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CERTIFICATION OF MODULAR GALOIS REPRESENTATIONS

NICOLAS MASCOT

Abstract. We show how the output of the algorithm to compute modular
Galois representations previously described by the author [Rend. Circ. Mat.
Palermo (2) 62 (2013), no. 3, 451–476] can be certified. We have used this pro-
cess to compute certified tables of such Galois representations obtained thanks
to an improved version of this algorithm, including representations modulo
primes up to 31 and representations attached to a newform with nonrational
(but of course algebraic) coefficients, which had never been done before. These
computations take place in the Jacobian of modular curves of genus up to 26.

We begin with a short summary about Galois representations attached to mod-
ular forms and how we used these in [Mas13] to compute Fourier coefficients of
modular forms in section 1. This computation becomes much easier if the polyno-
mial in Q[x] defining the representation and computed by the algorithm along the
way is reduced, and we show new ideas to do so efficiently in section 2. We then
show in section 3 how the outputs of this computation can be formally certified.
Finally, we comment on the use of this certification method on our own data in the
last section 4.

1. Introduction

Let f = q+
∑+∞

n=2 anq
n ∈ Sk

(
Γ1(N), ε

)
be a classical newform of weight k ∈ N�2,

level N ∈ N�1 and nebentypus ε. Jean-Pierre Serre conjectured and Pierre Deligne
proved in [Del71] that for every finite prime l of the number fieldKf = Q(an, n � 2)
spanned by the coefficients an of the q-expansion of f at infinity, there exists a
continuous Galois representation

Gal(Q/Q) −→ GL2(ZKf,l
)

which is unramified outside �N and such that the image of any Frobenius element
at p � �N has characteristic polynomial x2−apx+ ε(p)pk−1 ∈ ZKf,l

[x], where ZKf,l

denotes the l-adic completion of the ring of integers ZKf
of Kf , and � is the rational

prime lying below l.
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Let Fl be the residue field of l. By reducing the above l-adic Galois representation
modulo l and semisimplifying, we get a modulo l Galois representation

ρf,l : Gal(Q/Q) −→ GL2(Fl),

which is unramified outside �N and such that the image of any Frobenius element
at p � �N has characteristic polynomial x2 − apx+ ε(p)pk−1 ∈ Fl[x]. In particular,
the trace of this image is ap mod l.

In [Mas13], we described an algorithm based on ideas from the book [CE11]
edited by Jean-Marc Couveignes and Bas Edixhoven to compute such modulo l

Galois representations, provided that the image of the Galois representation con-
tains SL2(Fl) and that k < �. This gives a way to quickly compute the coefficients
ap modulo l for huge primes p. We have used this algorithm to compute represen-
tations attached to forms of level 1 for � up to 31.

In what follows, we will assume that the inertial degree of l is 1, so that Fl = F�.
Indeed, although there is no theoretical obstacle to allowing primes of higher degree,
we will have to deal explicitly with objects such as polynomials whose roots are
indexed by F�

2 \ {(0, 0)} and whose Galois group is GL2(F�), and this already
requires considerable work when Fl = F�.

The condition that the image of the Galois representation contain SL2(Fl) is
then generically satisfied. Indeed, by [Rib85, Theorem 2.1] and [Swi72, Lemma 2],
for any non-CM newform f (and in particular for any newform f of level 1), the
image of the representation ρf,l contains SL2(F�) for almost every l of degree 1.
The finitely many l of degree 1 for which SL2(F�) �⊂ Im ρf,l are called exceptional
primes of degree 1 for f , and we exclude them. They were explicitly determined by
Sir Peter Swinnerton-Dyer in [Swi72] for the known1 newforms f of level 1 whose
coefficients an are rational. In our case, this means we exclude l = 23 for f = Δ
and l = 31 for f = E4Δ.

Our algorithm relies on the fact that if k < �, then the Galois representation
ρf,l is afforded with multiplicity 1 by a subspace Vf,l of the �-torsion of the Jaco-

bian J1(�N) of the modular curve X1(�N) under the natural Gal(Q/Q)-action; cf.
[Gro90, Proposition 9.3.2] and [Mas13, Section 1].

The algorithm first computes the number field L = Q
Ker ρf,l

cut out by the
Galois representation, by evaluating a well-chosen function α ∈ Q

(
J1(�N)

)
in the

nonzero points of Vf,l and forming the polynomial

F (x) =
∏

v∈Vf,l

v �=0

(
x− α(v)

)
∈ Q[x]

of degree �2 − 1 whose decomposition field is L. The algorithm then uses a method
from T. and V. Dokchitser (cf [Dok10]) to compute the image of the Frobenius
element at p given a rational prime p � �N . This method involves the computation
of a family of resolvents

ΓC(x) =
∏
σ∈C

⎛⎜⎜⎝x−
∑

v∈Vf,l

v �=0

h
(
α(v)
)
α(σ · v)

⎞⎟⎟⎠ ∈ Q[x]

1According to Maeda’s conjecture (cf [FW02]), there are only 6 such forms, namely Δ, E4Δ,
E6Δ, E8Δ, E10Δ and E14Δ, of respective weights 12, 16, 18, 20, 22 and 26.
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indexed by the conjugacy classes C of GL2(F�), where h(x) ∈ Z[x] is some fixed
polynomial. These resolvents, which we will refer to as the Dokchitsers’ resolvents,
can then be used to determine which class the Frobenius element at p lies in for
almost all p ∈ N.

Remark 1. Actually, in order to obtain certified results, we will see that we should
certify the polynomial F (x) in the sense of section 3 before computing the Dokchit-
sers’ resolvents.

Unfortunately, the output of the algorithm, although correct beyond reasonable
doubt (cf. [Mas13], end of section 1), is not certified since it relies on the identifi-
cation of floating point numbers as rational numbers. The purpose of this article is
to show how these computations can be formally certified subsequently. As a side
effect, we also obtain much tidier outputs.

A word on notation. Throughout this article, we will be dealing with two ver-
sions of most of the objects in play, namely the actual value of this object, and
the version computed by the algorithm described above. For instance, the function
α ∈ Q
(
J1(�N)

)
being fixed, the polynomial

F (x) =
∏

v∈Vf,l

v �=0

(
x− α(v)

)
∈ Q[x]

is a well-defined object attached to α, f and l, but what the algorithm outputs
is an approximate version of this polynomial over C, whose coefficients are then
nonrigorously identified as rational numbers. Following the reviewer’s comments
on an older version of this article, we will denote the “true” value of F (x) with an

aureole, F̊ (x), so as to stress its “heavenly unattainable nature” (as the reviewer
put it), and we will reserve the notation F (x) to the polynomial “guessed” by the
algorithm, and similarly for the other objects at play. We will follow this convention
from now on, and we hope that doing so will reduce the confusion between the two
versions of each object, and make our certification process clearer.

2. Reducing the polynomials

Unfortunately, the coefficients of the polynomial F (x) produced by the algorithm
described in [Mas13] tend to have larger and larger height as � grows. More precisely,
in practice this polynomial is of the form

F (x) = xdegF +
1

d

∑
i<degF

cix
i,

where d is an (unfortunately large) positive integer and the ci are integers whose
gcd with d is several orders of magnitude smaller than d; in other words, apart
from the leading one, these coefficients roughly all have the same denominator,
with a few “accidental” simplifications here and there. The following table, which

shows the genus g = (�−5)(�−7)
24 of the modular curves X1(�) and the rough number

h ≈ log10 d of decimal digits in the denominator d of the polynomials F (x) associ-
ated to newforms of level N = 1 that we computed using the algorithm described
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in [Mas13], seems to indicate the heuristic h ≈ g2.5:

� g h
11 1 0
13 2 5
17 5 50
19 7 150
23 12 500
29 22 1800
31 26 2500

While this is rather harmless for � � 17, it makes the Dokchitsers’ method in-
tractable as soon as � � 29. It is thus necessary to reduce this polynomial, that is to
say, to compute another polynomial whose splitting field is isomorphic to the split-
ting field of F (x) but whose coefficients are much nicer. An algorithm to perform
this task based on LLL lattice reduction is described in [Coh93, Section 4.4.2] and
implemented in [Pari/GP] under the name polred. Its complexity is polynomial in
the degree and the height of the coefficients, provided that the factorisation of the
discriminant of the corresponding field is known, which is the case for us. However,
the polynomial F (x) has degree �2 − 1 and tends to have really large coefficients,
and this makes polred choke on it, even for small values of �. Indeed, the fact
that polred is based on LLL reduction means that its execution time is especially
sensitive to the degree of the polynomial.

On the other hand, it would be amenable to apply the polred algorithm to the
polynomial

F̊ proj(x) =
∏

W∈P(Vf,l)

⎛⎜⎝x−
∑
w∈W
w �=0

α(w)

⎞⎟⎠ ∈ Q[x]

whose splitting field is2 the number field L̊proj cut out by the projective Galois
representation

ρ̊projf,l : Gal(Q/Q)
ρ̊f,l

�� GL2(F�) �� �� PGL2(F�)

since the degree of this polynomial is only � + 1. Unfortunately, this projective
version of the representation does not contain enough information to recover3 the
values of ap mod l.

However, we noted in [Mas13, Section 3.7.2] that if S ⊂ F∗
� denotes the largest

subgroup of F∗
� such that S �� −1, then the knowledge of the quotient representation

ρ̊Sf,l : Gal(Q/Q)
ρ̊f,l

�� GL2(F�) �� �� GL2(F�)/S ,

2To be precise, it is clear that the splitting field of F̊proj(x) is contained in the number field

L̊proj cut out by the projective representation. Very often, this containment is an equality and so

F̊proj(x) is irreducible, but it may sometimes happen that this containment is proper, in which

case F̊proj(x) becomes reducible over Q. We can work around this pathological behaviour by

replacing the summation over W in the definition of F̊proj(x) by another symmetric combination
(e.g. a product), or by applying a Tschirnhausen transform. For notational convenience, we will
henceforth assume that no such problem is encountered; should this not be the case, the necessary
modifications are completely straightforward.

3One could at most recover these values with a sign ambiguity, as in [CE11].
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combined with the fact that the image in GL2(F�) of a Frobenius element at p
has determinant pk−1ε(p) mod l, is enough to recover ρ̊f,l and hence the values
of ap mod l. It is therefore enough for our purpose to compute this quotient
representation, first by forming the polynomial

F̊S(x) =
∏

Sv∈Vf,l/S
v �=0

(
x−
∑
s∈S

α(sv)

)
∈ Q[x],

whose splitting field is the number field L̊S cut out by ρ̊Sf,l, and then by applying
the Dokchitsers’ method on it in order to compute the images of the Frobenius
elements by ρ̊Sf,l; cf. [Mas13, Section 3.7.2].

Note that since we assumed that f and l are such that ρ̊f,l is not exceptional,4

the quotient representation ρ̊Sf,l is surjective. Indeed, since f is a form of level
N = 1 and of even weight, the determinant of ρf,l is an odd power of the mod �

cyclotomic character. In particular, the polynomial F̊S(x) is irreducible over Q.

Also note that the complex roots of F̊ (x) are approximately known as an output
of the algorithm [Mas13], and so is their indexation by Vf,l − {0}. We thus have
an indexation of the roots of F (x) by Vf,l − {0}, and so we can compute an ap-

proximation FS(x) ∈ Q[x] of F̊S(x) by grouping the roots, expanding over C, and
guessing the coefficients by continued fractions just as for F (x).

In practice, the coefficients of FS(x) have roughly the same denominator as the
ones of F (x), so we are not improving anything on this side, but of course the
degree of FS(x) can be much smaller, so we may try to polred it. Let �− 1 = 2rs
with s ∈ N odd. Since we have |S| = s, the degree of FS is 2r(�+ 1), so polreding
is amenable in the cases � = 19 or 23, but the cases � = 29 or 31 remain impractical.

For these remaining cases, Bill Allombert suggested to the author that one can
still reduce FS(x) in several steps, as we now explain. Since F∗

� is cyclic, we have
a filtration

F∗
� = S0 ⊃

2
S1 ⊃

2
· · · ⊃

2
Sr = S

with [Si : Si+1] = 2 for all i, namely

Si = {x2i , x ∈ F∗
�}.

For each i � r, let us define

F̊i(x) =
∏

Siv∈Vf,l/Si

v �=0

(
x−
∑
s∈Si

α(sv)

)
∈ Q[x],

let Fi(x) ∈ Q[x] be guesses for F̊i(x) obtained as for FS(x) above, let

K̊i = Q[x]/F̊i(x), Ki = Q[x]/Fi(x),

and let L̊i (resp. Li) be the normal closure of K̊i (resp. Ki), so that L̊i is the
number field cut out by the quotient representation

ρ̊Si

f,l : Gal(Q/Q)
ρ̊f,l

�� GL2(F�) �� �� GL2(F�)/Si .

4In the sense that its image contains SL2(F�).
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In particular, we have ρ̊S0

f,l = ρ̊projf,l , L̊0 = L̊proj, and we are looking for a nice model
of Kr.

Note that again because f is of level N = 1, and is not exceptional mod l, the
polynomials F̊i(x) are irreducible over Q, and so K̊i is indeed a field. We assume
that the Fi(x) are also irreducible.

By construction, the degree of K̊i over Q is #
(
(Vf,l − {0})/Si

)
= 2i(� + 1), so

the fields K̊i fit in an extension tower

K̊r

2

2r

...

2

K̊1

2

K̊0

�+1

Q

and we are going to polred the polynomials Fi(x) along this tower recursively from
the bottom up.

First, we apply directly the polred algorithm to F0(x) = F proj(x). Since the
degree of this polynomial is only � + 1, this is amenable, as mentioned above, and
yields a monic reduced polynomial in Z[x].

Then, assuming we have managed to reduce Fi(x), we have a nice model for
Ki = Q[x]/Fi(x), and so we can factor Fi+1(x) over Ki. Since the extension
Ki+1 = Q[x]/Fi+1(x) should be quadratic over Ki, there must be at least one factor
of degree 2. Let Gi+1(x) be one of those, and let Δi ∈ Ki be its discriminant, so
that we have

Ki+1 	 Ki[x]/Gi+1(x) 	 Ki

(√
Δi

)
.

In order to complete the recursion, all we have to do is to strip Δi from the largest
square factor we can find, say Δi = A2

i δi with Ai, δi ∈ Ki and δi as small as possible.
Indeed we then have Ki+1 = Ki

(√
δi
)
, and actually even Ki+1 = Q

(√
δi
)
unless

we are very unlucky,5 so that if we denote by χi(x) ∈ Q[x] the minimal polynomial
of δi, then we have

Ki+1 	 Q[x]/χi(x
2),

so that χi(x
2) is a reduced version of Fi+1(x). If its degree and coefficients are not

too big, we can even apply the polred algorithm to this polynomial in order to
further reduce it, which is what we do in practice.

5In practice, the case Ki+1 � Q
(√

δi
)
has never happened to us. Should it happen, it can be

corrected by multiplying δi by the square of an (hopefully small) element in Ki.
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In order to write Δi = A2
i δi, we would like to factor Δi in Ki, but even if Ki is

principal, this is not amenable whatsoever because Δi is huge. We can, however,
consider the ideal generated by Δi in Ki, and remove its �N -part. The fractional
ideal Bi we obtain must then be a perfect square, since Ki+1 is unramified outside
�N (since L is), and the very efficient idealsqrt script from [BS14] can explicitly
factor it into Bi = A2

i . If Ai denotes an element in Ai close to being a generator
of Ai (an actual generator, if amenable, would be even better), then δi := Δi/A

2
i

is small.
We have thus managed to reduce our polynomials Fi(x). In what follows, we

will use the notation Fi(x) to refer to the reduced versions, which are monic and
lie in Z[x]. They were each obtained from the nonreduced version by an explicit
change of variable, and we can apply the same changes of variables to the “true”
polynomials F̊i(x), thus yielding new polynomials that we will denote by F̊i(x) from
now on.

3. Certification of the computations

The output of the algorithm relies on the identification as rational numbers of
the coefficients of the polynomials Fi(x) given in approximate form as floating-
point numbers, by using continued fractions. In order to certify these results, it
is thus necessary to make sure the we have correctly identified not only that the
number fields cut out by the representation (i.e., that Ki = K̊i), but also the Galois
action on the roots of the Fi(x), otherwise we would be doing nonsense with the
Dokchitsers’ resolvents ΓC(x).

For this, a first possibility consists in proving bounds on the height of the rational
numbers that the algorithm will have to identify (e.g., the coefficients of F̊ (x)),
and then to certify that the continued fraction identification process is correct,
for instance by running the computation with high enough precision in C and
controlling the round-off errors all along. Although it is indeed possible in theory
to bound the height of these rational numbers by using Arakelov theory (cf. [CE11,
Theorem 11.7.6]), this approach gives unrealistic titanic bounds and thus seems
ominously tedious, especially as it requires controlling the round-off error in the
linear algebra steps of K. Khuri-Makdisi’s algorithms to compute in the modular
Jacobian (cf. [Mas13, Section 3.3]). We have therefore not attempted to follow it.

Instead, we deemed it much better to first run the computations in order to
obtain unproven results, and to prove these results afterwards. We explain in this
section how to do so.

3.1. Sanity checks. Before attempting to prove the results, it is comforting to
perform a few easy checks so as to ensure that they seem correct beyond reasonable
doubt (cf. the end of section 1 in [Mas13]). Namely,

• Since we are working with a form of level N = 1, the number field L̊ cut
out by the Galois representation ρ̊f,l is ramified only at �. Therefore, we
can check that the discriminant of the polynomial F (x) ∈ Q[x] is of the
form

±�nM2

for some M ∈ Q∗. Even better, we can compute the maximal order of
the field K = Q[x]/F (x) whose Galois closure is L and check that its
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discriminant is, up to sign, a power of �. Since a number field ramifies at
the same primes as its Galois closure, this proves that the decomposition
field L of F (x) is ramified only at �, as expected. If the coefficients of F (x)
are too horrible for that, we can apply this check on Fr(x) instead.

• Since Galois representations attached to modular forms are odd, the image
of complex conjugation by these representations is an involutory matrix in
GL2(Fl) of determinant −1, hence similar to

[
1 0
0 −1

]
if � � 2. This means

that the polynomial F (x) of degree �2−1 computed by the algorithm should
have exactly � − 1 roots in R, which can be checked numerically, and that
the sign of its discriminant should be (−1)�(�−1)/2, which can be checked
exactly.

• The fact that the resolvents ΓC(x) computed by the Dokchitsers’ method
and used to identify the image of Frobenius elements seem to have integer
(and not just complex) coefficients hints that Gal(L/Q) is indeed isomor-
phic to a subgroup of GL2(F�), so that the number field L is indeed a
number field cut out by a Galois representation, and that the Galois action
on Vf,l ⊂ J1(�)[�] is linear. Again, we can replace F (x) with Fr(x) and
GL2(F�) with GL2(F�)/Sr to ease computation.

• The fact that the approximations Fi(x) of the polynomials F̊i(x) computed
by regrouping the roots of F (x) along their S-orbits for the various sub-
groups S ⊆ F∗

� considered during the polynomial reduction process (cf.
section 2) seem to have rational coefficients with common denominator di-
viding the one of F (x) also hints that the coefficients of these polynomials
have been correctly identified as rational numbers, that Gal(L/Q) is indeed
isomorphic to a subgroup of GL2(F�), and that the Galois action on the
roots of F (x) is the expected one.

• Finally, we can check that the values ap mod l obtained by the algorithm
for a few small primes p are correct, by comparing them with the ones
computed by “classical” methods such as based on modular symbol-based
ones.

We will now present a method to formally prove rigorously our computations,
while keeping the amount of required extra computations to a minimum.

3.2. A certification algorithm. We keep the notation of section 2: we fix a prime
� � 5, and we let r ∈ N be such that �− 1 = 2rm for some odd m ∈ N, so that we
have the filtration

F∗
� = S0 ⊃

2
S1 ⊃

2
· · · ⊃

2
Sr = S

with #Sr odd and [Si : Si+1] = 2 for all i. Let V = F�
2−{0}, the vector plane minus

the origin, on which GL2(F�) acts transitively, and let Vi = V/Si, so that we have a

natural transitive action of GL2(F�)/Si on Vi. We denote by πi : Vi+1
�� �� Vi the

natural projection, and we note for future reference that each element of GL2(F�)/Si

has a well-defined trace in F�/Si, as well as a well-defined determinant in F∗
�/S

2
i ,

where

S2
i = {s2, s ∈ Si} =

{
Si+1, if i < r,
Si, if i = r.
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For each 0 � i � r, we have constructed a monic, irreducible polynomial
Fi(x) ∈ Z[x] of degree 2i(� + 1). Let Ki be the root field of Fi(x), let Li be
its Galois closure. We have that Ki+1 is a quadratic extension of Ki, generated by
the square root of some explicitly known integral primitive element δi of Ki, as this
is a by-product of the reduction process presented in section 2.

For each i, let Zi ⊂ C denote the set of complex roots of Fi(x). As noted in

section 2, we have an indexation of Zi by Vi, which we denote by θi : Zi
∼−→ Vi.

Via these indexations, the Galois action on the Zi should be “linear”, but we do
not know that yet.

Moreover, by construction of the Fi(x), for each root z ∈ Zi+1 there exists
another root z′ ∈ Zi+1 such that z + z′ is extremely close to a root of Fi(x). We
can check numerically that each root of Fi(x) is the sum of two roots of Fi+1(x) in

a unique way, whence 2-to-1 projections map �i : Zi+1
�� �� Zi such that

z ≈
∑

z′∈Zi+1

�i(z
′)=z

z′

for all z ∈ Zi.
We can check that these approximate identities are in fact exact, i.e.,

(T) z =
∑

z′∈Zi+1

�i(z
′)=z

z′,

by computing rigorously6 for each i the polynomial

∏
I∈(Zi

2 )

(
x−
∑
z∈I

z

)
∈ Z[x],

where
(
Zi

2

)
denotes the set of 2-element subsets of Zi, and by checking that Fi(x)

divides this polynomial and that the complex roots match as expected. We can
then also check numerically that the diagram

(Π)

Zi+1

�i

����

∼
θi+1

�� Vi+1

πi

����

Zi
∼
θi

�� Vi

commutes for each i, as expected. This proves that the projections πi are Galois-
equivariant.

What we want to prove is that there exists a compatible7 system of isomorphisms
between Gal(Li/Q) and GL2(F�)/Si such that the Galois action on Zi is equivalent

6Here and in what follows, by rigorously we mean by the use of exact methods such as resul-
tants, as opposed to the expansion of the product over a nonexact field followed by the identifica-
tion of the coefficients as elements of Z or Q.

7Here and in what follows, by compatible we mean compatible with the natural projections
from objects at level i+ 1 to objects at level i.
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via our bijections θi to the natural action of GL2(F�)/Si on Vi, so that the diagram

Gal(Li/Q) ��

��

Sym(Zi)

��

Gal(Li+1/Q)

������������������������
��

��

Sym(Zi+1, �i)

��

���������������������

GL2(F�)/Si
�� Sym(Vi)

GL2(F�)/Si+1

������������������������
�� Sym(Vi+1, πi)

���������������������

commutes for all i, where the vertical arrows are isomorphisms, Sym(Vi+1, πi) de-
notes the group of permutations of Vi+1 that admit the fibres of the projection πi

as a block system, and similarly for Sym(Zi+1, �i).
Furthermore, we also want to prove that for all i, the Galois action on Zi affords

a quotient Galois representation ρSi

f,l which is equivalent to ρ̊Si

f,l. For brevity, we will

then say that the polynomials Fi(x) correspond to ρ̊f,l.
We will present two methods to rigorously prove that our polynomials Fi(x)

correspond to a Galois representation ρ, the second one being more efficient but
unfortunately much more complicated than the first one. We will then finally show
how to prove that ρ ∼ ρ̊f,l.

Both methods require that we first check that F0(x) indeed corresponds to ρ̊projf,l ,
so we start by showing how this can be done.

3.3. Certification of the projective representation.

3.3.1. Certification of the Galois group of F0(x). We thus begin with the polyno-

mial F0(x), which ought to correspond to the projective Galois representation ρ̊projf,l .
The first thing to do is to make sure that this polynomial does define a projective
Galois representation, by proving that there exists an indexation of Z0 by P1(F�)
such that Gal(L0/Q) is permutation isomorphic to a subgroup of PGL2(F�) acting
on P1(F�). Since by assumption f has level N = 1 and is not exceptional mod l,
we actually expect Gal(L0/Q) to be isomorphic to the whole of PGL2(F�).

In principle, we could prove this by computing the polynomial

R4(x) =
∏

z1,z2,z3,z4∈Z0
pairwise distinct

(
x−

4∑
n=1

λnzn

)
∈ Z[x]
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by rigorous methods (e.g., resultants), and by checking how it factors over Q.
Here, the λn are fixed integers chosen so that R4(x) is squarefree, so that R4(x)
monitors the action of Galois on quadruplets of roots of F0(x). The point is that a
permutation of P1(F�) comes from PGL2(F�) if and only if it preserves cross-ratios,
and this should become apparent in the factorisation of R4(x).

However, the degree of R4(x) is approximately �4, which is quite large for � =
31, not to mention that since the parameters λn must necessarily be distinct, the
coefficients of R4(x) will be huge. As a result, computing R4(x) would be too slow
in practice.

We can instead compute the polynomial

R4,sym(x) =
∏

I∈(Z0
4 )

(
x−
∑
z∈I

z

)
∈ Z[x],

where the notation
(
X
n

)
means the set of unordered subsets of cardinal n of the

set X. This polynomial monitors the action of Galois on unordered quadruplets
of roots of F0(x), and compared to R4(x), its degree is 24 times smaller, and its
coefficients are much smaller, so that computing it is much more amenable. It
turns out that the way R4,sym(x) factors is enough to indicate that Gal(L0/Q) is a
subgroup of PGL2(F�) in most cases.

To make this claim more precise, let us fix some notation: we let k be a field8

of characteristic different from 2, and let H be the so-called anharmonic group,
that is to say, the group of permutations of P1(k) generated by λ 
→ 1 − λ and
λ 
→ 1/λ. It is well known that H 	 S3 is the stabiliser of the set {∞, 0, 1} for
the action of PGL2(k) on P1(k), and that if (a, b, c, d) ∈ P1(k)4 is a quadruplet of
pairwise distinct points, then the cross-ratios of all possible 24 permutations of this
quadruplet form an orbit under H. Moreover, since the fibres of the map

j : P1(k) \ {∞, 0, 1} −→ k

λ 
−→ 256 (1−λ+λ2)3

λ2(1−λ)2

are precisely the H-orbits,9 the composition of the cross-ratio with j yields a well-
defined “unordered cross-ratio” map

u :
(
P1(k)

4

)
−→ k

{a, b, c, d} 
−→ j([a, b, c, d]),

where [·, ·, ·, ·] denotes the usual cross-ratio. This map is constant if and only if the
anharmonic group H acts transitively on P1(F�) \ {∞, 0, 1}. Since a H-orbit has at
most 6 elements, it is easy to see that for k = F� with � ∈ N prime, u is constant if
and only if � � 5.

Theorem 2. If � �= 5, then the permutations of P1(F�) that preserve the unordered
cross-ratio map u are precisely the ones that come from PGL2(F�).

8We have k = F� in mind, but we would like to make general statements.
9This is because j(λ) is the j-invariant of the Legendre curve y2 = x(x − 1)(x − λ), so that

the map j we define is the projection from the modular curve X(2) (identified to the λ-line via
Legendre curves) to X(1) (identified to the j-line), and because H is the Galois group of the
covering X(2) −→ X(1) under these identifications. The author thanks S. Siksek for bringing this
to his attention.
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Proof. If � � 3, then every permutation of P1(F�) comes from PGL2(F�) and so there

is nothing to prove. We may therefore assume that � � 7. But then u :
(
P1(k)

4

)
−→ k

is not a constant map, so its stabiliser in S�+1 is a strict subgroup S < S�+1 which
clearly contains PGL2(F�). But PGL2(F�) is a maximal subgroup of S�+1 according
to the following theorem, whence the result. �
Theorem 3. Let � � 5 be a prime. The permutation group PGL2(F�) of P

1(F�) is
a maximal subgroup of the symmetric group S�+1.

Proof. Since � � 5, PGL2(F�) is a strict subgroup of S�+1. Suppose that there is a
group X such that PGL2(F�) < X < S�+1. Then X is at least 3-transitive. By
looking through the list of 2-transitive finite permutation groups given in section
7.7 of [DM96], it can be derived that the 3-transitive finite permutation groups are
the following:

• the projective semilinear groups G with PSL2(Fq) � G � PΓL2(Fq), where
q is a power of a prime p and G �� PΣL2(Fq) if p �= 2, degree q + 1,

• the affine groups AGLn(F2) = Fn
2 �GLn(F2), degree 2n,

• the group F4
2 � A7, degree 16,

• the Mathieu groups M11, M12, M22, Aut(M22), M23 and M24, respective
degrees 11 or 12, 12, 22, 22, 23, 24,

• the alternating groups An (n � 5), degree n,
• and the symmetric groups Sn (n � 3), degree n,

where PΓL2(k) (resp. PΣL2(k)) denotes the permutation group of P1(k) generated
by PGL2(k) (resp. PSL2(k)) and by the automorphisms of the ground field k.

As we want degree � + 1 with � prime, this only leaves AGLn(F2), M11, M12,
M24 and A�+1 as candidates for X. However, these groups are all perfect, so they
all act by even permutations and thus cannot contain PGL2(F�). �

As far as we are concerned, the main consequence of this is that it is enough to
see how R4,sym(x) factors to prove that Gal(L0/Q) is permutation isomorphic to a
subgroup of PGL2(F�), and this is a stark improvement compared to working with
R4(x), whose degree is 24 times larger.

The computer algebra package [Magma] contains two functions named, respec-
tively, GaloisGroup and GaloisProof whose aim is to compute Galois groups by
the algorithm described in [FK14]. The former, when supplied with an irreducible
polynomial f(x) ∈ Z[x] and a prime number v ∈ N, tries to guess the Galois group
of f(x) as a permutation group acting on the v-adic roots of f(x), albeit nonrigor-
ously; in order to get a certification of this result, it is necessary to then apply the
latter function.

In our case, if we pick a prime p ∈ N such that F0(x) is irreducible10 mod p,
then when we call GaloisGroup on

(
F0(x), p), it only takes a few seconds (even

for � = 31) for [Magma] to return a guess for Gal(L0/Q), thanks to the efficiency
of [FK14], the fact that F0(x) is of degree only � + 1 and has been polreded, and
to the nontrivial information provided by the cyclic action of the Frobenius at p
on the p-adic roots of F0(x). However, as explained above, this is not rigorous, so
we then call GaloisProof, which forces [Magma] to compute and factor R4,sym(x)
rigorously so as to verify the output of GaloisGroup. This takes of course much

10Such a prime should exist and should not be too hard to come by, as a nonnegligible pro-

portion
(

ϕ(�+1)
2(�+1)

, to be precise
)
of elements of PGL2(F�) act as (�+ 1)-cycles on P1(F�).
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longer (up to 4 days for � = 31), and in fact this is by far the most time-consuming
part of the whole certification process of our polynomials, at least for large �.

We then check explicitly that this Galois group is permutation-isomorphic to
PGL2(F�) acting on P1(F�). We fix such an isomorphism,11 and we will use it to
identify Gal(L0/Q) with PGL2(F�) from now on. This yields a bijection θ0 between
the roots of F0(x) in Qp and P1(F�) which makes the Galois action equivalent to
the natural action of PGL2(F�) on P1(F�).

3.3.2. Correctness of the projective representation. Now that we have made sure
that the Galois action on the roots of F0(x) does define a projective representation

ρproj : GQ
�� �� Gal(L0/Q) PGL2(F�) ,

we want to prove that this representation is isomorphic to ρ̊projf,l as expected. For

this, we use the following result from [Bos07, Section 2]:

Theorem 4. Let π : GQ −→ PGL2(F�) be an irreducible projective mod � Galois
representation, where � � 3. Let H < PGL2(F�) be the stabiliser of a point of

P1(F�), and let K = Q
π−1(H)

be the corresponding number field. If K has exactly
two real places, and if there exists an integer k � 3 such that

discK = ±�k+�−2,

then there exists a newform f ∈ Sk(1) and a prime l of Q above � such that

π ∼ ρ̊projf,l .

Sketch of proof. By assumption, the image of complex conjugation by π is a non-
trivial matrix which is diagonalisable over F�, and so π is absolutely irreducible.
The idea is then that π can be lifted to a linear representation

ρ : GQ −→ GL2(F�)

which, just like π, is absolutely irreducible, odd, and ramifies only at �. Serre’s
modularity conjecture (cf. [KW09]) then applies and shows that ρ is modular, say
ρ ∼ ρ̊f,l for some newform f ∈ Skρ

(Nρ, ερ) and some prime l of Q above �. Then,
since ρ ramifies only at �, its Artin conductor is a power of �, so ρ comes from a
form f of level Nρ = 1. Finally, if the lift ρ is chosen so that the weight kρ of f is
minimal, then [MT03, Theorem 3] gives a formula for the �-adic valuation of the
discriminant of the Galois number field cut out by ρ, which by J. Bosman’s work
boils down to

discK = ±�kρ+�−2.

�

Thus, in order to prove that ρproj ∼ ρ̊projf,l , all we have to do is count the real roots

of F0(x), which can be done by using Sturm’s method (cf. [Lan02, Chapter XI,
Theorem 2.7]), and check that the discriminant of the root field Kproj = Q[x]/F0(x)
is ±�k+�−2, which is a piece of cake for [Pari/GP]. If k is such that dimSk(1) = 1,

e.g., k � 22, then this is enough to conclude that ρproj ∼ ρ̊projf,l , as the coefficients of
f are then rational so that the choice of the prime l lying above � does not matter.

11Note that as every automorphism of PGL2(F�) is inner, our isomorphism must be the “right”
one.
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In the case dimSk(1) > 1, we can check that the newforms in Sk(1) are all
conjugate under Galois as predicted by Maeda’s conjecture, and so we only have
to make sure that ρproj ∼ ρ̊projf,l for the right prime l above �. For instance, in

the case � = 31, k = 24, we have that S24(1) has dimension 2 and is spanned by
the two conjugates of a newform f24 =

∑
n�1 τ24(n)q

n whose eigenvalues lie in a

quadratic field; since 31 splits in this field, say 31 = l1l2, we know that ρproj is
equivalent either to ρ̊projf24,l1

or to ρ̊projf24,l2
. In order to tell which, we pick a small

prime p ∈ N such that F0(x) is squarefree mod p (in particular p �= �), and such
that τ24(p) ≡ 0 mod l1 but τ24(p) �≡ 0 mod l2 (the opposite would do too). Since
an element of PGL2(F�) is of order 2 if and only if it has trace 0, looking at the
factorisation of F0 mod p allows us to tell l1 and l2 apart: if F0(x) mod p splits into
linear and quadratic factors but does not split completely, then it is associated to
ρ̊projf24,l1

, otherwise it is associated to ρ̊projf24,l2
.

3.4. Two approaches to the certification of the Galois groups of the Fi(x).
In principle, we could simply ask again [Magma] to determine the Galois group of
the Fi(x), as we did above for F0(x). However, the permutation groups GL2(F�)/Si

are not characterised as nicely as PGL2(F�), which can be defined as the group of
permutations of P1(F�) that preserve cross-ratios. As a result, Magma would have
to rely on much more involved group-algorithmic methods, which would make the
computation much slower.12 We are going to present methods which require much
less computation, and which also yield proofs that are more human-readable.

We are actually going to present two methods to exhibit a permutation iso-
morphism between the Galois group of Fr(x) and GL2(F�)/Sr acting naturally on
Vr = V/Sr. The first one, which we present in section 3.5, is the more natural one,
and is entirely due to the reviewer of an older version of this article; the author
wishes to thank him profusely for this. Unfortunately, it leads to computations
which, albeit not as slow as a blunt [Magma] attack, still require quite a bit of com-
putation time. The method that we will present in the next section 3.6 requires
much less computation time; unfortunately, it is also much more complicated to
explain.

3.5. The geometric approach. The method presented in this section could be
used with pretty much any representation ρ̊ : Gal(K/K) −→ GL2(F�) whose quo-
tients ρ̊Si are surjective, where K can be any field13 in which we can perform
computations such as polynomial factorisation.

In this section, we thus suppose that we have a collection of irreducible poly-
nomials Fi(x) ∈ K[x], 0 � i � r, which ought to correspond to such a Galois
representation ρ̊. We also suppose that the Fi(x) split completely in some exten-
sion14 Ω of K, and that we have conjectured a compatible system of bijections
(θi)0�i�r between the roots of Fi(x) in Ω and the Vi such that we expect the Galois
action on the roots of Fi(x) to be permutation isomorphic to GL2(F�)/Si acting

12In fact, the GaloisGroup function can still make the right guess pretty quickly, but this guess
must then be proved by calling the GaloisProof function, and this is far too slow because of the
degree of the polynomials Fi(x) for i > 0. For instance, for Δ mod 19, it takes [Magma] four
days to laboriously manage to certify that the Galois group of F1(x) is permutation isomorphic
to GL2(F19)/F∗2

19. By comparison, the method presented in section 3.6 below merely takes a few

minutes.
13We have a number field in mind.
14We have Ω = C or some finite extension of Qp in mind.
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naturally on Vi, and such that the relations (Π) and (T) defined on page 389 hold
between the roots of Fi(x) and those of Fi+1(x) for all i < r. For each i, we identify
via θi the set of roots of Fi(x) with Vi, and the Galois group of Fi(x) with a permu-

tation group of Vi; the projections πi : Vi+1
�� �� Vi are then Galois-equivariant.

Finally, we also assume that we have managed to prove that the Galois group of
F0(x) is indeed permutation isomorphic to PGL2(F�) via θ0 by a method similar
to the one described in section 3.3.1 above. We may thus identify the Galois group
of F0(x) with PGL2(F�).

Our goal is to prove that the Galois group of Fr(x) is contained in GL2(F�)/Sr.
The key idea of the method presented in this section is to prove that its action on Vr

is “linear”. However, as the addition of vectors does not descend to a well-defined
operation on Vr, this is not completely straightforward.

To begin with, the relation (T) tells us that the Galois group of Fr(x) is a
subgroup of the wreath product Sym(F∗

�/Sr) � PGL2(F�). We first want to prove
that it is actually a subgroup of (F∗

�/Sr) �PGL2(F�), in other words that the action
of Galois commutes with scalar multiplication.

Clearly, it is enough to prove that Galois commutes with the scalar multiplication
by a generator ε of F∗

�/Sr. To do so, we compute by interpolation a polynomial

Ẽ(x) ∈ Ω[x] which, for all v ∈ Vr, maps the root of Fr(x) indexed by v to the
root indexed by ε · v. We then try to identify the coefficients of this polynomial
as approximations of elements of K, whence a polynomial E(x) ∈ K[x]. If E(x)
indeed approximately maps the root indexed by v to the one indexed by ε · v for all
v ∈ Vr and if Fr(x) divides Fr ◦E(x), this proves that the Galois action commutes
with scalar multiplication on Vr.

We expect this approach to succeed since multiplication by ε indeed defines an
automorphism not only of the splitting field but also of the root field K[x]/F̊r(x) of

F̊r(x). Moreover, interpolating over the roots of Fr(x) amounts to solving a linear
system whose determinant is the discriminant of Fr(x), so that the coefficients of
E(x) should not be too difficult to identify if the ones of Fr(x) are nice. In practice,
with our polreded polynomial Fr(x) ∈ Z[x], it indeed takes just a few seconds to
compute E(x) ∈ Q[x] and to check that Fr ◦ E(x) ≡ 0 mod Fr(x).

We may thus assume henceforth that the Galois group of Fr(x) is contained in
P = (F∗

�/Sr) � PGL2(F�). Let us consider, for all triples (L1, L2,M) ∈ P1(F�)
3 of

pairwise distinct vector lines in F2
� , the map

tL1,L2,M : L1 −→ L2

that sends a point x ∈ L1 to the intersection of L2 and of the line through x that
is parallel to M (cf. Figure 1).

Clearly, for all S � F∗
� , this map descends to a map

tSL1,L2,M : L1/S −→ L2/S.

If we now let X denote the set of triples (v1, v2,M) ∈ Vr ×Vr ×P1(F�) such that
the line L1 spanned by v1, the line L2 spanned by v2, and the line M are pairwise
distinct, we can define another map

Λ: X −→ F∗
�/Sr

by sending (v1, v2,M) to the unique scalar λ ∈ F∗
�/Sr such that v2 = λ·tSL1,L2,M

(v1).
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L1

L2 M �M

(0, 0)

x

tL1,L2,M (x)

Figure 1

The group GL2(F�)/Sr acts diagonally onX, and it is clear that Λ is invariant under
this action. Conversely, we have the following:

Lemma 5. Let σ ∈ P . If Λ(σ·v1, σ·v2, σ·M) = Λ(v1, v2,M) for all (v1, v2,M) ∈ X,
then σ ∈ GL2(F�)/Sr.

Proof. Let σ ∈ P be such an element, and let g ∈ GL2(F�)/Sr have the same image

in PGL2(F�) as σ. Then σ′ = g−1σ lies in (F∗
�/Sr)

P1(F�) and leaves Λ invariant, and
so in fact lies in the diagonal F∗

�/Sr. It follows that σ ∈ GL2(F�)/Sr. �
As a result, all we need to do is check that Λ is invariant under Galois. This

leads us to the resolvent

R(x) =
∏

(α1,α2,α3)∈Z

(
x−

3∑
i=1

λiαi

)
∈ K[x],

where the λi ∈ Z are parameters chosen so that R(x) is squarefree, and Z is the set
of triples (α1, α2, α3) with α3 a root F0(x), α1,α2 roots of Fr(x), and α1, α2 and α3

corresponding to three distinct roots of F0(x) under the correspondence (T). If we
can compute R(x) rigorously and prove that it factors along the fibres of Λ, then
we have proved that the Galois group of Fr(x) is contained in GL2(F�)/Sr.

Unfortunately, just like the resolvent R4(x) from section 3.3.1, the resolvent R(x)
would take a lot of time to compute in our case. Indeed, its degree is 22r(�3−�), and
for us this is too much: we have � � 31 in mind, but even if we restricted ourselves to
the primes � ≡ −1 mod 4 so that r = 1 so as to get an asymptotic degR(x) = O(�3),
which is better than the degrees degR4(x) = O(�4) of the resolvents considered in
section 3.3.1, we would still have

degR(x) � degR4,sym(x),
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due to the factor 24 in degR4,sym(x) =
(
�+1
4

)
∼ �4/24. In fact, it can easily be

checked that degR(x) > degR4,sym(x) for all � < 103, which incidentally illustrates
again how useful switching from R4(x) to R4,sym(x) was in section 3.3.1.

As certifying the Galois group of F0(x) thanks to the resolvent R4,sym(x) already
took up to 4 days for � = 31, this is a real problem. For this reason, we introduce
another method to certify the Galois group of the Fi(x) in the next section. This
other method is much more complicated, but the computation time it requires is
almost negligible compared to the time needed to certify the Galois group of F0(x),
at least when r � 2.

3.6. The group cohomology approach. Just like the method presented in the
previous section, the method that we are now going to introduce could be applied
to a more general framework than the case of modular Galois representations at-
tached to forms of level 1. It is not as general as the previous one though, in that
it requires working with representations ρ̊ : Gal(Q/Q) −→ GL2(F�) whose image
contains SL2(F�) and whose determinant is still an odd power of the mod � cy-
clotomic character. For instance, it could be used to certify Galois representation
computations attached to newforms of any level, but of trivial nebentypus.

Therefore, in this section we merely suppose that we want to prove that the
polynomials Fi(x) ∈ Z[x] correspond to such a Galois representation ρ̊. In partic-
ular, this implies that ρ̊Si surjects to GL2(F�)/Si for all i. We also suppose that
we have a relation of the form (T) between the roots of Fi(x) and Fi+1(x), that
is to say, that for all i < r, any root of Fi(x) is the sum of precisely two roots
of Fi+1(x). However, even though we want to prove the existence of a compatible
system of indexations of the sets Zi of roots of Fi(x) by Vi making the Galois action
permutation isomorphic to the natural action of GL2(F�)/Si, this time we do not
suppose that we already have a candidate for such a system of indexations. Indeed,
we are going to work with p-adic roots, whereas our algorithm [Mas13] returns a
candidate indexation of the complex roots of the Fi(x). We therefore let Zi denote
the set of roots of Fi(x) in some large enough extension of Qp, where p ∈ N is some
fixed prime. We reserve the letter p for this prime from now on.

Remark 6. It could be argued that since Magma’s function GaloisGroup is so
efficient, we could easily find a candidate for such a system of indexation of the
Zi by the Vi if we wanted to. However, we would still have to prove that this
indexation is correct, and the method which we are going to present will involve
constructing a certified system of indexations from scratch anyway.

In the last steps of the method presented in this section, it will be necessary to
assume that p is such that Fr(x) (and hence all the Fi(x)) is irreducible mod p,
and it will be convenient to further assume that p is rather large, say roughly the
size of a machine word. Just as in the projective case, there are plenty of elements
of GL2(F�)/Sr which act as transitive cycles on Vr, so such a prime should not be
too difficult to come by. We thus henceforth assume that p is such a prime, and
that we gave this p as a parameter to [Magma] when we certified that the Galois
group of F0(x) may be identified to PGL2(F�) as a permutation group of Z0.

Finally, as before we let Ki denote the root field Ki = Q[x]/Fi(x) of Fi(x),
and Li denote its Galois closure, and we suppose that for each i < R we know a
primitive integral element δi ∈ Ki such that Ki+1 = Ki(

√
δi).
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The idea of the method which we are going to present is to first see the Galois
group of Fi(x) as a group extension of PGL2(F�) of a certain kind, then to use
explicit group cohomology arguments so as to establish a finite list of possibilities for
this group, and next to rely on ramification arguments to eliminate all possibilities
but one.15 This process will rely on an induction on i, and will allow us to prove
that Gal(Li/Q) 	 GL2(F�)/Si as an abstract group. We will then prove, again
by induction on i, that this isomorphism can be turned into an isomorphism of
permutation groups, in other words that Galois acts on Zi in the expected way.
Finally, we will use the Frobenius at p to determine explicitly a system of indexation
of the Zi by the Vi corresponding to this isomorphism.

3.6.1. Certification of the Galois group of Fi(x) as an abstract group. Let

Q = κ0 �
2
κ1 �

2
· · · �

2
κr ⊆

odd
Q(μ�)

be the subfields of the cyclotomic extension Q(μ�) such that for all 0 � i � r,

Gal(κi/Q) 	 Z/2iZ. Thus for instance κ1 = Q(
√
�∗), where �∗ =

(−1
�

)
�.

Consider the following assertions:

(A1) If C ⊆ Lr is a Galois subfield of Lr such that Gal(C/Q) 	 Z/2kZ for some
integer k � r + 1, then C ramifies only at �.

(A2) For each i < r, let Δi(x) ∈ Z[x] be the monic minimal polynomial of δi
over Q, and let

Qi(x) =
Resy
(
Δi(y),Δi(xy)

)
(x− 1)2i(�+1)

∈ Z[x].

Then, for each irreducible factor R(x) of Qi(x) over Q, there exists an
integer j � i such that the field Q[x]/R(x) does not contain κj+1, whereas
the algebra Q[x]/R(x2) does contain κj+1 (as a subalgebra with unit).

(A3) For each i < r, there exists a prime v ∈ N such that Fi(x) is squarefree and
totally split mod v, but Fi+1(x) is not.

We do not know yet whether these assertions hold, but, we expect them to:

(1) Since the abelianisation of GL2(F�) is given by the determinant, if, as ex-
pected, the polynomials Fi(x) have Galois group GL2(F�)/Si and corre-
spond to a Galois representation whose determinant is a power of the mod
� cyclotomic character, then the maximal Abelian subextension of Lr will
be contained in the cyclotomic extension Q(μ�); we therefore expect (A1)
to hold.

Conversely, we note that if (A1) holds, then any 2-cyclic subextension
field Lr is contained in Q(μ�∞), hence in Q(μ�). Since PGL2(F�) has a
quotient PGL2(F�)/PSL2(F�) of order 2, the fields Li ⊃ L0 all have at

least one quadratic subfield, which must then be κ1 = Q(
√
�∗), and in

particular be unique. We will use this fact repeatedly to prove Theorem 7
below.

(2) We expect (A2) to hold, but it will make much more sense to explain
why after the proof of Lemma 9 below, so we postpone the explanation

15This is where we need the hypothesis that det ρ̊ is a power of the mod � cyclotomic character
for our approach to have a chance to work.
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to Remark 10. For now, we just note that for any polynomial P (x) =∏n
i=1(x− αi) such that P (0) �= 0,

Resy
(
P (y), P (xy)

)
= (−1)nP (0)

∏
i,j

(
x− αi

αj

)
,

so that

Resy
(
P (y), P (xy)

)
(x− 1)n

= (−1)nP (0)
∏
i �=j

(
x− αi

αj

)
.

Therefore, Qi(x) is indeed a polynomial.
(3) Finally, we also expect (A3) to hold: for each i, it suffices to consider a

prime at which the Frobenius element is [ ε 0
0 ε ] for some ε ∈ Si − Si+1. We

can thus even predict that at such a prime, while Fi(x) splits in linear
factors, Fi+1(x) will split in quadratic factors.

Conversely, in this subsection and the next one, we are going to prove the follow-
ing result, which thus yields an efficient method to formally prove our computations:

Theorem 7. Assume that the assertions (A1), (A2) and (A3) hold. In addition,
if � is such that r � 3, also assume that κi+1 ⊂ Li for all 2 � i < r. Then, for all
i � r,

(i) Gal(Li/Q) is isomorphic to GL2(F�)/Si, not only abstractly, but also as an
extension of PGL2(F�), and

(ii) there exists such an isomorphism which makes the Galois action on the
roots of Fi(x) equivalent to the natural action of GL2(F�)/Si on Vi.

Remark 8. It is unfortunate that we have to make the extra assumption that κi+1 ⊂
Li for all 2 � i < r when r � 3, especially as the author does not know of
any computationally cheap way to check this assumption rigorously. Indeed, if
as expected the polynomials Fi(x) correspond to a Galois representation ρ̊, then
under the isomorphism Gal(Li/Q) 	 GL2(F�)/Si, κi+1 corresponds to the kernel
of the determinant, whereas the bigger compositum of Ki with itself (cf. Remark
10 below) corresponds to

{[
s 0
0 s′
]
mod Si | s, s′ ∈ Si

}
and so does not contain κi+1,

so that unfortunately one has to deal with the 3-fold compositum of Ki to show
that κi+1 ⊂ Li. The method presented in the previous section does not suffer from
this shortcoming; on the other hand, the values of � for which we have data to use
Theorem 7 on, namely � � 31, are all such that r � 2, except for � = 17 for which
even the method presented in section 2 does not suffice to reduce the polynomials
Fi(x) anyway.

Before we start proving Theorem 7, let us indicate how the assertions (A1), (A2)
and (A3) can be checked in practice.

(1) Let N be the product of the odd primes different from � that ramify in
Lr, and let C be a 2-cyclic subextension of Lr of degree 2k, k � r + 1.
Then C ⊆ Q(μ2r+3�N ), and so Gal

(
Q(μ2r+3�N )/C

)
is the kernel of some

surjective morphism

ϕ : Gal
(
Q(μ2r+3�N )/Q

)
	 (Z/2r+3�NZ)∗ −→ Z/2kZ.

By Chinese remainders, we can write ϕ = ϕ� + ψ, where

ϕ� : (Z/�Z)
∗ −→ Z/2kZ and ψ : (Z/2r+3NZ)∗ −→ Z/2kZ.
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We then look for odd primes v ∈ N such that v ≡ 1 mod � and Fr(x) is
squarefree and splits completely mod v. For such v, we have ϕ�(v) = 0
and ϕ(v) = 0, so that ψ(v) = 0 too. Therefore, if we can find a collection
of such v which spans (Z/2r+3NZ)∗ ⊗ Z/2r+1Z, then this proves that ψ is
necessarily trivial, and thus that (A1) holds.

In practice, finding primes v which split Fr(x) completely should not be
too difficult since we expect Gal(Lr/Q) to be isomorphic to the GL2(F�)/Sr.
Then, the fact that a collection of primes v spans (Z/2r+3NZ)∗⊗Z/2r+1Z
can be checked by expressing the latter group explicitly as a product of
cyclic groups, by determining the image of the primes v in these groups
thanks to a discrete logarithm computation, and finally by computing a
Smith normal form. This should all be painless, as N will typically involve
few prime factors, and these primes will not be very large. Note that even
in the case where r is large, the (Z/2r+3Z)∗-part can be treated easily, since
for any integer a � 3, a subgroup of (Z/2aZ)∗ which surjects onto (Z/8Z)∗

is necessarily the whole of (Z/2aZ)∗.
We expect this approach to succeed, because if, as expected, Gal(Lr/Q)

is isomorphic to GL2(F�)/Sr and the determinant of the associated Galois
representation is a power of the mod � cyclotomic character, then Lr will
have a unique maximal 2-cyclic subextension C, which has no nontrivial
Abelian subextensions since

Gal(Lr/C) = {A ∈ GL2(F�)/Sr | detA = 1} 	 SL2(F�)

has trivial abelianisation.
Note that in the particular case of a Galois representation of level 1,

there is much less work to do: it suffices to check that the discriminant of
Kr is, up to a sign, a power of �.

Also note that if (A1) does hold, then Lr cannot actually have any
subextension C such that Gal(C/Q) 	 Z/2r+1Z, by definition of r.

(2) We explain in Remark 10 below why we expect Qi(x) to factor into 2i − 1
irreducible factors of degree 2i(�+ 1) and one large irreducible factor, and
why (A2) should be satisfied for j = 0 for the small factors and j = 1 for
the large factor. To check that κj+1 �⊂ Q[x]/R(x), it suffices to find a prime
v ∈ N such that the splitting behaviour of R(x) mod v is inconsistent with
the splitting behaviour of v in κj+1, for instance such that v is not a square
mod � and such that R(x) mod v is squarefree and splits into factors whose
degrees are not all divisible by 2j+1. To prove that κj+1 ⊂ Q[x]/R(x2),
we check that R(x2) splits into 2j+1 factors over κj+1, which means that
the Q-algebra κj+1 ⊗Q

(
Q[x]/R(x2)

)
has 2j+1 factors and thus that the

minimal polynomial of a primitive element of κj+1 splits completely16 in
Q[x]/R(x2).

Although this is the most computation time-demanding part of the cer-
tification process, it is quite fast when r = 1 (for � = 31 it merely takes a
few minutes on the author’s laptop), which occurs for half of the values of

16In principle one may directly factor over Q[x]/R(x2) the minimal polynomial of a primitive
element of κj+1, but this would involve performing arithmetic in Q[x]/R(x2) and in particular to

compute an integral basis thereof, which is much slower than working over κj+1.
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�, and for r = 2 it remains quite tractable. This is a major improvement
compared to the geometric method presented in section 3.5.

(3) For (A3), we simply loop over primes v ∈ N and factor the polynomials
Fi(x) mod v until all the couples (i, i+1) have been dealt with. As explained
above, such primes v should not be too hard to come by.

We assume henceforth that (A1), (A2) and (A3) hold, and proceed to the proof
of part (i) of Theorem 7. Our proof consists in examining Gal(Li/Q) inductively
for i = 1, . . . , r. For clarity, we have divided the induction loop into six steps.

Step 1 (The Galois closures are not so large). Since Ki+1 = Ki(
√
δi), we know that

Li+1 = Li

(√
δσi , σ ∈ Gal(Li/Q)

)
.

Lemma 9. Actually, Li+1 = Li(
√
δi) is a nontrivial quadratic extension of Li.

Proof. According to (A3), for each i, there exists a rational prime that is totally
split in Li but not in Li+1, which proves that the extension Li+1/Li is not trivial.

Showing that it is quadratic amounts to proving that
δσi
δi

is a square in Li for all

σ ∈ Gal(Li/Q). To see this, pick a σ ∈ GQ such that δσi �= δi, so that Q
( δσi
δi

)
is

isomorphic to Q[x]/R(x) for some irreducible factor R(x) of Qi(x) over Q. The

polynomial R(x2) may be reducible, but in any case Q

(√
δσi
δi

)
is a factor of the

algebra Q[x]/R(x2).
We claim that κi+1 ⊂ Li for all i < r. Indeed,

• for i = 0 it follows from the fact that Gal(L0/Q) = PGL2(F�) has a quotient
of order 2 so that L0 has a quadratic subfield, which can only be κ1 =
Q(

√
�∗) according to (A1),

• for i = 1 (which we only need to consider when r � 2), it follows again from
(A1) and the fact that we know after one induction loop (cf. Proposition
14) that Gal(L1/Q) is isomorphic to GL2(F�)/S1 and thus has a quotient
isomorphic to Z/4Z since r � 2,

• and finally, for i � 2, this is the extra hypothesis of Theorem 7 (which we
thus only need when r � 3).

Therefore, for j � i we may then consider the extension diagram

Li

κj

(√
δσi
δi

) ?

κj+1

(
δσi
δi

)

κj

(
δσi
δi

)2

��������� 2

����������

κj+1

κj

������������
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The two extensions marked with a 2 in this diagram are at most quadratic.

We may assume that the extension κj

(√
δσi
δi

)
/κj

(
δσi
δi

)
is not trivial, since the

proof that
√

δσi
δi

∈ Li is over if it is. According to (A2), we may pick j such that

κj+1 ⊂ Q

(√
δσi
δi

)
. But then we must have

κj

(√
δσi
δi

)
= κj+1

(
δσi
δi

)
,

so that
√

δσi
δi

∈ Li as claimed. �

As a consequence, Li+1 = Li(
√
δi) and Gal(Li+1/Q) is an extension of Gal(Li/Q)

by C2. This extension is necessarily central, since Aut(Z/2Z) is trivial.

Remark 10. If Fi(x) corresponds to ρ̊Si as expected, and if it holds that Ki =

Q(δi) and that Q
(

δσi
δi

)
= Q(δi, δ

σ
i ) (which is extremely likely), then we get an

indexation of the conjugates of δi by Vi, and under the identification of Gal(Li/Q)

with GL2(F�)/Si provided by ρSi , the field Q
(

δσi
δi

)
corresponds by Galois theory

to a conjugate of the subgroup {[ s ∗
0 ∗ ] mod Si, s ∈ Si} or {

[
s 0
0 s′
]
mod Si, s, s

′ ∈ Si}
of GL2(F�)/Si, depending on whether the vectors indexing δi and δσi are collinear
or not. Therefore, we expect Qi(x) to split over Q into 2i − 1 irreducible factors
of degree 2i(�+ 1), corresponding to the nontrivial scalar elements in GL2(F�)/Si,
plus one large irreducible factor corresponding to nonscalar elements.

Moreover, in the case when the vectors indexing δi and δσi are not collinear, for
j = i the Galois subgroup diagram corresponding to the subfield diagram in the
above proof would be

1

?
[
s 0
0 s′
]
mod Si (s,s′∈Si, ss′∈Si+1)

[
s 0
0 s′
]
mod Si (s,s′∈Si)

2

�������������� 2

���������������������

det−1(Si+1)

det−1(Si)

��������������������������

But the group {
[
s 0
0 s′
]
mod Si, s, s

′ ∈ Si} is isomorphic to Si, hence is cyclic, so the

two quadratic extensions of Q
(

δσi
δi

)
marked with a 2 in the above diagrams should

coincide. We therefore expect (A2) to hold for the large factor R(x) of Qi(x) with
j = i.
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Similarly, when the vectors indexing δi and δσi are collinear, we get for j = 0 the
subgroup diagram

1

? [ s ∗
0 s′ ] mod Si (s∈Si, ss′∈F∗

�
2)

[ s ∗
0 ∗ ] mod Si (s∈Si)

2

															 2

��������������������

det−1(F∗
�
2)

GL2(F�)/Si

������������������������

and since {[ s ∗
0 ∗ ] mod Si, s ∈ Si} 	 F� � F∗

� has only one subgroup of index 2, we
expect (A2) to hold for the small factors of Qi(x) with j = 0.

Step 2 (Central 2-cyclic extensions of PGL2(F�)). In what follows, for n ∈ N we
denote by Cn the cyclic group of order n. In order to go on with the proof, we will
need to know the classification of the central extensions of PGL2(F�) by C2i , i ∈ N.

It is well known (cf. for instance [NSW08, Theorem 1.2.4]) that given a group G
and a G-module M , the extensions of G by M such that the conjugation action of
lifts of elements of G on M corresponds to the G-module structure on M are classi-
fied by the cohomology group H2(G,M). The class of the cocycle β : G×G −→ M
corresponds to the set M ×G endowed with the group law

(m, g) · (m′, g′) =
(
m+ g ·m′ + β(g, g′), gg′

)
.

In particular, the following result is immediate:

Lemma 11. Consider a (necessarily central) extension

1 −→ C2 −→ G̃ −→ G −→ 1

of a group G by C2. Let β : G×G −→ C2 be a cocycle representing the corresponding
cohomology class, and let g ∈ G be an element of G of order 2. Then the lifts of g

in G̃ have order 2 if β(g, g) is trivial, but have order 4 otherwise.

Furthermore (cf. [Kar87, Theorem 2.1.19]), if the G-action on M is trivial, then
there is a split exact sequence of Abelian groups

(�) 0 �� Ext1Z(G
ab,M) �

� φ
�� H2(G,M)

ψ
�� Hom
(
M̂,H2(G,C∗)

)
�� �� 0,

where Ext1Z(G
ab,M) classifies the Abelian extensions of the abelianised Gab of G by

M , M̂ = Hom(M,C∗) is the group of complex-valued characters on M , H2(G,C∗)
(with trivial G-action on C∗) is the so-called Schur multiplier of G, and ψ maps



404 NICOLAS MASCOT

the class of the cocycle β ∈ H2(G,M) to the transgression map (not to be confused
with a trace)

Traβ : M̂ −→ H2(G,C∗)
χ 
−→ χ ◦ β

associated to the class of β. Moreover, the Schur multiplier H2(G,C∗) is trivial if

G is cyclic (cf. [Kar87, Proposition 2.1.1.(ii)]), and for each central extension G̃ of

G by M , the subgroup M ∩ DG̃ of G̃ is isomorphic to the image of Traβ, where

β ∈ H2(G,M) is the cohomology class corresponding to G̃, and DG̃ denotes the

commutator subgroup of G̃ (cf. [Kar87, Proposition 2.1.7]).
Applying this to the group G = PGL2(F�) and the trivial G-module M = C2i

yields the following result (cf. [Que95]):

Theorem 12. Let i � 1 be an integer.

(i) H2
(
PGL2(F�), C2i

)
	 C2 ×C2, so that there are four central extensions of

PGL2(F�) by C2i .
(ii) These extensions are:

• the trivial extension C2i × PGL2(F�), corresponding to the trivial co-
homology class β0 ∈ H2

(
PGL2(F�), C2i

)
,

• the group 2idetPGL2(F�), whose class βdet ∈ H2
(
PGL2(F�), C2i

)
is the

inflation of the nontrivial element of

H2
(
PGL2(F�)

ab, C2i
)
	 C2

(in other words, βdet(g, g
′) is nonzero if and only if neither g nor g′

lie in PSL2(F�)),
• the group 2i−PGL2(F�), with class β− ∈ H2

(
PGL2(F�), C2i

)
, defined

for i = 1 as

2−PGL2(F�) = SL2(F�) �
[√

ε 0

0 1/
√
ε

]
SL2(F�) ⊂ SL2(F�2),

where ε denotes a generator of F∗
� , and that for i � 2 corresponds to

the image of the cohomology class of 2−PGL2(F�) by the map

H2
(
PGL2(F�), C2

)
−→ H2

(
PGL2(F�), C2i

)
induced by the embedding of C2 into C2i ,

• and the group 2i+PGL2(F�), whose associated cohomology class β+ is

the sum in H2
(
PGL2(F�), C2i

)
of βdet and of β−.

(iii) Identify C2 with Z/2Z, let g ∈ PGL2(F�) be an element of order 2, and
let β0, βdet, β− and β+ be normalised cocycles (that is to say, β(1, h) =
β(h, 1) = 0 for all h ∈ PGL2(F�)) representing the cohomology classes of
these four extensions. If i = 1, then their value at (g, g) does not depend
on the choice of these cocycles, and are:

• β0(g, g) = 0 ∀g,
• βdet(g, g) =

{
0, g ∈ PSL2(F�),
1, g �∈ PSL2(F�),

• β−(g, g) = 1 ∀g of order 2,

• β+(g, g) =

{
1, g ∈ PSL2(F�),
0, g �∈ PSL2(F�).
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(iv) For i � 2, the abelianisations of these extensions are:

•
(
C2i × PGL2(F�)

)ab 	 C2i × C2,

•
(
2idetPGL2(F�)

)ab 	 C2i+1 ,

•
(
2i−PGL2(F�)

)ab 	 C2i−1 × C2,

•
(
2i+PGL2(F�)

)ab 	 C2i .

Proof. We shall only give the idea of the proof here, and refer the reader to [Que95,
Proposition 2.4 and Lemma 3.2].

(i) On the one hand, the abelianised of PGL2(F�) is PGL2(F�)/PSL2(F�) 	 C2,
so that

Ext1Z(PGL2(F�)
ab, C2i) 	 Ext1Z(C2, C2i) 	 C2.

On the other hand, the Schur multiplier H2
(
PGL2(F�),C

∗) is isomorphic
to C2 (cf. [Que95, Proposition 2.3]). The result then follows from the split
exact sequence (�).

(ii) Consider again the exact sequence (�). Then βdet lies in the image of φ
since it is inflated from PGL2(F�)

ab. On the other hand, for i = 1, β− does
not lie in Imφ, for if it did, then the associated transgression map would
be trivial, so that the commutator subgroup of 2−PGL2(F�) would meet
the kernel ± [ 1 0

0 1 ] of the extension trivially, which is clearly not the case
since
[−1 0

0 −1

]
is a commutator in SL2(F�) ⊂ 2−PGL2(F�). For i � 2, the

commutative diagram

1 �� C2
��

� �

��

2−PGL2(F�) ��
� �

��

PGL2(F�) ��
� �

��

1

1 �� C2i
�� 2i−PGL2(F�) �� PGL2(F�) �� 1

shows that C2i still intersects the commutator subgroup of 2i−PGL2(F�)
nontrivially, so that β− does not lie in Imφ either. The extensions
2idetPGL2(F�) and 2i−PGL2(F�) thus represent different nontrivial coho-

mology classes in H2
(
PGL2(F�), C2i

)
	 C2 × C2, hence the result.

(iii) It is a general fact (cf. [Que95, Lemma 3.1] that the image at (g, g) of
a normalised cocycle representing an extension of a group G by C2 only
depends on the cohomology class of this cocycle in H2(G,C2).

• The case of the trivial extension is obvious since the trivial cohomology
class is represented by the trivial cocycle.

• The case of βdet follows from its very definition.
• Since it is a subgroup of SL2(F�2), the group 2−PGL2(F�) has only one
element of order 2, namely the central element

[−1 0
0 −1

]
. In particular,

no element g ∈ PGL2(F�) of order 2 remains of order 2 when lifted to
2−PGL2(F�), and the result follows from Lemma 11.

• The case of β+ follows since we may take β+ = βdet + β−.
(iv) Again, the case of the trivial extension is clear. In the other cases, the

result follows from the fact that the intersection of C2i with the commutator
subgroup of the extension is isomorphic to the image of the transgression
map

Traβ : Ĉ2i −→ H2
(
PGL2(F�),C

∗) 	 C2,
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which is trivial in the case of βdet and nontrivial in the case of β− and
β+. �

We shall now use this classification to prove by elimination that Gal(Li/Q) is
isomorphic to GL2(F�)/Si for all i.

Remark 13. The group GL2(F�)/Si must be one of the cases presented in Theorem
12, but at this point it is not clear at all which one. We will eventually determine
this, cf. Remark 15 below.

Step 3 (The case of L1/L0). We first deal with the first extension L1/L0 in the
quadratic tower Lr/ · · · /L0. The Galois group Gal(L1/Q) is a (necessarily central)
extension of Gal(L0/Q) 	 PGL2(F�) by C2.

Proposition 14. Gal(L1/Q) is isomorphic to GL2(F�)/S1 as an extension of
PGL2(F�).

Proof. Let β be a normalised cocycle representing the cohomology class corre-
sponding to the extension Gal(L1/Q) of PGL2(F�). According to Theorem 12(ii),
Gal(L1/Q) is isomorphic either to C2 × PGL2(F�), 2detPGL2(F�), 2−PGL2(F�) or
2+PGL2(F�), and β is correspondingly cohomologous to β0, βdet, β− or β+.

If Gal(L1/Q) were the trivial extension C2 × PGL2(F�), then L1 would have a
subextension Lab

1 with Galois group isomorphic to(
C2 × PGL2(F�)

)ab 	 C2 × C2,

and hence three distinct quadratic subfields, which contradicts (A1).
Now let τ1 ∈ Gal(L1/Q) be the complex conjugation relative to some embedding

of L1 into C. It induces an element τ0 ∈ Gal(L0/Q), which is not the identity

since its image by ρprojf,l is conjugate to g =
[
1 0
0 −1

]
∈ PGL2(F�). In particular, τ1 is

not trivial either, so it has order 2. Therefore τ0 has a lift to Gal(L1/Q) of order
2, so that β(τ0, τ0) is trivial by Lemma 11. Theorem 12(iii) then only leaves one
possibility: if � ≡ 1 mod 4, then g ∈ PSL2(F�), so that β cannot be cohomologous
to β− nor to β+ and so Gal(L1/Q) must be isomorphic to 2detPGL2(F�), whereas
if � ≡ −1 mod 4, then g �∈ PSL2(F�), so that β cannot be cohomologous to β− nor
to βdet and so Gal(L1/Q) must be isomorphic to 2+PGL2(F�).

Moreover, L̊1 is a quadratic extension of L̊0 and has only one quadratic subfield
since its Galois group is isomorphic to GL2(F�)/S1, so that the same reasoning

applies and shows that Gal(L̊1/Q) is isomorphic to 2detPGL2(F�) if � ≡ 1 mod 4
and to 2+PGL2(F�) if � ≡ 1 mod 4. Either way, we have

Gal(L1/Q) 	 Gal(L̊1/Q) 	 GL2(F�)/S1.

�

Step 4 (Gal(Li/Q) is an extension of PGL2(F�) by C2i). If � ≡ −1 mod 4, then
r = 1, so that the proof that Gal(Lr/Q) 	 GL2(F�)/Sr is over. We therefore
assume that � ≡ 1 mod 4 henceforth until we finish proving part (i) of Theorem 7.
We shall first prove by induction on i that Gal(Li/Q) is an extension of PGL2(F�)
by F∗

�/Si 	 C2i , then that this extension is central, and finally that it is isomorphic
to GL2(F�)/Si. Note that we have just proved above that it is so for i = 1.
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We first prove that Gal(Li/Q) is an extension of PGL2(F�) by C2i . Let 1� i <r.
By the induction hypothesis, we have the commutative diagram

1

��

1

��

1

��

1 �� C2
j

�� q−1(C2i)

ι

��

q
�� C2i

ι

��

�� 1

1 �� C2
j

�� Gal(Li+1/Q)
q

��

π◦q

��



























Gal(Li/Q) ��

π

��

1

PGL2(F�)

���
��

��
��

��
��

��
��

�

��

1 1

whose middle row and right column are exact. A diagram chase then reveals that
the top row and the diagonal short sequence

1 −→ q−1(C2i)
ι−→ Gal(Li+1/Q)

π◦q−→ PGL2(F�) −→ 1

are exact, so that Gal(Li+1/Q) is an extension of PGL2(F�) by q−1(C2i), which
itself is an extension of C2i by C2, which is necessarily central since Aut(C2) is
trivial.

We have H2(C2i ,C
∗) = {0} because C2i is cyclic, so the extensions of C2i by

C2 are all Abelian by the exact sequence (�), so that q−1(C2i) = Gal(Li+1/L0) is
isomorphic either to C2i+1 or to C2i × C2. We shall now prove that the latter is
impossible.

Since � ≡ 1 mod 4, the group S2
1 = F∗

�
4 is a strict subgroup of S1 = F∗

�
2. The

determinant induces a surjective morphism

Gal(L1/Q)
∼ �� GL2(F�)/S1

det �� �� F∗
�/S

2
1 = F∗

�/F�
∗4 	 C4,

so that L1 has a C4-subfield, which can only be the field κ2 ⊂ Q(μ�) according to
(A1).
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Moreover, κ2 cannot be contained in L0 because PGL2(F�)
ab 	 C2, and since κ2

is a quadratic extension of κ1 = Q(
√
�∗) ⊂ L0 and L1 is a quadratic extension of

L0, we have L1 = κ2L0:

L1 = κ2L0

L0

2

κ2

����������������������

κ1

2

����������

Q

2

Now if Gal(Li+1/L0) were isomorphic to C2i × C2, then, letting E be the subfield
of Li+1 fixed by C2i × {1}, we would have the extension tower

Li+1

Li

{1}×C2

L1 = κ2L0

C2i−1×C2

E

C2i×{1}
























L0

2
�����������

2

C2i×C2

κ2

����������������������

κ1

2

����������

Q

2
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where C2i−1 denotes the subgroup of C2i of index 2. The extensions E/L0 and
L1/L0 are both quadratic subextensions of Li+1/L0, but they are distinct since
they correspond, respectively, to the distinct subgroups C2i ×{1} and C2i−1 ×C2 of
Gal(Li+1/L0) = C2i ×C2. On the other hand, the field E is contained in Li+1 and
thus has only one quadratic subfield according to (A1), so that the same reasoning
as in Step 3 above shows that Gal(E/Q) is isomorphic to GL2(F�)/S1. But then
E has a C4-subfield, which can only be κ2, and so E ⊇ κ2L0 = L1, hence E = L1

since they are both quadratic extensions of L0, a contradiction.
This shows that Gal(Li+1/L0) cannot be isomorphic to C2i × C2, so it must be

isomorphic to C2i+1 . It follows that Gal(Li+1/Q) is an extension of PGL2(F�) by
Gal(Li+1/L0) 	 C2i+1 , and the induction is complete.

Step 5 (Gal(Li/Q) is a central extension of PGL2(F�)). We shall now prove by
induction on i that the extension

1 −→ C2i −→ Gal(Li/Q) −→ PGL2(F�) −→ 1

is central. Note that it is so for i = 1 since Aut(C2) is trivial.

Let i � 2, and assume on the contrary that this extension is not central. Since
Aut(C2i) 	 C2×C2i−2 is Abelian, the morphism PGL2(F�) −→ Aut(C2i) expressing
the conjugation action of PGL2(F�) on C2i factors through

PGL2(F�)
ab = PGL2(F�)/PSL2(F�) 	 C2,

so that PSL2(F�) acts trivially whereas there exists an involution φ of C2i such that
gxg−1 = φ(x) for all g ∈ PGL2(F�) − PSL2(F�) and x ∈ C2i . If we identify C2i

with Z/2iZ, then by induction hypothesis this involution induces the identity on
Z/2i−1Z, so it must be x 
→ (1 + 2i−1)x.

There is thus only one possible nontrivial conjugation action of PGL2(F�). In
order to computeH2

(
PGL2(F�), C2i

)
for this nontrivial action, we use the inflation-

restriction exact sequence (cf. [Ser79, Proposition VII.6.5])

(†) 0 −→ H2(C2, C2i)
Inf−→ H2

(
PGL2(F�), C2i

) Res−→ H2
(
PSL2(F�), C2i

)
.

This is legitimate since, as PSL2(F�) acts trivially, we have

H1
(
PSL2(F�), C2i

)
= Hom

(
PSL2(F�), C2i

)
= 0

since PSL2(F�) is simple.
On the one hand, since C2 = {1, ε} is cyclic, the groups Hq(C2,M) are the

cohomology groups of the complex

0 −→ M
ε−1−→ M

ε+1−→ M
ε−1−→ M

ε+1−→ · · ·
for any C2-module M (cf. [Lan02, Chapter XX, Exercise 16]). In particular,

H2(C2, C2i) =
ker(ε− 1)

Im(ε+ 1)
=

(Z/2iZ)[2i−1]

(2 + 2i−1)(Z/2iZ)
	
{

C2, i = 2,
0, i � 3.

On the other hand, as PSL2(F�) acts trivially, the group H2
(
PSL2(F�), C2i

)
can

be computed by using the split exact sequence (�). As PSL2(F�)
ab = {1} since

PSL2(F�) is simple, and as the Schur multiplier is

H2
(
PSL2(F�),C

∗) 	 C2

(Steinberg, cf. [Kar87, Theorem 7.1.1.(ii)]), it follows that

H2
(
PSL2(F�), C2i

)
	 C2.
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Let 2iPSL2(F�) denote the nontrivial extension. One has

2PSL2(F�) 	 SL2(F�),

and the nontrivial element of H2
(
PSL2(F�), C2i

)
is the image of the nontrivial

element γSL2
∈ H2
(
PSL2(F�), C2

)
corresponding to SL2(F�) by the map

H2
(
PSL2(F�), C2

)
−→ H2

(
PSL2(F�), C2i

)
induced by the embedding of C2 into C2i .

Consider the inflation-restriction exact sequence (†), and let

β ∈ H2
(
PGL2(F�), C2i

)
be the cohomology class corresponding to the extension

1 −→ C2i −→ Gal(Li/Q) −→ PGL2(F�) −→ 1.

If γ = Resβ ∈ H2
(
PSL2(F�), C2i

)
were trivial, then β = Inf α would be the

inflation of some α ∈ H2
(
C2, C2i

)
, so that Gal(Li/Q) would be isomorphic to the

fibred product Gα ×
C2

PGL2(F�), where Gα is the group extension

1 −→ C2i −→ Gα −→ C2 −→ 1

corresponding to α. Actually, if i � 3, then β = Inf α would be trivial since
H2
(
C2, C2i

)
= 0, so that Gal(Li/Q) would be isomorphic to the semidirect product

C2i � PGL2(F�),

whereas if i = 2, then H2
(
C2, C2i

)
	 C2, so that Gal(L2/Q) would be isomorphic

either to C4 � PGL2(F�) or to Q8 ×
C2

PGL2(F�), where Q8, the quaternionic group

{±1,±i,±j,±k}, is the extension

1 −→ C4 −→ Q8 −→ C2 −→ 1

corresponding to the nontrivial element ofH2(C2, C4). However, the abelianisations(
C2i � PGL2(F�)

)ab
	 C2i−1 × C2

and (
Q8 ×

C2

PGL2(F�)
)ab 	 C2 × C2

contradict (A1).
It follows that γ = Res β ∈ H2

(
PSL2(F�), C2i

)
cannot be trivial, so it must

be γSL2
∈ H2
(
PSL2(F�), C2

)
followed by the embedding of C2 into C2i . Let g =[

1 0
0 −1

]
∈ PGL2(F�). As � ≡ 1 mod 4, g lies in PSL2(F�), and since the only element

of order 2 of SL2(F�) is
[−1 0

0 −1

]
, g cannot be lifted to an element of order 2 of

SL2(F�), so that γSL2(g, g) �= 0 by Lemma 11. On the other hand, since g is the
image of the complex conjugation (with respect to some embedding of L0 into C)
by the projective Galois representation ρproj, it must lift to an element of order 2
of Gal(Li/Q), which is contradictory: in the extension Gal(Li/Q), seen as the set
Z/2iZ× PGL2(F�) endowed with the group law

(x1, g1) · (x2, g2) =
(
x1 + g1 · x2 + β(g1, g2), g1g2

)
,

we compute that

(x, g) · (x, g) =
(
x+ g · x+ β(g, g), g2

)
=
(
β(g, g), 1

)
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as g ∈ PSL2(F�) acts trivially, so β(g, g) must be zero, but β(g, g) = γSL2
(g, g) �= 0

since g ∈ PSL2(F�).

It is therefore impossible that the extension

1 −→ C2i −→ Gal(Li/Q) −→ PGL2(F�) −→ 1

be not central, which completes the induction.

Step 6 (Gal(Li/Q) 	 GL2(F�)/Si). We may now again apply Theorem 12 to
Gal(Lr/Q). Part (iv) of this theorem combined with (A1) means that Gal(Lr/Q)
cannot be isomorphic to C2r ×PGL2(F�) nor to 2r−PGL2(F�). It cannot be isomor-
phic to 2rdetPGL2(F�) either, otherwise Lr would have a C2r+1-subfield by part (iv)
of Theorem 12, which would be contained in the cyclotomic extension Q(μ�) accord-
ing to (A1), but this would contradict the definition of r. Therefore, Gal(Lr/Q)
must be isomorphic to 2r+PGL2(F�).

Moreover, the same reasoning applies to L̊r, whose Galois group is isomorphic
GL2(F�)/Sr since det ρ̊ is by assumption an odd power of the mod � cyclotomic
character. Therefore, we have

Gal(Lr/Q) 	 2r+PGL2(F�) 	 Gal(L̊r/Q) 	 GL2(F�)/Sr,

and the proof of part (i) of Theorem 7 is now complete.

Remark 15. We can now go back down the quadratic tower Lr/ · · · /L0 and see that
Gal(Li/Q) 	 GL2(F�)/Si for all i. Moreover, it is easy to see that the abelianisation
of GL2(F�)/Si is

det : GL2(F�)/Si −→ F∗
�/S

2
i ,

and since S2
i = Si+1 � Si for i < r whereas S2

r = Sr as −1 �∈ Sr, Theorem 12
part (iv) leads to the unified formula

Gal(Li/Q) 	 GL2(F�)/Si 	

⎧⎨⎩ PGL2(F�), i = 0,
2idetPGL2(F�), 0 < i < r,
2r+PGL2(F�), i = r,

which is valid for � ≡ 1 mod 4 as well as � ≡ −1 mod 4. This allows us to identify
for each i the extension GL2(F�)/Si of PGL2(F�) amongst the ones listed in part
(ii) of Theorem 12.

3.6.2. Certification of the Galois action. At this point, we have proved that
Gal(Li/Q) is abstractly isomorphic to GL2(F�)/Si for each 0 � i � r, but only
for i = 0 do we know that it is permutation-isomorphic to GL2(F�)/Si acting natu-
rally on Vi = V/Si. For each i > 0, we will now determine an isomorphism between

Gal(Li/Q) and GL2(F�)/Si and a bijection θi : Zi
∼−→ Vi which make the Galois

action on Zi permutation-isomorphic to the natural action of GL2(F�)/Si on Vi in a
compatible way as i varies. This data can then be used to compute the Dokchitsers’
resolvents ΓC(x), and thus to compute trace of Frobenius elements, in a certified
way.

Let us first fix an isomorphism ϕr from the Gal(Lr/Q) to GL2(F�)/Sr. Since the
Galois groups Gal(Li/Q) are isomorphic to GL2(F�)/Si as extensions of PGL2(F�)
in a compatible way, ϕr induces a system of isomorphisms(

ϕi : Gal(Li/Q) 	 GL2(F�)/Si

)
0�i�r
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such that the following diagram commutes:

Gal(Lr/Q) �� ��

ϕr 

��

· · · �� �� Gal(Li+1/Q)

ϕi+1 

��

�� �� Gal(Li/Q)

ϕi 

��

�� �� · · · �� �� Gal(L0/Q)

ϕ0 

��

GL2(F�)/Sr
�� �� · · · �� �� GL2(F�)/Si+1

�� �� GL2(F�)/Si
�� �� · · · �� �� PGL2(F�)

We choose ϕr such that the induced isomorphism

ϕ0 : Gal(L0/Q) 	 PGL2(F�)

agrees with the one we determined with the help of [Magma] in section 3.3.1, and
we will use the isomorphisms ϕi to identify Gal(Li/Q) with GL2(F�)/Si from now
on.

Since, by section 3.3.1, the action of Gal(L0/Q) on Z0 is equivalent to the natural
action of PGL2(F�) on P1(F�), we know that the stabiliser of a root of F0(x) is
conjugate to a group of upper triangular matrices in PGL2(F�). Therefore, the
stabiliser of a root of F1(x) is a subgroup of index 2 of the subgroup of upper
triangular matrices in GL2(F�)/S1.

Lemma 16. Let B be a subgroup of GL2(F�) of the form

B =
{
[ s x
0 s′ ]
∣∣ s ∈ S, s′ ∈ S′, x ∈ F�

}
,

where S, S′ � F∗
� are subgroups of the multiplicative group of F�. If neither S nor

S′ is reduced to {1}, then B has exactly 3 subgroups of index 2, namely{
[ s x
0 s′ ]
∣∣ s ∈ S2

}
,{

[ s x
0 s′ ]
∣∣ s′ ∈ S′2} ,

and
{
[ s x
0 s′ ]
∣∣ s ∈ S2 ⇔ s′ ∈ S′2} ,

where we write S2 for {s2, s ∈ S}, and similarly for S′2.

Proof. Since a subgroup of index 2 is always normal, such a subgroup is the kernel
of a nontrivial morphism from B to C2. As the latter group is Abelian, such a
morphism factors through the abelianisation of B. Let s ∈ S, s �= 1. The identity
ghg−1h−1 =

[
1 1−s
0 1

]
where g = [ 1 1

0 1 ], h = [ s 0
0 1 ] ∈ B shows that [ 1 1

0 1 ] lies in the
commutator subgroup of B, so that the abelinanisation of B is

B −→ S × S′

[ s x
0 s′ ] 
−→ (s, s′).

Therefore, we have canonically

Hom(B,C2) 	 Hom(S × S′, C2) 	 Hom(S,C2)×Hom(S′, C2).

Since S and S′ are cyclic because F∗
� is, the result follows. �

According to this lemma, the stabiliser of a root of F1(x) in Gal(L1/Q) could be
either

H+ =
{
[ s x
0 s′ ]
∣∣ s ∈ F∗

�
2, s′ ∈ F∗

� , x ∈ F�

}
/S1,

H− =
{
[ s x
0 s′ ]
∣∣ s ∈ F∗

� , s
′ ∈ F∗

�
2, x ∈ F�

}
/S1,

or H0 =
{
[ s x
0 s′ ]
∣∣ s, s′ ∈ F∗

� , x ∈ F�, ss
′ ∈ F∗

�
2
}
/S1.
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However, the nontrivial element [ ε 0
0 ε ] ∈ GL2(F�)/S1, where ε ∈ F∗

�/F
∗
�
2, is central

and lies in H0, so it lies in the intersection of the conjugates of H0, so that the
action of GL2(F�)/S1 on its H0-cosets is not faithful. Therefore, the stabiliser of a
root of F1(x) must be conjugate either to H+ or to H−.

Consider now the compatible collection of involutory automorphisms

Ψi : GL2(F�)/Si −→ GL2(F�)/Si

A 
−→ 1
detAA.

Since Ψ0 is the identity on PGL2(F�), we may replace the isomorphisms ϕi with
Ψi ◦ ϕi without breaking the compatibility with the identification of Gal(L0/Q)
with PGL2(F�) made in section 3.3.1, and since Ψ1 swaps H+ and H−, we may
assume without loss of generality that the stabiliser of a root of F1(x) is conjugate
to H+.

An induction on i then reveals that the stabiliser in Gal(Li/Q) of a root of Fi(x)
is conjugate to {

[ s x
0 y ]
∣∣ s ∈ Si, y ∈ F∗

� , x ∈ F�

}
/Si.

Indeed, at each step of the induction, Lemma 16 gives us 3 possibilities, but only
one of them yields a faithful action of GL2(F�)/Si on its cosets, for the same reason
as above.

As a consequence, we now know that for each i there exists a bijection

θi : Zi
∼−→ Vi

which makes the Galois action on Zi equivalent to the natural action of GL2(F�)/Si

on Vi, so we have proved part (ii) of Theorem 7. However, we must make the
indexation θr of Zr by Vr explicit, so as to be able to proceed with the computation
of the Dokchitsers’ resolvents ΓC(x). We do so as follows.

3.6.3. Recovering the indexation of the p-adic roots. Recall that we have fixed a
large prime p ∈ N such that Fr(x) mod p is irreducible. Consider the field Kr =

Fp[t]/Fr(t). The tp
j

, 0 � j < 2r(� + 1), are the roots of Fr in Kr, and so by the
hypothesis we have made on the relation between the roots of Fi(x) and the ones of
Fi+1(x), all the polynomials Fi(x) are squarefree and split completely over Kr. Let
Zi be the set of the roots of Fi(x) in Kr, so that we have17 2-to-1 projection maps

�i : Zi+1
�� �� Zi such that for all z ∈ Zi+1, there exists a unique z′ ∈ Zi+1 such

that z + z′ = �i(z) ∈ Zi.
In section 3.3.1, [Magma] computed for us the Galois group Gal(L0/Q) as a per-

mutation group on the roots of F0(x) in some extension M of Fp, which unfortu-

nately is not isomorphic18 to Kr. Magma also gave us an indexation (mP )P∈P1(F�)

of these roots, and we would like to transfer this indexation to Z0 ⊂ Kr while
keeping compatibility with the action of Gal(L0/Q) = PGL2(F�). We do so by

17Although we certainly have such projections maps in characteristic zero, it might happen
that these maps are no longer well-defined in characteristic p. However, as p is large, this problem
should not occur for us.

18Indeed, unlike Kr, M is an extension of Fp of degree � + 1 = degF0(x). To make things
worse, curiously Magma does not construct M as Fp[t]/F0(t) but as Fp[t]/G(t) instead, where

G(t) is a sparse polynomial of degree �+ 1 which it cooks up.
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computing mod p the factors

R4,P (x) =
∏

P1,P2,P3,P4∈P1(F�)
pairwise distinct
[P1,P2,P3,P4]=P

(
x−

4∑
i=1

λimPi

)
∈ Fp[x]

of the resolvent R4(x) from section 3.3.1 for each P ∈ P1(F�) − {∞, 0, 1}, where
[·, ·, ·, ·] denotes the cross-ratio and the (λi)1�i�4 are fixed distinct integers chosen
so that these polynomials are pairwise coprime mod p. Although we did mention
that the resolvent R4(x) is horribly expensive to compute, computing these factors
is much easier, for three reasons: they are merely factors and so their degree is
much smaller, we compute them mod p so the size of their coefficients is no longer
a problem, and now we know that Gal(L0/Q) = PGL2(F�), it is rigorous to compute
them by expanding the product that defines them instead of using resultants.

Then, since the action of PGL2(F�) on P1(F�) is 3-transitive, we may index 3
distinct arbitrarily chosen points z∞, z0 and z1 of Z0, respectively, by ∞, 0 and 1,
after which we index each remaining point z ∈ Z0 by the unique P ∈ P1(F�) such
that

RP (λ1z∞ + λ2z0 + λ3z1 + λ4z) = 0.

Next, by looking at how the Frobenius of Kr permutes Z0, we may deduce which
element Φ ∈ PGL2(F�) it corresponds to.

Now let z = z(r) ∈ Zr be a fixed root of Fr(x) in Kr. By finding which other
point of Zr must be added to it to get a root z(r−1) of Fr−1(x) mod p, then which
point of Zr−1 must be added to this new root to get a root z(r−2) of Fr−2(x) mod
p, and so on until we get to z(0) ∈ Z0, we can determine which point P of P1(F�)
corresponds to z. We index this z by a vector v of Vr whose reduction to P1(F�) is
P .

Now that we have indexed one root of Fr(x), we index the other ones as follows:
Let Φ be an arbitrary lift of Φ ∈ PGL2(F�) to GL2(F�)/Sr. We know that the
Frobenius of Kr acts as λΦ for some λ ∈ F∗

�/Sr. If we knew the value of λ, we

would be able to complete the indexation of Zr by Vr, since zp
j

must be indexed
by (λΦ)jv for all j < 2r(� + 1). Each value of λ thus corresponds to a candidate
indexation of Zr by Vr. In order to find out which is the correct one, we use the
Dokchitsers’ resolvents ΓC(x), albeit in an unusual way: we lift the elements of Zr

to some moderate p-adic precision in Qp[t]/Fr(t), and we compute one coefficient
of one of the resolvents ΓC(x) for each of these candidate indexations. The point is
that we expect the correct indexation to yield a nice value, and the other ones to
yield rubbish. Curiously, the wrong indexations yield values which are still rational
over19 Qp; however, in practice they will contradict archimedian bounds which can
be derived from the modulus of the complex roots of Fr(x), and so we can rigorously
tell the right indexation apart from the wrong ones.

Remark 17. Let ΓC(x) =
∏

σ∈C

(
x−
∑

z∈Zr
σ(z)h(z)

)
be the resolvent whose coef-

ficient we compute, where h(x) ∈ Z[x] and C is a conjugacy class, and let n = #C
be its degree. Clearly, the coefficients of xn, of xn−1 and of x0 do not depend on
the indexation and therefore give no information. Moreover, in practice the height
of the coefficient of xn−i is a roughly increasing function of i, so a good choice is

19This fact can be proved by a painful computation which we do not reproduce here.
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to compute the coefficient of xn−2, which can be done quickly by expanding the
product to order 2 at infinity.

Remark 18. If r is large, it may be better to determine the image of the Frobenius
in GL2(F�)/Si inductively on i = 1, . . . , r, since this reduces the number of trials to
perform from 2r to 2r. On the other hand, in practice r is small (recall that 2r < �),
so one may parallelise and treat all of the 2r cases at once if one has enough cores
to spare.

Remark 19. If we have some information about the trace or the determinant of
the image by ρ of the Frobenius at p, we can make a partial prediction on which
indexation is the correct one. However, we have not proved yet that the Galois set
Zr affords ρ̊Sr and not another Galois representation, so to be rigorous we must
try out all the possibilities.

Once we know the correct indexation of Zr, we may compute the Dokchitsers’
resolvents ΓC(x) by lifting p-adically the roots into Zr. Indeed, we can deduce a
bound on the necessary p-adic precision from archimedian bounds as above. We
thus get a completely proved output.

3.7. Certification of the representation. Either by the geometric approach
(section 3.5) or by the group cohomology one (section 3.6), we have now certified
that the Galois action on the set Zr of roots of Fr(x) affords a quotient Galois
representation ρSr , for which we are able to compute the image of the Frobenius
element at v for almost every prime v ∈ N thanks to the Dokchitsers’ resolvents
ΓC(x). We are now going to explain how to certify that this representation ρSr is
equivalent to the expected representation ρ̊Sr .

By assumption, ρSr and ρ̊Sr induce the same projective representation, so there
exists a Galois character

ψ : Gal(Q/Q) −→ F∗
�/Sr 	 Z/2rZ

such that ρSr = ρ̊Sr ⊗ψ. Let (pj)j∈J be the primes at which Kr ramifies. Since we
expect ρSr to be equivalent to ρ̊Sr , these should be the same primes as the (known)
ones at which ρ̊Sr ramifies, and we assume that it is indeed the case. For each
j ∈ J , let

aj =

{
r + 2 if pj = 2,
1 else,

so that Z∗
pj

⊗ Z/2rZ 	 (Z/p
aj

j Z)∗ ⊗ Z/2rZ for all j ∈ J . Since ψ is unramified

outside the pj and assumes values in Z/2rZ, it factors through Gal
(
Q(μN )/Q

)
,

where N =
∏

j∈J p
aj

j .
It then suffices to find primes v ∈ N:

• which span (Z/NZ)∗ ⊗ Z/2rZ,
• for which the Dokchitser resolvents can20 determine the trace in F�/Sr of
the image by ρSr of the Frobenius at v,

• such that this trace is nonzero,
• and which are small enough so that we can determine the trace of the image
by ρ̊ of the Frobenius at v (for instance, if ρ̊ = ρ̊f,l, we can compute the
coefficients av(f) mod l using methods based on modular symbols).

20There are at most finitely many exceptions.
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If for each of these v the trace is the same for ρSr and ρ̊Sr , this proves that ψ is
trivial, so that ρSr is equivalent to ρ̊Sr .

Remark 20. In particular, it then follows that the splitting field Lr of Fr(x) is

indeed the field L̊r cut out by ρ̊Sr . Moreover, since the Galois representation ρ̊ can
be recovered from its quotient ρ̊Sr and its determinant character det ρ̊, the field L̊
cut out by ρ̊ is the compositum of Lr and of the field cut out by det ρ̊, which is by
assumption a subfield of the cyclotomic field Q(μ�). Using the [Pari/GP] functions
polsubcyclo and polcompositum to compute explicitly this latter field and then
its compositum with Lr, we can thus easily compute a nice monic polynomial in
Z[x] whose splitting field is L̊. This is useful since, as explained in section 2, the
polynomial F (x) ∈ Q[x] of degree �2 − 1 computed by the algorithm described in
[Mas13] is usually too big to be reduced directly.

4. Application

Let R be the set of couples (f, l), where l a prime ideal of degree 1 of the Hecke
field21 of f lying above a prime number � � 31, and f ∈ Sk(1) a newform of level
N = 1 and weight k < �, and let R′ � R be the subset formed by the couples (f, l)
such that the Galois representation ρ̊f,l attached to f mod l is not exceptional.22

For each (f, l) in R′, we have used the algorithm described in [Mas13] to com-
pute a polynomial F (x) ∈ Q[x] supposedly attached to ρ̊f,l. For � �= 17, we have
then reduced each of these data by the method presented in section 2, thus get-
ting a collection of polynomials Fi(x) ∈ Z[x], 0 � i � r = ord2(� − 1), and
we have applied the group cohomology method described in sections 3.3.1 and
3.6 to certify that these data do define the correct Galois representations. We
have finally computed the Dokchitsers’ resolvents corresponding to these repre-
sentations, and we have used them to determine the image in GL2(Fl) (up to
similarity of course) of the Frobenius at p by each of these representations for
the first 40 primes p ∈ N above 101000, so as to illustrate the fact that huge
values of p are not a problem for our algorithm. In particular, we have deter-
mined the value of ap(f) mod l for such p. All of these certified data (the reduced
polynomials Fi(x) with their ordered roots, the Dokchitsers’ resolvents, and the
tables of images of Frobenius elements) may be found on the author’s webpage
http://www2.warwick.ac.uk/fac/sci/maths/people/staff/mascot/galreps.

Remark 21. In [Mas13], we noted that it took [SAGE] about 30 minutes of CPU
time to compute one coefficient ap mod l for p ≈ 101000 via our Galois representation
data. As we reran the computations with the certified resolvents, we realised that
[Pari/GP] can do the same thing in less than 1 minute. The reason for this is
that [SAGE] takes the time to check rigorously that p is prime before starting
computations mod p, whereas [Pari/GP] does not. Amusingly, this shows that
it takes much more time to find a prime number p of this size than to compute
ap mod l by the Galois representation method.

We have certified that the 40 values of p used in the tables below are indeed
prime, because we are not sure what would happen if we ran our algorithm with
a composite pseudoprime. As a result, the values of ap mod l displayed in these
tables are completely rigorous.

21By Hecke field of a newform, we mean the number field generated by its Fourier coefficients.
22So we exclude precisely Δ mod 23 and E4Δ mod 31.
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In order to give an idea of the size of the objects that our algorithms manipulate,
we present here two cases extracted from the aforementioned tables. Instead of rep-
resenting a similarity class in GL2(Fl) by a matrix as we did in [Mas13], we deemed
it more elegant to give its minimal polynomial in factored form over Fl. Since
GL2(F�) splits into similarity classes as follows, this is a faithful representation.

Type of class Representative Minimal polynomial # of classes # of elements
in class

Scalar

[
λ 0
0 λ

]
x− λ �− 1 1

Split
semisimple

[
λ 0
0 μ

]
(x− λ)(x− μ) (�−1)(�−2)

2 �(�+ 1)

Nonsplit
semisimple

[
0 −n
1 t

]
x2 − tx+ n

irreducible over F�

�(�−1)
2 �(�− 1)

Nonsemisimple

[
λ 1
0 λ

]
(x− λ)2 �− 1 (�+ 1)(�− 1)

Example 1. Δ mod 29.

It seems natural to start with an example with f = Δ = q−24q2+252q3+O(q4),
the most famous cuspform of all. While for � = 31 we have r = 1, for � = 29 we have
r = 2, so the polynomials Fr(x) are more impressive for � = 29 than for � = 31.
Here is the one corresponding to Δ mod 29:

F2(x) = x120 − 39 x119 + 52 x118 + 18802 x117 − 260738x116 − 2224996 x115 + 78123651x114

−328828100 x113 − 8263917952x112 + 105418992285x111 − 9281370047x110 − 8673650394390x109

+67175813321912x108 + 3240223696313x107 − 3625273840703346x106 + 28868328866222299x105

−55712181926653112x104 − 831213186859484809x103 + 6400389530587512440x102

+5664948473704761298x101 − 236599099025809755837x100 − 86149046526574607141x99

+18049361157398735512827x98 − 143034171738473324654141x97 + 309908279927036114408948x96

+4110452935977502930211262x95 − 49808587507684086841613272x94

+255718390797761218980112249x93 − 370938232422515550238030706x92

−4239746526064029063336974560x91 + 40059260137839079990324735682x90

−205134100035408647490709294925x89 + 690810959665321724654129463170x88

−1150913531696070804731460240641x87 − 2905017526953691499670077418670x86

+47322659102097465506352390635856x85 − 425792292478079616843046706314083x84

+2739838234183913689504417826249525x83 − 12377247662589064428784865815958075x82

+41296251300763242911291874924492236x81 − 86096254481992808573240127681847534x80

−174161987438617330069511957454948216x79 + 3004945442865208465399646864785306007x78

−19426609866780659578962841182962714865x77 + 108199453121858544562274337695731535951x76

−540562354485415170568171856724347249028x75 + 2003170329279473549264139360014033008269x74

−4906345350745852789161273456858421483526x73

+6852101959985515455407213317694533880854x72

+21744835456542777978544010432017957570998x71

−354531601960104186814288045752985534837356x70

+2415813767710375355007174048785369337370619x69

−11795476320637187447112847890157256430641818x68

+51949786215458201865850168647651038718083533x67

−205837760707652251236618469331715307953868772x66

+632794675891664554262532875475585224624885501x65

−1549984687081576409789267803107087061300626754x64

+3780171680443736629265587788531817043101358021x63

−2032042888653854240770004273667014042737914619x62

−75296586398944854033134144067268466018165634371x61

+492438774401604429008913700838759413140834029077x60

−1872146628576921265301617989405459118651511828249x59

+7889534315510055163849348514205854835317146183354x58
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−37623219532998612719188117562544690312647851443329x57

+133715149099087666221878622209330023885832980173762x56

−358527853259357643101016413194439711168998587653646x55

+1150214873720403752145704516777301458540259708566007x54

−4251058748128336628769990060481020773188738825695702x53

+10642612653109338583300281664637819808188791020684468x52

−17402914533613728148979826342208602338942607463119246x51

+48633429629872181118699939461795124668503022992755678x50

−165403276792631997282371651395087674782654230366714124x49

+145015997107909021398686766742679587247121061293408986x48

+492392849280060573773565340461610525259317147507294865x47

−271511458296438382488111693610775002497465128417170394x46

−652664619248620330391026643444817961046333282136405757x45

−16367594587199289948998686451709338569385261309703750822x44

+44978511235283376299343780035953332879799842232519914312x43

+19646073668559858224023650929822622112934080573795228422x42

+28535167429260816202303363626597519751307292203748180524x41

−498090822280959521158336743012213915583277009997639543769x40

−940364373679220067932549479979755134636234011579427914542x39

+2521673052520748698612222377227238872725904760567919548740x38

+7019283132304011272238795849686785307621156377148940945457x37

+12407898598890801572422838737227607844456571501921254925864x36

−54774940542932812395031549315157134292675987516857162936933x35

−167280160291743112243902528169268456978957939558833200506384x34

+66685231231069675353959106828906025058508433889848745908446x33

+1144200200071295796141746982232629332102662041133194625544527x32

+1465380778516325802890225143289120143844003938597799565942015x31

−4546042233752493082553255798793744033071375504699352571051582x30

−12691048529690820177670723551290387902258432599474582511011324x29

+5219645215184371778852291796118549498037264765670011997356903x28

+59536146913870227752311679132874695245690076312069901091973737x27

+42271202746576508837242051054585488179771161211530729060009727x26

−167593661120219565661536403962471583120422676161951086004048721x25

−286368937487543599711899983016552475758462484909274064469481002x24

+230382055771017547055677721234005290186180568652972820922049224x23

+928283302209877157721534651901436783095651772196213609374878685x22

+175585932223464736559299592405845533688516285207784943808278420x21

−1758850016954365463305055994507463367031764582472365647306994534x20

−1465327287102397863683326389027330201118347359802335300172559328x19

+1773321220836307165702143644634692168610741013365613960356877087x18

+2904606733860530703041514422127534636066546248303444459223252869x17

−520308669130339394544399063835249522615387011157258025834606131x16

−2906947132318789204808524108533368321356173905644648961284835769x15

−393534993004425879883701416875089550520476893473247289746770881x14

+2113255440095432232134067491875625170919662276031515339003865608x13

+343521455053064377858576614861077606598382997902674984475727361x12

−1980733816420089301985076580314504281378403676364093859856750280x11

−841423938599508546949037276545037161554893873562770775547347936x10

+1511611164721597762311281100747394082476044535180259343320913007x9

+1865894071033615040665160647561792975872738246766682774064852296x8

+887398778985804089226899981553259732564931621689808536397397622x7

+327959598838061445269659568556871680486016836452609211222699063x6

+280807031529596339466111600718026859424625249954985059771350709x5

+234434262697623313809637590557065036950844063730534986852355367x4

+128418383859788691330267355023441549682203671844754849186711248x3

+47862235923713816575492173460515921299171434171423149409051143x2

+7941532444376844604785215172809295246343317508709928231445127x
−804139180569965777035407848426442222962300357108066928039835.

The images of the Frobenius elements are given in Table 1.

Example 2. f24 mod 31.

For the second example, we pick

f = f24 = q + 24(22 + α)q2 + 36(4731− 32α)q3 +O(q4),

the unique (up to Galois conjugacy) newform of level 1 and of weight 24, because
it is the one of lowest weight whose Hecke field is strictly larger than Q. More

precisely, the Hecke field of f24 is the real quadratic field Q(α), α = 1+
√
144169
2 . Its

ring of integers is Z[α].
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Table 1

p ρ̊Δ,29(Frobp) τ (p) mod 29

101000 + 453 x2 + 8x+ 24 21
101000 + 1357 x2 + 21x+ 1 8
101000 + 2713 x2 + 18x+ 20 11
101000 + 4351 x2 + 3 0
101000 + 5733 (x− 20)(x− 2) 22
101000 + 7383 (x− 19)(x− 10) 0
101000 + 10401 (x− 7)(x− 2) 9
101000 + 11979 x2 + 22x+ 22 7
101000 + 17557 x2 + 27 0
101000 + 21567 (x− 23)(x− 3) 26
101000 + 22273 x2 + 15x+ 3 14
101000 + 24493 x2 + 25x+ 16 4
101000 + 25947 (x− 27)(x− 15) 13
101000 + 27057 x2 + 22x+ 23 7
101000 + 29737 (x− 23)(x− 10) 4
101000 + 41599 (x− 13)(x− 5) 18
101000 + 43789 (x− 18)(x− 15) 4
101000 + 46227 x2 + 7x+ 3 22
101000 + 46339 (x− 26)(x− 8) 5
101000 + 52423 (x− 17)(x− 16) 4
101000 + 55831 x2 + 21x+ 4 8
101000 + 57867 (x− 13)(x− 11) 24
101000 + 59743 x2 + 24x+ 2 5
101000 + 61053 x2 + 18x+ 21 11
101000 + 61353 (x− 24)(x− 1) 25
101000 + 63729 (x− 20)(x− 1) 21
101000 + 64047 x2 + 14x+ 6 15
101000 + 64749 x2 + 14x+ 28 15
101000 + 68139 (x− 12)(x− 2) 14
101000 + 68367 x2 + 26x+ 26 3
101000 + 70897 x2 + 12x+ 28 17
101000 + 72237 x2 + 27x+ 13 2
101000 + 77611 (x− 14)(x− 13) 27
101000 + 78199 (x− 17)(x− 14) 2
101000 + 79237 x2 + 28x+ 25 1
101000 + 79767 x2 + 13x+ 16 16
101000 + 82767 (x− 27)(x− 13) 11
101000 + 93559 x2 + 13x+ 17 16
101000 + 95107 (x− 25)(x− 24) 20
101000 + 100003 (x− 26)(x− 13) 10
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In this field, the prime 31 splits into (31) = l5l27, where l5 = (31, α−5) and l27 =
(31, α−27). Instead of presenting the results for the Galois representations attached
to f24 modulo l5 and l27 separately, it is more interesting to present them together,
since we can then compute the coefficients τ24(p) mod 31Z[α] by putting together
the information coming from both representations and using Chinese remainders.
This is what we do in Table 2.

Since � = 31, we have r = 1. The polynomial Fr(x) corresponding to ρ̊f24,l5 is

F1(x) = x64 − 26 x63 + 138 x62 + 2883 x61 − 50530 x60 + 284952 x59 + 1532392 x58 − 42378023x57

+313778342 x56 − 30967109x55 − 15952723659x54 + 120293225685x53 − 294956419293x52

−2450725406897x51 + 28694976228508x50 − 82028806284207x49 − 33797566443141x48

+30936396673955x47 − 25385922046683633x46 + 285017809626505879x45 − 101340567457478942x44

−5967948306452799555x43 + 18835587705819950118x42 − 144943245205521339710x41

+602219044044458739742x40 + 2200535330299713709469x39 − 16686864181478594950667x38

+107977341642646415867192x37 − 475668786864492416295472x36 − 225298037681795144992586x35

+13039469950621100673089867x34 − 37880916977102172639162818x33

+23877972000622578505000183x32 − 379716355409906474595592883x31

−358561841745924661422683747x30 + 21467502653993360143238405812x29

−62531950374059451763223031677x28 − 141363172107640187136259273515x27

+920893472769088633347279277260x26 − 764513501934547521440643050277x25

−2227564891412996848197832943852x24 + 471803614818821627606852431704x23

−6403474778189117882143498765256x22 + 128945287900586639765937294055323x21

−267130197468879823675069343083282x20 − 609942322537763774798637252351357x19

+2843848149794156824379251546718928x18 − 1449008974308249876681217755422392x17

−8609964732085444739115712428740443x16 + 11462233793731819908607681612424601x15

+16721010272893391334932201233417682x14 − 29850257116492845020236438390839168x13

−85528053082348511322543845120538291x12 + 288505635781109866818884753868632113x11

−35293229333983240796518647599225700x10 − 1277262158496478519737058759156656914x9

+1834010042289159626253642058051818796x8 + 1354316757902805387817418179095807350x7

−4163881920776421128809003897947900249x6 + 988630283825310945520835533908582035x5

+2040826308855028479392640356469898542x4 − 781074320529157534608502496794137429x3

+709576849443416690978774803765082127x2 − 1543465475906955668641522308642611594x
+688413259803358313348163539065291572,

and the one corresponding to ρ̊f24,l27 is

F1(x) = x64 − 13 x63 − 12 x62 + 1798x61 − 2480 x60 − 301351x59 + 2427920x58 + 3549779x57

−128622131 x56 − 605195516x55 + 18083445605x54 − 76623104240x53 − 136111338385x52

+163365709662x51 + 36207027735933x50 − 333393729013025x49

+1353870749023624x48 − 4874235588482263x47 + 57952977575049072x46 − 607896973953769424x45

+3885848486411353707x44 − 19706433793139872315x43 + 120488579146025627521x42

−883909787742651393957x41 + 5725316882860134327765x40 − 30772173337138099500438x39

+159943917207673058062651x38 − 902780142644635221738911x37 + 5191270923286965360402518x36

−27218300530032866515284399x35 + 131834043223355056977306359x34

−634566137578102285193778876x33 + 3121681910932332495500670500x32

−14916061491879244185623832302x31 + 66502847707000774372555381722x30

−280063144491158854648848327512x29 + 1151797920191329188089219069705x28

−4647562082419563017250271030629x27 + 17964227685904653209413452332198x26

−65006898495556449638155640530135x25 + 220529771543741523242617521771165x24

−708030865546251742399340304689884x23 + 2183095437906409520271539169052977x22

−6466045440189753384271760806624755x21 + 18519022770605982324844617113128582x20

−50903095666736365236595239907177352x19 + 135712299725345417719982183578217245x18

−349024414927084414313298879270239332x17 + 879282617681138593506051646342160011x16

−2128887636785999977543247137539912626x15 + 4959567391946018954079733252123119870x14

−10698310092805038208309504750205888318x13 + 21185126053660446928251211870565927064x12

−37034974052822943124568751376502208132x11 + 57682303937811470679764738932557333147x10

−77659172323156765855997312303575730246x9 + 91059874206416211006654087253008834453x8

−92285656456264804316815032164880452414x7 + 79794573183910939847907389673931597531x6

−60780767548452665962995019987085052653x5 + 37996038264233396745310228794005562702x4

−20277402785975735994777964167007154402x3 + 7574966450629297705011250772005345004x2

−1351637429742600734951332369647381173x + 193569924383211730931468549048466113.

The images of the Frobenius elements are given in Table 2.
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Table 2

p ρ̊f24,l5(Frobp) ρ̊f24,l27(Frobp) a(f24, p) mod 31Z[α]

101000 + 453 x2 + 26x+ 21 (x− 20)(x− 15) 1 + 7α
101000 + 1357 (x− 18)(x− 3) (x− 25)(x− 22) 1 + 4α
101000 + 2713 (x− 24)(x− 2) (x− 29)(x− 7) 4 + 23α
101000 + 4351 (x− 17)(x− 13) (x− 11)(x− 6) 9 + 29α
101000 + 5733 (x− 19)(x− 12) (x− 15)(x− 9) 3 + 18α
101000 + 7383 x2 + 4x+ 14 (x− 7)(x− 2) 17 + 2α
101000 + 10401 (x− 22)(x− 5) x2 + 24x+ 17 9 + 16α
101000 + 11979 x2 + 17x+ 7 x2 + 19x+ 7 6 + 14α
101000 + 17557 (x− 26)(x− 24) (x− 17)(x− 13) 1 + 16α
101000 + 21567 x2 + 6x+ 29 x2 + 2x+ 29 10 + 3α
101000 + 22273 x2 + 10x+ 19 (x− 16)(x− 7) 29 + 17α
101000 + 24493 (x− 22)(x− 12) (x− 25)(x− 18) 8 + 30α
101000 + 25947 (x− 15)(x− 12) (x− 24)(x− 23) 14 + 15α
101000 + 27057 x2 + 10x+ 30 (x− 26)(x− 25) 17 + 7α
101000 + 29737 x2 + 3x+ 24 x2 + 13x+ 24 19 + 8α
101000 + 41599 x2 + 11x+ 8 x2 + 27x+ 8 18 + 19α
101000 + 43789 x2 + 14x+ 3 x2 + 7x+ 3 14 + 13α
101000 + 46227 x2 + 15x+ 12 x2 + 4x+ 12 29 + 16α
101000 + 46339 (x− 24)(x− 9) x2 + 5x+ 30 5 + 18α
101000 + 52423 (x− 10)(x− 1) x2 + 16x+ 10 27 + 3α
101000 + 55831 x2 + 7x+ 25 (x− 28)(x− 2) 17 + 20α
101000 + 57867 x2 + 12x+ 6 x2 + 6x+ 6 12 + 20α
101000 + 59743 x2 + 16x+ 12 (x− 21)(x− 5) 28 + 16α
101000 + 61053 (x− 18)(x− 16) x2 + 15x+ 9 24 + 2α
101000 + 61353 (x− 26)(x− 13) x2 + 30x+ 28 11 + 18α
101000 + 63729 x2 + 4x+ 23 (x− 18)(x− 3) 3 + 11α
101000 + 64047 (x− 19)(x− 3) (x− 13)(x− 2) 25 + 18α
101000 + 64749 (x− 13)(x− 10) (x− 17)(x− 4) 15 + 14α
101000 + 68139 x2 + 2x+ 26 (x− 19)(x− 3) 1 + 18α
101000 + 68367 (x− 22)(x− 2) x2 + 21x+ 13 30 + 5α
101000 + 70897 x2 + 8x+ 25 (x− 26)2 15 + 14α
101000 + 72237 (x− 11)(x− 2) (x− 12)(x− 7) 6 + 20α
101000 + 77611 x2 + 5x+ 15 x2 + 28x+ 15 27 + 6α
101000 + 78199 (x− 30)(x− 28) (x− 25)(x− 15) 17 + 2α
101000 + 79237 x2 + 10x+ 26 (x− 27)(x− 9) 19 + 19α
101000 + 79767 (x− 15)(x− 6) (x− 7)(x− 4) 12 + 8α
101000 + 82767 (x− 13)(x− 3) (x− 24)(x− 21) 8 + 14α
101000 + 93559 (x− 15)(x− 10) x2 + 8x+ 26 17 + 14α
101000 + 95107 (x− 28)(x− 20) (x− 18)(x− 7) 18 + 6α
101000 + 100003 x2 + 21x+ 8 (x− 10)(x− 7) 7 + 13α
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