X]n-n=Gn (

TlE =+ 7“2E5
E3

1 1
sriEg + 3roF,
+ G2 (4 Pra

— [Ga2, 1]
— [G12,1]

(v

+Q22<

Xoa 3E. X
>_[g“’m <" . <2E3 Y >>

irlEa + %TQEL—}
E3

3EsX;
4E3

1

VE
+ égm(

= 911(

VE
- gllvn n

E3

< (32 -

2F2
Xos

(” . ( £

5
)+ gll(\/E
ES ﬁ%(

XO’Ot _
2F3

Xps
2F%

3 (EQXIQ + E,@Xa) ))
4E%

)+ 922(
3E, X,

)

3E5X g
4E3

T) 922(\/E)
T2
ﬁ)

[
— [Gaa,
[

1
n](nx
]( x

Xa
- g127n n (E%B -

+ [G11, a]

2E\/_

[g22, ] \/—

4F

[gllv

+ [Gaa,

3 (EQXIQ + E,@Xa) ))
4E%

4E]\/_
2E]\/_

T2

[g12’4E]\/E'

[G12, 4E]\/_

Using the definition U = W - n and combining B11l), (327) and [B.28)), we have

the following formula for U:

(3. 29)

30 ) () e e
FEOn () — T0n () — T 0n( )

- 5p0n( ) — (k) — 12 0n(TE)

i) (e (335 - 555) )+ im0 (35 - 225

+ [G12,1] (77 X (Xaﬁ -

E3
— [G11, a]\/— [G11,

2F
[g2272E}\/— [G12,

4E]¢_
4E]\/_

3(EaXp + EsXa) ))

4E%
[Ga2, 4E] NG

[G12, a] 2

15 VE - K[X]n-n.
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We use S to denote the part of ([8:29) which does not include the commutators and
which does not include K; that is,

(3.30) ° :% <H1 (%) T+ He (%)) - f—ggu(%) _ f_ggll(%>

oy Bsg (rry Esg my Pag T2
gzz(\/—) 2Eg22(\/E) 4Eg12(\/E) 4E912(\/E).
We will further decompose S later (to be precise, in the next section, we will give
a decomposition of AS), but for now, we will mention that it includes the leading-
order part of U.
Use T to denote the sum of the commutator terms in ([B29):

(3.31)
(nx< 352’?))
+ [G12,n (nx( 3(EaXngEﬁXQ)))
[911’25}\/_ 981 7~ 9 15 U

We also use the notation K to denote the last remainder:

(3.32) K=-K[X]n-n

With @30), (31I) and B32), the formula for U can be rewritten as
(3.33) U=S+T+K.

In our numqrical method we need to add a corrector term to balance off the error
generated by K. As suggested in [TO|TTL2T], we make use of the following identity:

(3.34) / VxG(X — X') x N'de! = 0.

Define

(3.35) Co = 17\71(0‘)” . / V. G(X(a) — X(a)) x N(a)det

(v
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From (3.34) we immediately see that C, = 0. We do a similar small-scale decom-
position of Cy, based on BI)):

C, = ) -/VXG(X(a) ~ X(a')) x N(a')de!

IN(e)| /
_47r7|71(\1081)| . |)):—_;((’|‘3 x N(a')da’
- _%/<ﬂ+é+f{) x N(a')da'
=—%~ (Hl (% ><N> +Ho (% xN))
(3.36) " X.. 3E.X.
— W.gu ((ZE% BT ) ><N)
(-
_ |11\71_\ - Goo <(§£ﬁ - 3?2?) x N)
- “Z—‘ K[X]N

Since Cy, = 0, we are able to subtract it from U in (833) without changing the
value of U; we thus obtain the desired decomposition of U:

(3.37) U=S+T+K—Ch.

4. EVOLUTION EQUATIONS

For purposes that will be made clear in our numerical scheme, we consider X,
Xa, X and & as independent variables. Recall that the evolution equation for X
is given by

X

(4.1) o =V =Un+ VX, + VX,

where U can be calculated from (3.37), 330), B31)), 332), (836]) and Vi, V5 are

determined by (220) and [22I). We immediately obtain the evolution equations
for X, and Xg:

(4.2) Xat =Vo=Un+WVX,+ VQXﬁ)a ,
(4.3) Xg =Vg = (Un—l—V1Xa +V2X5)B.

Now we consider the evolution equation for x. As shown in [4], from (2.9) and (4.1)
we get

1 1
4.4 VER); = —— (Uy + iL + VaM)_ 4+ —— (Us + ViM + VoN) ,,
( ) ( )t 2@( « 1 2 )a 2\/E( B 1 2 )ﬁ

(4.5) E, =2Vi,E+V1E,+VoEg —2UL.
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Upon combining these, we find

Ky = —— AU + 2 QUL = 2Vin E — Vi Ew — V3 Ep)
(46) 2E 2F

1
+ 57 (ML +VaM), + (M +V2N) ).

From 331), we get
(4.7) AU = AS + AT + AK — AC,,.

Then, from B330), and since A = =A%, AH; = —0,, and AHo = —9p, we get
1 1 T2
AS=-Al0,| —=|+05| —=
2 ( (m) ’ (@))
Ea Ea Eﬁ T1
(4.8) -A (EQH + Egm + Egm) (ﬁ)
Eﬂ Eﬁ Ea T2
- A (Egll + ﬁgﬂ + EQU) (\/E) .

Next, we substitute (277) into the first terms on the right-hand side of ([38):

(4.9)
B B Ko Kg FE, FE, Eg 1
s 30{(25) (50, ) - (o o 20 )
Eﬁ EB Ea T2 B 3
AN == — — — | =——=A R
<4E911+ 2Egz2+ 4Eg12> (\/E) WNio K+ R,
where
B 1 B 1
R=—|A0s,—=| ka+ = |AOg, —= | K
2 [ @] 2 [ ’ @] ’
E, E, Eg 71
(4.10) - A <ﬁgn + Egm + Egu) (\/—E>
E/g E/g Ea )
-A <Eg11 + ﬁgm + @%2) <ﬁ) .
As a result, AU can be written as
B
4.11 AU = ——=A’k+ R+ AT + AK — AC,,.
) W
Plugging ([@T1) into ([@6l), we now rewrite the evolution equation for x:
B A3 L A A AC
(4.12) + % QUL — 2Vio E — Vi Eo — VaEp)

1
+ 57 (AL +VaM), + (AM +V2N) ).
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5. NUMERICAL METHOD

In this section we describe our numerical method. A semidiscretization scheme is
used here to facilitate the stability analysis, i.e., the time axis is not discretized. To
discretize the spatial differential operators, we lay a uniform Cartesian grid with grid
width h = %T on the o domain. As mentioned earlier, we consider X, X,, X3 and
K as independent variables and the corresponding numerical approximations Xy,
Xahs Xgn and kp, are solved from their evolution equations obtained by discretizing

@1, £2), @E3) and (@I2). We use Uy, Vi and Vap to denote the numerical
approximations of U, V7 and V5. Other notation is defined similarly.

5.1. Discretized operators. The spatial derivatives are discretized spectrally.

Recall that for a 27-periodic function, u(a), its discrete Fourier transform is given
by

(5.1) e = h? > u(og)e

where j = (j1,j2), k1, ke = —% +1,---, % The inverse formula is
1 (5.5 o
(5.2) U = —— > (o) e,

(2w
(k1 k2)=(= 5 +1,— 5 +1)

Using the discrete Fourier transform, we define the discrete derivatives D1y, Doy,
by

(5.3) (%)k = iky fr.

Because of the isothermal assumption of the unit vectors and the fundamental
forms, only n, E, L, M and N appear in the evolution equations (1], [2), (£3)
and @I2). They are calculated from the independent variables X, Xaon, Xan,
and kj, as follows:

. Xah X Xﬁh
n, = ————,

(5.4) En
Ly = —Xap - Dipny, My = —Xan - Dopng,  Np = —Xgp - Dopny,.

En = Xan - Xan,

The discrete dipole strength 1, is calculated from

(5.5) N, = "1 Xgn — r2nXah,
where
(5.6) rin = BDipkp, ron, = BDopKp.

We need to state the evolution equations for X, Xgpn, Xgp and kp. First
consider X;,. Recalling ([I]), we introduce Vy,

(5.7) V5, = Upny, + Vi Xan + Vo Xgs.

In the above equation, we need to discretize [B.31) to calculate Uy, which requires

discretizing (330), B31), B32) and B36). In B30), we discretize the Riesz

transforms H; and H, spectrally without filtering. The discretized operators Hj,,
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I =1,2, can be expressed in terms of their discrete Fourier symbols:

7\ _ ko B N N
(58) (thfh>k - _mehk7 l_ 172a kl)kQ - _? + 17" : 7?

# 0,
and zero for k = 0.

The G;; operators are also discretized similarly and the corresponding discrete
operators gfj’h can be expressed as follows:

2 2

o) (g/‘f:h/fh)k QT; ‘3fhk7 (g/S;\g}Jk 2|k|3fhk7
(g/f;\h/fh)k - (gglvhfh)k - _2k|llf23 e

for ki, ko = -5 +1,--- , & 0.
Naturally, from (53) and (&.8]), the spectral discretization of the operator A
defined in (323 is
(510) Ah = ,Hithh + HShDQh,
and its discrete Fourier symbol is

(5.11) (Anfn), = Iklfmes 1=12.

The discrete approximation of the higher order term S is calculated as follows:

o3 (78) 5 ()

_ DBy s, (2 DonEp g, (-2
(512) 2Eh 11,h \/E—h 4Eh 11,h \/E_|h
_ DBy Giy T1h ) — Doy Ey, G2y Ton )
B, THMNVE, 2B, TPMVE,
_ DQhEhgk ( T1h ) — DlhEhg9 ( Ton )
4Eh 12,h \/E_h 4Eh 12,h \/E .

The integrals in 7" and K are discretized using the standard point vortex method.
For a function f,(a) defined on R?, the standard point vortex approximation of
the principal integral of f; on R? is defined as

(5.13) PV/ flx) = > fuX

Jj#i, jez?

We often use the notation f }f with superscript p to indicate a standard point vortex
integral. Also, we use M} and GV, ;.n to denote the standard point vortex approxi-
mations of H; and G;.
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The approximation of T' is obtained from discretizing (3.31)):

DinEn
4F,
DBy

. ik T2h
T =gmn - [, HE ) 2
h =50h (M), ]\/E_h+ th [HE, nh]\/E_h
D DinE
+ [gﬂ’h,nh} (Wh X ( lhjiah - 3Xah ;h h>>
2By AE}
D Doy E
+ [gglh,nh} (Wh X ( Qh)(%ﬁh . 3Xﬂh %2/1 h))
(5.14) 2B 15
GP, . np] [ mn D1 Xpn 3 (XgnDinEn + XanDonEp)
12,h° E}% 4E§
—GP DlhEh] T1h ¥ DQhEh] Toh e
2B, VE, Wh4p, VE, 22,1
—er D2hEh] T2p, g DghEh] T1h @
2,p 2F, "Ep 12,h> 4E, 'E, 12,h7

4E),

)

T1h
VE}y
T2h

VE,

}
}
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For the operators appearing inside commutators (such as Riesz transforms), note
that we have specified point-vortex versions of the discretized operators rather than
spectral versions. This is so that we may use the smoothing properties of these
commutators, which are detailed below in Section [l Another possible choice here
would be to use spectral versions, but to introduce a dealiasing filter, as described
n [I4]; we choose instead to work with a version of the method which requires no

filtering.
Discretizing ([3.32), we get
1 N
(5.15) Ky =K} [Xp]n), = = -P.V. > m(Xin) x Kuh?,
j#i, jez?

where Kh is defined as follows:

Xy —X]

N 5 N o
(516) Kh = m - Hh - Gh7
(5.17) Hj, = Hyj, + Hap,
R 12 _ / R X/ A
(5.18) Hyj, = M H,), = M7
W o — o E} o —o|

(5.19) Gh = G117h + G127h + G22,ha

A~ D X/ 3x/ D E/ N2
(5.20) Gll,h = ( 1h /gah _ ah /;h h) (a « )3,
2Eh2 4Eh2 ‘a _ a/‘
. (Duxy, 3(XmDunEL + XD )\ (- a3 - &)
(521) Gy — | 20 %00 -
2Eh2 4Eh2 |a —« ‘
(5.22) Goap = DznXn — 3XonDan B \ (B~ /8/)2.
’ Yok 4E} o—al

b
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So far we have obtained the approximations of S, T and K in (8.37). Further-
more, we need to discretize [B36]) to get an approximation of Cy, which will serve
as a corrector term to balance off the error generated by the nonsingular kernel K
in (332)). We have Cy,, = 0 in the continuous problem, but in the discrete problem
this is not the case due to discretization errors. As before, using the same spectral
schemes to discretize H; and G;;, and using the standard point vortex method to
discretize K[X]IN, we obtain the following approximation of Cy,:

ch = /V G(Xp(a) — X} () x Np(a)da
|Nh
X, — X, ,
= x Nj, (a)do
47T|Nh| n X5 — X5 w(@)
Xa X
= ,’7}7, th h Nh + H;h —B3h X Nh
2Ny E,f B?
DX, 3XanDinE
(5.23) ey G | | TR - T SN,
NG| 28} AE}
n, s D1y Xpn  3(XpnDinEn + XanDanEn)
— =7 Y2 R 3 X N
N 2 AB?
s s Xsn 3D2hEhD2hXBh
N g22,h 3 X Ny,
\Nﬁ| 2E; o
+ . KP [X]Np,
W| 4

where in the first two equalities we used |, ,, to denote the mixed integration scheme
which calculates the singular and weakly singular integrals using spectral schemes
without filtering and the remaining nonsingular integrals using the standard point
vortex method. As before we use |, f to indicate the standard point vortex integral
and the last term is defined similarly to (515):

(524) K? [Xh]Nh = —PV / Nh >< Khda

With (512), (£14), (5I5) and (523)), we obtain the following approximation of U
from B31):

(5.25) Up = Sp+ T + Ky, — Ch.
As mentioned earlier, we treat X, Xapn, Xpn and kp, as independent variables.

Plugging (54), (&3] and (B6) into (512), (&14), (E15) and ([E23]), we can see the

latter are all functions of Xj,, Xqn, Xgn. Then from (5.25), we can write Uj, as a
function of Xp,, Xqn, Xgp and kp,, denoted by

(526) Uh - Z/{h (Xh7 Xaha X6h7 K/h) .
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Here we use the U}, notation in order to avoid writing down the lengthy formula of
Uy, in terms of X, Xon, Xgn, and kp, but the formula is explicit and computed in
our numerical scheme.

We discretize (220), (Z21) to calculate the tangential velocities Viy, Vap. Here
both are assumed to be of mean zero for uniqueness. We have the following:

_ Uy, (L, — N, 2U, M,
s gt (o (2520 o (20
h h
_ 20U, M, Uy, (Ly, — N,
(5.28) Vzh—Ahl(Dlh< g h)—DQh <7h(g h)>>7
h h

where the discrete inverse Laplace operator A;l is defined in terms of its discrete
Fourier symbol:

0, k| =0,
—fue/|KI?,  |k| # 0.

Similarly to the normal velocity, we can also write V7, and Vs, as explicit func-
tions of Xp,, Xqn, Xgn, and x,. We use the following notation:

(5.30) Vin = Vin (Xn, Xans Xgns n)
(5.31) Van = Van (Xn, Xans Xgh, kn) -

(5.29) (A7), = {

5.2. Discretized evolution equations. We are almost ready to give the discrete
evolution equations. We introduce the notation V°,

(5.32) Vi (Xn, Xan, Xgh, k1) = Unny, + VinXan + VanXgan.

ddXth’ to be given by

V?L (X1, Xan, Xan, kn) - Instead, however, we need to be more careful than this
to be able to make energy estimates to demonstrate stability.

In studying the continuous version of problems of this kind, as in, for example,
[2], exact relationships between the quantities X, X, Xg, and & are frequently used
when making estimates. For the discretized problem, however, these exact relation-
ships cannot be expected to hold. As we have mentioned previously, part of our
resolution of this problem is to treat X, Xqn, Xgap, and s as being independent
of each other, severing the link between them, and writing their evolution equations
in terms of all of these different quantities. When making energy estimates in the
continuous problem, the exact relationships allow us to infer the highest regularity
of X from the regularity of « : the surface X is two derivatives smoother than k.
Obviously we cannot do this for the discretized problem, as we do not assume that,
at positive times, k;, and X have a precise relationship. Thus, we need to deal
with the question of the regularity of the discretized surface in a different way than
in the continuous problem.

In Section Bl below, we will study the stability of the method by making energy
estimates; the energy functional is given in ([830]). As can be seen there, the energy
includes the L? norm of Xj,. We thus must ensure that the right-hand sides of our
discretized evolution equations do not contain terms which require derivatives of
X}, to estimate. Similarly, the energy includes only the L? norms of X, and Xgp,
so the right-hand sides of the discretized evolution equations also should not contain
terms which require higher derivatives of X5 or Xg;, when making estimates.

One might reasonably expect the evolution equation for
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To ensure the requisite boundedness properties, we employ a substitution rule.
Recall that in the continuous problem, we have (2.8]) because of the isothermal pa-
rameterization. Suggested by this and the periodicity assumption on the interface,
in the numerical scheme, we will make use of a version of the following substitution:

X = A7 (26N) + (@, 8,0), N=X, xXg,
Xo = 0,A71 (26N) +(1,0,0),  Xpg = 9sA " (26N) + (0,1,0).

We thus define an operator M that acts on functions of Xj,, X, and Xgyp, by
using a version of (5.33) to replace these three variables. More precisely, for a
function ® (X, Xan, Xgn, ki), we have

(5.33)

(534) M(I) (Xh, Xah, Xﬁh, Hh)
=& (A, (26, Np) + (o, 81, 0), DipA; ' (26, Ny,) + (1,0,0),
Dop Ayt (26, N) 4 (0,1,0), 55)

where Nj, = X X Xgp. In fact, we will need to apply the operator M multiple
times in some cases. We now give an example of what this means. Take, for
example,
®(Xp,) = D}, X,

Even though this is an artificial example, we mention that for such a function &, its
norm cannot be estimated using only || X, || 12, and this is the reason for making such
a substitution. We first compute M®(X},), and then we will compute M2®(X},).
Right away, we have
(5.35)

M®(Xy) = D}y, (A, (260 NR) + (an, 51, 0)) = DTy (AL (261 (Xan x Xgn))) -

We notice that the right-hand side of (5.35) cannot be estimated by a norm of &,
and || Xapllrz and [|Xgnl|p2; again, even though this is only an artificial example,
this is the reason for making another substitution (i.e., for continuing on to compute
M?2®). Continuing on, we find the following:

(5.36) M2®(Xy) = D3, (A" (265 ((D1nA; " (26, Ny) + (1,0,0))
x (Dap Ayt (265 N) 4 (0,1,0)))))

where as before, we have Nj, = X, x Xgp,. Notice that on the right-hand side of
(&36]), we have four factors of Dy, and all occurrences of X, or Xgy, occur inside
two instances of A;l; thus, we do not require derivatives of X, or Xgy, to estimate
this. In this example, then, we can estimate M?®(X}) using one derivative of xy,
and zero derivatives of X5 and Xgp. This completes the example, and we return
now to the task of defining the discretized evolution equations.

We apply the operator M once to define the evolution equation for Xy:

dX
(5.37) Th = Vh (Xh, Xah, Xﬂh, Iﬁh) = MV%
Similarly, applying M again, we form the evolution equations for X, and Xg:
dX
(538) dtah - \Illh (Xh7 Xaha Xﬂh, K/h) ’
dX
(539) Bh - \IIQh (Xh7 Xaha Xﬂh, K/h) ’

dt
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where
Uy (Xn, Xan, Xghs kn) = MDYy,

5.40
(5.40) Won (X, Xan, Xgh, £1) = MDapVp,.

We discretize ([{12]) to obtain the evolution equation for x5. We use the notation
Diy, Dop, Ey, Lp, My, Ny, U, Vip, Von, Th, Kp, Cﬁ to denote the same discrete
terms as before. The approximation of R is obtained by discretizing (@I0Q), but
before doing so, we will rewrite the commutators which appear there. The product
rule and the identity Ad, = H1A yield the following:

T (%) = %Hlma +2H, (wa v (%))
(e ()

= [Hs a4 200 (Vo V(= ) ) 4 (nad (= ) )
o g e (79 (7)) 2 (0 ()

Similarly, we have

e (55 () o )

Using these formulas for the commutators, we can express the discretized version
of R as

s

1
h= [ 7

B . 1
= (0w (7))
B 1 . 1
|:H2h7 ] Ay Dopkp + BH3y, <VhD2hIih -V ( >)

1
:| ApDipkp + B’Hfh (VhDULlﬁh -V (\/—E_>>
h

VE VE
(5.41) 5 h . h
— D A
et (0w (7))
DinEn DinEy DonEp T1h
_ A s S s
h ( 2F Giip t 1B, G5op + 1E g12,h) N
Doy By, Do Ey, DlhEh Ton
—Ap <—4Eh g11 h 2F), g22,h g12 h) \/E_h

Then with (521), (13), (525, (6130, (53), (5:20), (5:@ and (&3, the right-
hand side of ([@I2]) can be discretized as

(Rh + ApTy + AR K — AhC’fj)

(5.42) + E (2Un Ly, — 2(D1nVin) En — Vin(DinEr) — Var DanEp)

1
+ 3B, (D1, Vin Ly, 4 Vap My) + Dap, (Vip My, + Vor Ny))

Similarly to (5.26), here we write the right-hand side of (5.42) as a function of
X, Xan,Xgn and kp; that is, we may write 9 = I’% (X1, Xah, Xgh, kn) - We then
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apply (5.33)) six times. The evolution equation for xy, is then given by the following:

dk
(543) d_th = Fh (Xha Xahv Xﬁha K:h) ’
where
(5.44) Ly (Xn, Xans Xgn, k) = MOT) (Xp, Xan, Xgn, k) -

We close this section by stating the main result in this paper on the convergence
properties of our modified point vortex method consisting of the evolution equations

Theorem 5.1. Suppose the model problem is well-posed and has a sufficiently
smooth solution X up to time T > 0. In addition, we assume that X is non-
singular and satisfies conditions [222) and (Z23). Then the modified point vor-
tex method described by (B37), (B38), (39) and &43) is stable and third-order
accurate. More precisely, there exists a positive number ho(T) such that for all
0 < h < ho(T), we have

(5.45) IX ~ X3 < TR,
where ||||L}2 is the discrete 12 norm over a period of i, i.e.,

N/2

2 2
”X”L}i = Z %51 h?,

ij=—N/2+41
and C(T') > 0 is a constant that does not depend on h.

The proof of Theorem [5.1] will be the content of the remaining sections.

6. CONSISTENCY OF THE MODIFIED POINT VORTEX METHOD

In this section, we prove that the modified point vortex method has an error
expansion in odd powers of h and is third-order accurate in X, second-order accurate
in X, Xg, and first-order accurate in x. Our approach is similar to that used in
[21] and we only provide a sketch of the proof.

As seen in Section [l the evolution equations (538) and (39 are obtained by
taking spectral derivatives D1y, Daj of (B37), and the evolution equation (B43)
is basically obtained by taking A, of (537) except that we reformulated AS in
the continuous problem. Therefore, we only need to prove the O(h%) accuracy of
equation (B.3T). Recall that the tangential velocities Vi, and Vs, are also spectrally
calculated from and of lower order than Uj,. Therefore, it suffices to prove the O(h?)
accuracy of the normal velocity approximation Up. Furthermore, the term S, in
the decomposition (528) for Uy, is spectrally calculated, so we need only consider
the errors of the standard point vortex approximation in 7T}, K}, and the part of
Ch in (523) that is approximated by the point vortex method.

Let —v(a, &)/ (4m) be the integrand of the part of Uy, that is computed from the

standard point vortex approximation. Then from (Z6]), (329), B30), and (E24)
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we have
(6.1)

X-X ri(e)(a—a) r2(a’)(B = f')
X -X'" " Ei)|a-af  Eia)|a-aof
B (%rl(a’)Ea(a) + irg(a’)Eg(a)) (a—a')?

E(a)E* (o) |a - o'

~ (In(@)Ea(@) + r2(a’) Eg(@)) (B = 8')?

via, o) = n(a) - n(a) x

~ (Gn(@)Ep(e) + gra(a’) Ba(@)) (a — o) (8 = B)

n(c) ) o 2
+ N(a)] N(a') x K.

Since v(a, ') is the corresponding integrand of the standard point vortex integral
of (&28)), it suffices to show the following:

(6.2)
P

P.V./v(a,a’)da’—P.V./ v(a, & )da! = C3h®4+Csh® 4+ Copyp B2 40|
h

where f: denotes the standard point vortex approximation and Cj3,Cs,--- are
constants.

This error expansion can be proved using an argument similar to that presented
in [21I]. Define a smooth cut-off function fs such that: (i) fs5(|z|) = 1 for |z| < §/2;
(ii) fs(Jx]) = O for |x| > 6. Here the constant § > 0 is taken to be small and
independent of h. Then decompose v as follows:

(6.3) v(e, o) = v(a, ) fs(la = o) + v(e, &) (1 = fs(la = &'])).

As noted in [21], classical error analysis shows that the far-field part under point
vortex approximation is spectrally accurate; see, e.g. [I7]. More precisely, we have
(6.4)

P
’/V(a,a')(l — fs(la = &/|))de —/ v(a,a)(1 = f5(|la — &/]))da’| < ChM,
h
where M is the regularity of X.
For the near-field part, we Taylor-expand v(a, ') in terms of @ — &', This is
done by Taylor-expanding n and % in [GI). We get
(6.5) v(o,&') =m_ (@' —a)+m_ (o —a)+my(a’ —a)+mi(a’ —a)+--,

where m;(a) are homogeneous functions of degree .

For any even number [, m; is an odd function. Therefore, m;(a’ —a) fs(|a — &'|)
is also an odd function of & — &’ and hence it does not contribute to either the
continuous or the discrete principal integral, that is,

(6.6) /ml(a, o) fs(Jjo — o e’ — /: my(a, &) f5 (o — o' [)der’ = 0.

The Taylor expansion also shows that, crucially, m_;(a’ — a) = 0. As a result,
the first term in (3] that contributes to the error of the point vortex approximation
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of the near-field is the m; term. It is proved in [2I] that for any integer [ > 1, we
have
(6.7)

/ml(a, o) fs(la — o' |)da! — /hp my(a, ) f5(ja — a'|)da! = Coh 2 4+ O(hM),

where M again denotes the regularity of X. This completes the consistency proof.

7. BOUNDEDNESS PROPERTIES OF THE DISCRETIZED INTEGRAL OPERATORS

In this section we derive boundedness properties of the involved discrete integral
operators and commutators in (B.20). The results are largely analogues of the
properties for the corresponding continuous integrals presented in [4]. Some related
arguments and results from [I1,21] are also adopted here.

First we introduce some notation. For some constant s > 0, as an analogue of the
continuous Sobolev space H*, we introduce the discrete Sobolev space H} C L%.
For any f;, € L2, define its discrete Sobolev space norm as

(7.1) il gy = 1+ A3) full s -

The collection of all f;, € L? such that | f4]] s 15 bounded is called the discrete
Sobolev space of order s and denoted by H} throughout this paper. In particular,
when s =0, Hj = L?. For the discrete Sobolev norm ||-HH’S7 we have the following
result:

Lemma 7.1. Suppose that f is a 2mw-doubly-periodic and sufficiently smooth func-
tion on R%. Consider a discrete 2m-doubly-periodic function g, € Hj for some
constant s > 0. Then the product function fgn € Hj. More precisely, we have

(7.2) ||f9hHH; <C ||9h||H; )
for some constant C > 0 that only depends on f.

Proof. This result can be proved by calculating the H; norm from the definition
(1), applying the Plancherel theorem and writing ]T;h as a circular convolution
of fA and gp. By assumption f is sufficiently smooth and periodic, hence we have
’fk’ < C|k|™? for some constant C' > 0 that only depends on f and any ¢ > 0.
This result is useful in the proof and the rest is skipped here. O

Consider a function f, € H; for some constant s > 0. For another constant
m < s, we use A, (fr) to denote a term such that for any constant k, 0 < k < s—m,
we have

(7.3) HAm(fh)HH;f <C Hfh”H,’ij"’ ,

where C' > 0 denote constants that do not depend on h. If g; is such a term,
we write g, € A (fr). In particular, when the A,,(fr) term is of the form Zj f3,
where 7, is an operator acting on L?, we say that Zj, is A,, or Zj, € A,,, for the
constant s. We often do not mention s as long as there is no ambiguity. From this
definition, we see that for all m < n < s, we have A,, € A, and A, A, € Apin,
An A € Apgn. Also, we often write A, (fn) + Am(gr) as Am(fr, gn)-
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Now we are ready to state some boundedness properties of the discrete operators
in our numerical scheme. For the spectrally discretized derivatives and integral
operators described in Section B we have

Lemma 7.2. For any 2n-doubly-periodic function f, € Hj, where s > 1 is some
constant, the spectrally discretized operators Dy, | = 1,2, Ay, are Ay, Hj,, 1 =1,2,
are Ao, G 1, (1,7) =(1,1),(1,2),(2,2), are A_1, and A;l s A_o.

Proof. The results are immediate from the definition of A,, and the discrete Fourier
symbols of these operators. ([l

For the point vortex integral operators HJ,, I = 1,2, and g” we (1,7) = (1,1),
(1,2),(2,2), we have the following boundedness properties:

Lemma 7.3. For any 2m-doubly-periodic function f, € Hj, where s > 0 is some
constant, the standard point vortex approzimations of the Riesz transforms, H},, | =
1,2, are Ay, and the point vortex integral operators G” we (6,7) = (1,1),(1,2),(2,2),
are A_1.

Proof. We will only prove that Hj,, | = 1,2, are Ay, since the result for G%. i
(i,5) = (1,1),(1,2),(2,2), can be proved similarly. For any 2r-double-periodic
function f;, € H;, we have

(7.4)
1
HE fr(a :—PV/ fn(a) al zda ’——P.V./fh(a')gl(a—a’)da’,
|a o 2m h
where

(7.5) ai(e0) = {0’ o

a/lal’,  |al > 0.

We see that HJ,, | = 1,2, are discrete convolution operators with kernels % gr- The
discrete Fourier symbols of H],, | = 1,2, are presented in [21]:

—— 0, k| =0,
(7.6) (#htn), = ;
Pk | (kR i, (k| >0,
where | = 1,2, k = (ky, k2), k1, ko = ———1—1 ,% and
k1h jokah
(7.7) by (kh) = PVZ‘h sin(j1k1 )005(232 2 )7
2 G +33)"
J#0 Ji T2
kah j1kih
(7.8) ba(kh) = VZ”Sm fELE )Coj(jl 1)
2 G + 73"
j#0 Ji J2
It can be shown that the above infinite series converge. Hence, from Parseval’s
theorem for discrete Fourier transforms, we see that Hj,, I = 1,2, are Ag. a

For a sufficiently smooth 27-periodic function f on R?, we consider the commu-
tator [H},, f1(-). It has the following boundedness properties:

Lemma 7.4. Suppose that f is a sufficiently smooth 2m-doubly-periodic function
on R2. Then when acting on any 27-doubly-periodic function g € Hp, where s > 0
is some constant, the commutator operators [Hfh, f1¢), 1=1,2, are A_;.
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Proof. The is the discrete version of the result presented by Theorem 6.6 in [4]. For
any 2m-doubly-periodic function g, € H;, we have

(7.9) (i flon = PV- [ (1) = f@) (= a) o o).

3
h la —

P

We treat « as a perturbation of @’ and make a Taylor expansion of f(a)— f(a’)
in terms of a — @’ with remainder:

(7.10) [HE,, flgn = P.V. /h [T e e

|m|=1

(v — )

+ Z Rn(a)(a—a')™ gn(a')da!,

3
=2 la — af

where m = (my, ms) is a two-dimensional multi-index with my, ms being nonneg-
ative integers and R, are the remainders from the Taylor expansion. Note that all
the terms D™ f |m| = 1, and Ry,, |m| = 2, are sufficiently smooth and 27-periodic
m (o 704)

la—af?
are discrete convolution operators that are A_; as seen from their discrete Fourier
symbols similar to that in the proof for Theorem [L3l Hence, we conclude that

[H},. f1 = A_; using Lemma [ T] O

functions, and all these discrete integral operators with kernels (o — &)

In particular, when f = n in Lemma [7.4] we have

Lemma 7.5. For any 2m-double-periodic function g, € Hj, where s > 0 is a
constant, the operators n - [H}, ,n|(-), 1 =1,2, are A_,.

Proof. This is the discrete version of the result presented by Theorem 6.7 in [4].
We apply the same argument used in the proof of Lemma [7.4] and notice that in
the Taylor expansion of n(a) — n(a’), the first term vanishes because n - 9,n = 0.
The rest of the proof is similar and the details are skipped. O

Regarding the boundedness properties of the commutators [gf’j’ w f1(-), we have
the following result.

Lemma 7.6. Suppose that f is a sufficiently smooth 2mw-doubly-periodic function
on R%. Then for any 2m-double-periodic function g, € Hj, where s > 0 is some
constant, the commutator operators (G ., f1(-), (4,§) = (1,1),(1,2),(2,2), are A_.

Proof. This is the discretized version of the result presented by Theorem 6.6 in [4]
and the proof is similar to that of the previous Lemma [74l The key is to Taylor-
expand f(a’) — f(a) and consider the kernels of the related discrete convolution
operators. We skip the details. |

At last, we consider the boundedness properties of the remaining operator
K [X](.).
h

Lemma 7.7. Acting on any 2m-doubly-periodic function f, € H}, for some con-
stant s > 0, the discrete integral operator K [X](-) is A_s.

Before giving the proof, we mention that it would in fact be sufficient for the
operator K} [X]- to be A_3/5, and in fact, in [4], the first author and Masmoudi used
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the corresponding continuous operator to gain 3/2 of a derivative. Nonetheless, it
actually gains two derivatives.

Proof. This is the discrete version of the result presented by Lemma 6.1 in [4]. We
do a Laurent expansion of ﬁ in terms of (a — &’)™, where m = (my, ms),
mi,mg > —1, are integers and |m| = my + mg > —1. The first two terms are H
and G. Hence the kernel K consists of terms like Ry(ox — @)™, |m| > 1. Then

similar to the previous proofs, applying Lemma [l we obtain the conclusion. [

8. PROOF OF THE MAIN THEOREM

In this section, we perform a stability analysis of the numerical method pre-
sented in Section B and this will complete the proof of the main convergence result
(Theorem B.1]). For a discretized operator Z, acting on L2, we use either Er(Z) or
the dotted notation Z to denote the related error on Z(X):

(8.1) Er(T) =1 = Ip(X) — Tn(Xp).

For example, for the normal velocity we have Er(U) = U = U — U,. With this
notation, what we need to prove is the following: When h is sufficiently small, on
[0,T] we have

(8.2) HX’

< Ch?,
L

where C' > 0 is a uniform constant on [0,7] that does not depend h. The proof
is based on an extension argument. First we assume that for some small T,
0 < T* < T and some sufficiently large constant s > 0, we have

<Cn?,

8.3 HX‘
(8.3) 2

on [0, T*], where C' > 0 is a uniform constant that does not depend on h. Notice
that the discrete systems are continuous in time ¢, and at t = 0, we start with the
exact solution of the interface, that is, X(a,0) = Xp,(ap,0). Hence there exists a
T* > 0 such that [83)) holds for us to start with. Then we use an energy estimate
to show that the time interval on which (83)) holds can be extended to [0,T]. We
therefore need to properly construct an energy and estimate the related error terms.

Consider two discrete operators Z1,, Zop. The error for the product term 7, (X) -
IQ (X) is

(84) ET‘(I1 IQ) :i-l 'IQ +Il 'jg —jl IQ

Suppose that 7y = A, and Zy = A,, for some constants m,n > 0. From the

assumption ([B3), we get HL‘ L < Chs™™, HIg’ o < Ch*~", for some uniform
h h

constant C' > 0 on [0, 7*] that does not depend on h. Then we can conclude that
Hzl‘ < C'hsmmt ‘Ig} < C'h*="=1 on [0,T*] for some constant C’' > 0

Ly Ly

that only depends on C. Hence Ty - Ty = b5 1A, and 7y - o = h5 ™ 14,,.
Given the assumption that s is sufficiently large, we know that this nonlinear error
term Z; - Z» can be merged into either 7, or I, in B4). (In fact, we mention that
it is sufficient to take s = 3.) For this reason, we may neglect the nonlinear errors

such as 7 - Z» and often skip them in the equations without further explanation.
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We have proved in Section[6]the consistency of our modified point vortex method:

(8.5) X; = Vi (X, X, Xp, k) + O(h?),
(8.6) Xat = Vip (X, Xa, X, £) + O(h?),
(8.7) Xge = Von (X, Xa, Xg, k) + O(h?),
(8.8) ke = L (X, Xa, Xg, &) + O(h).

However, in the energy estimate analysis, extending [0, 7*] will require higher ac-
curacy. As shown in [21], this technical difficulty can be resolved using Strang’s
technique [24]. Recall the assumption that the actual solution X is sufficiently
smooth. Then, for any sufficiently large number r > 0, there is an O(h?®) pertur-
bation of the exact solution X, denoted by i, such that the modified point vortex
approximation of X is of accuracy O(h") (and similar statements hold for X, Xg,
and k). More precisely, we have

(8.9) X, =V, (5( Xa, iﬁ,%) +O0(h"),
(8.10) Xop = U1y, (X,XQ, 5(5,%) Lo Y,
(8.11) Xpi = Uay, (X,f{a,f(ﬁ,ﬁ) FO( Y,
(8.12) Fo=Th (i,f{a, 5(5,%) L O(h).

The appropriate value of r for our purposes will be chosen at the end of the proof of
Theorem (.1l below. Also, X is also sufficiently smooth by the way it is constructed.
Then, to prove the main convergence result (Theorem [5.1]), it suffices to show that
when h is sufficiently small, on [0, 7] we have

(8.13) H)N(—Xh} _, SO,
h

(8.14) Hf(a — Xon ’LQ < O(T)h?,

(8.15) HXB - XMHL% < C(T)n2,

(5.16) I~ Rallzz < CCT)h

where C'(T') > 0 are constants that do not depend h and the tilde notation is used to
denote the corresponding terms related to X. With this in mind, in the remaining
part of the paper, we assume that the modified point vortex approximation is
sufficiently accurate itself, by which we mean

(8.17) X = Vi (X, Xa, X5, k) + O(R"),
(8.18) Xt = U1 (X, X0, X, £) + O(R" ),
(8.19) Xt = Wop (X, X, X, k) + O(R" 1),
(8.20) ke =T (X, Xo, Xg, k) + O(h"2),

where r > 0 is a sufficiently large constant and the O(h"), O(h"~1), O(h"~2) nota-
tion is used to denote terms that are bounded by Ch”, Ch"™~!, Ch"~2, respectively,
for some uniform constant C' > 0 on [0, 7] that is independent of h.
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First, we consider the errors on the velocities U, V; and Vg, taking into account
the operator M. We recall the definition (5:34) of M, and we consider the error in
MU in the following lemma.

Lemma 8.1. The error in the normal velocity satisfies Er(MU) = Ai(k) +
Ao(X, X, X3).

Proof. From (B.26]), we have
(8.21) Er(MU) = Er(MS) 4+ Er(MT) + Er(M(K — Ch)).

From (BI2)), treating the nonlinear errors as described above, and applying
Lemma [7I] and Lemma [[2] we get

(8.22) Er(MS) = Ay (k) + Ao(Xa, Xp).

From (5.14), applying Lemma[l.]] Lemmal[73] Lemmal[l4] Lemmall5] and Lemma
[, we get

(8.23) Er(MT) = Ao(#, Xa, Xp).

For the final piece, it is not necessary to consider the effect of the operator M,
so we dispense with it for convenience (be assured that the required result with M
follows from the result without M). From (£.23)), applying Lemma [l Tland Lemma

[2 we get

. . 1 p S
K_Cﬁ:—KfL[X]h-n——/ anr(K)da’-n

N x Er da
/ INI

—|— AO H XQ,X,@)

(8.24) X -X
47TINI |X—X’|3

/ X-X /

- (N XET<|X_X,3>>>da

~K? X - n+ Ag(k, Xo, Xp).

We note that on the right-hand side of (824)), we have used the fact that
y P . .
(8.25) % / N’ X ViG(X — X') do = Ag(it, Xa, X5);
h

this is true because on the left-hand side of ([825), by the arguments of Section
[6l this integral (which is identically zero in the continuous case) is, for instance,
O(h3). This smallness allows for control of 7; in the product. For the integral on the
right-hand side of ([824]), we use the scalar triple product identity A;- (A2 x Ag) =
As - (A; X Ay); this yields the following:

. X X/
K-C'= (Nxn =N xn)da
(8.26) n 47TINI (X X’|> (N>xm ")
—K;Z[X]’I"[~n+A0(I£,Xa,X,3).
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Using Lemma [Z.7] to gain one derivative, we get
(8.27) KP[X]n - n = Ag(k, Xa, Xp).

From its Taylor expansion, we can see that the term N x ' — N’ x i adds additional
smoothing to the integral; we note that this smoothing in the integral is the reason
to include the discretization of the term C}, in the numerical scheme. We can thus
show that

(8.28) / ( X=X > (N x5 =N xn)da’ = Ay(X).
A \N\ X - x/?

Therefore, we have

(8.29) K — Ch = Ag(f, X, X5, X).

Combining (821)), (822), (B23) and ([B29]), we complete the proof. O

For the errors on the tangential velocities Vi, Vo, we have the following result.
Lemma 8.2. The errors in the tangential velocities satisfy
(8.30) Er(MVi) = Ao(k, X, X5, X),
(8.31) Er(MVy) = Ag(fi, X, X3, X).
Proof. This is immediate from the definition (527, (528]) and Lemma B1] O

In addition to Lemma Bl and Lemma B2 applying Lemma [.I] multiple times,
we obtain the evolution equations for the errors X, Xa, Xg and £. We state them
in the following Lemma; these representations of these equations are fundamental
to our ability to prove the energy estimate, and the introduction of the operator
M in Section 5.2 is essential to our ability to give this lemma.

Lemma 8.3. The evolution equations for the errors X, Xa, Xg and  can be
written as follows:

(8.32) X, = Ay (i) + Ao(X, X0, X5) + O(h7),

(833)  Xar = As(i) + Ao(X, Xq, Xg) + O(h" ),

(834)  Xp = A2<ﬂe> + Ao(X, Xq, Xg) + O(h" ),
)

(8.35 —— A3k 4 Ag(k) + A_3(X, X4, X5) + O(h"72).

fyp = 4E3/2

Proof. These equations can be obtained from (B37), (38)), (£39) and (E43) re-

spectively, using Lemma B Lemma R2] and Lemma [ZI] as well as the other
lemmas such as Lemma [[77l We note that the reason that on the right-hand side
of B35, the form of the term A_3(X,X,,Xp)) is due to the introduction of the
M operator; without the operator M, the corresponding terms would be much less
regular. O

Recall that we have assumed (B3] on [0, 7*], for some sufficiently large constant
s > 0, and we have verified this assumption in Section [6] with the value s = 3.
Now we use an energy estimate method to prove that the time interval on which
[®3) holds in fact can be extended to [0,7] and this will complete the proof of
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Theorem 5.1l Let (-, -) denote the inner product on L?. In particular, for f; € L,
we have ”thsz = (fn, fn). The energy & is defined as follows:

(836) &= E(Ag‘%aAg’%) + 5(’17’%) + E(XOHXQ) =+ E(Xﬁvxﬁ) + E(va)

This energy controls three derivatives of &, and zero derivatives of X, Xa, and Xg.
However, we note that we will be able to see the expected parabolic smoothing
effect associated with Darcy flow, and we will thus be able to control more than
three derivatives of &; this will be important in what follows.

To begin, we take the time derivative of (8.30):

Lo 3. .3,
(8.37) 8t:§(A3K’A3”)t+2(“ Rt s (XWX) (Xﬁvxﬁ)t"' (X X);
:(AS/{,A3/€75)+(I%t,/ﬁt)-i-(Xa,Xat) (Xg,th) (X,Xt).

Substituting from the evolution equations (832), [R33), (834), and (B3H), this

becomes
& = (A3/'§, A3 < 4E3/2A3H+A2( )+A—3(X7XQ,X[3) + O(hr2)>)
foy Az(7) + A_3(X, X0, X) + O(h"72))
X, Ao (i) + Ao(X, Xo, Xg) + O(h" 1))
X, Aa(F) + Ao(X, X, Xg) + O(h" 1))
+ (X, Ai(R) + Ao(X,Xa,Xﬁ) +O(R")).

+ (A
(8.38) L
+ (
+ (

We continue to rewrite this; the important steps for now are that we write
(A3k, A3Ay(k)) = (Aa(k), A4(f)), and that we pull 37 through A3/2_incurring a
commutator. Since the commutator of A'/? and a smooth function (such as ﬁ)
is smoothing by one derivative (this can be seen by direct computation in Fourier
space, but the interested reader could also consult equation (7.3) of [1]), the contri-
bution of this commutator to the inner product is again of the form (A4 (%), A4(%)).
We thus have the following:

Et—( 4E3/2A9/2n A, )+<A4<fe>,A4<,.>u>>
+ (A%, Ao(X, Xa, X)) + (A%, 0(h"7))
+ (K, Ag (k) + A_5(X, Xa, X) + O(h7?))
+ (X, Az(F) + Ao(X, X0, X5) + O(h™71))
+ (X, Aa (i) + Ao(X, X, X) + O(h"71))
+ (X, A1 (k) + Ao(X, X, X5) + O(7)).

(8.39)

Using elementary inequalities, we get the following:
(8.40)
B
& <— Z(E*S/‘*Ag/%, E73AN25) 4 (Ay(R), Au(i)) + C(k, i) + C(A%F, A3R)

+ C(Ao(X, Xa, Xp), Ao(X, Xo, X)) + Ch" 5 HAB.
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Using Lemma [Z.T] and Young’s inequality, we can show that
B
(8.41) (Ag(%), Ag(R)) < Z(E‘3/4A9/2/2;,E‘3/4A9/2/é) + Co€,

for some constant Cy > 0. We point out that this is true because the right-hand
side includes terms controlling both more and fewer derivatives than are present
on the left-hand side; to be specific, the right-hand side contains terms with both
9/2 spatial derivatives of & and also zero derivatives of 4. Furthermore, it is also
necessary to know here that E is bounded, both from above and away from zero
(cf. ([223))). This term is then controlled, and we note that this is how we have
used the beneficial parabolic smoothing.

Observing the important cancellation when combining 840) and (&A1), we
arrive at the following:

(8.42) g <C'Es (5% n h’”’5) ,
for some other constant C’ > 0. Then, using Gronwall’s inequality, we get
(8.43) E(t) < O(T)h" 5,

where C(T') > 0 is a constant that does not depend on h, ¢t or T*. Finally, recall
that r is chosen to be sufficiently large. In fact, as long as r — 5 > s (with s = 3,
as noted above), we can see that the assumption (83]) holds on an interval greater
than [0, 7™*]; to be explicit, we may take r = 9. Hence we can extend [0,7*] until
T* < T. This completes the proof of Theorem [5.11
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