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A PARAMETRIC VERSION OF THE HILBERT-HURWITZ

THEOREM USING HYPERCIRCLES

LUIS FELIPE TABERA

Abstract. Let K be a characteristic zero field, let α be an algebraic element
over K and C a rational curve defined over K given by a parametrization ψ with
coefficients in K(α). We propose an algorithm to solve the following problem,
that is, a parametric version of Hilbert-Hurwitz: To compute a linear fraction

u = at+b
ct+d

such that ψ(u) has coefficients over an algebraic extension of K of

degree at most two and a conic K-birational to C. Moreover, if the degree
of C is odd or α is of odd degree over K, we can compute a parametrization
of C with coefficients over K. The problem is solved without implicitization
methods nor analyzing the singularities of C.

1. Introduction

Let K be a characteristic zero field, F its algebraic closure. Let C ⊆ P(F)N be a
rational curve in a space of dimension N . We say that K is a field of definition of C
if C can be described as the zero set of a system of polynomials with coefficients in
K. Analogously, we say that C is parametrizable over K if there is a parametrization
of C defined by rational functions in K(t). If C is parametrizable over K, then it
is trivially defined over K. However, if C is not parametrizable over K, the best
we can say is that there are minimal fields of parametrization that are quadratic
algebraic extensions of K ([4], [8], [16], [24]).

Suppose that we are given a curve C defined by an (affine) birational parametriza-
tion ψ(t) with coefficients over K(α), where α is algebraic of degree n over K. This
curve C could be the outcome of some geometric transformations in the context
of CAGD, computing offsets or bisector curves may naturally add square roots
in the resulting parametrization (see for instance Example 5.1). The problems of
deciding if C can be parametrized over K and computing such a parametrization
have been studied (among others) in [1], [2], [3], [15], [16], [17], [24]. Any bira-

tional parametrization of C with coefficients in K is of the form ψ
(

at+b
ct+d

)
, where

at+b
ct+d ∈ K(α)(t). Computing a valid linear fraction at+b

ct+d that reparametrizes ψ over

K is at least as hard as computing a point in C∩KN . To compute a rational point on
C, one usually computes a plane conic or a line K-birational to the given curve using
the methods in [8], [16], [24] and then applies algorithms to find rational points in
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conics, for example, the methods in [5] or [18]. For a self-contained reference that
develops the method above and a full algorithm we refer to Chapter 5 in [17].

A parametric version of Weil’s descent method was proposed in [2] to attack this
problem. Following this approach, the curve C is substituted by a witness curve,
U , where the problem is thought to be easier. During the last twelve years there
has been an effort to systematically study this transformation and its application
to the reparametrization problem [2], [9], [10], [11], [12], [13], [14], [15], [22], [20],
[25]. It is known [2], [3] that C is parametrizable over K if and only if U is a special
curve called α-hypercircle. Algorithms to compute a reparametrization of C using
α-hypercircles are found in [12, 13].

If we already know a smooth point of C ∩ KN , then we are able to compute a
unit u(t) = at+b

ct+d such that ψ(u(t)) has coefficients over K; see [12]. However, it was
an open problem how to deal with the general case in which we do not know any
rational point on the curve without using adjoint curves à la Hilbert-Hurwitz. In
[9], it was proposed to study specific algorithms to compute points on hypercircles
with coefficients over K.

In this article we present how to attack algorithmically this problem, as well
as some ideas for an efficient implementation. Given the curve C represented by a
parametrization ψ with coefficients in K(α) and defined over K, we compute a linear
fraction u(t) such that ψ(u(t)) has coefficients over an extension of K of degree at
most 2. As a corollary, we can also compute a conic or a line that is K-birational to
C without using implicitization methods. Moreover, if we are given an odd divisor
on the curve defined over K (that can always be obtained if the geometric degree
of C is odd or α is of odd degree over K), then we can compute a rational point
p ∈ C ∩KN and a parametrization over K.

In the implicit case, the Hilbert-Hurwitz method uses adjoint curves on a curve
of degree r to compute a curve of degree r − 2 that is K-birational to C. Applying
this method O(r) times, we get a line or a conic that is birational to C. This method
can be improved (cf. [16]) to compute directly the line or the conic using only one
birational transformation.

Our method is as follows: Given the parametrization ψ of a curve C, we compute
its associated hypercircle U . This will be a spatial curve of degree r. Then, we can
easily compute a divisor of degree 2r − 2 on U defined over K. Intersecting the
hypercircle with a quadric hypersurface that passes through the 2r − 2 points in
the divisor, we can compute a point p ∈ U defined over a quadratic extension of K.
From p, we compute the birational line or conic to C as well as a linear fraction u(t)
such that ψ(u) has coefficients on the field of definition of p. One big advantage of
this method is that, since we are working with a parametrization, we do not have
to analyze the singularities of the curve.

The presentation is structured as follows: In Section 2 we present the basic
properties of hypercircles that are relevant for the reparametrization problem. In
Section 3 we present how to effectively compute a point in the hypercircle defined
over a quadratic extension of K and a birational conic. In Section 4 we discuss some
strategies to implement the method described in Section 3. Finally, we present in
Section 5 some examples and experimental results.

2. Background on hypercircles

In this section, we present the main properties of hypercircles needed to develop
our method.
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Let K be a characteristic zero field, F its algebraic closure and α ∈ F be algebraic
of degree n over K. Let ψ(t) = (ψ1(t), . . . , ψN (t)) be a proper parametrization of a
curve C ⊆ P(F)N , where ψi(t) ∈ K(α)(t), 1 ≤ i ≤ N . Write the rational functions
with a common denominator g, ψi(t) = fi/g, 1 ≤ i ≤ N , gcd(f1, . . . , fN , g) = 1.

We show the parametric Weil descent version as presented in [2] and substitute

t =
∑n−1

i=0 αiti, where ti are new variables. We rewrite:

ψj

(
n−1∑
i=0

αiti

)
=

n−1∑
i=0

αiλij(t0, . . . , tn−1), λij =
Fij

D
∈ K(t0, . . . , tn−1).

In this context we have the following definition:

Definition 2.1. Let Z be the Zariski closure of

{Fij = 0 | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ N} \ {D = 0} ⊆ Fn.

Z is called the witness variety or the parametric variety of Weil (cf. [2]) of the
parametrization ψ.

Theorem 2.2 ([2], [3]). With the previous notation:

• dimZ ≤ 1.
• Z has at most one 1-dimensional component U .
• K is a field of definition of C if and only if dimZ = 1.
• C is parametrizable over K if and only if U is parametrizable over K.

In the case that C is not defined over K, we showed in [22] how to compute
the minimum field of definition L of C satisfying K ⊆ L ⊆ K(α). So, we will
assume, without loss of generality, that C is defined over K. Thus, the problem
of parametrizing C over K can be translated to the problem of parametrizing the
curve U ⊆ Z. The interest of this construction is that the result is related with the
study of hypercircles:

Definition 2.3. Let at+b
ct+d ∈ K(α)(t) represent a K(α)-isomorphism of K(α)(t),

where a, b, c, d ∈ K(α) and ad− bc �= 0. Write

at+ b

ct+ d
= λ0(t) + λ1(t)α+ · · ·+ λn−1(t)α

n−1,

where λi(t) ∈ K(t). The α-hypercircle U associated with at+b
ct+d for the extension

K ⊆ K(α) is the parametric curve in P(F)n given by the (affine) parametrization
(λ0, . . . , λn−1).

If U is an α-hypercircle, any linear fraction u(t) = at+b
ct+d such that U is the α-

hypercircle associated with u is called an associated unit. If u is an associated unit,
then every other associated unit is of the form u ◦ k with k ∈ K(t) a linear fraction
with coefficients in K. If the algebraic extension K ⊆ K(α) is clear from the context,
we will call U the hypercircle associated with u(t).

Recall that, in the semigroup (K(α)(t), ◦) of rational functions with the composi-
tion operation, the set of units is exactly the set of linear fractions at+b

ct+d , ad−bc �= 0.
When referring to units, we refer to units under the composition operation, that is,
linear fractions. We refer to [9] for a study of the main properties of hypercircles
using this approach.

The main result that relates hypercircles with the reparametrization problem is
the following.
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Theorem 2.4 ([2], [3]). In the previous conditions, K is a field of parametrization
of C and ψ(at+b

ct+d ) is a parametrization of C over K if and only if the curve U ⊆
Z in Weil’s descent construction is an α-hypercircle associated with at+b

ct+d for the

extension K ⊆ K(α).

One problem with this approach is that we can only assume that we are working
with hypercircles if C can be parametrizable over K. Hence we lose all the rich
geometric structure to manipulate these curves. We now show that this is not
really the case, since the curve U can be interpreted as a hypercircle, but possibly
with respect to a different algebraic extension.

Theorem 2.5 ([22]). Let C be a curve K-definable, that is not K-parametrizable,
where K is finitely generated over Q (as a field). Let ϕ be an α-parametrization for
C. Let U be the 1-dimensional component of the parametric Weil variety of C for
the extension K ⊆ K(α). Then, there exists an η, quadratic over K such that U is
an α-hypercircle for the extension K(η) ⊆ K(η, α).

This result allows us to work with hypercircles even in the case that there is
no parametrization of C over the ground field K. All the computations throughout
the text will be done over a field of the form K(α, β). But the curve C will always

have points with coefficients over a field L = K(η) with K(η)∩K(α, β) = K, where

K(α, β) is the normal closure of K(α, β) over K. Even if all the computations are
done in K(α, β), the correctness of the results and computations are really proven
in L(α, β). Hence, without loss of generality, we may always assume that the curve
C has points with coefficients in K. We refer to [22] for the technical details.

Let U be a hypercircle. There is a canonical way of describing U by a distin-
guished parametrization.

Definition 2.6 ([12]). The standard parametrization of a hypercircle U is the
unique parametrization ϕ = (ϕ0, ϕ1, . . . , ϕn−1) ∈ K(α)(t)n of U such that∑n−1

i=0 ϕi(t)α
i = t.

To any hypercircle U , we can always take an associated unit u = at+b
ct+d with c �= 0.

Write the standard parametrization ϕ(t) of U with a common denominator

ϕ(t) = (
q0
Q
, . . . ,

qn−1

Q
),

gcd(q0, . . . , qn−1, Q) = 1.
We describe now some properties of U and ϕ that will be useful throughout the

text.

Theorem 2.7 ([9], [12], [22], [23]). Let U be a hypercircle, u = at+b
ct+d , c �= 0 an

associated unit. Let r = [K(d/c) : K] and let ϕ be the standard parametrization of
U . Then

(1) U is a rational normal curve of degree r in P(F)n defined over K.
(2) u(t) is an associated unit if and only if ϕ(u) has coefficients in K.

(3) If ϕi is any nonconstant component of ϕ, then ϕi =
qi(t)
Q(t) , gcd(qi, Q) = 1,

deg(qi) = r and deg(Q(t)) = r − 1.
(4) U has exactly r different points in the hyperplane at infinity. the field of

definition (over K) of any of these points is (K-isomorphic to) K(d/c).
(5) The points at infinity are attained by the r− 1 roots of Q(t) and by t = ∞.
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(6) gcd(Q(t), Q′(t)) = 1, the denominator has no multiple root.
(7) If α = α1, α2, . . . , αn are the conjugates of α in F. Write ψ(αj , t) as the j-th

conjugate parametrization of ψ, then the standard parametrization verifies∑n−1
i=0 ϕi(α, t)α

i
j = ψ(αj , t)

−1 ◦ ψ(α, t).

The standard parametrization of U can be computed from the parametrization
ψ of C without computing the variety Z.

Theorem 2.8 ([23]). Let K be a computable field with factorization of characteristic
zero. Let α be algebraic of degree n over K of minimal polynomial M(x). Let
ψ(t) = (ψ1, . . . , ψN ) be a proper parametrization of a spatial curve C of degree d
in dimension N with coefficients in K(α). Then it can be decided if C is defined
over K and, in the affirmative case, compute the standard parametrization of the
associated hypercircle U in K +O(Nd5n8) operations over K, where K is the time
needed to factor M(x) in K(α)[x].

In order to define a hypercircle, we need the parametrization ψ, but we also need
the algebraic extension K ⊆ K(α) and the primitive element α. We now show how
the hypercircle is modified under some changes of field extensions.

Theorem 2.9 ([22]). Let C be a rational curve defined over K and given by a
parametrization ψ with coefficients in K(α). Let β be such that K � K(β) �

K(α). Let n be the degree of α over K and m the degree of α over K(β). Let
M ∈ Mm×n(K(β)) such that the i-th column contains the coordinates of αi−1 in
the base {1, α, . . . , αm−1} over K(β). Let ϕ be the standard parametrization of
the α-hypercircle associated with ψ for the extension K ⊆ K(α). Then, M(ϕ) =
(ϕ′

0, . . . , ϕ
′
m−1) ∈ K(α)m is the standard parametrization of the α-hypercircle asso-

ciated with ψ for the extension K(β) ⊆ K(α).

Another property that characterizes the standard parametrization is that it is
invariant under the Weil descent method.

Theorem 2.10. Let ψ be a proper parametrization of a spatial curve C with coeffi-
cients in K(α). Let ϕ be the standard parametrization of the hypercircle U associated
with ψ for the extension K ⊆ K(α). Then ψ is the standard parametrization of a
hypercircle for the extension K ⊆ K(α) if and only if ψ = ϕ.

Proof. If ψ = ϕ, then U = C and ψ is the standard parametrization of a hypercircle.
Assume now that C is a hypercircle and ψ is its standard parametrization. Let u
be an associated unit to C as hypercircle. By Theorem 2.7, ψ(u) has coefficients
in K and u is a reparametrization unit of ψ. It follows from Theorem 2.4, that u
also an associated unit to U for the same extension K ⊆ K(α). Then C = U and
ψ, ϕ are parametrizations of C. Now, since both are standard parametrizations∑n−1

i=0 ψiα
i =

∑n−1
i=0 ϕiα

i = t, it must happen that ψ = ϕ. �

3. Rational canonical divisor on hypercircles

Our aim is to compute a rational parametrization of the original curve C over an
extension K(β) quadratic over K and a K-birational conic to C. It turns out that
this problem can be reduced to compute a point in U with coefficients in K(β). This
section shows how to compute such a point. We start computing an appropriate
divisor on U .
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Theorem 3.1. Let ϕ = (ϕ0, . . . , ϕn−1) be the standard parametrization of an
α-hypercircle U of degree r. Let ϕi be nonconstant components of ϕ and write

ϕi(t)
′ = A(t)

B(t) , gcd(A(t), B(t)) = 1. Let t1, . . . , t� be the roots of A(t) counted with

multiplicity. Then � = 2r− 2 and [ϕ(t1)] + . . .+ [ϕ(t2r−2)] is a divisor of U defined
over K of degree 2r − 2 consisting of points not in the hyperplane at infinity.

Proof. Let U∗ be the affine part of U , since U is a curve defined over K, the i-th
projection: xi : F

n → F restricted to U∗ is a rational map defined over K, so the
divisor associated with the differential dxi is a canonical divisor defined over K.
Hence, both the divisor of zeros and the divisor of poles of dxi are defined over K.
Since U is a rational curve, the degree of the divisor of dxi is −2.

From the parametrization, xi = ϕi(t) =
qi
Q , so dxi =

q′i(t)Q(t)−qi(t)Q
′(t)

Q2(t) dt and the

divisor of dxi, in the space of parameters P1(F), is div(
q′i(t)Q(t)−qi(t)Q

′(t)
Q2(t) )− 2[∞].

Now, A
B =

q′iQ−qiQ
′

Q2 . Let us prove that this fraction is already reduced. If we

had an irreducible common factor f of the numerator and denominator, then it
must be a factor of Q(t), so f divides qiQ

′. But f cannot be a factor of qi since
gcd(qi, Q) = 1 and cannot be a factor of Q′ since all the roots of Q are distinct
by Theorem 2.7. So, the fraction is reduced, A = q′iQ − qiQ

′ and B = Q2, write
qi = ait

r + . . ., Q = tr−1 + . . ., then A = ait
2r−2 + . . . is a polynomial of degree

2r− 2 and A
B is the quotient of two polynomials of degree 2r− 2. Thus, there is no

zero nor a pole of A
B at t = ∞. Hence div(dxi) corresponds, via the parametrization

ϕ with

div0(q
′
iQ− qiQ

′)− div0(Q
2)− 2[∞]

ϕ−→ div(dxi)

The divisor of poles div0(Q
2) + 2[∞] corresponds, via the parametrization, with

twice the points at infinity of U , 2[o1]+2[o2]+ . . .+2[or]. Let t1, . . . , t� be the roots
of A (in F) counted with multiplicities, � = 2r − 2. By the parametrization, the
divisor [t1] + . . .+ [t2r−2] corresponds to the set of zeros of dxi, that is, a divisor of
degree 2r − 2 defined over K. �

Example 3.2. Let K = Q(α) where α is a primitive 5-th root of unity. Let U be
the hypercircle associated with the unit u = 1

t−α . Let ϕ = (ϕ0, ϕ1, ϕ2, ϕ3) be the

standard parametrization of U . The numerators of ϕ′
i(t) are:

• numerator(ϕ′
0):

1
5 (t+α4)3 ·(5t3−(3α3+α2−α−3)t2−(3α2−α−2)t−α+1),

• numerator(ϕ′
1):

1
5 t · (t + α4)2 · (5t3 − (8α3 + 6α2 + 4α + 2)t2 +

(4α3 − 2α+ 8)t− 4α3 − 4α− 2),
• numerator(ϕ′

2):
1
5 (t + α4) · t2 · (5t3 − (13α3 + 11α2 + 9α + 7)t2 +

(3α3 − 12α2 − 6)t+ 6α3 + 3α2 + 6),
• numerator(ϕ′

3):
1
5 t

3 · (5t3 − (18α3 + 16α2 + 14α + 12)t2 +

(12α3 − 9α2 − 3α)t+ 4α2 − 4α).

This example shows that it can happen that, for every projection along the
coordinate directions, the divisor we obtain by Theorem 3.1 can have points with
multiplicity greater than one. In the method we propose to compute a parametriza-
tion of C over K(β), we will need to compute the divisor of ϕi. If it were the case
that we want to work with divisors such that the multiplicity at each point is 0 or
1 only, we could do the following: If a point p in the canonical divisor defined by
dxi has multiplicity greater than one, then the field of definition of p has degree
less than r over K. We could use slight variations of the algorithms in [12], [13] to
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reparameterize the original curve over the field of definition of p and, then, com-
pute another hypercircle for the new extension. The problem with this approach is
that there may be cases such that the number of iterations is not better than the
classical Hilbert-Hurwitz approach. Still, a point p with multiplicity greater than
one has chances to be a point over K. It may then be worth checking the field of
the definition of p.

Another standard approach is to take more generic projections

d(a1x0 + . . .+ an−1xn−1), ai ∈ K.

The problem with this approach is that, in practice, the coefficients grow too much.
Instead, we will just assume that the divisor may have higher multiplicities and take
care that our results hold in this situation too.

Let D = a1[p1] + . . . + as[ps] be a K-defined effective divisor on U of degree
2r − 2. Let W be any quadric not containing U , then the number of intersection
points of W and U is 2r counted with multiplicity. We are now studying the space
of quadrics W such that the intersection multiplicity of W and U along pi is at
least ai.

Definition 3.3. Let U be a hypercircle of degree r > 2. Let D be a degree 2r − 2
effective divisor of U defined over K that contains no point in the hyperplane at
infinity, we define WD as the set of (projective) quadrics such that either U ⊆ W
or |U ∩W | < ∞ and U ∩W 
 D.

Since the space of quadrics is of dimension
(
n+2
2

)
− 1 and we are adding at most

2r − 2 independent linear conditions, then dim(WD) ≥
(
n+2
2

)
− 2r + 1. Moreover,

since U and D are defined over K, WD is also defined over K. On the other hand,
U is a rational normal curve of degree r. Thus, the space of quadrics containing
U is (projective) linear, of dimension

(
n+2
2

)
− 2r − r. Hence, the space of quadrics

containing U is of codimension at least three on WD. We can take a random quadric
in WD and it will not contain the curve with high probability. More precisely, if
we have a basis of WD defined over K, then one of the elements of the basis is
guaranteed to work. We now show how to check if a quadric is in WD.

Lemma 3.4. Let F =
∑

i∈I aix
i0
0 · . . . · xin

n , I = {(i0, . . . , in)|
∑

j ij = 2} be a
quadratic homogeneous polynomial in n + 1 variables defining a quadric W not

containing U . F (ϕ) =
∑

i∈I aiq
i0
0 · . . . · qin−1

n−1 Q
in ∈ F[t]. Let p ∈ U ∩ Fn be an affine

point of U , p = ϕ(t0). Then the intersection multiplicity of W and U along p is the
algebraic multiplicity of t0 as a root of F (ϕ).

Proof. We follow [7, I, §7]. Let S = F[x0, . . . , xn], let IU be the homogeneous
ideal of U , and let p be the prime ideal of p. Then the intersection multiplic-
ity is the length of the Sp-module (S/(F · S + IU ))p. The birational map ϕ
induces an isomorphism between (S/IU )p and F[t, s](t−t0s). Under this isomor-
phism, F (x0, . . . , xn) corresponds to G, the homogenization of F (Q, q1, . . . , qn),
where ϕi = qi/Q. The length � of the module M = (F[t, s]/(G))(t−t0s) is the mul-
tiplicity of (t − t0s) as a factor of G. We have the maximal chain of submodules
0 = (t− t0s)

� ⊂ (t− t0s)
�−1 ⊂ . . . ⊂ (t− t0s) ⊂ (1) = M . This multiplicity equals

the algebraic multiplicity of t0 as a root of F (ϕ). Note that, if (t − t0s) is not a
factor of G, then M = 0. �
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Corollary 3.5. Let D = a1[ϕ(t1)] + . . . + as[ϕ(ts)] be a divisor of degree 2r − 2
and defined over K of U with affine support. Let A(t) = (t− t1)

a1 · · · (t− ts)
as and

let F be the implicit equation of a quadric. Then F ∈ WD if and only if F (ϕ) is a
multiple of A(t).

Proof. U ⊆ W if and only if F (ϕ) = 0. The other case follows inmediately from
Lemma 3.4. �

We are now able to compute points in U defined on a quadratic extension of K.

Theorem 3.6. Let U be a hypercircle of degree r > 2. Let W ∈ WD be a quadric
not containing U , intersecting U along D and defined over K. Then W ∩ U =
D + [p1] + [p2] where p1, p2 are affine points of U defined on an extension of K of
degree at most 2.

Proof. Since W does not contain U , we have by Bezout that W ∩ U is a divisor
of degree 2r that is defined over K. By construction, this divisor has the form
D + [p1] + [p2]. Now, since W , U and D are defined over K, then [p1] + [p2] is a
divisor defined over K. It follows that p1, p2 are points defined on an extension of
degree at most 2 of K. By Theorem 2.7, the points at infinity of U are defined over
an extension of degree r > 2 over K. So p1 and p2 are both affine points. �

Hence, we can always compute a point in U defined over an extension of K of
degree at most 2. If r = 2, then U is a conic and we can compute those points
intersecting U with any hyperplane defined over K not containing U . If r > 2,
then compute D from dxi and a base of WD defined over K. Next, at least one
of the elements W of the base will not contain U . The desired point is one of
the intersection points of W and U . In order to continue the journey towards the
computation of a birational conic, we have to distinguish two cases. If K(β) is a
quadratic extension defining the point p1, we have to distinguish if β ∈ K(α) or not.
In the case that β ∈ K(α) we can transform the hypercircle U into the hypercircle
associated with ψ for the extension K(β) ⊆ K(α) using Theorem 2.9.

Theorem 3.7. Let U be a hypercircle with standard parametrization ϕ. Then, we
can compute a unit v such that ϕ(v) has coefficients on an extension of K of degree
at most 2.

Proof. First, if r = 1, then we can easily compute a point p1 defined over K. If
r = 2, then U is a conic. Intersecting U with a hyperplane defined over K not
containing U provides an intersection point p1 defined over an extension of degree
at most 2. Let p1 be one of such intersection points. If r > 2, apply Theorem 3.6
to compute a point p1 on U defined on an extension of degree at most 2.

If p1 is defined over K, then we can apply the algorithms in [12] to compute an
associated unit v of U . In this case ϕ(v) has coefficients over K.

If p1 is not defined over K, let K(β) be the field of definition of p1. This is a
degree two extension of K. We distinguish two cases. If β /∈ K(α), then [K(α, β) :
K(α)] = 2 and [K(α, β) : K(β)] = n. It follows that the minimum polynomial of
α over K(β) equals the minimum polynomial of α over K. If we compute the α-
hypercircle associated with the parametrization ϕ of U with respect the extension
K(β) ⊆ K(β, α), we obtain, by Theorem 2.10, the very same curve U . But in this
case, we have a point p1 with coefficients in K(β). So, using the algorithms in [12],
we can compute a unit v that parametrizes U over K(β).
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Finally, if β ∈ K(α), apply Theorem 2.9 to compute the standard parameteriza-
tion ϕ′ of the hypercircle U ′ associated with the parametrization ϕ with respect to
the extension K(β) ⊆ K(α). The image of p1 by the linear transformation relating
ϕ and ϕ′ is a point p′1 ∈ U ′ with coefficients in K(β). Now, apply the algorithms in
[12] to compute a unit v such that ϕ′(v) has coefficients in K(β). By Theorem 2.4,
ϕ(v) has coefficients in K(β), as desired. �

Corollary 3.8. Let C be a curve defined over K given by a proper parametrization
ψ over K(α). We can compute a unit v such that ψ(v) has coefficients over an
extension K(β) of K of degree at most 2 and a planar line or conic K-birational
to C. We compute at most two birational transformations of C. One mandatory
transformation is computing the hypercircle U and the other, only needed in case
β ∈ K(α), is computing the hypercircle of C for the extension K(β) ⊆ K(α), that
is, the image of U under a linear map P(F)n → P(F)n/2 defined over K(β).

Proof. Let U be the hypercircle associated with ψ with respect to the extension
K ⊆ K(α). Let v be the unit computed in Theorem 3.7. Note that, if β ∈ K(α),
in Theorem 3.7 we need to compute the hypercircle of C for the extension K(β) ⊆
K(α). v is an associated unit of U , so ψ(v) has coefficients over an extension of
degree at most 2 over K.

If ψ(v) has coefficients over K, then we are done. The planar birational curve is
{y = 0} and the birational morphism is given by (t, 0) 
→ ψ(v(t)). If this is not the
case, then ψ(v) will have coefficients over an extension of K of degree 2. The planar
birational conic is the hypercircle associated with the parametrization ψ(v(t)) with
respect to the extension K ⊆ K(β). To sum up, given ψ, we can either compute
a reparameterization over K or we can compute the standard parametrization of a
K-birational conic. �

Remark 3.9. Assume that D = a1[p1] + . . . + as[ps] is an odd divisor of degree
m > 1 of the conic F . We can compute SD to be the set of degree a = (m+ 1)/2
curves intersecting F along D in the same way as WD. SD is a linear space in

F(
a+2
2 ). If C ∈ SD not containing F , by Bezout, C ∩ F = D + [q]. [q] must be a

point with coordinates in K. Using this point we can compute a parametrization
of F and an associated unit w. Then ψ(v(w)) will be a parametrization of C with
coefficients in K. See [24] for a similar approach to this fact. In particular, we
can compute easily an odd divisor if one of the degrees of C, U , or α is odd. Note
that, if α is of odd degree over K, then U is always of odd degree and there is
always a computable point with coefficients over K. Using this rational point, we
can compute a parametrization of the conic with coefficients over K and hence a
parametrization of C with coefficients over K.

To sum up, the algorithm used to solve the reparametrization problem we pro-
pose is the following:
input: A proper parametrization ψ of a curve C with coefficients in K(α).
output: Decide if C is defined over K. In the affirmative case, return also:

• A linear fraction v such that ψ(v) has coefficients in K(β) with β of degree
1 or 2 over K.

• The standard parametrization of the hypercircle associated with ψ(v) for
the extension K ⊆ K(β), that is, a line or a conic K-birational to C.
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If α is of odd degree or deg(C) is odd, we can guarantee that ψ(v) has coefficients
over K and the K-birational planar curve is a line. Also, if we can decide if a conic
has K-rational points, we can compute a reparametrization unit over K.

The steps of the algorithm are:

(1) Compute ϕ the standard parametrization of the hypercircle U associated
with ψ using the algorithm in [23]. If C is not defined over K, return C is
not defined over K.

(2) Take ϕi to be a nonconstant component of ϕ.
(3) Compute the divisor of zeros D of dxi = ϕ′

idt.
(4) Compute a basis B of WD over K.
(5) Take W ∈ B not containing U .
(6) Compute W ∩ U = D + [p1] + [p2].
(7) Let K(β) be the field of definition of p1.
(8) If β ∈ K, we have a rational point:

(a) Compute an associated unit v of U from p1 using the algorithms in
[12].

(b) Return v and the parametrization (t, 0).
(9) Else If β /∈ K(α):

(a) Compute the associated unit v of U from p1 using the algorithms in
[12].

(b) Let F the hypercircle associated with the parametrization ψ(v) for the
extension K(α) ⊆ K(α)(β).

(10) Else
(a) Compute U1 the hypercircle associated with ψ for the extensionK(β) ⊆

K(α) and its standard parametrization ϕ′ using Theorem 2.9.
(b) Compute an associated unit v of U1 and p1 using the algorithm in [12].
(c) Compute F to be the hypercircle associated with ψ(v) for the extension

K ⊆ K(β).
(11) If we have an odd divisor D on F of degree �, or we can decide and compute

a point p ∈ F ∩K2:
(a) Compute the space of curves SD.
(b) Take W ∈ SD not containing F .
(c) Compute W ∩ F = D + [p].
(d) Compute a unit w associated with F using p.
(e) Return v ◦ w and the standard parametrization of F .

(12) Else Return v and the standard parametrization of F .

4. Implementation and computational issues

In this section, we detail some computational steps of the method outlined. The
main problem in practice is that we are dealing with parametrizations with huge
coefficients, so we have to try to keep the coefficients as small as possible. We
assume that K = Q for the rest of the text. Note that, in this case, we can always
decide if the birational conic has rational points or not and compute one [17], [5],
[18]. So in this case the result is optimal. If C can be parametrized over Q we can
always compute such a parametrization. If not, we can compute a parametrization
over a quadratic extension Q(β).
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4.1. Computing WD and a degree 2 rational divisor. In Section 3 we de-
scribed the space of quadrics WD. We show how to compute WD and an appropri-
ate quadric in WD. Let D = a1[ϕ(t1)]+ . . .+ as[ϕ(ts)] be a divisor of degree 2r− 2

and A(t) = (t − t1)
a1 · · · (t − ts)

as as in Corollary 3.5. Let F =
∑

i∈I bix
i0
0 · · ·xin

n ,
I = {(i0, . . . , in)|

∑
j ij = 2} be a quadratic homogeneous polynomial in n+1 vari-

ables with indeterminate coefficients and F (ϕ) =
∑

i∈I biq
i0
0 · · · qin−1

n−1 Q
in ∈ K(α)[t].

Let R(t) ∈ K(α)[bi|i ∈ I][t] be the remainder of the division of F (ϕ) by A. Write

R(t) =
∑2r−3

j=0 ljt
j , lj ∈ K(α)[bi|i ∈ I], 0 ≤ j ≤ 2r − 3. Now, a quadric W is in

WD if and only if the coefficients of its implicit equation are a solution of the linear

system {l0, . . . , l2r−3}. Moreover, if lj =
∑n−1

k=0 mjkα
k, mjk ∈ K[bi|i ∈ I]. Since we

know that WD is defined over K, a quadric W defined over K is in WD if and only
if the coefficients of its implicit equation are the solution of the set of equations
{mjk = 0 | 0 ≤ j ≤ 2r − 3, 0 ≤ k ≤ n− 1}. That is,

WD = {mjk = 0 | 0 ≤ j ≤ 2r − 3, 0 ≤ k ≤ n− 1}.
Note that there are n(2r − 2) polynomials mjk, so they are not linearly inde-

pendent. In practice, we compute the polynomials mjk from F (ϕ) and A, then we

compute a basis of WD as a vector space in Q(n+2
2 ). We already know that one of

the elements of the base will be a quadric not containing U . However, if we take
an element of the basis computed, we cannot go much further in our computations
due to coefficient explosion. We try in this step to keep the coefficients of the
quadric as small as possible. Thus, we compute a basis of the (saturated) lattice

Z(
n+2
2 ) ∩WD and, from this basis, an LLL reduced basis. In our experiments there

is a big difference between the original basis and the reduced one. In this reduced
basis, we will take the smallest vector representing a quadric W not containing U .
Remark 4.1. It is worth noting that, experimentally, for the generic case r = n,
the LLL basis consists of

(
n+2
2

)
− 2n+2 generators, the first

(
n+2
2

)
− 2n− 1 vectors

form precisely a basis of the bad space of quadrics containing U and the last three
vectors do not contain U . Hence if we take a quadric passing through D defined
over Q with very small coefficients, it will likely contain the whole hypercircle. So
we cannot go too far in our optimization of the size of the coefficients of W .

Let W ∈ WD be any quadric not containing U defined by a polynomial F .
This means that F (ϕ) is not identically zero and divisible by the polynomial A
defined in Theorem 3.1. Hence the divisor of degree 2, [p1]+ [p2], defined over Q in
Theorem 3.6 is attained by the roots of R(t) = F (ϕ)/A, which is a polynomial of
degree 2. The polynomial f(x) = rest(numerator(ϕi(t)− x), R(t)) is a polynomial
of degree 2 whose roots are the i-th coordinates of the pair of points [p1]+ [p2]. We
use this information to compute a generator β of the field of the definition of p1,
p2. If for an index i the coordinates of the divisor are not in Q, then f(x) will be
an irreducible polynomial of degree 2 over Q defining the extension Q(β). We can
take β to be the root of the discriminant of f . But usually, it is advisable to take
a β that is a squarefree integer. Passing to the square root of an integer is easy,
since Q(

√
a/b) = Q(

√
ab). Passing to a squarefree integer is costly, so in practice

we will look to partial factorizations of ab, eliminating easy to find square factors,
Q(

√
ab), with ab integer without small square factors.

4.2. Computing the birational conic. We saw that we can compute a unit
v such that ψ(v) or ϕ(v) is a proper parametrization with coefficients in K(β).
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Hence, we can compute a K-birational conic that is just the hypercircle of ψ(v) for
the extension K ⊆ K(β). However, computing the composition ψ(v) can be hard
if we have big coefficients. Let us check how can we compute the conic without
computing ψ(v), at least if β /∈ K(α).

Theorem 4.2. Let ψ be a proper parametrization of a curve C with coefficients
in K(α) and v ∈ K(α, β)(t) a linear fraction such that ψ(v) has coefficients in
K(β), β quadratic over K. Assume also that β /∈ K(α). Let F be the conic that
is the β-hypercircle of the parametrization ψ(v) for the extension K ⊆ K(β). Then
F is also the β-hypercircle of the parametrization v : F → F for the extension
K(α) ⊆ K(α, β).

Proof. Recall from Theorem 2.4 that v is a unit associated with a hypercircle if
and only if ψ(v) has coefficients over the ground field. Let w be a unit associated
with F . That is, w ∈ K(β)(t) and ψ(v(w)) has coefficients in K. Let u ∈ K(α)(t)
be a unit such that ψ(u) also has coefficients in K. Then, there is a linear fraction
k ∈ K(t) such that v ◦ w = u ◦ k. Hence v ◦ w = u ◦ k ∈ K(α)(t). To sum up, w
is a unit with coefficients in K(β) � K(α, β) and such that v ◦ w has coefficients
in K(α). Since β is also quadratic over K(α), w is a unit associated with the β-
hypercircle of v : F → F for the extension K(α) ⊆ K(α, β). We conclude that F is
the β-hypercircle of the parametrization v for the extension K(α) ⊆ K(α, β). �

Corollary 4.3. With the same hypothesis as Theorem 4.2, the β-hypercircle asso-
ciated with the parametrization v : F → F for the extension K(α) ⊆ K(α, β) is a
line or a conic. Its standard parametrization is defined over K(β). If w is any unit
in K(β)(t) such that v ◦w ∈ K(α)(t), then ψ ◦ v ◦w is a parametrization of C over
K.

Proof. From Theorem 4.2, we may consider F either as the β-hypercircle of ψ ◦ v
for the extension K ⊆ K(β), or of the parametrization v for the extension K(α) ⊆
K(α)(β). The standard parametrization ξ of F is the same in both cases (as it only
depends on β), so it has coefficients in K(α, β)∩K(β) = K(β). Let w ∈ K(β)(t) be
any unit such that v◦w ∈ K(α)(t). Then w is an associated unit of F interpreted as
the β-hypercircle of the parametrization v. Hence, by Theorem 2.7, ξ◦w ∈ K(α)(t).
But, both ξ and w are defined over K(β), so ξ◦w has coefficients in K(α)∩K(β) = K.
Again, from Theorem 2.7, this means that w is an associated unit of F intepreted
as the β-hypercircle of ψ ◦ v. Thus, ψ ◦ v ◦ w have coefficients in K. �

Remark 4.4. The main problem if β ∈ K(α) is that it may not be possible to write
K(α) = K(α, β) as a field K(α) = K(γ)(β) with β quadratic over K(γ). So we
cannot make sense of F as a hypercircle for an alternative extension. If β ∈ K(α),
we have to compute ψ(v) and then the conic. For instance, let α be a root of
t6 − 2t3 − 17. Q(α) has only one intermediate field defined by t2 − 2t − 17, this

polynomial has discriminant 72. Hence, the intermediate field is Q(
√
2). Since there

are no more nontrivial subfields in Q(α), we cannot express Q(α) as Q(γ)(
√
2) with√

2 /∈ Q(γ).

Remark 4.5. Note that computing the hypercircle associated with v for the exten-
sion K(α) ⊆ K(α, β) is fairly easy following Theorem 2.7.7. By our computations,

we always choose a β of the form
√
d, so its conjugate is β = −β. Let v(β) be the

input linear fraction and v(−β) its conjugate. Let u(t) = v(−β)−1 ◦ v(β). Then,
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the standard parametrization ξ0, ξ1 of F verifies that ξ0 + βξ1 = t, ξ0 − βξ1 = u(t).
Thus,

ξ(t) =

(
t+ u(t)

2
,
t− u(t)

2β

)
.

4.3. Computing the rational point in the conic. If C is of odd degree or α is
of odd degree, we can define an odd divisor in the conic as follows. Let ξ = (ξ0, ξ1)
be the standard parametrization of F . For almost all t ∈ K, ψ(t) has coefficients
in K(α) and define an odd divisor of C of degree n. Write t = v(s) for a generic t,
s = v−1(t) is such that ψ(v(s)) defines a point with coefficients in K(α). Passing to
the conic, ξ(s) = ξ(v−1)(t) will have coefficients in K(α) for almost all t ∈ K. If C is
of odd degree and α is even, cut C with a random hyperplane defined over K. This
intersection will define an odd divisor defined over K. Compute the parameters
t1, . . . , tm such that

∏m
i=1(t − ti) ∈ K(α)[t] corresponds with this odd divisor via

ψ. Then v−1(t1), . . . , v
−1(tm) defines an odd divisor, via ξ, in F , defined over K.

Note that
∏m

i=1(t− v−1(ti)) can be computed using resultants.

4.4. Simplifying the solution. Assume now that we have performed all the com-
putations as outlined and we have obtained a linear fraction u(t) such that ψ(u(t))
has coefficients over Q. The problem we may face is that, if u has big coefficients
and ψ has high degree, then ψ(u) will most likely have huge coefficients. It is
an interesting open problem to provide algorithms to compute a linear fraction
u1 such that ψ(u1(t)) has small, rational coefficients. We know that u1 must be
of the form u ◦ k, with k ∈ Q(t). In this subsection we present a strategy to
compute a linear fraction k such that u(k) has small coefficients. This will not
solve the original problem, but, heuristically, if the coefficients of u are not too
big, there should not be a coefficient explosion in ψ(u). Let u = at+b

ct+d ∈ Q(α)(t),

a =
∑n−1

i=0 aiα
i, b =

∑n−1
i=0 biα

i, c =
∑n−1

i=0 ciα
i, d =

∑n−1
i=0 diα

i. By multiplying
and dividing by suitable integers, we may assume that ai, bi, ci, di ∈ Z, 0 ≤ i ≤ n−1,
and gcd(a0, . . . , an−1, b0, . . . , dn−1) = 1. Let k = k1t+k2

k3t+k4
. Let v = u ◦ k = et+f

gt+h ,

e =
∑n−1

i=0 eiα
i, f =

∑n−1
i=0 fiα

i, g =
∑n−1

i=0 giα
i, h =

∑n−1
i=0 hiα

i. Then(
e0 . . . en−1 f0 . . . fn−1

g0 . . . gn−1 h0 . . . hn−1

)
=

(
a0 . . . an−1 b0 . . . bn−1

c0 . . . cn−1 d0 . . . dn−1

)
·
(
k1 k2
k3 k4

)
,

(e, g) = k1(a, c) + k3(b, d), (f, g) = k2(a, c) + k4(b, d). One possibility to com-
pute a linear fraction of the form u ◦ k is to take the two-dimensional lattice
〈(a0, . . . , an−1, c0, . . . , cn−1), (b0, . . . , bn−1, d0, . . . , dn−1)〉 ⊂ Z2n and compute a re-
duced basis, {(e0, . . . , en−1, g0, . . . , gn−1), (f0, . . . , fn−1, h0, . . . , hn−1)}. From this
basis we recover an associated unit u1 with small coefficients. In our experiments,
computing ψ(u) may be infeasible, while computing ψ(u1) is reasonable.

5. Examples

Example 5.1. Consider the following simple example with a flavor of Computer
Aided Geometric Design. Take the parabola y = x2. A usual construction in CAGD
is computing the offset of a given curve. The offset of the parabola at distance d is
the envelope of circles or radius d centered on the parabola. Which is also the set
of points at normal distance d from the parabola. The nonproper parametrization(

t2 − 16

16t
,
(t2 − 16)2

256t2

)
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of the parabola has a rational normal unit vector n =
(

−t2+16
t2+16 , 8t

t2+16

)
.

A proper parametrization of the offset of the parabola at distance d is:

ψd =

(
t2 − 16

16t
+ d

−t2 + 16

t2 + 16
,
t4 − 32t2 + 256

256t2
+ d

8t

t2 + 16

)
.

Now let C be the offset of the parabola passing through the point (0, 3). The closest

point in the parabola to (0, 3) is the point (1, 1) and the distance is
√
5. A proper

parametrization of C is

ψ =

(
t2 − 16

16t
+
√
5
−t2 + 16

t2 + 16
,
t4 − 32t2 + 256

256t2
+
√
5

8t

t2 + 16

)
.

We now apply the hypercircle method and get that the standard parametrization of

the hypercircle associated with ψ is ϕ =
(

1
2 t

2−8

t ,
1
10

√
5t2+ 8

5

√
5

t

)
, which is the conic

of the implicit equation x2 − 5y2 + 16 = 0.
So C is defined over Q. Moreover, note that, by construction, (0, 3) ∈ C. We can

use this point as odd divisor and obtain the associated unit of the hypercircle. The

computation gives u(t) =
(4

√
5+8)t−4

√
5−12

t+
√
5+1

.

Finally,

ψ(u) =

(
−t4 − 3t3 + 27t2 − 36t+ 10

t4 − 6t2 + 12t− 8
,
(t2 − 1)(2t4 − 2t3 + 27t2 − 82t+ 62)

t6 + 2t5 − 10t4 + 40t2 − 64t+ 32

)
is a parametrization over Q of C.
Example 5.2. Here, we present a randomly generated example. We take the
algebraic element α to be a root of x3 − 2x+ 3.

Let C be the curve with rational parametrization

ψQ =

( 2
171x

10 − x8 − 1
6x

7 + 1
4x

5 − 1
6x

4 + x3 + x2 + 1
3x− 2

−x10 + 2x8 + 1
5x

7 − x6 − x5 − 3x4 + 107x
,

−x10 + 5
13x

7 − 490x5 + 16x4 + 6
37x

2 + 5

−x10 + 2x8 + 1
5x

7 − x6 − x5 − 3x4 + 107x

)
.

We start with the parametrization ψ = ψQ(u), where

u =
(13α2 + 41α+ 35)t+ 59α2 + 88α+ 39

t+ 47α2 + 17α+ 79
.

ψ is a birational parametrization with coefficients in Q(α) that we do not reproduce
here due to space constraints, ψ is the parametrization of a curve of degree 10 in
the plane whose coefficients are of the form c0+c1α+c2α

2, with ci ∼ 275. So we are
dealing with an example that has no small coefficients. We compute the standard
parametrization ϕ of the associated hypercircle U using the method of moving hy-
perplanes in [23]. ϕ has the standard parametrization: (61654(16α2+36α+49)t3+
(650780235α2+199608197α− 867706980)t2+(−11698757039α2− 56561111034α+
56981476123)t− 120067895802α2 + 107542043663α− 36385848735)/D,
((−1664658α2−493232α+2219544)t3+(−67094856α2+575620560α+89459808)t2+
(12412548180α2+62664529350α−64337524434)t+6426002048α2+130251703893α−
170095553155)/D,
((−739848α2−1664658α+986464)t3+(66492657α2−266027709α−88656876)t2+
(−6956873685α2−33137522622α+34086297597)t−28936913994α2−18554618293α+
47690019897)/D, whereD = t2+(1270729233/13008994α2−288327548/6504497α+
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131660715/13008994)t+35569161269/6504497α2−141477963297/13008994α+1191
56399449/13008994. U is a curve of degree 3 in F3.

The divisor of zeros of dx0 corresponds, via the standard parameterization, to
the parameters that are roots of the polynomial:
2406169548228t4+(470073240788292α2−213318559732704α+48704458335660)t3+
(95935700146598127α2−157107893974743062α+83526919601681007)t2+(1263978
6813312905308α2−23904773957443752846α+20445585852413940462)t+742291603
049776565874α2−1398103350393513263890α+1155346817813906402052. Now, we
compute the space of quadrics in three space that passes to these points in the
hypercircle. An LLL-reduced basis of this space of quadrics is:

⎛
⎜⎜⎜⎜⎜⎝

110 102 −102 225 322 330 702 −338 543 374
179 152 −165 1130 523 537 183 −590 −2258 725
330 319 −347 −1031 1007 990 −5 −1057 557 −2011

1348 1376 −1596 3440 −890 −5592 2100 −3515 625 −3830
1280 1320 −1604 −5893 844 −2256 −3998 −3701 1143 5605
697 951 −379 10061 3660 3996 −12931 −2070 7185 384

⎞
⎟⎟⎟⎟⎟⎠

.

Regarding this basis, the first three generators form a basis of the space of quadrics
that contain the hypercircle, so we take the fourth equation. This corresponds
with the quadric in three space with the projective implicit equation: 1348W 2

0 +
1376W0W1 − 1596W0W2 + 3440W0W3 − 890W1W1 − 5592W1W2 + 2100W1W3 −
3515W 2

2 + 625W2W3 − 3830W 2
3 . If we intersect this quadric with the hypercircle,

we get our four points from the divisor plus two other points that correspond
with the parameters that are the roots of 5289963t2 + (15252170α2 − 21222015α+
38892330)t−471156309α2+907148780α−743730576. These parameters correspond
to the points:

(
4059

1763321
β − 6482055

1763321
,− 25183

10579926
β +

7074005

3526642
,

321

251903
β − 7626085

5289963

)

and its conjugate, where β =
√
7296701. It happens that β /∈ K(α) which is the

generic case. Now, we use the method in [12] to compute a unit that reparametrizes
C and the hypercircle over K(β). The unit obtained is: v = (((321/251903β −
7626085/5289963)α2+(−25183/10579926β+7074005/3526642)α+4059/1763321β−
6482055/1763321)t+(32368498208832185119/10579926β+15129427928014217047
9/10579926)α2 + (−60500076187993431799/10579926β − 267472861652102646049
1/1511418)α+ 2765293860090586323/503806β − 9515452830706842529623/352664
2)/(t+(147176658712632/251903β−3870833163155746065/251903)α2+(−3871292
82397317/251903β+8462057680983061884/251903)α−196235544950176/251903β+
627512849909690167082/251903).

We now compute the birational conic, that in this case is the hypercircle as-
sociated with the parametrization v : F → F. This conic is the conic F =
Y 2
0 −7296701Y 2

1 +1202903341306750426927/251903Y0Y2−6874188924189704841236
21/251903Y1Y2 + 1433115394536581115533926889597706022/251903Y 2

2 , that is, a
β-hypercircle with standard parametrization:
((1/2t2+687418892418970484123621/3676121744006βt−7165576972682905577669
63444798853011/251903)/(t + 687418892418970484123621/3676121744006β + 120
2903341306750426927/503806), (1/14593402βt2+1202903341306750426927/367612
1744006βt+716557697268290557766963444798853011/1838060872003β)/(t+68741
8892418970484123621/3676121744006β + 1202903341306750426927/503806)).
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Since α is of odd degree over Q, we can use this information to compute odd
degree divisors on the conic defined over Q. The standard parametrization of F
applied to v−1(0) gives the point:
(−92717241963296367543963426555525/707928540263595598α2 + 85782720638536
526613210223622769/707928540263595598α − 7784038106367400094394911946828
95/353964270131797799,−43292690061037624628891501283/707928540263595598
α2+65527786400859002371365755163/707928540263595598α−19591512156121218
838380642686/353964270131797799), that is, a point in the conic of degree 3 over
Q. So, we look for curves of degree (3 + 1)/2 = 2 that pass through this point and
its conjugates over Q.

The space of conics that pass through the previous point and its conjugates has
an LLL reduced basis composed by three conics. In this case, we take the first
vector in the reduced basis, that is, the conic:
12852363432796876123Y 2

0 − 64797499881226258696832Y0Y1+290823925399272555
908607931Y 2

1 +28403727338255796921549681969143424Y0Y2+51124766122063827
2781078169733367Y1Y2 + 31492510276432154508753366362588484Y 2

2 .
If we intersect this conic with F , we get that the fourth intersection point

is attained by the parameter −10763040570013453663551088/22873858705399β −
41215750871253947543245714978/22873858705399. If we plug this parameter into
the standard parametrization, we get the rational point in the conic F :

(−41215750871253947543245714978/22873858705399,

−10763040570013453663551088/22873858705399).

From this point, we compute an associated unit of the conic:
w = ((19468474498232646247379/112745485225β − 3635522916773478233169631
96/112745485225)t+356837163448559925859/9019638818β−649755186150013383
2515435/9019638818)/(t−1/1790300β+401199/1790300). We know that the linear
fraction v ◦w reparametrizes C over Q. But if we write v ◦w with monic denomina-
tor, then the coefficients involve numbers of the form c0+αc1+α2c2, where ci = a/b
and a, b > 2140. If we simplify this unit using again LLL as in subsection 4.4, we
get the reparametrization unit:
u1 = ((3243332478959α2−69617833234861α−87203854258100)t−4493615445562α2

−35007060177512α−71547744855792)/(94261018881578t+28333704896α2−61084
110185α+ 64478276179717) where the integers involved are bounded by 238.

Note that the unit u1 is different from u−1, which is also an associated unit.
What we know is that we will obtain a unit of the form u−1 ◦ k with k ∈ Q(t). But
it is impossible to develop an algorithm that returns u−1, since the input is ψQ ◦ u.
In this example k = (3620968t+2379081)/(9063369t+6193880), which is relatively
small compared to the coefficients we are dealing with in ψ.

These computations have been performed with a specific library devoted to hy-
percircles [21] implemented on a modified version of the SAGE CAS [19]. See
Table 1 for the running time in several examples of odd degree extensions, the in-
put is the parametrization ψ of a planar curve C of degree deg(C) and a random
extension Q(α), α of degree n. Then we compute, ϕ the standard parametrization
of the associated hypercircle, [p1] + [p2] a degree two divisor of U defined over Q.

A unit v such that ψ(v) has coefficients over a quadratic extension Q(
√
d), the

birational conic F , a unit w associated with F and a simplification of v ◦ w in the
sense of Subsection 4.4. To make a comparison with other approaches, in the last
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Table 1. Running time of different components of the algorithm

deg(C), n ϕ [p], v, F w, u total implicit.+param.
5,3 0.28 0.54 0.20 1.01 0.94
10,3 0.59 0.53 0.20 1.33 >600
5,5 1.32 2.59 1.44 5.35 2.66
10,5 3.61 3.43 2.12 9.16 >600
5,7 26.49 34.62 157.17 218.27 10.77
10,7 35.74 29.92 123.17 188.83 > 600

column, we show the time taken by Singular [6] over the same input to compute the
implicit equation of C using resultants and compute a parametrization of C using
the library paraplanecurves.lib. The computations are done on an intel 64bits pro-
cessor, 2.6GHz (in seconds). We can appreciate that the method presented here is
especially useful for high degree curves with a relatively small algebraic extension.
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